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ESR Studies of Spin Probes in Anisotropic Media

JACK H. FREED
Department of Chemistry, Cornell University, Ithaca, N. Y. 14853

We wish to summarize some of our recent studies of spin
probes in liquid crystalline media. We also wish to indicate
some theoretical aspects of spin-dspendent phenomena on surfaces
end interfaces.

Order Parameters and Equation of State

One of the most useful ways in vhich magnetic resonance may
be applied to anisotropic media is to the determination of the
molecular order parameter:

S-%<3eo-28-1> 1

vhere 8 is the angle between the preferred spatial direction in
the medium, usually referred to as the director and specified by

~umit vector fi, and the symmetry axis of the molecule. Actually,
this parameter is sufficient only if the molecule is ordered with
cylindrical symmetry (either prolate with positive S or oblate
‘with negative 8). In general, there is an ordering tensor, which
is completely specified once the principal axes of ordering of
the molecule relative to the director are known, and the values
of S and the "asymmetry parameter" are given.

'8 = % <a1n?8 cos2o> 2

In eq.2 a is the azimuthal .angle for the projection of the direc-
tor in the molecular x-y plane. One finds, in the case of nitro-
xides, that if the principal axes can bYe chosen on the basis of
lolecnl.t symmetry, it is then possible to cetermine S and §

from ESR messurements of the effect of the ordering on hyperfine
and g-lhi.ﬁl (1,_2_) It is, of course, firat necessary to accura-
tely measure the hyperfine and g-tensors from rigid-limit spectra
preferably in the solvent of interest, since these tensors are
generally somevhat solvent-dependent (1,2,3). It was found that,
by a proper choice of the molecular z-axis, it is usually possible
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2 MAGNETIC RESONANCE

to keep § small relative to S. The ordering tensor may ‘be related
to Po(Q) = P, (B,a) the equilibrium distribution by such expres-
sions as:

S = ){dQPo(Q) -;‘— (3cos28-1) 3

where i
P,(R) = exp(-U(R)/kT) / Idﬂexp(-U(ﬂ)/kT) L

with U(Q), the mean restoring potential of the probe in the field
of the molecules of the anisotropic solvent. Since the mean
torque on the probe is obtained by taking the appropriate gradient
of U(a) (1,2,4), one has that it is statistically the potential
of mean torque for the spin probe. This potential U(R) can be
expanded in a series of spherical harmonics of even rank, since,
in liquid crystals f and -n are equivalent. The leading terms in
the expansion are then spherical harmonics of rank 2. So, if we
keep only these lowest order terms, and employ the principal

axis system of the ordering, then

U(B,a)/kT = -Acos2B -psin?Bcos2a. 5

A non-zero § then implies a non-zero P. Once these potential
parameters X and p are measured, then they may be related to
theories for the equation of state of the liquid crystal. In
the "mean~field" the?rg of ‘?hs Maier-Saupe type, one assumes -
that, for example, A‘S sis asS/VYST (where the superscript
implies solvent molecules), where the coefficient a83 which is
independent’ of 'f ’nd V refers to the strength of the anisotropic
potential and A8/ is taken to be proportional to the me?q -
ordering of the surrounding solvent molecules given by S 8),
This expression also allows for dependence of the interaction
molar volume V. A simple point of view would be to let
V'8« r3Y8, 50 & measurement of y, would indicate the natire ‘
of the intermolecular forces leading to the orienting potential.
The case of y. =2, implying van der Waals attractions, would :
correspond to Maler-Saupe Theory. More generally, 3y would
represent some mean radial dependence averaged over the different
kinds of interaction forces. In the case of a dilute solution
of probe molecules,-which e.r? ?rder d by the%r interaction with
solvent, one should write: A\P) = g(s) a8p/y'p 71, Thus, studies
of the pressure and temperature variation of the ordering should
be useful in testing theories of the equation of state.
Intereat:u(‘f thermodynamic derivatives one may hope to measure
~are (3105{1)/31nT); end (31nT/31nV) ;). Actually ome obtains
the analogous expressions with V regiaced by P from pressure-
dependent studies. Then one uses P-V-T data to obtain these
derivatives . Using the simple mean field theory outlined above,
but with p=0, cne finds: )
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with (AS(’))2 the mean square fluctuation in order parameter, and
R® is a quantity that s uniq predicted by Maier-Sc.upe theory

for a given value of s(8) or a(s), Also:
ams(P))  _ s(s) grip)

(aln'l' )v ST5T TentsT T
with r(P) = (As(P)) aP / VP T . Te
Also, .

