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I. INTRODUCTION

The study of molecular dynamics in liquids is an active and exciting area in
theoretical, computational, and experimental chemical physics. The majority
of experimental techniques for studying molecular dynamics in isotropic
liquids and liquid crystalline phases involve measuring the response of the
system to an externally applied time-dependent perturbation, usually
electromagnetic radiation. Examples of such techniques are:

magnetic resonance (electron and nuclear spin resonance),
far-infrared and infrared absorption,

dielectric relaxation,

light scattering (Raman, Rayleigh—-Brillouin, etc.),
fluorescence depolarization, and

inelastic neutron scattering.

The raw data from these experiments usually reflect the underlying
molecular dynamics in a rather indirect fashion. In many instances it is
necessary to explicitly model the response of the system to the perturbing field
to extract quantitative information on the molecular motions that modulate
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the experimentally observed signals. The “inversion" of the spectroscopic data
to expose the dynamical information can be a difficult task, especially if the
perturbing field is so strong that the system cannot respond linearly to it.

In the weak perturbation limit, linear response theory can be used to
simplify the interpretation of time domain experimental data by the connec-
tion between the observed signal and an equilibrium-averaged correlation
function of the relevant dynamical variables. Likewise, [requency domain
measurements in the weak perturbation limit reflect the spectral density of
fluctuations in these dynamical variables at equilibrium. These two types of
measurements are related by the fact that the spectral density observed in a
frequency domain experiment is just the Fourier-Laplace transform of the
correlation function obtained in a related time domain experiment. This
relationship, a consequence of the fluctuation-dissipation theorem, is
exemplified by the well-known equivalence between frequency-domain
[continuous-wave (CW)] magnetic resonance spectra and free induction
decay signals observed in the time domain. The study of molecular dynamics
in liquids by modeling CW electron spin resonance (ESR) spectra in the linear
response regime is a central topic of this review.

In more intense fields, where linear response theory is not applicable, the
full equations of motion for the system including its coupling to the perturbing
field must be solved. This is, in general, a more challenging computational
problem, but it can lead to entirely new and informative types of spectroscopic
tools to study molecular dynamics. In this review we also include a survey of
CW nonlinear methods, such as saturation and double resonance, as well as
newer ESR time domain multiple-pulse spin echo methods. These latter
methods, when performed in an idealized manner, permit one to separately
treat the effects of the intense radiation field and of the molecular dynamics;
yet they allow for a great variety of intriguing possibilities in exploring the
latter.

The various techniques for studying molecular dynamics in liquids can be
roughly divided into two classes depending on the nature of the dynamical
variables required to model the spectrum: (i) those that are sensitive to single
particle properties and (ii) those that are sensitive to collective motions. For
example, the Rayleigh-Brillouin light-scattering spectrum from a pure
monatomic fluid such as argon depends on fluctuations in the electric
polarizability density over distances on the order of the wavelength of visible
light. These fluctuations surely involve the collective motion of many
molecules. On the other hand, the ESR spectra of dilute solutions of spin
probes in liquids are almost always interpretable in terms of the independent
sum of the magnetizations from the individual molecules. The distinction
between these two classes can become blurred. For instance, in the study of
phase transitions in liquid crystals by ESR, the collective fluctuations in the
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density or order parameter of the bulk fluid can couple to the spin degrees of
freedom an_d dramatically affect the ESR spectrum.

In adldmon. the experiments can be classified according to the time scale
over which they are most sensitive to fluctuations in the relevant variables. The
time s_cale of a magnetic resonance experiment is determined, in part, by the
magmtu_de of the fluctuations in the spin Hamiltonian produced by the
Interactions of the spin-bearing molecules with the surrounding solvent and
l?y '.;h.e spect_ra] resolution. To clarify this statement, we must distinguish two
limiting regimes of spin relaxation and two distinct types of relaxation. In the
more familigr limit, the motional narrowing limit, one speaks of T, and T,
types c_u:' spin relaxation. Now, the effectiveness of the Ty, or spin-lattice
re.laxglmn depends in part on the relative magnitudes of the correlation raté
{,‘lhe inverse of the correlation time) of the dynamical fluctuations and the
irradiating frequency. But it also depends on the ratio of the magnitude of the
stochastic perturbations of the spin Hamiltonian to the correlation rate.
However, the T, or transverse, relaxation depends only on the latter ratio.
Nevertheless, even when this ratio is small, high-resolution spectroscopy
e_nables the accurate measurement of small contributions to T, (e.g.,tothe CW
linewidth). Thus, it is possible to detect very fast processes (correlation rates on
the order of 10'?s™"), albeit in an indirect manner.

The other limit is the slow-motional limit, The slow-motional regime is
where the stochastic perturbations to the spin Hamiltonian are comparable to,
or greater than, the correlation rate. In this limit, there is no longer a time scale
separation between the characteristic times of molecular motion and spin
relaxation, which greatly simplifies the analysis of fast-motional spectra.
Instead, the spin degrees of freedom and molecular dynamics become
intimately coupled. In this limit, spin relaxation experiments probe the
relaxation of these coupled modes and thus provide more direct information
on the molecular dynamics. In conventional CWESR experiments with
nitroxide spin probes, this limit is usually reached for correlation rates on the
order of 10%s™*, whereas for nuclear magnetic resonance (NMR), it can be on
the o;der of 10*s™'. The characteristic time scale for slow-motional ESR
experiments implies that they will be sensitive to motions of spin probes in
viscous liquids and/or slowly diffusing spin-labeled macromolecules in

solution. On the other hand, the slower time scale of the typical NMR .

experiment is better suited to the slower dynamics in solid phases. Another
feature of the magnetic resonance experiment is that, at least in principle, one
can “tune in” the slow-motional regime by properly choosing the value of the
magnetic field and the corresponding resonance frequency. This feature allows
one to vary the relative magnitudes of some of the relevant terms in the
ﬂuctu_ating part of the spin Hamiltonian to increase the lcnsiti;.rity of the
experiment to a particular time scale of molecular motion. At present, this idea
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is being used to extend the time scale of the slow-motional ESR experiment to
the range 10'°-10'!s~!, depending on the nature of the spin probe, by
working at high fields (90kG) and high frequencies (250 GHz).

Whereas the analysis of slow-motional spectra holds the potential for
greater information on molecular dynamics in liquids, it poses much more
complicated computational challenges. In answer to these challenges, there
have been a number of major advances in computational methods in recent
years. These new computational methods for calculating slow-motional
magnetic resonance spectra are the focal point of this review.

With these considerations in mind, the interpretation of dynamical effects
on ESR spectra of dilute solutions of spin probes in viscous liquids can proceed
in the following manner. Since the experimental observable depends only on
the sum of the magnetization due to the individual spins and not on any
collective phenomena or interaction between spins on separate particles, it
makes sense to base the analysis on an approximate equation of motion for the
one-particle spin density matrix. The time evolution of the macroscopic
magnetization can then be calculated as the equilibrium average of the
contributions due to the individual spins. Moreover, the nature of the
interaction of the unpaired electron spin with its environment in a dilute
solution is such that the spin Hamiltonian, which drives the time evolution of
the density matrix, should depend only on the orientation and/or angular
velocity of the spin-bearing molecule with respect to a laboratory-fixed
reference frame and on the relative positions of pairs of spin-bearing
molecules. This suggests that the positional, orientational, and angular
velocity degrees of freedom of the spin probe can be modeled as a stochastic
process in which the intricate details of the collisions with other molecules are
unimportant.

In this manner, the molecular dynamics is incorporated into the calculation
by assuming a specific form of the stochastic modulation of the orientation and
position of the spin probe molecules, which can, in general, couple to other
degrees of freedom of the fluid. It turns out to be particularly convenient and
useful to model the molecular dynamics as a Markov process that modulates
the various terms in the spin Hamiltonian. This is not, as we will see, a
particularly restrictive approach. One is [ree to incorporate as many relevant
dynamical variables as justified by the experiment into a multidimensional
Markov process. However, the greater the number of degrees of freedom that
are included, the more challenging is the computational problem. In this
review we address the twofold problem presented by this stochastic modeling
approach: (i) how to choose appropriate Markovian forms based on the
known or presumed molecular physics of the system and (ii) how to solve the
resulting equations for the relevant spectral densities or magnetic resonance
lineshape. In the latter case, the spin dynamics and the molecular dynamics
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can be described in a single equation of motion for the spin density matrix,
which has been properly generalized to include its dependence on the
orientation, angular velocity, and position of the molecule. This equation is
usually referred to as the stochastic Liouville equation (SLE). The generalized
spin density matrix combines the properties of the usual spin density matrix
with those of a classical probability distribution for the dynamical variables
incorporated into the Markovian model for the molecular dynamics. The
calculation of magnetic resonance spectra from the SLE is the canonical
problem dealt with in this review.

After we describe the basic ESR lineshape problem in terms of the SLE in
Section II, we review various methods in Section 11 for reducing the set of
coupled partial differential equations represented by the SLE to a tractable set
of linear algebraic equations that can be solved on a computer. A survey of
methods of solving the SLE based on the classic algorithms of numerical linear
algebra are the subject of Section IV. We then focus in Section V on the newer
methods based on the Lanczos [1]* and conjugate gradients algorithms [2]
that have proven to be extremely powerful for these applications. We describe
in some detail their strengths and how they may be employed.

There is a close theoretical connection between these methods and those
used by other workers in a variety of fields. The theoretical interrelationships
which provide a framework for understanding and justifying these methods
are considered in Appendix B.

The modeling of the subclass of stochastic processes that can be described
by Fokker-Planck equations is treated in Section VI. It is shown how the
inherent symmetry of Fokker—Planck equations, which obey the requirements
of detailed balance, allow one to extend the Lanczos and conjugate gradients
methods in a particularly simple fashion to the calculation of spectral
densities. In fact, what emerges is a very general approach to irreversible
processes that obey the preceding restrictions. This general approach can be
characterized in the following manner. Whereas the reversible dynamics (both
classical and quantum mechanical) is most properly and conveniently
analyzed using the familiar unitary or Hilbert space formalism, the inclusion of
irreversible terms naturally leads to a formalism involving complex symmetric
matrices and complex orthogonal spaces. Since the properties of complex
symmetric matrices and nonunitary bilinearly metric spaces such as complex
orthogonal spaces are unfamiliar to most readers, these ideas and their more
familiar unitary space analogues are summarized in Appendix C because of
their importance to the central themes of this review.

A brief survey of the influence of molecular dynamics on nonlinear
phenomena and pulsed methods in magnetic resonance is given in Section VII.