3lnT - :

(a:.nv)s(,) Ye 8
nd a1aT ' = oy [1#R(B)(1-JB )], 9
- (m)m' 'y = [ ]

Thus ve see that experimental results on (31nS(1)/31nT)_ enable
tests of the mean-field theories, while those on (31nT/31nv) g(1)
provide information on the na.ture o§ the orienting potentiu.ls.

The experimental results on ( 1ns{i)/ 1nT)y both for ims from

NMR studies an the nematic PAA (5), and for i=p from ESR studies
on the weakly-ordered perdeuterated nitroxide spin probe
PD-Tempone in the nematic solvent Phase V, are in qualitative

" agreement with eqs. 6 and 7 respectively, but the predictions

are typically about S0% larger in magnitude compared to the
experimental results. Since R\8) is predicted to range from-
sbout. -3/k to -1 in the nematic phase, this is not swurprising.
Thus, small contributions from other terms in the expansion of
U(Q) (e.g. the fourth rank spherical harmonics), can readily -
"explain" such effects (4). The main point is that the thermo-
dynemic medsurements of urdoring, vhether for the pure solvent

or the spin probe, compare reasonably well with the single para-
meter (i) mesn-field theory.: Thus, it is reasonable to attach some
physical significence to eqs. 8 and 9. The NMR result on PAA gives
Yy, vhils recent more approximate results from P-V-T measuremsnts
at the isotropic-mematic phase transition give y,v3.3-k for a :
range of solvents including MBBA, which is very. ltnilu' in -
properties to Phase V (6). Naz' gq .9, after allowing for the am.ll
correcticns in Iaguituda in R\S’ as 4 ncuud above, should be
moderstely well approximated by y! & Ty Y. The experimental
results on PD-Tempcone in Phase V Rave yl Edcd y"\-z. This suggests



4 _ : MAGNETIC RESONANCE

that y_ itself is rather insensitive to changes in the molar volu-
me. 8 may not be so surprising if we have (1) the weakly
aligned spin probe located in a cavity of the liquid crystal;

(2) a specific short-range attractize interaction between probe
and solvent molecules dominant in A P); and (3) the size of the
cavity is not rendered small relative to the molecular size of
PD-Tempone at the pressures achieved. This model is supported and
amplified by the spin-relaxation results below. Clearly, it would
be of considerable interest to determine vy, as a function of the
size and shape of different probe moleculeg.

Relaxation and Rotational Reorientation

We nov discuss detailed results on ESR relaxation and line-
widths: how they are to be analyzed and the microscopic dynemical
models they suggest (1-4,7). As long as the concentration of spin
probes is low, the line shapes are determined by rotational
modulation of the anisotropic interactions in the spin Hemiltonian
in particular the hyperfine and g-tensors; (the nuclear quadrupole
interaction exists for nitroxides, but is too small to be of
importance except in ENDOR experiments). The important feature of
‘anisotropic media that is different from isotropic media is the
existence of the restorilng potential U(R), to which the molecular
reorientation is subject. The simplest model for molecular
reorientation is then 3rownian rotational diffusion including
U(Q2) in a rotational Smoluchowski equation. This may be most
" compactly written in terms of P(Q,t), the probability the
molecular orientation (relative to a fixed lab frame) is specified
by Euler angles Q at time t, and N the vector operator which
generates an infinitesimal rotation, by (1,2,8):

Nlr;g%i_i- 3 [ﬁ + [!U(ﬂ)]/kl']P(ﬂ.t) 10

The dyadic i represents the rotational diffusion tensor. One may
solve this diffusion equation by various methods and then obtain
various expressions for the ESR line widths in the motional
narroving region (2,9,10). The main points to note are that