*In this chapter, references are enclosed in brackets— Ed.
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The complex symmetric Lanczos algorithm introduced by Moro and Freed
[3] and the closely related complex symmetric conjugate gradients algorithm
of Vasavada, Schneider, and Freed [4] arise in a natural fashion in the
complex orthogonal space formalism for irreversible processes. A basic
message of the present review is the applicability of these methods to
computational and theoretical studies of irreversible processes in general and
to the study of molecular dynamics in liquids by magnetic resonance in
particular.

Il. ESR LINESHAPES AND THE STOCHASTIC LIOUVILLE
EQUATION

The relationship between the ESR spectral lineshape function, /(Aw) and the
dynamics of motion of a paramagnetic molecule can be expressed in the form
[5-12]

."(f_'xm]=%Re{ui[f[.{swl—[.]-l—l']"lu), (1)

where Aw is the sweep variable, L is the Liouville operator associated with the
spin Hamiltonian of the probe molecule, and I is the Markovian operator for
the stochastic variables that modulate the magnetic interactions. In most
cases, I is taken to be a Fokker—Planck operator. Also, |v) is the so-called
starting vector constructed from the spin transition moment averaged over the
equilibrium ensemble. The vectors and operators are defined in the _direcl
product space of the ESR transitions and functions of the stochastic variables.
(For typical ESR calculations Aw = @ — @y, where w, is the Larmor frequency
at the center of the spectrum and w is the angular frequency of tI'Ee
applied radiation field.) Equation 1 is derived from the more general stochastic
Liouville equation, which is appropriate for studying the spectrum (cf.
Section IL.B).

By means of computer calculation of ESR spectra, one may extract
information about the dynamics of motion. In particular, spectra in the so-
called slow-motional region are sensitive to the form chosen for the diffusion
operator I', making it possible to distinguish between different models for the
motion by comparison between experimental and theoretical spectra [12-25].
(The slow-motional regime may be defined by the inequality |L|/|T| =1,
where |L| and |T'| are measures of the magnitude of matrix elements of L and
I, respectively.) This application of ESR spectroscopy depends on the
efficiency of the algorithm for calculating spectra. As one uuliz&_s more
sophisticated models, calculations with matrices that increase geometrically in
dimension are required. This need would seem warranted by the development
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of new ESR techniques that are particularly sensitive to molecular motions
[26-35].

Also, there are many applications of the ESR technique, requiring
calculation of spectra, to systems of physical or biological relevance with the
primary purpose of deriving the relaxation time(s) for the reorientational
motion [12, 21-24, 36, 37]. In these applications, simple forms for the diffusion
operator are utilized, so the size of the matrix is relatively small. But the use of a
very compact algorithm that does not need large memory allows one to use a
mini or personal computer directly connected to the ESR spectrometer. Also,
one may obtain NMR lineshapes in the slow-motional region, particularly in
solids, and these may also be analyzed in terms of Eq. 1 [36-40]. In fact, there
continues to be a growing number of applications requiring detailed spectral
calculations based on Eq. 1,

Our studies of ESR spectra and the modeling of motional dynamics have
made clear that the same algorithms would be applicable to the general class of
Fokker—Planck equations, since they may also be represented by operators of

the form of those in Eq. 1 due to the existence of both inertial or drift terms and -

damping terms [3, 4, 41-44]. The calculation of the time correlation functions
(or, more precisely, their Fourier-Laplace transforms, which are usually
referred to as spectral densities) is also found to proceed from expressions like
Eq. 1. Thus, the analysis and discussion in the next several sections will also
apply to such cases.

Note that Eq. | can be rewritten as

I{Aw) =%Re (v|u(Aw)y, (2)

where |u(Aw) ) is the solution of the equation
A'(A)|u(Aw)) = (i Aw T+ A)|u(Aw)) = [v). (3)

The operator, A is defined as A =T —iL. The spectrum given by Eq. 3
can be calculated by either solving Eq. 3 for a range of values of Aw or,
alternatively, by diagonalizing A only once [5-8, 12,45].

The matrix of the operator A is in general very large and sparse. Thus,
conventional methods [5-8,12,45] for solving Eq.3 by inversion or by
diagonalizing A prove to be too cumbersome (cf. Section IV). One soon runs:
out of memory even on mainframe computers, and the solution requires
prohibitive amounts of computer time. To remedy this situation, the Lanczos:
algorithm (LA) has been developed for complex-symmetric matrices, since A is/
typically of this form or else it can be transformed to this form. It is an efficient!
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method for tridiagonalizing A and is particularly well suited to the solution of
sets of linear algebraic equations such as Eq. 3, which are characterized by
large sparse matrices. We find that it can lead to at least order of magnitude
reductions in computation time, and it yields results to the solution of Eq. 1 to
a high degree of accuracy [3,4,43,44]. In a more theoretical vein, it was
possible to establish the close connection between the LA based on a scheme of
projection operators in Hilbert space and the Mori projection scheme in
statistical mechanics [43,44]. Though the emphasis here will be on applic-
ations to ESR spectroscopy, the Lanczos methods described in Section V may
be regarded as appropriate for a wide range of applications in chemical
physics.

There have appeared other reports of computational methods for calculat-
ing ESR spectra based on Padé approximants [46] and on the Mori method
[47, 48], which may be expected to be formally equivalent to the application of
the LA [3,43, 44] (see also Appendices A and B). This matter has recently been
studied in detail by Dammers [49], who finds that whereas all these methods
are indeed formally equivalent, the LA is the most stable and efficient
from a computational viewpoint. We discuss these matters in more detail
in Appendix B.

A. Derivation of the Spectral Lineshape Function in the
Linear Response Regime

The slow-motional regime for a tumbling spin probe can be defined
operationally as the range of molecular motional rates where a change in
motional rate gives rise to an observable effect on the ESR spectra but the
spectra cannot be adequately described by a fast-motional theory. The ESR
spectra in the fast-motional limit are well understood but are less sensitive to
the details of the motions of the spin probes than slow-motional spectra,
whereas the rigid limit provides no motional information whatsoever. Thus,
one is forced to tackle the problem of the interpretation of the slow-motional
spectra.

The breakdown of the fast-motional theories can be traced to their
perturbative nature. In the slow-motional regime the dynamics of the spins are
strongly coupled to the orientational and/or positional degrees of freedom of
the molecule, which render perturbative treatments invalid. To proceed, one
must treat both the classical orientational and/or positional degrees of
freedom and the quantum-mechanical spin degrees of freedom on a more
equal footing. Since solving the exact equations of motion for all the molecules
in the sample is obviously an impossible task, some physically reasonable
assumptions must be introduced to make the problem tractable.

First, assume that the equation of motion for the density matrix, p(t), has
the same Hamiltonian () for all members of the ensemble and is given by the
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quantum-mechanical Liouville equation

d

P
E— ‘[Jip{”-ﬂ}- (4)

where J(t) is given in angular frequency units.

Now, assume that the time dependence of the spin Hamiltonian #(t) for a
spin probe arises from interactions with its environment such that #(¢) is fully
determined by a complete set of random variables, Q. Also assume that this
time dependence of Q is described by a stationary Markov process, so that the
probability of being in a state Q, at time t,, if in state Q, at time ¢, = t, — At, is
independent of the value of  at any time earlier than ¢, and depends only on
the time difference At and not on ¢,. A stationary Markov process can be
described by a differential equation,

dP(,1)
at

= — [(E)P(Q, 1), (5)

where P(Q, 1) is the probability of the spin probe being in a state £ at time ¢,

Since the process is assumed stationary, I'(Q) is independent of time. The
stochastic evolution operator I'(Q2) operates only on the random variables
and is independent of the spin degrees of freedom and may include such
general Markov operators as the diffusion operators given by Fokker—Planck
equations and transition rate matrices among discrete states. In most of our
examples, Q will represent Euler angles specifying orientation and I'(£2) will be
a rotational diffusion or Fokker—Planck operator. It is also assumed that the
stochastic process has a unique equilibrium distribution Py(Q) characterized
by

T(Q)Py(€2) =0. (6)

It can be shown [5,7,50] that Egs. 4-6 lead to the SLE of motion,

= — i[#(Q), p(Q, )] = T(Q)p(R, 1)

dp(Q, 1)
at

= —iL(Q)p(Q,1) - T(Q)p(Q, 1), (7

where p(Q,1) is now understood to be the value of the density matrix
associated with a particular value of Q and hence of #°(Q). Thus, instead of
looking at the explicit time dependence of the spin Hamiltonian (r)
involving the interaction with its environment, the spin Hamiltonian is written
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in terms of random variables €, and their modulation (e.g., due to rotational
motions) is expressed by the time dependence of Q.

Equation 7 implicitly neglects the back reaction of the spins on the random
variables £, so spin relaxation induced by the coupling of the spins to £ will
tend to relax the spins to infinite temperature. This is not a concern for the
lineshape problem (cf. Eq. 1). The solution is now well known and will be
discussed further in Section VII, where pulsed and nonlinear phenomena are
treated, and this matter is important.

The general linear response expression [or the imaginary part of the
magnetic susceptibility y"(w) resulting from a very weak linearly polarized
microwave field of angular frequency w being applied to the system [51] is

L __w_ 3 leat — et
x},{w]l_kaTL de(e™ + e~ Tr { M ()4}, (8)

which involves a trace over the macroscopic magnetization operator .4/;. In
Eq. 8, T is the absolute temperature, k; Boltzmann’'s constant, and N is the
number of spin eigenstates of the spin probe. Note that M, the macroscopic
value of the magnetization is related to .#, its associated quantum-mechanical
operator, by M(t) = Tr {p(f).# }. The oscillating field is taken along the j = x, y,
or z direction, For our system of noninteracting (or weakly interacting) spin
probes with nearly isotropic g value, we have

Tr { M ()M} = Ay2Tr{§;()S;} = A y2Tr{55,(1)}, (9)

where .4” is the number of spins in the sample and y, is the magnetogyric ratio
of the electron. The spin operator S{t) in the Heisenberg representation will
obey a SLE equivalent to Eq. 7 given by

%= iL(Q)S,(@.1) ~ T (Q)p(. 1), (10)

where the superscript dagger implies the Hermitian adjoint operator. This is
required to have the expectation values of the magnetization be identical in the
Heisenberg and Schrodinger pictures given by Eqgs. 10 and 7, respectively. The
SLE in Eq. 10 is subject to the initial condition

§4€,0) = PylQ)S;. (11)
This form will be needed in order to interpret Eq. 9 as a proper equilibrium-

averaged correlation function.
Now in Eqgs. 8 and 9, the trace over orientational degrees of freedom is
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replaced by a classical average indicated by an overbar:

S;S{1) =55,Q,0) = Jdnsjsjqazy. (12)

In this notation

1

] LA{- Te 71 .. nl
Kt =gmE TTr 5,5+ 0,97, (13)

where the trace is only over spin degrees of freedom, §;(+ w, Q) is the Fourier—
Laplace transform of S;(Q, 1),

SJ["_‘&},Q)Q J-w dt E;'N'Sj(ﬂ, r}, {14:’
(1]

and the plus and minus signs are found to correspond to the two counterrotat-
ing components of the microwave field, only one of which is important in large
static magnetic fields.

From Egs. 10 and 14 it follows that

S,(@,Q) = [i(wl — L) + T']715,(0,Q). (15)
Thus,

SS(zw,Q) = J.dnsj[f(ml ~ L +T']"'P4(S)S,. (16)

This expression may be inserted in Eq. 13 to obtain yj{ £ w).

It is convenient at this point to introduce a “symmetrizing” transformation
for the stochastic Liouville operator. It is not needed for isotropic liquids with
simple models but becomes useful for anisotropic liquids [9] or more
sophisticated models [15]. The relevant similarity transformation is

[(Q)= P53 QI(QP* ), (17

where here P3'?(Q) are regarded as operators. This transformation
defines T in a form that may be represented by a symmetric matrix that is, in
general, complex (cf. Sections VI.B and VI.B.1). The symmetrized diffusion
operator I'(Q) will be used in the remainder of this section.

Equation 16 may be rewritten in more symmetric form as

SS(+w,Q) = j dQ S, PYQ)[i(w] — L+ T PYQ)S,. (18)
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The trace over spin space and averaging over the ensemble in Eq. 18 may be
regarded as a scalar product in Liouville space that can be represented as

Tr,S;S (1w, Q) = (PY2S,|[i(w] — L)+ T"] 1| P}3S,>, (19)

which has the form of Eq. 1.
B. The Spin Hamiltonian

The total spin Hamiltonian .;E"[r}, expressed in angular frequency units, can be
separated into three components,

H(t) = H o + H, () + &(1). (20)

In the high-field approximation the orientation-independent component #,,
hot o =17.BoS, — h; viBol, + hy@ aS.I., (21)

gives the zero-order energy levels and transition frequencies. The orientation-
dependent part, #,(Q), can be expressed as the scalar product of two
tensors [52]:

#,(Q)= ; (= Y Fle 02, Q) ALM, (22)

uid LMK

where the Fi5%) and A!s*" are irreducible tensor components of rank L. The
Fu%®) are spatial functions in molecule-fixed coordinates, whereas A4'%"" is a
spin operator defined in the laboratory axis system. The subscripts g and i refer
to the type of perturbation and to the different nuclei, respectively. The
generalized spherical harmonics 2%,,(Q) include the transformation from the
molecule-fixed axis system (x', ), z') into the laboratory axis system (x, y, z).
For the analysis of most slow-motional ESR spectra of simple free radicals
where § = 1/2, only second-rank tensors are important, for example, the A-
and g-tensors. The calculation of simple types of matrix elements of the
Liouville operator derived from 5, + , is summarized in Appendix D.

C. Model Diffusion Operators

When the general method is applied to rotational modulation, £ can be taken
to be the Euler angles for a molecular axis system fixed to a tumbling spin
probe with respect to a fixed laboratory axis system. For a molecule
undergoing many collisions, causing small random angular reorientations, the
resulting isotropic Brownian rotational motion is a Markov process, which
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can be described by the rotational diffusion equation

aP(Q,1)
at

= — RVAP(Q,1), (23)

where V3 is the Laplacian operator on the surface of the unit sphere and R is
the rotational diffusion coefficient,

In an isotropic liquid, the equilibrium probability P,(Q) given by Eq. 6 will
be equal for all orientations, so that Py(Q) = 1/8n2. Here the Markov operator
I'(Q) for isotropic Brownian rotation is independent of Q since the liquid is
assumed to be isotropic. The operator I = RV} is of the form of the
Hamiltonian for a spherical top; therefore, its orthonormal eigenfunctions are
the generalized spherical harmonics

2L+1 )”2

Prux(Q) = ('BT -@Iﬁx{ﬁ] (24)

with eigenvalues RL(L + 1) [53, 54].

Similarly, the Markov operator for axially symmetric Brownian diffusion
about a molecule-fixed z axis is formally the Hamiltonian for a symmetric top
whose symmetry axis is the z axis. The orthonormal eigenfunctions are again
the normalized Wigner rotation matrices with eigenvalues R L(L+ 1)+
(R, — R,)K? where R, and R, are the rotational diffusion constants about the
x and y and about the z axes, respectively [7,12,53,54]. The “quantum
numbers” K and M of the Wigner rotation matrices refer to projections along
the body-fixed symmetry axis and along a space-fixed axis, respectively. For
completely asymmetric Brownian rotation the diffusion constants about the
three principal axes are all unequal, and the stochastic operator has more
complicated solutions [7, 12,53, 54].

Some canonical models for rotational reorientation frequently used in ESR
spectroscopy are the following

« Brownian rotational diffusion.

» An approximation to free diffusion in which a molecule rotates freely for
time 7 (i.e., inertial motion with r = I /B, where I is the moment of inertia
and f is the friction coeflicient) and then reorients instantaneously.

« Jump diffusion in which a molecule has a fixed orientation for a fixed time
7 and then “jumps” instantaneously to a new orientation with no inertial
effects [13,55].

For isotropic reorientation, the characteristic relaxation rates (eigenvalues)
associated with the generalized spherical harmonic eigenfunctions of rank L
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are all degenerate for these three models and are given, respectively, by

v ___RUL+Y)

T+ ReLUL+ 1)

RN L Sl L
St = [l 2L+1Jnd‘{' Yi—mwm I

where W(y) is the distribution function for diffusive steps by an angle
about an arbitrary axis and is normalized so that

j"cwr W)= 1.

More sophisticated Markovian models and the general matter of modeling
the molecular dynamics are discussed in Section V1. Some of the simple types
of matrix elements of T that arise in anisotropic liquids are given in
Appendix D.

III. OVERVIEW OF DISCRETIZATION METHODS FOR THE
SOLUTION OF THE SLE

For typical forms of the diffusion operator, the SLE is a set of coupled partial
differential equations (PDEs) governing the time evolution of the orientation-
dependent quantum-mechanical spin density matrix subject to specific initial
conditions. This set of PDEs can be simplified to a set of coupled linear
algebraic equations (LAEs) by Fourier-Laplace transformation of the set of
PDEs with respect to time (cf. Eq. 1) followed by discretization of the spatial
parts. The discretization is necessary to remove the spatial derivative terms
usually present in the diffusion operator. The resulting set of LAEs can then
be solved in a variety of ways. The proper choice of method of solution
depends on the structure of the matrix and the specific quantity desired.

There are three important techniques to achieve discretization of angular-
dependent terms: expansion in a set of basis functions, finite-difference
approximation, and finite-element approximation. All of these methods
typically give rise to very large sparse matrices characterizing the stochastic
Liouville operator A.

The expansion in a set of global basis functions is analogous to the method
of variation of constants used in elementary quantum mechanics and the study
of differential equations. The set of basis functions used in the expansion is
usually not complete in the formal sense since this would imply an infinite set
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of coupled equations, but it can be made adequate for numerical calculations
to any degree of accuracy desired. The most common set of functions to use as
basis functions in cases involving rotational diffusion are the generalized
spherical harmonics. There are several reasons for this choice:

« They are the eigenfunctions of the three canonical rotational Fokker—
Planck operators in isotropic liquids (cf. Section II).

« They, by definition, have well-defined transformation properties with
respect to coordinate rotations; thus, powerful group-theoretic techni-
ques can be used to simplify calculations.

« Their eigenvalues have favorable scaling properties with respect to the
principal quantum number L.

« They form an orthonormal set, and the infinite set of all generalized
spherical harmonics form a basis in which any square integrable function
on the unit sphere in four space can be expanded.

Though these functions are the eigenfunctions of the quantum-mechanical
rigid rotator Hamiltonian, it is important to realize that these functions are
only used to expand the orientation-dependent density matrix in this
application and have nothing to do with angular momentum! Nevertheless, all
the sophisticated angular momentum coupling and transformation techni-
ques that have been developed in other areas of physics and chemistry can be
applied since these functions have well-defined properties under rotations. The
properties of the generalized spherical harmonics and applications of angular
momentum techniques to density matrix problems are described in detail in
various texts [56,57] and papers [58-64].

For example, the operators §,(€, @) given in Eq. 15 can be expanded as

IS, w)) = ;Z Sjam@)| Am3, (23)

where the ket|4, m>=|A)|m) is a product of spin operators and spatial
functions, where A represents labels for the spin operator basis, m represents
the labels associated with the basis of spatial functions, and the expansion
coefficients s; , »(®) are, in general, complex-valued functions. In this notation
Eq. 19 becomes

Tr,5,5,( £ 0, Q) < VA (@)] Y, (26)

where A'(w) is the matrix of the operator i(wl — L) + I'! in the basis |4,m ), the
superscript tr means transpose, and the elements of the starting vector are

m = Chum|PY2S,> =T {515} CmI PAZ(@)). @n
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Equation 26 is equivalent to Eq. 1. This discretization procedure can be used
to generate a complex symmetric form for A'(w). The evaluation of the
components of v is discussed in Section V.A and in Appendix D.

The finite-difference approximation involves explicit discretization of the
spatial variables. By assuming that the radical can only be found at these
discrete positions or orientations, it is possible to approximate the Fokker—
Planck equation for the particle by a finite-difference equation. This is a very
popular technique for solving partial differential equations in many areas of
science. The finite-difference approach to solving the SLE was used by Gordon
and Messenger for angular variables [45] and by Freed and co-workers for
translational problems [65-70], and is still in widespread use [71-76].

The finite-element approach involves approximating the solution of the
SLE in a piecewise fashion over finite areas on the unit sphere [77-79] or over
finite volumes in Cartesian space [78,79]. Usually, the solution is well
approximated by low-order polynomial functions, and appropriate continuity
requirements are enforced along the boundaries of the elements. This
matching of elements at the boundaries implies that these functions do not
form an orthogonal set, but the solution is not uniquely defined without these
conditions. The lack of orthogonality means that the computer solution of the
equations generated by applying the finite-element approximation is more
difficult by traditional means, as it leads to a generalized eigenvalue
problem [80, 81]. The use of finite elements for the SLE and the associated
variational problem are discussed in detail by Zientara and Freed [78]. The
alternative approach of using global, orthogonal functions instead of piece-
wise smooth polynomials over small regions is identical to the basis function
expansion method already discussed. Derived in this manner, it is known as
the global Galérkin variational method [78, 81].