1) the restricted rotation due to the restoring potential means
. that the rotational modulation of the spin Hamiltonian () is
reduced in magnitude, and 2) the rotational relaxation represen-
ted by Tg for an isotropic liquid, must now be replaced by a
collection of correlation times associated with the different
orientational components to be relaxed in the spin Hamiltonian.
That is, wve first expan () in the usual fashion in terms of
the generalized spherical e(bg‘(n):

- K r. B (L,M) :
,)el(n) .5.: L O o 7™ a n
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with F'(L K) and A (L,K) irreducible tensor components of rank L,

wvhere “F' is in moiecule-ﬁ.xed co-ordinates while A is a spin
operator in the lab axes., Then the correlation functions:

2
C(KK';M,M' ;1) = <D§’M(2)'(t) Q(",M'( )(t+1)>

-4, @) e u (@) ey 12

will exhibit different time dependences for each.set of values of
the "quantum numbers" K, K', M, and M'. (ilote that S-@S% (Q)>).
Such a theoretical analysis ha.s been found, in various studies
(12), to glve reasonable semi-quantitative agreement with
experiment. However, liquid crystalline solvents tend to be
somevhat viscous, and large spin probes tend to reorient slowly.
Consequently, motional narrowing theory need not apply (1,2,h4).
This fact has not been adequately appreciated in past work, since
the effect of the ordering in reducing the modulation of)C(Q)
yields narrower lines. Nevertheless, the slow motional fea.tures
manifest themselves in significant shifts of the resonance lines
and in lineshape aysmmetries. This former effect can lead to
significant errors in determination of S as outlined above, if
the slow-tumbling contributions are not corrected for. The line-
width asymmetry starts to be appreciable at somewhat shorter
tls, so it can be used as an indicator of slow tumbling. in
agisotropic media. The slow-tumbling theory of ESR lineshapes in
anisotropic media is based upon a generalization of eq. 10 known
as the stochastic Liouville equation in which one introduces a
probability density matrix that includes simultaneously the spin
and orientational degrees of freedom (1,8).

Recent careful studies have now shown the importance of slow~
tumbling corrections, but, even more importantly, have demons-
trated that the rota.t:lona.l reorientation is not so simply
described as given by eq. 10 for Brownian reorientation subject
to the potential of mean torque (1-4, 7, 13, 14). This matter has
been analyzed theoretically from several points of view (2,3,8).
The main point to be made is that molecular probes, which are
comparable in size to the solvent molecules, are subject to a
range of intermolecular torques affecting the reorientation and
these torques are characterized by a wide spectrum of "relaxation
times". Brownian motion is the limiting model appropriate when
Ty » the rotational reorientation time of the B particle, is much
slower than the "relaxation times" for the intermolecular torques
experienced by it, such that the latter are well approximated
as relaxing instantaneously. Instead, for particles of molecular
dimensions, one must distinguish between forces that are relaxing
much faster than, comparable to, and slower than t,, since they
will tend to play a different role in the reorientational motion.
These considerations are particularly important for ordered media
such as liquid erystals.
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According to our approximate theoretical analysis, fluctua-
ting torques relaxing at a rate that is not slower than TR will
contribute to a frequency-dependent-diffusion coefficient, e.g.
for a simple model vherein the fluctuating torques decay with a
singlé exponential decay constant Tys One has:

R(w) = R, (1-dwty) . 13

vhere no is the gzero-frequency diffusion coefficient. Such a model
might spproximately account for the reorientation of a probe
molecule of comparsble size to the surrounding solvent molecules
vherein the reorientation of the latter at rates comparable to T,
provide the fluctuating torques causing the reorientation of the
probe molecule. This is called the "fluctuating torque" model
(2,3,4). In the case of an isotropic fluid (i.e. U(R)=0), eq.13
leads to a spectral density:

Jw) = ReLe‘“‘ at C{K;M;t) = tgltl*ewz\ ;] 1k

vith eml]‘m cent observations of anomalous behavior of
the non ral densities (i.e. wmw, the electron spin
fequenty) for some nitroxide spin probes peroxylanine
ummm.e (Pmsy and ?D—Temae are amensble to such an
interpretation with <t (}_,;5_,16) There is also some indi-
- cation thut even for enlu' spectral densities {(i.e. u,,
the nutleur-spin Iamr n-equency) such sn snalysis is appro-
priste {3). Also, it hes been noted (3) that such a model may be.
sppropriste for explaining anomalies in slow-tumbling spectrs
that hed previously (15,16) been attributed to rotationsl reorien-
tation by jumps of finite angle. The basic point is that the
spectral density of eq.lh is similar, but not identical, to
typical spcctru densities predicted for models of jump diffusion

(8).

For misotropic media, the "fluctuating torque" model with
eq.13 may also be applied to eq.10 (or more precisely its
Fourier-Laplace transform). Because U(R) ¢ 0, the spectral
densities are more complex than given by eq.l‘l In fact, it becomes
neeu{uy to recognize the tensorial properties of L{o) as well

In sn "snisotropic diffusion” model, the principa.l axes of
urﬂ!uun are fixed in the molecular co-ordinate frame (2,h).
'l'hia is & model vhich is ‘also appropriate for isotropic media In
an " sotrdpic viscosity” model the principal axes of K (as well
<") would be fixed in a lad freme, e.g. with respect to the
ncralcopic director (g,k) One can, furthermore, introduce a
"localized snisotropic viscosity” model in whch there is ordering
on s microscopic scale (i.e. a local director), but it is random-
1y dlstributed macroscopically.
. Experimeatal results-on the weskly ordered PD-'I'empom spin
probe have been found to exhidit rczher large anomalies in the .
incipient slow-tumbling region (tg 3 10-9 sec.), where the ESR
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lines are beginning to lose their Lorentzian shape. These ancma-
1lies could be successfully accounted for by a fluctuating torque
model in which Ty is highly anisotropic when referred to the lab
frame (1.e. the torques inducing reorientation about the axis
parallel to the director are very slow). But, for a variety of
aspects (not the least of vhich is the fact that € would have to
be very large (ca. 20) implying TM>TR), vhich are inconsistent
with the basic "fluctuating torque” model, this mechanism does
not appear to Le an adequate explanation. (A simple "anisotropic
viscosity" model may successfully be applied to predict the
obgervations, but it too would lead to physically untenable
predictions).

Combined studies of the pressure dependence as well as
the temperature dependence of the ESR lineshapes have been useful
in demongtrating that this anomaly (in which the two outer lines
of the 1 hyperfine triplet are significantly broader than
predicted from simple theory for ,'I'R'\vIO"9 sec,) is mainly dependent
on Tp(T,P) and nearly independent of the particular combinstion
of T and P. This is good evidence thet the anomaly is associsated
with the viscous modes, as is T; itself (2,h).

We now turn to the models appropriate when there are impor-
tant fluctuating components of the anisctropic interactions which
relax significantly slower tham t,. In this case, it is necessary
to augment the potential of meen torque U{Q) by an sdditional
component U'(Q,t) which is slovly varying in time, but with a
time average <U'(Q)> = 0. In this "slowly relaxing local structurd'
(SRLS) model, each spin probe sees a net local potential given by
u(q)+U*(a,t) which remains essentially constant during the time-
scale, Tp, required for it to reorient. Then, over a Ionger time-
scale, tge local reorienting potential U'(Q,t) relexes. An appro-
ximate snalysis of ESR lineshapes using this model does appear to
have the correct features for explaining the observed anomalies,
but a full treatment would be very complex (2,4). This analysis
Yields rough estimates of the order parameter relative to the
local structure of 5;2v1/16 and Tx/tyv10, vhere yx is the rela-
xation~-time of the local structure. (Agein, one can bring in ani-
sotropies in t31l). This SRLS mechanism is one that may also be
spplied to ‘c¥oaeopicdly isotropic media, which however, on a
microscopic level display considersble structure. A very appro-
ximate enalysis (2,L4) for the isotropic spectral densities
analogous to eq.lf Yields

" 3,(w) = [Dolw) + 8,2 ty/ (1+027,2)] 15a
I5(w) = D () N 15b
vhere J (w) is the spectral density for the K=0 (cf. eqs.11-12)

terms J.(w) for the K=2 terms. For 021R2<<1, one may appro-
ximate Dh(u? and Dy(w) by:
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Do(w=0) = [1 + 0.275, - 2.875,% + 1.52231?]rR " 16a
Dy(w=0) = [1 + 0.0525 + 0.2648 2 + 0.1778 Yrp 16v
provided S; is positive and %0.8; while
: 2
Dolwm0) = [1 - 0.1808, - 3.115,° - 6.345,Y]r,  17a
D,(w=0) = [1 - 0.134S; - 0.6015,2- 2.6548)3r; 1T

provided S, is negative and { -0.l4. One effect of the results .
expressed Dy eqs. 15 is to cause the j (w) and Jz(w) spectral
densities to be different, just as thoggh there were anisotro-
pic diffusion. It is the more complex frequency dependence, as
vell as tx/r >> 1, that enables eqs.l5 to have features which
are cmsistent w:lth the anomalous experimental observations.

It is interesting to note that the Pincus-deGennes model :
of spin relaxation by director fluctuations (17,18) can be applied
to ESR relaxation (2) just as it has been to NMR relaxation (19).
It is also, in a sense, a slowly relaxing structure mechanism.
The important dif.ferences with the above SRLS model are the Pin-
cus-deGennes model (1) is a hydrodynamic one based upon long-
range ordering and not a local structure, and (2) includes only

fluctuatiaons of the director orienta.tion about is mean
oriaiga:tig. Feature 2) results in the prediction (2) that its
ESR con ribution ies opposite in sign (as well as much too small
in magnitude for a weakly ordered probe) to "explain" our
observed. anomalies.

Recent analyses on a highly ordered cholestane nitroxide
spin—-prohe have exhibited the importance of applying a slow
tunblins analysis (l,;},lh) Also, a spin-relaxation theory
‘which recognizes the statistical interdependence of rotational
reorientation and director fluctuations (or of the former and
SRLS) has recently been develcped (29).

It should be clear, then, that interesting microscopic
features of molecular motions. in anisotropic media manifest

themselves in ESR spectra, an}l it ie still a challenge to unravel
the intricate details of observed spectral snomalies.

Many of the general features applied to anisotropic ﬂuid.s,
as discussed above, would be applicable for studying rotational
reorientation of mlecu.les on surfaces and at interfaces. That
is, one could determine an ordering tensor as given by egs.l and
2 w:lth the director usually normal to the surface. However, the
director will no longer obey the symmetry relation n = -f.
Thus, the expansion of U(Q) in spherical harmonics would have

to incln.dn o0dd renk terms. In particular, one should add %o the
L=2 terms, such as given by eq.5, the L=l term proportional to
cosf. Rotational diffusion would still be described by eq.10;
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the correlation functions defined by eq.12 would still be appro-
priate for motional narrowing, although their detailed form is
altered; and the SLE equation for slow tumbling would have to
include the nev U(f2). It remains to be seen what particular fea-
tures of the microscopic motions will ianifest tiet:elwet in
saraful ESR studies.

Phase Transitions

In the pressure-dependent study of PD-Tempone in Phase V
solvent, the nematic-solid phase transition was also studied (%).
It was found that in frozen solution, PD-Tempone undergoes rapid
isotropic rotational reorientation with values of TR sbout the
same on either side of the phase transition. This suggests that
the probe is located in a cavity, and its structure is very
similar, vhether sbove or below the phase transition. However,
as the pressure is increased, 1, actually becomes shorter! This
is taken to imply that increasing the pressure freezes out
residual movement of solvent molecules into the cavity, and the
motion of the spin probe becomes less hindered in the cavity,
Also, ve may note that a large relaxation anomaly, of the type
discussed above, is observed in the solid phase, and it is
suppressed as the pressure is increased. This is consistent with
our model of the probe in a cavity in the solid and with the SRLS
mechanism.