The most prominent exceptions to the pattern of discretization followed by
matrix manipulation are the Monte Carlo methods developed by Peder-
sen [82] and Itzkowitz [83] where the relaxation function is evaluated directly
and the spectrum is obtained by Fourier transformation. Though this method
seems to be less efficient on conventional computers than the matrix-oriented
approaches discussed, the popularity of the Monte Carlo technique in other
disciplines has spurred the development of new computer architectures and
associated algorithms that should prompt renewed interest in this approach
for the CW lineshape problem. The remaining drawback to the Monte Carlo
approach, namely, the inaccessibility of the eigenvalue—eigenvector decompo-
sition, makes it inapplicable for spin echo calculations and other applications
where these quantities are required.

Itis also possible to use numerical integration techniques on the discretized
equations of motion to directly evaluate the time evolution, but this has only
been attempted when the complete time dependence is required, such as in the
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detailed investigation of the interaction of the spins with microwave pulses of
finite amplitude and duration [84] or when the spin Hamiltonian has a
particularly simple form [85].

IV. OVERVIEW OF TRADITIONAL MATRIX METHODS FOR
THE SOLUTION OF THE SLE

The algorithms commonly used for the calculation of slow-motional spectra
from the SLE fall into two main categories based on efficiency and ability to
handle large sparse matrices. First are the traditional algorithms for diago-
nalizing matrices and solving sets of coupled linear equations. Second, there
are the various forms of the LA for tridiagonalization and the related
conjugate gradients algorithm for solving sets of linear equations.

The first class of traditional methods is characterized by a variety of
difficulties and strengths. These algorithms typically amount to “comput-
ational overkill” for the problem at hand. For instance, the Rutishauser-QR
diagonalization gives the full set of eigenvectors and eigenvalues though only a
small subset are important in the final spectrum. This large computational
overhead and their characteristic of modifying the sparsity structure of A
combine to make these algorithms unattractive for present purposes. An
important strength of this class of algorithms is their well-characterized
stability and reliability.

In contrast, the LA and its kin are much better suited for the efficient
calculation of magnetic resonance spectra. They are effective in handling large
sparse matrices since they do not modify the original matrix. It is therefore
possible to take advantage of the very special sparsity structure of the
stochastic Liouville matrix. In addition, all of the quantities calculated in the
LA are either used directly in the calculation of the spectrum or are needed in
the next recursive step (see Section V.A and Appendix A). In this sense, the LA
represents a good approximation to the minimal amount of computation
necessary to compute magnetic resonance spectra in the linear response
regime.

Before getting into a discussion on the computational aspects of solving the
SLE by matrix methods, it is valuable to review the analytic aspects of the
problem. In general, the stochastic Liouville matrix A can always be
represented as a complex symmetric matrix (CSM) [3], and A cannot be
Hermitian in the presence of relaxation. In addition, there is a band outside of
which all matrix elements are identically zero. The class of CSM is quite
general, and many of the theorems on diagonalization and related topics do
not have simple analogues for non-Hermitian CSMs [86, 87]. For instance,
one is not guaranteed that an arbitrary CSM can be diagonalized by a
similarity transformation. However, if a CSM is diagonalizable by a similarity

transformation, it is diagonalized by a complex orthogonal matrix (COM) O;
O"AO =A, (28)

where A is a diagonal matrix containing the eigenvalues 4; of A. We will assume
that the stochastic Liouville matrices under consideration are diagonalizable.
This is not too drastic an assumption in light of the fact that any square matrix
is arbitrarily close to a diagonalizable matrix [87]. The pathologies that can
result from nondiagonalizability have been thoroughly studied [86,87] and
only introduce irrelevant complications into the present discussion. The class
of COM is also peculiar in many respects. In particular, the magnitude of the
elements of a COM is not bounded as is the case for unitary matrices familiar
from quantum mechanics. Since A is non-Hermitian, its eigenvalues are not
constrained to lie on the real axis. In spite of the lack of the simple behavior
characteristic of Hermitian matrices, we can say something useful about the
regions in the complex plane that can and cannot contain eigenvalues, Since
the diffusion operator is nonnegative (ie, (@|T|¢>=0), a well-known
theorem from linear algebra states that all the eigenvalues of A must lie in the
closed right half of the complex A plane [87]. In physical terms, this
corresponds to the fact that the relaxation must force the system toward
equilibrium. It is very important to note that the localization of eigenvalues to
the right-half plane is independent of the dimension of the basis set (i.e., it does
not depend on the number of basis functions, finite differences, or finite
elements used in the discretization). In addition, the eigenvalues are restricted,
by a similar argument, to lie within a band about the real axis, since the
spectrum of the Liouville operator is bounded. The width of the band is
dependent on the rigid-limit magnetic tensors. Other eigenvalue localization
theorems such as Gerschgorin’s theorem can be applied, but they do not give
rise to transparently useful results except in the fast-motional limit [88],
though they do form a basis for some of the traditional diagonalization
algorithms. References to several good treatments of the properties of complex
orthogonal matrices can be found in the bibliography [86,87,89-94].

We will briefly survey the traditional methods for diagonalization and the
solution of linear systems of equations from the point of view of calculating
magnetic resonance spectra. This is not intended to be a comprehensive or
definitive treatment of these topics. For much more information about the
theory and usage of the algorithms discussed here, the reader is encouraged to
consult standard texts on numerical linear algebra [80,95,96] and the
references therein.

A. Solving Linear Systems of Equations Using Gaussian Elimination

The most useful classical method of solving the type of linear systems of
equations that arise in the calculation of magnetic resonance spectra is
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Gaussian elimination with partial pivoting. This method has been used in the
past for the calculation of CWESR spectra [13,97] and is still used in the
quantitative analysis of saturation transfer spectra [98,99] and the calcul-
ation of spectral densities in paramagnetic NMR [100].

The idea behind the Gaussian elimination method is to factor the
matrix A'(Aw) in Eq. 3 as a product of a lower triangular matrix L and an
upper triangular matrix U, with care taken to arrange the sequence of
operations to minimize loss of accuracy from the finite-precision computer
arithmetic. In this manner, one solves Eq. 3 by successively solving two
simpler triangular systems and never generating the inverse matrix explicitly.

The procedure can be summarized by rewriting Eq. 3 in the form

PA'(Aw)u(Aw) = LUn(Aw) = v, (29)

where P is a permutation matrix that arises from the sequencing of the
operations. The value of factorizing the matrix lies in the fact that the solution
of Eq. 3 can be broken down into solving the equation

Ly =P"v (30
for y followed by solving
Uu(Aw) =y (31)

for the desired vector u(Aw). Equations 30 and 31 involve triangular matrices
and hence can be solved in @(N?) floating-point operations. The LU
factorization itself is, however, an O(N?) process.

The Gaussian elimination method is quite stable and reliable if the
matrix A'(Aw)is neither singular nor nearly so. It has the definite disadvantage
that it requires large amounts of computer time [#(N?) operations] and
memory (all elements within the bandwidth must be stored). The complete
procedure must be carried out for each value of the frequency at which the
value I{Aw) is desired, since the LU factorization is not independent of Aw.

B. Complete Diagonalization Methods

There are two main algorithms for the eigenvalue—eigenvector decomposition
of the type of complex symmetric matrices that arise in magnetic resonance
problems. The first is a variant of an algorithm devised by Jacobi for the direct
diagonalization of real symmetric matrices. The second, more efficient
algorithm is a variant of Given's method [101], due to Rutishauser [45, 102],
which eliminates some of the drawbacks of the Jacobi algorithm by first
tridiagonalizing the matrix and then using the QR iteration to diagonalize the
tridiagonal matrix,
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The complete diagonalization of a given matrix is usually much more time
consuming than solving Eq. 3 by Gaussian elimination with partial pivoting
for a single value of Aw. Therefore, it makes sense to use a diagonalization
method if A'(Aw) = A — i Aw], since in this case the spectrum can be easily
computed for any value of Aw. The formula for I(Aw) can be easily derived by
using the diagonalizing transformation (see Eq. 28) to rewrite Eq. 1 as

HAw) = Tl—: Re {vYOO"[A +iAwI]~'00"y}
= :?Re {(O"W)"[A +iAwI]™ ' (O")). (32)

Since A +iAwl is diagonal, this can be collapsed to a simple sum over the
eigenvalues of the form

| LS 4
I[dw]=;Rc{ v } (33)

j:lj.j‘l'idw

where ¢; = (O'v), is the projection of the jth eigenvector on the starting vector.
The LAEs derived by finite difference or expansion in a set of trial functions
typically have this form, though the finite-element method usually gives rise to
off-diagonal elements containing w because of the nonorthogonality of the
piecewise polynomial basis functions.

1. Jacobi-T ype Methods

The Jacobi algorithm involves the successive zeroing of the largest off-
diagonal matrix element by (real) orthogonal similarity transformations.
Unfortunately, these successive transformations tend to fill in matrix elements
that were initially zero; thus, this algorithm is not too well suited for sparse
matrix diagonalization. In spite of the proliferation of nonzero matrix
elements, it can be shown that the rotations can be chosen such that the sum of
the moduli of the off-diagonal matrix elements is reduced at every stage, The
product of these orthogonal matrices is the matrix of eigenvectors while the
reduction in the sum of the moduli of the off-diagonal matrix elements causes
the original matrix to converge to the desired diagonal matrix of eigenvalues
by Gerschgorin's theorem.

The original algorithm, which calls for the selective zeroing of the largest
off-diagonal element, requires a complete search of the off-diagonal matrix
elements at every stage. This searching is very costly in terms of computer time
and is not too productive. In practice, the so-called cyclic Jacobi algorithm is
preferred since it does not require searching the off-diagonal matrix elements.
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In the cyclic Jucobi algorithm one starts at the diagonal and moves across a
row, zeroing each matrix element in turn. When the end of the row is reached,
the same procedure is applied to the next row. When the end of the matrix is
reached, the entire procedure is repeated until all of the off-diagonal matrix
elements are below some small value characteristic of the roundof error of the
computer.

Several authors have discussed the generalization of the cyclic Jacobi
algorithm to handle complex symmetric matrices [103-106]. This generaliz-
ation is rather straightforward.

All variants of the Jacobi algorithm suffer from two major flaws when
applied to the large sparse matrices commonplace in magnetic resonance
calculations. First, as mentioned previously, matrix elements that were
originally zero get replaced by nonzero entries as the algorithm proceeds;
thus, these algorithms have storage requirements that scale as the square of the
dimension of the matrix to be diagonalized. Second is the fact that the number
of Jacobi rotations needed to diagonalize a matrix can be infinite! Because of
these drawbacks, the Jacobi methods have been superceded by alternative
methods that rely on a reduction to tridiagonal form as an intermediate stage.
Nevertheless, there are applications where the Jacobi algorithm is quite
useful [80].