The isotropic-nematic phase transition of nematic solvent
MBBA with PD-Tempone probe has been studied with careful tempe~
rature control (7). The ESR linewidths are fitted to the usual
expression: § = A+BM+CMz, where M is the 1l3x nuclear-spin z-com-
ponent quantum number. The parameters B and C are observed to
behave anomalously as ‘the phase transition at temperature T, is
approached from either side. In fact they appear to diverge.

The non-anomalous, or background contributions to B and C (i.e.
B,-and C,) may be analyzed in the usual menner to show that

is again nearly the same on either side of the phase transition.
The anomalous contributions to B and C (i.e. AB and AC) are found
to be fit by the form:

Isotropic Phase:

+
AB = (o.osh)(r—rﬁ)'o's:o'2 18a
AC = (0.041)(T-T#)-0-520.1 18b
Nematic Phase
' +_m=0.5%0.1
4B = (0.051)(T*-T) . 19a
~4C = (0.077)(T*-T)-0-5%0.1 o 10b

These results Mave been successfully analyzed in terms of Landau-
deGennes mean-field theory (21 22 ) for the weak first order
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transition, as applied to ESR relaxation (7). In this theory, the
free energy of orientation (F') of the liquid crystal is expanded
in a Rot_nr geries in the nematic order parameter Q; i.e. '
F* = o A Qz -2 B Q3 *+ £ C Q°. One then minimizes the free energy
to obtain the “values of Q in the nematic phase (Q;) as well as
the location of T,. One then allows for small fluctuations of Q
about the mean values of Q=0 in the isotropic phese and Qy in the
nematic phase by including in the free energy a term:
IL(!Q)zd » vhere L is a force constant for distortions and
VQ(T) is the gradient of Q. One then studies small fluctuations
in F' (or AF') by Fourier analyzing Q(#), and keeping only lowest
order terms in Fourier components in the isotropic phase (and
4Qg the FT of AQ = Q-Qy 1n the nematic phase). Thus we have:

AP' = %—vg(iuq-?)[qq]a isotropic phase 20a
AP = 1y (KL q2)]A 2 nematic phase 20b
. 2f 2109

where A = A - 2BQ_ + mna and V is the sample volume. It is then
assumed that A = A(T-T*), One then determines that the relaxation
times, r, for the qth mode are given by:

T q-l = L(E2 + qz)/v isotropic 2la

<1 : 2 2
LA Ln(f +gq )/vN nematic 21b

vhere €2 2 L/a(T-1%) and T = L/A 3 L/3a(T*-T) (vith

T 2 T, + T.~-T*) and the approximstion applies only near T.).
The quantities § and { are the coherence lengths of the order
fluctuations in the isotropic and nematic phases respectively,

and v and “itm the respective viscosities. One then obtains

for the ESR linewidth contributions for the weakly ordered spin
probe: .

AB = 5B, 171 K, o(0) 22

aC = Co "R-]'[&{o,o(o) - 3Ko,1 ()] 23

vhere

)2 .
"KO,M(“) = g“ﬂs—(L—)——j (1+[1+(ufuc)2];5)-;i 24

 ur 12(sf®))
and w sL/vE2. Below T., one replaces { everywhere by _;;n eq.2k,
F_q.zkzxn s xo,u(o? « § or £, and ve have («(T-T#)~% and
€ = (T'<T)™% from'their derivations. This is in exact agreement
with our observations.of eqs.18 and 19. We also find experimen-
tally that T.-7% = 1° and T-T, 3 0.5° also in agreement with
prediction. ihc magnitude of AB (and AC) in the isotropic phase
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can be predicted from eqs. 22-2k and values of the experimentel
parameters measured by Stinson and Litster (23) in the isotropic
phase, The agreement with our experimental results is again very
good. (Stinson and Litster measured a,lL and v by light scattering).