2. Tridiagonalization and the QR Algorithm

In most applications it is faster to diagonalize a matrix by first reducing it to
tridiagonal form followed by the diagonalization of the resulting tridiagonal
matrix than it is to reduce it to diagonal form directly via the Jacobi method.
The tridiagonalization method developed by Givens [101] also uses Jacobi
rotations to zero off-diagonal matrix elements. The difference between the
Jacobi diagonalization and the Givens tridiagonalization algorithms is the
sequence in which the off-diagonal matrix elements are annihilated. It can be
shown that the Givens tridiagonalization of a symmetric matrix can be
accomplished by a finite number of rotations, A variant of the Givens method
due to Rutishauser [102] is particularly well suited to the task at hand since it
takes advantage of the banded nature of the stochastic Liouville matrix,
thereby reducing storage requirements. This tridiagonalization method was
popularized in the magnetic resonance community by the work of Gordon and
Messenger [45].

The symmetric tridiagonal matrix generated by the Rutishauser algorithm
can be diagonalized in several ways. The most common choice, also
popularized by Gordon and Messenger [45], is the QR algorithm. Details of
the symmetric tridiagonal QR algorithm can be found in standard references
on numerical linear algebra [80, 96]. Recently, Cullum and Willoughby [89]
have advocated an alternative procedure based on a QL decomposition.
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Prior to the introduction of Lanczos-based methods by Moro and
Freed [3], the Rutishauser tridiagonalization-QR iteration method was the
most efficient method of calculating magnetic resonance spectra. It is,
however, a "brute-force” approach in the sense that a large portion of the effort
is expended calculating irrelevant eigenvalues whose corresponding eigenvec-
tors have negligible overlap with the starting vector (see Eq. 33). There is no
way for the algorithm to differentiate between important and unimportant
eigenvalues as the computation proceeds. All eigenvalues and eigenvectors are
on an equal footing, and the number of eigenvalues calculated must equal
the dimension of the matrix. In contrast, this ability to differentiate
between important and unimportant vectors is inherent in the Lanczos-based
methods discussed in the next section.

V. LANCZOS AND CONJUGATE GRADIENTS METHODS
OF SOLVING THE SLE

The Lanczos algorithm (LA) and the related conjugate gradients algorithm are
extremely effective for calculating slow-motional magnetic resonance spectra
[3, 4, 20, 71]. In this section we will discuss the basic LA as applied to
Hermitian and complex symmetric matrices. More sophisticated variations of
the LA involving selective reorthogonalization [80, 96] and the identification
of spurious and duplicated eigenvalues [89] have been developed to circum-
vent known numerical instabilities. The basic algorithms are sufficient for
most magnetic resonance calculations.

There are several advantages to employing the LA for sparse matrix
problems such as those presented by Egs. | and 3. These advantages include
the following:

« Only the nonzero matrix elements need to be stored; although, in general,
they may be recomputed as needed to minimize computer memory
requirements.

« The original matrix elements are not altered during the operations.

» No new matrix elements are created.

« The entire algorithm can easily be written in less than 100 lines of
FORTRAN code.

« The recursive steps or projections on which the algorithm is based are
very closely related to the projection methods in statistical mechanics.

These very practical considerations alone are sufficient reason to prefer the
Lanczos methods to Gaussian elimination or complete diagonalization
methods.

The theoretical advantages of the LA are as important as they are practical
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to the overall success of the method. The LA provides a convenient conceptual
framework for the identification and classification of the important physical
features of the lineshape calculation problem through its relationship with the
powerful memory function methods of nonequilibrium statistical mechanics
[3, 107-112]. The traditional methods for calculating magnetic resonance
spectra are based on theorems from linear algebra rather than physical insight.
They are, by their very nature, nearly devoid of insight other than that
contained in the specification of the terms in the stochastic Liouville matrix
and the discretization method.

A. The Lanczos Algorithm

The LA proceeds by recursive projections or steps that produce successively
larger tridiagonal matrix approximations to the original matrix. These
projections define the so-called Lanczos vectors. If N is the dimension of the
matrix and n, the number of recursive steps needed to converge to an accurate
spectrum, then in all cases studied to date n,<« N. This inequality becomes
more dramatic the more complicated the problem. In this sense, the Lanczos
projections rapidly seek out, from an initial finite subspace of dimension N
that is spanned by the starting basis set of orthonormal vectors | f,), j=
1,2,..., N, a smaller subspace spanned by the Lanczos vectors (i.e., the basis
vectors for the tridiagonalized form of A, which is T,) written as |®,),
k=1,2,...,n. When n=n,, these Lanczos vectors are a sufficient basis for
accurately representing the spectrum. In this sense the LA constructs
subspaces that progressively approximate the “optimal reduced space” for the
problem. These subspaces, spanned by the Lanczos vectors, are the Krylov
subspaces [80, 89] generated by the span of the vectors A* !|p) for k=
1,2,...,n. Thus, the choice of |v} as the starting vector for the LA biases the
projections in favor of this optimal reduced space. It is easy to show that this
Krylov subspace can only contain eigenvectors of A4 with a nonzero projection
on |v) in exact arithmetic.

Now, consider the recursive steps of the LA. First, identify the starting
vector |v ) as the first Lanczos vector |®, ) in accordance with the preceding
discussion. A Gram-Schmidt orthogonalization on the Krylov sequence
A*"'v) for k=1,2,...,n recursively generates the set of orthornormal
Lanczos vectors |®, » defined as

Bl ®psy > =T =P)A|D, ), (34)
where f, is the normalizing coefficient chosen such that
<.¢‘t+1|¢'k+|}=1 (35)

and P, is the projection operator on the Krylov subspace spanned by the
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previous Lanczos vectors
k
J=1

Equation 34 leads to a three-term recursive relation for generating the |®,)
(cf. Appendix A):

Bul®us i) =(A—oD)| D) — By, Dy ), (37)
where
x = (D [A| D) (38)
and
Bi-1 =D |A|D,_, ). (39)

It may easily be shown that A has an n x n tridiagonal approximation T, in
the basis of Lanczos vectors:

(D jA|D;) =0 (40)

if k # j, j £ 1, while Eqs. 38 and 39 give the nonzero matrix elements. That is,
given the vectors | @, ) in terms of their components g; , in the original basis set
lfi, j=1,2,..., N,

N
1¢t>=;§14‘1.t|ﬂ>s (41)
9= <fj|¢'k 2 (42)

the column vectors g, form the matrix Q, with orthonormal columns such that
QrQ.=1, and

T,=QrAQ.. (43)

This is the conventional single-vector LA for real symmetric matrices. The
substitution of Hermitian conjugation for transposition in the preceding
equations gives the analogous scheme for general Hermitian matrices.

For applications such as the calculation of magnetic resonance spectra and
spectral densities associated with Fokker-Planck equations the matrix A is
either complex symmetric or can be transformed to complex symmetric form
[3,44,43] (cf. Section VI.D). Moro and Freed [3, 43] have shown that one can
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simplify problems of this type by introducing a generalized norm and scalar
product. That is, first consider the general non-Hermitian case. One can
introduce a biorthonormal set of functions |®;) and |® ) such that

(‘D"'I‘DJ.) = aj'_jo (44)
or, alternatively, letting x; and x’ be their column vector representations,
(x')'x; =6, (45)

However, for the case ol nondefective complex symmetric matrices A, it is
possible to let

x/=x} (46)
such that Eq, 45 becomes
XjX; =0y j. (47)

The Lanczos recursion method remains applicable with Eq. 47 defining the
generalized scalar product. Note that the left vector is lacking the usual
complex conjugation. The important aspects of this generalized scalar product
are developed in Appendices A and C.

In general, the time required for the LA tridiagonalization goes approxi-
mately as n,N(2ng + 21), where ng is the average number of nonzero matrix
elements in a row of A [3]. This is obviously superior to the traditional
methods that require ¢(N?) time since ng, n, « N.

Finally, note that the tridiagonal form of the complex symmetric matrix
T,=QYAQ, allows the application of very efficient diagonalization
methods [45, 89]. The spectrum defined by Eq. 1 can easily be computed from
using the eigenvalues of T, and the projections of the associated eigenvectors
on the starting vector. However, for computing CW spectra, a continued-
fraction method [3,44] can be used directly on the elements of the matrix T,
That is, since |v) is the first Lanczos vector and the Lanczos vectors are
orthogonal in the sense of Eq. 47, the spectrum is given by

I[ﬁw}=-:;[:'.ﬁ(u L+ Tl (48)

By examining the structure of the (1, 1) element of the inverse of successively
larger principal submatrices of [i Aw 1, + T,J, it is easy to show that the [(Aw)
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can be written in the continued-fraction form (see Appendix B),

1 2 =1
I[ﬂwJZERE[(fﬁw+al—®ﬁ) J (49)

The application of the LA to A generates the continued-fraction represent-
ation of the spectrum or spectral density. The same result, apart from the
identification of I" with the classical Liouville operator, has been derived by H.
Mori in the context of the dynamics of systems of interacting particles [107].
As a matter of fact, the same methodology, more specifically the recursive
structure of Eq. 34, is the foundation of both the LA and Mori’s derivation.

The relation specified by the continued fraction in Eq. 49 is quite general.
Analytical calculation of the coefficients ; and §, from the explicit operator
form of A is possible and has been carried out in simple cases [47, 48]. The
axially symmetric g-tensor problem is an example of where this type of
calculation is practical. This approach quickly leads to extremely complicated
formulas that are difficult to handle for the general case. Therefore, numerical
implementation of the recursive relation Eq. 37 is essential in calculating
enough coefficients of the continued fraction for an accurate approximation of
I(Aw). In practice, one generates the matrix representation of A in the | ;)
basis in which the resulting matrix is complex symmetric (see Section VI and
Appendix A);

Ay = (flALLD- (30)

From Eq. 37, the standard recursive relation of the LA may be rewritten as

Bitsr = (A — o 0)q — Byo 1 Qe s, (51)

where the column vector g, consists of the components g, ; (cf. Eq. 42). The
standard computer implementation of the complex symmetric LA [3, 4] can
then be used for calculating the coefficients &, and f, from which /(Aw) can be
directly calculated using the continued-fraction representation given in Eq. 49.

Finally, we must deal with the calculation of the starting vector q,. Given
Eq. 41 for |®, » =|v), one can obtain the components g ;5,1 by computing the
scalar products {f,|®,). This direct approach has been used frequently.
However, it usually requires numerical integrations that can become unwieldy
for several degrees of freedom. An alternative approach is to consider the
following expression:

lim [z1 + g, =c, (52)

=0
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where q is the vector representation of P32 and ¢ is an arbitrary vector with a
projection along q,. This follows from the fact that P} is the unique
stationary solution of I'. One can solve this equation using matrix inversion
techniques or by using the conjugate gradients algorithm (cf. Section V.B). The
complete starting vector v can be constructed by multiplying the elements of g,
by the appropriate spin operator terms (cf. Eq. 27).

In discussing the convergence to the correct spectrum of the continued-
fraction approximant generated by the LA, it is convenient to use the following
definition of the deviation Al, of the true spectral lineshape [z(Aw) from that
obtained after n iterative steps:

.e.f,,=r d Aw|I(Aw) — I (Aw)l, (53)

-

where these spectral lineshape functions have been normalized to unity. It is
useful to calculate the “true™ converged spectral lineshape Iz(Aw) using the
Rutishauser diagonalization method or some other benchmark procedure
whose results are not affected by the peculiar features of the LA. Using this
quantity, the sufficient number of steps n, can be defined as the smallest
number n of Lanczos steps that assures an error Af, less than the required

100

Figure 1. Behavior of logarithm of error: E, = — log, ;(A/,) as function of number ol'sl‘eps n
in LA for range of cases discussed in Ref. 3 corresponding to simple nitroxide slow-motional
spectra.
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accuracy for the spectral lineshape. In general, Al, decreases with n, but it may
not be strictly monotonic (cf. Figure 1 for some typical trends). For an
accuracy Al, = 107*, n, is found to be much less than the dimension N of the
original matrix except in the extreme motional narrowing limit where N is very
small anyway. A significant portion of the computational time saved by using
the LA rather than a traditional diagonalization algorithm can be attributed
to this phenomenon.

The eigenvalues of T, are not strictly relevant to the problem since the
spectrum can be calculated directly from the elements of the tridiagonal matrix
without resort to diagonalization. Therefore, any approximate form of T, is
adequate, independent of the effect of the loss of orthogonality of the Lanczos
vectors during its generation, if it reproduces the spectral lineshape function
well. However, even in this context it is still useful to analyze the eigenvalues
associated with T, in order to understand how the LA works for this type of
problem. The slow-motional ESR spectrum displayed in Figure 2a has a
lineshape constructed from a large collection of eigenvalues. In such cases the
LA is more efficient in reproducing the overall shape of I{Aw) than in exactly
reproducing the eigenvalues of A. Figure 2b illustrates this fact in displaying
the computed eigenvalues of the ESR problem considered in Figure 2a, The
dots indicate the exact eigenvalues of the starting matrix A, which has a di-
mension equal to 42. The triangles represent the 16 eigenvalues of the n, = 16
dimensional tridiagonal matrix whose continued-fraction approximant satis-
fies Al,=107*. From the figure it is clear that there is no simple relation

I-—“-‘—l—b
206

fa)

Figure 2a. ESR absorption spectrum of hypothetical paramagnetic spin probe. Magnetic
and motional parameters the same as case | in Table I of Ref, 3.
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Figure 2b. Distribution of exact (dots) and approximate (triangles) eigenvalues relative to
ESR spectrum displayed in Figure 2a (from Rel. 3).

between overall accuracy in the lineshape function and accuracy in the
approximate eigenvalues. Most cannot be simply associated ona one-to-one
basis with particular exact eigenvalues. Even when this is posmbl% theerrorin
the approximate eigenvalues is far greater than the aocura-:)r‘ol' 10~ *for the full
spectrum. In general, the LA generates continued fractions thfn tend to
optimize the overall shape of the spectrum rather than_ sets ot: e.lgenvalucs.
Although at first such a statement might appear contradictory, it is based on
the fact that the spectral density is usually dominated by the _cigpqva]ues of
small real part, and the LA is able either to approximate i_hem individually or
to provide an “average” to a cluster of eigenvalues sufficient to represent the
spectrum. In the case displayed in Figure 2a, one ﬁnd; Ll?at only the first 11
approximate eigenvalues of lowest Re {4;} contribute significantly, whereas of
the 42 exact eigenvalues, 23 contribute significantly. L

The LA approximates the spectrum surprisingly well in spite of a rather low
accuracy for the eigenvalues and their components. We also sec_that one way
to have some insight into this behavior is to look at th.e results in terms of an
approximation of clusters of eigenvalues inatgud of single eigemrglues. This
concept of a cluster is, of course, very qualitative. Moreover, the eigenvalues
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obtained from the LA cannot be considered independent from one another in
the evaluation of their effect on the spectrum. In this sense we refer to the fact
that the LA produces an approximation of the optimal reduced space required
to represent the spectral function instead of accurately reproducing the
cigenvalues. The interpretation in terms of clusters is only a partial and
qualitative explanation of this general behavior.

This tendency to approximate the optimal reduced space may be seen as

follows. Let us expand the starting vector |v) in terms of the ei genvectors |'¥,
of the operator A:

N

lv)= Zl Wonl Vo) (54)

m=

then the Ith Krylov vector can be written as
N
lky=A" o)=Y wadl ¥, (55)
m=]

Thus, the n-dimensional subspace spanned by the |k, >, I=1,2,...,n, cannot
contain those eigenvectors |¥,,> such that (v|¥,>=w,=0. That is, the
Krylov subspace, which is spanned by the Lanczos vectors, is biased to exclude
the eigenvectors for which w,, =0 and which therefore cannot contribute to
the spectrum.

The fact that the LA only approximates the optimal reduced space is related
to what we call the extreme-eigenvalue effect. Increasing the order of the
subspace tends to amplify the importance of eigenvectors with larger
eigenvalues A, but with small w,. This extreme-eigenvalue effect will be
stronger the larger the magnitude of the coefficients w,, for the larger
eigenvalues. However, it is the eigenvectors associated with small |1, and
large projections on the starting vector that are most important in the
calculation of the spectrum (cf. Eq. 33). Furthermore, when finite-precision
arithmetic is taken into account, a Krylov vector can have a small projection
onto eigenvectors that are strictly orthogonal to the starting vector in infinite-
precision arithmetic. Since these are frequently eigenvectors with large ||,
the “extreme-eigenvalue effect” is likely to enhance their role in the subsequent
Krylov projections. We see, in Figure 2b, how these effects bring in eigenvalues
of large Re {4;} even though they are found to have very small or negligible
projections on the starting vector.

Therefore, the combination of the extreme-eigenvalue effect and the
particular structure of the matrix generates a departure from ideal behavior of
the LA (i.e., the optimal reduced space). This constitutes a negative feature of
the application of the LA, but it is inherent in the method, and in spite of this,
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the algorithm allows us to approximate the matrix in a subspace with
dimension much smaller than the initial dimension of the matrix.

This situation can be improved by restricting the initial basis set as closely
as possible, so as to exclude those basis elements that contribute appreciably to
the eigenvectors with larger | 4,,| but are unimportant in the spectrum. This is
done in what follows.

Let us, however, first review the disadvantages to the use of the LA for
numerical applications. Its main weakness is its loss of orthogonality among
the Lanczos vectors it generates from the Krylov vectors by Gram—-Schmidt
orthogonalization. This is due to accumulation of numerical roundoff errors.
As aresult, the Lanczos steps can, in practice, be continued beyond the original
matrix dimension (i.e., it is possible to have n> N). This leads to repeated
eigenvalues as well as to spurious eigenvalues (due to introducing Lanczos
vectors not contained in the rigorous Krylov subspace defined by 4 and |v). In
general, the ESR spectra (or Fokker—Planck spectral densities) are determined
by only a small subset of eigenvectors, in particular, those associated with
eigenvalues 4, with weakest damping (i.e., smallest Re {4,.}), and approxim-
ations to these eigenvalues (or “clusters of eigenvalues”) are rapidly generated
such that n, « N for convergence to the spectrum, well before roundoff error
can accumulate to the point where it can significantly affect the computation.
However, roundofl error can become a problem if one works with an
unnecessarily large basis set N and/or performs too many Lanczos projections
n in the interest of guaranteeing convergence to the correct spectrum.

Another limitation of the LA is the lack of a convenient and objective
criterion for determining n,. One typically calculates the spectrum repeatedly
for a sequence of Lanczos steps until convergence is confirmed. This is time
consuming, and also it can ultimately lead to substantial accumulation of
roundoff error as n becomes large.

Finally, we note the truncation problem: The ESR spectra can be calculated
to a good approximation by finite matrices of large enough dimension N; one
wishes to truncate the space so as to minimize N consistent with the accurate
computation of the spectra. This we referred to as the minimum truncation
scheme (MTS). Knowledge of the MTS can greatly speed up calculations. In
the past, such knowledge was obtained indirectly by trial-and-error calcu-
lation of spectra with different basis sets in order to specify which types of
basis vectors are important. This scheme is very time consuming as well as
incomplete. In previous practice, one tended to work with sets of basis vectors
significantly larger than the MTS, since the latter was not convenient to
determine.

We shall now consider an approach that preserves all the advantages of the
LA in tridiagonalizing A but improves on it by (i) estimating at each recursive
step the magnitude of an appropriately chosen residual so that the recursive
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steps can be terminated when n = n,; (ii) providing a criterion to determine
when computer roundoff error has become a problem; and (iii) providing a
convenient means of estimating the MTS. It is based on the method of
conjugate gradients discussed in the next section.

B. The Conjugate Gradients Algorithm

The conjugate gradient (CG) method of Hestenes and Steifel [2] was originally
used for solving equations of form A|u) = |v) with A a real symmetric positive
definite (RSPD) matrix. The starting point of the CG method is to consider this
equation in the form

Ind =lvd>— Alu), (56)

where |u, ) is the kth approximant to |u), and |r,) is the residual vector
associated with |u, ». The residual vector |r, ) is easily seen to be the vector that
gives the negative gradient of the functional f[u,]= (uAlu,d — (uylvd
provided A is RSPD, so that a minimization of f[u,] is equivalent to solving
Alu} =|v). Equation 56 is solved by successive iterations that do not
minimize along the sequence of vectors |r, ). fork=1,2,..., n, which would be
the method of steepest descent, but rather minimize the functional f[u,] along
a set of “conjugate directions” |p, ) for k=1,2,...,n. This procedure avoids
the problem of further minimization steps spoiling the minimization along the
previous conjugate direction vectors. The conjugate direction vectors |p, > are
defined by the equations

|"1.+1>=Erk>_at-“|.ak> (57)
and
[Pe+ 12 =1rsy ) Hhelped. (58)

where the a, and b, are given by

Crelre?
= 59
T (plAlp) 4
bk=<rt+1irk+1> {60]

Crln

The residual vectors are easily shown to be mutually orthogonal but not
normalized, whereas the set of conjugate direction vectors are “A-conjugate™;
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that is,

(pjlAIp> =0 if j#k. (61)

The vector |p, ) is the closest vector to |r, ) that is A-conjugate to the previous
conjugate direction vectors. It is also true that {p;lr,>=0for j=1,2,...,
k — 1. Also, the (k + 1)st approximant to the solution vector |u,.., » is obtained
from |u, ) as

g1 2 =ue) + alpe . (62)

These equations permit one to recursively obtain the higher order
approximants. That is, let

[ry)=lv)—Alu) (63)
and
lpy)=Iry 2, (64)

where |u, ) is some initial guess for |u). Then, for k=1,2,...,n—1, one
calculates, in order, ay, |ty .+, ), [Fi+1 s By and |p,, > using Egs. 57-62. At
each step the norm of the residual vector |r, ),

||r,‘||z=(rt[rt>, (65)

is a measure of the deviation of |u, ) from the true solution |u).