Thus the ESR observations about the isotropic-nematic phase
transition display a symmetry for spin-relaxation due to critical
fluctuaticns, end the characteristic features are predicted
rather well by simple mean-field theory combined with a metional-
narrowing relexation theory. It is significant to note that light-
scattering and NiR studies only successfully deal with order
fluctuations above '.[‘c and could not demonstrate this symmetry
sbout T,. The two above examples should clearly demonstrate the
utility of ESR studies of phase transitions in the anisotropic
media,

Spin Exchange and Chemically-Induced Spin Polarization in Two

Dimensions

Translational diffusion may be monitored by spin proves as
a function of the concentration of the probes. This haes been
extensively studied in isotropic liquids ( 4,25) and some work
has been performed in liquid crystals (13,26). In these works,
one monitors the translational diffusion by the concentration-
dependent line broadening due to the Heisenberg spin-exchange
of colliding spin probes in solution. It is interesting to
speculate on the nature of such phenomena if radicels are confined
to translate on a two dimensional surface. From the point of view
of radical-radical interactions on surfaces, one may ask the
related questions about spin-dependent reaction kinetics on sur~
faces and the associated magnetic rescnance phenomena of CIDNP and
CIDEP which have been amply studied in three dimensions (27,28).
Deutch (29) has pointed out that such phenomens should be qua-
litatively different in two va. three dimensions, mainly because
the re-encounter probsbility of two radicals which have initielly
separated is always wiity for two dimensions, but less than unity
in three dimensions. A recent study (30) focuses on the two
dimensicnal aspects from the point of view of the Pedersen-Freed
theory (28). In this theory, the stochastic Liouville equation
(SLE), which simultaneously includes the spin and Aiffusive
Qynsaics, is solved by finite difference methods subject to en
initial conditian (usually that the redicals are initielly in
contact or slightly separated). The results then show the accu-
mulated spin-dependent effects after the radical pair have had the
opportunity to re-encounter many times {and possidly reect). This
is referred to as the "complete collision". One then obtains
(1) the probsbility of spin exchange per wollision (4P), (2) the
fractionsl probability of reaction per collision if there are no
spin-dependent selection rules (A), (3) the provability per .
collision of conversion of nom-reactive triplets to singlets which
immedistely react (¥*), and (4) the polarization of raafeal A
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from the radical-pair mechanism per collision (Py). However, in
two dimensions, because the re-encounter probabllity is always
unity, the "collision" is never complete as t ~w » unless other
processes act to interfere (e.g. radical scavenging, radical T,,
or radicals leaving the surface). Thus a finite time scale is
brought on by these other processes. It has been rointed out that
a finite time scale can be replaced by a finite outer radial
collecting (or absorbing) well boundary at ry in these problems
(28). It is convenient to solve for finite ry and then transform
to the equivalent time representation. We summarize approxinate
expressions cbtained from the numerical solutions.

The re-encounter probability (tf) for finite ry 1s given by:

r 'l
tp=1-In(zl) / (gl 25
where r. is the initial radical separation and d the encounter
distance. (The next set of results are quoted for rI=d). The
quantity A obeys : '

A = kT In(;!!-) /[1 + k1) In(-E-N-)] 26

vhere k is the first order rate constant for irreversi\ﬁe\_/
disappearance of singlet radical pairs waen in contact -ith a
"sphere of influence" from d to Ar,, and t., = dAr./D is a
characteristic lifetime of the encounter pai'r with'D the relative
diffusion coefficient.(One recovers the 3D result by replacing
In(ZK) in eq.26 by unity). Thus as ry** , A+ 1 as it should,
sinCe there will be many re-encounters to guarantee reaction for
finite k.,

Then f* approximately obeys:

27

1+1 N, Qd__ [m(zgj)] -'L[I‘FIII(?;) (%d,_—)O.ZJ

vhere 2Q is f;he difference in Larmcur frequencies of the two
interacting radicals. As N gets large (and/or for large _o,d2)
eqQ.27 goes as D

R =

vhich increeses wihInr_ until f* = 1, its maximm value.

(Eqs. 27 snd 28 noglecg the reletively small effects of the
exchange interactions (30)). For typical values of the parameters
eq. 28 is usually appropriate. Note that CIDNP polarizations are
typically closely related to the product; KP* (28) . Eq.27 is
different in its Q dependence from the Q pover=law typlcally
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found in 3D. This Q dependence suggests that in 2D the mechanism
does not require the time period between succesgive encounters
for the spin-dependent evolution due to having Q ¥ 0. Instead
the relevent spin-dependent evolution occurs while the radicals
are in contact during each encounter.

For CIDEP, a contact exchange model yields:

: 2 2 1
1 N
o ed )
e 2 2 ¢
r 2
1+ b(-alf-) (Qg—) l+%i m(?‘_)(motl)

with ¢ 2 1.2 and b = 3/2 for 2J°1: << leand € X 0.85 and b =1/5
for 2J Ty > l. Here J_ is the itude of the exchange interac-
tion o? infinitesimal range Ar; and T, = dAr_/2D. Again, the Q-
dependence indicates the importance ofl the spin dependent
évolution during each encountcx-f. F?r finite range of exchange
interaction (i.e. J(r) = J,e™A'7=4) ) one nas 1 (A)d_f,, 1
vith a simllar, but not identical, form to eq.29. D 24

In particular, for 2J,t;(A) > 1 (and/or large rN),

.02

. 303 l ..0
AR @i
P B S—

a

2.75 3.3 0.85
L 1f x Ty a2 P
il a[m‘a"} S S S S o

-For Heisenberg-spin 'exchange, a contact exchange model yields:

AP(4,) = (Ia'n(':—l"-))2 (2J°'rl)2/ [1+(In(:£)2h(J°2+Q2)tla]

¢ 3
This 1s like the 3D result, which is recovered by letting

In(ZN) + 1. For finite exchange range, one has the possibility
of 4 values of #(d,) greatar than unity as in 3D (28):

aP(dy) =1 + [In(1+.rod2/n)]3/[ In(;-'-)]a Ad
My 2

' 2 2 ,
for J “r."(An—g )" Z «001 32
vhich becomes the 3D result 1r}3.[tn(d—)] +1.,



14 ‘ ' MAGNETIC RESONANCE

Lastly, we can replace the dependence upon ry in the above
expressions with that on s, the Laplace transform of time by
using: . '

41 :[m(;‘lx-%] (x)2/A0. o3

Then, these results are rigorously for radical palrs which are
scavenged or "collected" by a (pseudo) first-order rate process
with rate constant s. More approximately then, they correspond to
the values at time t ~ s~1, The generally weak dependence of
these equations on r. (e.g. the validity of eq. 28, etc.) hence
on 8, suggests that ghe approximate point of view is entireiy
satisfactory. Then we can approximately replace s by k +T1'
in eq.33 (where k_ would take care of radical scavenving, rate
of leaving the surface, etc.) for use in the previous expressions.
When desired, however, the SLE equation may be solved, explicitly
including the disruptive effects. »

In some applications, in particular that of Heisenberg spin
exchange, the radicals are initially randomly distributed. Thus,
one must first determine the steady-state rate for new bimolecu-
lar collisions of radical-pairs, (2k_, cf. 28). While in 3D this
is a well-defined quantity, it is no% quite true for 2D, since
the rate alvays has some time-dependence (31). Thus, in this
case the actual rate (for unit concentrations) of spin
exchange at tige t (br times t + «) would be obtained from the
convolution f,” AP(t-r) k(r) dtr or alternatively from its
Laplace trm?o : AP(s)k(s) using eq.33 and eq.3l or 32 for AP.
Similar comments apply for CIDEP (P,(s)) and CIDNP (=A(s)F%(s))
due to random initial encounters,

In addition , we note that for magnetic resonance in 2D,
spin relaxation by modulation of intermolecular dipolar inter-
ac tions 18 an important concentration-dependent mechanism (32).
It is expected to be sensitive to the structure (i.e. the pair
correlation function) appropriate for the fluid or surface (33),
Just as are the other mechanisms we have discussed (28).
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