At this stage the LA and CG appear to be very different algorithms; the
former tridiagonalizes A, whereas the latter generates a sequence of approxi-
mants to the solution of Eq. 3. We consider their equivalence in the following.
First we need to consider the applicability of this CG method to complex
symmetric matrices. It is not hard to show that for nondefective (i,
diagonalizable), nonsingular complex symmetric matrices the preceding
CG method applies, provided only that we use the generalized norm (see
Eq.47) as in the application of the LA to complex symmetric
matrices. However, for the CG method, there is the additional requirement
that A'(Aw) be nonsingular. Recall from Section IV that the complex
symmetric matrix A will have complex roots: the real parts give the linewidths
and the imaginary parts, the resonance frequencies. Since each relevant
eigenvalue of A must, on physical grounds, have a nonzero real part, both
A and A’ will be nonsingular. Nevertheless, it is convenient to replace iAw by
iAw+ T4 ', where T;! is equivalent to an additional linewidth contri-
bution so that one avoids spurious divisions by zero that can occur when
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{PelAlpy > = Oin the calculation of g, (see Eq. 59). Zero divisors of this type can
be identified as spurious through the construction of the Lanczos tridiagonal
matrix from the various quantities generated by the CG algorithm, as will be
shown. The invariance of the Lanczos tridiagonal matrix and the associated
continued-fraction approximant to the spectral lineshape function under
origin shifts are discussed in Appendix B.

However, it is useful to relax the use of the generalized norm in estimating
the error in the approximate solution vector given by Eq. 56, which is used to
monitor the convergence of the method. Given |r, ) determined from Egs. 56
and 57, itis useful to consider two specific forms of the norm, Eq. 65, which we
write in terms of its components y;, of |r,) in the original basis set | / 30 (cf.
Eq. 41):

z}'i i (66]

!‘ip,

ren =2 Iy % (67)
J

whereas letting |ry > = |v) — A'(Aw)|w, ) (cf. Eq. 56), at each iterative step
we have a third norm:

MEarae = ); Lyse 2. (68)

That is r, y is the usual definition of a norm in unitary space, as is ry .,
whereas r, , is the modulus of the generalized or pseudo norm in a complex
orthogonal space.

For a complex symmetric matrix, the second and third norms are equal
in exact arithmetic and are guaranteed to be real. The first norm is, however,
most closely related to the generalized norm required in our CG algorithm for
complex symmetric matrices. Taking the absolute value of the generalized
norm of |r, > gives a real value for r{ ,, as in Eq. 66, that can be more easily
compared to the other two forms of r*. In practice, it is found that r} = r2_, in
finite-precision arithmetic until they become on the order of the unit roundoff
error [80], whereas r, is always smaller. Once the value of r} approaches the
limit of finite-precision arithmetic, any further iterations fail to improve the
quality of the approximate solution vector, and r,,,. remains constant as k is
increased. In contrast, the values of r#_, and r?, continue to decrease and
therefore can no longer accurately represent the error in the approximate
solution vector. However, these two forms of r? are readily available during
each step, whereas r?,,,. requires a substantial amount of extra calculation
because the quantity A |u, > is not normally part of the CG algorithm. In light
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of these facts, it is convenient to use r{ , as the criterion for convergence, and it
will simply be referred to as r>. On the other hand, it is advisable to
occasionally compute r#,,.. to check if roundoff error has become a problem.

C. The Equivalence of LA and CG Methods

To make full use of the CG algorithm, its equivalence to the LA must be
recognized. First, note that the orthogonal set of vectors |r,> and the
conjugate set | p, ) are contained in the same Krylov subspace generated by A
and |v}, and the same is true for the Lanczos vectors [80]. Following Golub
and Van Loan [80], an explicit expression for the construction of the Lanczos
tridiagonal matrix T, by the CG method for a RSPD matrix A that is valid at
each stage of the iteration is

T,=D;'By«/B,D; ", (69)
where «f is the diagonal matrix with elements
ﬂt.il'-:(.pllﬁl.pl)\"r j=l,2,...,k, ETU}

and D is also diagonal with elements
112
Dt.l‘i=HrI|t=pl'E(z}rEj) ] i=l|2}‘--1k- (Tl}
i

whereas B, is an upper bidiagonal matrix with elements
B y=1 Byijer=—by i=12,....k (72)

with b; given by Eq. 60. It turns out that the residual vectors are colinear with
the Lanczos vectors; more precisely,

E¢i>=ipi_1|r|’>, f=l,2,...,k. (?3)
Since the direction of |7, > and therefore the signs of its components are well
defined by Eq. 56, the Lanczos vectors, which are normalized in an arbitrary

fashion, bear the sign ambiguity since their direction is not specified by the LA.
It follows from Egs. 69-73 that the matrix elements of T, are

o = Pl Alp ek + (ko - 1) <Pu-1|AlPc- 1), (74)

Bo= —(pu/Pi- 1) Px- 1Al Pk -1 (75)
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Thus, the elements «, and f, of the Lanczos tridiagonal matrix T, are readily
obtained from quantities calculated by the CG algorithm for every step. This
approach may be used to generate a tridiagonal matrix approximation to A
using the CG algorithm in the same spirit as the LA,

Several points should be made about this equivalence. First, the tridiagonal
matrices generated by the LA and CG methods are not equal. The off-diagonal
matrix elements can differ in sign because of the sign ambiguity associated with
the Lanczos vectors. However, the spectrum is independent of the arbitrary
choice of direction of the Lanczos vectors. The change of sign of the off-
diagonal matrix elements amounts to performing an equivalence transform-
ation on the continued-fraction approximant to the spectrum (see
Appendix B). In addition, one must start with |r,) =|v), which implies
lu; > =0 from Eq. 63, in order to obtain the correspondence between the
Lanczos vectors and the residual vectors given by Eq. 73.

When the complications arising from the application of the CG algorithm
to nondefective, nonsingular, complex symmetric matrices are considered,
again it is found that this approach is applicable provided that the generalized
norm and an origin shift chosen to remove spurious zero divisors are used.
This means that p;, as defined in Eq. 71, is a complex quantity.

This equivalence of the tridiagonal matrices generated by the LA and CG
methods for the type of complex symmetric matrices A that arise in the
calculation of magnetic resonance spectra has been verified by numerical
calculation. It is found that the magnitudes of real and imaginary parts of the
matrix elements of T, obtained by the LA (Eqgs. 38 and 39) and the CG
algorithm (Eqgs. 74 and 75) agree to at least six significant figures when double-
precision arithmetic is used.

In conclusion, the CG method can be applied to complex symmetric matrices
A to give the Lanczos tridiagonal matrix from which spectra may be cal-
culated by the continued-fraction technique. The benefit derived from the very
small amount of extra computational work necessary for the CG method as
opposed to the LA method is that an objective criterion for the convergence r?
can be monitored at every step. Finally, note that the basic CG algorithm can
be used to directly solve the linear equation problem of Eq. 3 when desired. In

fact, this will serve as the basis of our approach to the determination of the
MTS.

D. Minimum Truncation Scheme

As discussed previously, it would be highly desirable to have an objective and
convenient criterion for selecting the minimum basis set for representing A,
which still guarantees convergence of the continued-fraction approximants to
the desired accuracy. To this end, the CG method can be used to calculate
[u(Aw) > for dilferent values of the sweep variable, Aw. Since the spectrum is
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determined by the scalar product Cvlu(Aw)) (cf. Eq. 3), the knowledge of tt
vec?or [u(Aw)) in terms of its components z fAw) = { fj|lu(Aw) ) in the origin;
basis set for a representative sample set of sweep positions should provide a
accurate assessment of the importance of each basis vector in determining th
spectrum.

] Consider the jth component z j- From Eq. 3 and the definition of z; it follow
that

280} = fIATHAD)L) = T Cfil¥md (i Ao + 4) "  Cimlvd, (Tt

'-\:'here. in the last equality of Eq. 76, the eigenvectors |y, > of A with associate
eigenvalues A, were introduced. This last expression for z,(Aw) in Eq. 76 is
prog:luct of three quantities. First, the scalar product {y, |v>, which is th
projection of the mth eigenvector on the transition moment vector, is
measure of the importance of this eigenvector in contributing to the spectrun
Next, {f;|¢,) is a measure of the importance of the jth basis vector il
contributing to |y, >. These two quantities are obviously independent of th
sweep variable. Finally, (iAw + 1,,)”" expresses how the contribution of th
mth eigenvector varies across the spectrum. If it resonates far from th
frequency of the applied RF field or if it is very broad, this quantity is ver
small. All these factors are needed to estimate the importance of the basi
vector |f;) to the spectrum. Since they are all included in z j(Aw), it can b
used as a measure of the importance of | f j» to the spectrum at the poin
Aw. Provided that the spectrum is sampled at a sufficient number of value
of the sweep variable, the maximum value of |z j(Aw)| over the sampled value:
of the sweep variable can be taken as a measure of the importance of th
basis vector | f;) in determining the spectrum. This may be done by solviny
Eq. 3 using the CG algorithm and keeping track of the largest value o
|z;(Aw)| for each basis vector as the sweep variable is varied. In practice, i’
is useful to monitor a slightly different function that treats the high- anc
low-amplitude portions of the spectrum more equally.

This approach requires that a basis set larger than the MTS but containing
the latter as a subset be utilized initially. Nevertheless, in most applications
wherein calculations are compared to experimental spectra, it is necessary tc
vary input parameters by small amounts and to repeat the computation many
times so the initial efforts at selecting the MTS can often be worthwhile. As
problems become larger, it is usually possible to estimate a starting basis set
that is not excessively large by extrapolation from an empirical set of rules
derived from the MTS obtained from smaller, but closely related problems,
This makes the final search for the MTS for the larger problem less time
consuming. Our examples below illustrate this.

Given that Eq.76 is a good criterion for determining the MTS, an
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alternative way to proceed would be to diagonalize the tridiagonal matrix
generated by the LA by the QR transform (see Section IV) but to store the
Lanczos and QR transformation matrices and multiply these two matrices
together to obtain the projections of the eigenvectors on the various basis
vectors and the starting vector. Unfortunately, it would destroy the great
efficiency of the LA to keep track of the full transformation matrix. Also, for
large matrices (N =~ 10* to N =~ 10°) enormous memory may be required.
Consequently, Cullum and Willoughby [89] recommended an inverse iter-
ation procedure to obtain the important eigenvectors once a set of converged
eigenvalues have been obtained by the LA. However, as stated previously, the
spectra are extremely well approximated long before the actual eigenvalues
have converged [3]. Thus, much more effort would be required in implement-
ing the LA in order to achieve accurate enough eigenvalues to construct good
eigenvectors by inverse iteration than is required to obtain converged
spectra, On the other hand, the basic CG algorithm successfully delivers the
needed information to determine the MTS.

The problem of determining the MTS has been studied using the CG
method by Vasavada, Schneider, and Freed [4]. Equation 3 is simply solved
using the CG algorithm for several values of the sweep variable in the range
where the spectrum is expected to be nonzero. It was found that 10-20 values
of Aw are sufficient for slow-motional ESR spectra. In performing the sweep, it
is"useful to use as the initial vector (cf. Eq. 63) at the mth value of sweep
variable, |u(Aw)) the solution vector from the previous value since this
reduced the number of CG steps needed for convergence. This is valid because
the Lanczos tridiagonal matrix need not be reconstructed to calculate the
amplitude of the spectrum at a single point. In addition, the matrix A can be
preconditioned [80] to enhance the rate of convergence [4] (see also
Section V.G). The combined effects of using a good estimate for the solution
vector and a preconditioning matrix that minimizes the extreme eigenvalue
effect can lead to substantial savings in computational effort [4]. Also, it is
sufficient for the present purpose, which is only to estimate the importance of
the individual basis vectors, to use weaker convergence criteria for r2. It was
found that a useful measure of the overall importance of the individual basis
vectors is given by

z;(Aw)

(e = 17
(vlu(do)) 4

§y=max
Aw

This criterion, which involves the normalization of z;(Aw) by the amplitude of
the spectrum at that point, ensures that the low-amplitude regions of the
spectrum are also accurately approximated. This is especially important for
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two-dimensional electron-spin echo (ESE) spectroscopy, where many of the
interesting variations in the contour plots occur in regions of low amplitude.

Based on these studies, it was suggested that a conservative estimate of the
MTS consists of those basis vectors for which 5;> 0.03 for CWESR spectra
and s;> 0.0003 for two-dimensional ESE spectra. Of course, in preliminary
calculations, one can use less stringent conditions to obtain rough approxim-
ations to the spectra.

The results of these investigations for CWESR and two-dimensional ESE
are summarized in Tables | and 2, respectively. The initial basis sets used in
these calculations were significantly larger than the MTS, as has been the
normal procedure for LA calculations. A simple set of truncation rules
corresponding to the maximum values of the relevant indices characterizing
the basis set that are consistent with our results for the MTS were found. Using
this truncation procedure yielded a basis set of dimension N, which is given in
the tables. The actual N;,, corresponding to the dimension of the MTS for the
states that satisfy the s; criterion for the particular class of calculations, is
always smaller than this. Next, a search for patterns involving interrelation-

TABLE | Truncation Parameters and MTS for CWESR Spectra®

Number Spin Probe* Bl L Lbs Ko Mo, W N Naw
1 TEMPONE 107 0 6 3 2 2 42 34 33
2 TEMPONE 10° 0 14 7 6 2 171 108 100
3 TEMPONE 0* 0 30 13 10 2 543 285 256
4 TEMPONE 0t 0 54 15 10 2 990 549 447
5 TEMPONE 107 10 10 None 2 2 63 26 26
6 TEMPONE 10 5 12 3 2 2 78 54 42
7 TEMPONE 10* 10 10 None 0 2 33 31 29
8 TEMPONE (90°tily) 107 1 6 3 2 6 288 134 74
9 TEMPONE (90°tilt) 10" 10 10 9 4 4 822 129 &9

10 TEMPONE (90°tilt) 10® 10 12 11 6 6 1779 533 245

11 CSL 0 0 14 T 14 2 231 174 162

12 CSL 10 0 30 13 30 2 762 522 474

“Symbols: R = rotational diffusion constant (s™'); A= coefficient of first-order term in
expansion of scaled orienting pseudopotential, — U(Q)/ky T; LE,,,, L5, = largest even value of L
and odd value of L, respectively, for which there exist basis vectors with 5;>0.03, and K,,,,.
M., = largest values of K and M for which this occurs; N = dimension of matrix il all basis
vectors whose indices are less than or equal to L%, L K e @and M ,.; N' =dimension of basis
set derived from lookup table based on specilying M, and M_,, lor every important pair of L
and K (for ¥ = 90° new selection rules also utilized); and N,,,, = dimension of MTS (number of
basis vectors for which s; > 0.03).

*Values of g and A tensors for TEMPONE: g, = 2.0088, g,, = 2.0061, g,, = 2.0027, 4,, =
58G, A,,=58G, A,,=308G. Values of g and A tensors for CSL: g,, = 2.0021, g,, = 2.0089,
G,e = 20058, A, =3344G, A,,=527G, A,,=527G. Static magnetic field B,=3300G,
(7.T3)"' =10G.
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TABLE 2 Table of Truncation Parameters and MTS for Two-Dimensional ESE Spectra®

Number Spin Probe R A Li. Lt Koo Maw N N Naia
1 TEMPONE 107 0 10 7 6 2 123 94 92
2 TEMPONE 1050000 22 17 10 2 429 317 307
3 TEMPONE 10° 0 44 kY 18 2 1485 1010 971
4 TEMPONE 10 0 B8 T 28 2 4614 2706 2506
5 TEMPONE 107 10 16 7 2 2 108 81 76
6 TEMPONE 0 s 20 15 8 2 B33 223 209
7 TEMPONE 10 10 16 11 4 3 168 131 120
8 TEMPONE (90°tilt) 107 1 10 7 6 10 1440 752 586
9 TEMPONE (90%1ilt) 107 10 16 15 6 6 2601 931 607
10 TEMPONE (90°tilt) 10% 10 20 19 10 12 8196 3804 2835
11 CSL 0 o0 2 19 2 2 600 503 485
12 CSL 0F 0 46 3T 46 2 2310 1877 1815

*All parameters have same meaning as in Table 1, except for s;, which is taken to be 0.0003.

ships between the different basis set indices that appear in the MTS was made.
It was found that a slightly more complicated truncation rule involving the
specification of M;, and M_,,, for each pair of L and K for which there were
basis states satisfying the 5, criterion was very effective. Using a truncation rule
of this type in the form of a look-up table, the N-dimensional space could be
reduced to N', which is much closer to N, than is N. Such look-up tables are
easily implemented to provide useful approximations to the MTS.

E. Convergence of Lanczos—Conjugate Gradients Projections

The error Al, (Eq. 53) can be used to monitor the convergence of the
continued-fraction approximant to the spectral lineshape as a function of the
number of Lanczos steps. This is an objective criterion, but it is impractical
since it presumes one already has a converged spectrum with which to
compare,

Instead, with the CG method the residual rj (i.e., the values of r? calculated
for Aw =0) is readily available at each step and may be used to determine
when to terminate the CG algorithm, In general, for a complex symmetric
matrix, r3 does not decay monotonically as a function of the number of CG
steps n, as it does for an RSPD matrix. Instead, it behaves like a damped
oscillator as a function of n; that is, it oscillates, but its local average value
decreases as n increases. Typically, CWESR spectra converge very rapidly;
performing CG steps until r ~ 102 to r3 ~ 10~* is more than adequate. As a
conservative criterion, it was suggested that the iterations be terminated when
r§ = 107%, even though for most of the spectra a surprisingly low value of
rs ~ 10~ % is sufficient. Here, n, is taken to be the value of n when r2 first reaches
a value of 10™*, For several examples, the continued-fraction approximant




428 D. J. SCHNEIDER and J. H. FREED

derived from the tridiagonal matrix produced by stopping the CG algorithm
at rg >~ 107* gives AI, >~ 10"" to A, ~ 10~%, well within the noise range for
experimental spectra.

As the motion slows down, one requires larger basis sets to adequately
represent A (i.e, N and N, increase), and also there is an increase in the value
of n, required to achieve the same value of r}. This is true no matter which
algorithm is utilized. However, it is observed that n, « N and that n, increases
more slowly than N, so the advantage of the LA or the CG algorithm over
traditional ones becomes relatively greater the slower the motions, corre-
sponding to larger N. Some typical results reflecting these features are shown
in Table 3. In obtaining the results in Table 3, values of N significantly larger
than the MTS have been used, in accordance with previous applications of the
LA to the lineshape problem. However, in one case, a smaller value of N that
more closely corresponds to the MTS was used. In this case, n, is only
decreased by a factor of 1.34 when N is decreased by a factor of 4.1. This is an
example of the general phenomenon of how the LA seeks out an approxim-
ation to the “optimal reduced space™ already discussed.

TABLE 3 Minimum Number of CG Steps and Associated Residual Values®

N 3 n, Case® Number of Matrix Elements
1743 105 60 A 32917
10~* 104
08 172
429 1072 49 A 7701
1074 T
10722 128
3543 10°2 T6 B ., 70399
107 159
10-te 315
7503 1072 89 C 288085
10-* 170
10-te 326
8196 1072 57 D 666965
107 80
gm0 143

*Symbols: N = dimension of matrix defined by LJ,,,. Lo, K and M, and symmetries
given in Rel. 20; r} = residual squared (cf. Eq. 67) calculated at center of spectrum; n, = number of
CG iterations.

*Case A: TEMPONE magnetic parameters (cf. Table 1) and R=10%s"", Here N =429
corresponds to approximate MTS, cf. Table 2, entry 2, while N = 1743 represents typical larger
basis set commonly utilized previously in two-dimensional ESE calculations by LA. Case B:
TEMPONE magnetic parameters and R =10*s"". Case C: CSL magnetic parameters (cf.
Table 1) and R = 10* s~ '. Case D: TEMPONE magnetic parameters but with strong potential
{A=10), R=10%s"", and director tilt y =90°,

‘Number of nonzero matrix elements in matrix counting real and imaginary parts separately.
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The tendency of the LA to provide a good approximation to the spectrum
before it accurately reproduces the important eigenvalues of the original
matrix can be understood a little better in terms of the equivalence between the
Lanczos and CG algorithms. That is, the Lanczos tridiagonalization of A and
the solution of Eq. 3 at Aw = 0 using the CG algorithm involve the calculation
of an orthonormal basis for the same sequence of Krylov subspaces. Thus, the
LA is equivalent to the minimization of the residual to the solution vector by
CG at Aw = 0. Furthermore, it is easy to show that the Krylov subspaces
generated by A'(Aw)=A +iAwl must be independent of Aw [96]. This
implies that all of the vectors generated by the CG algorithm, including the
approximate solution vector for any value of Aw, can be expressed as linear
combinations of the Lanczos vectors obtained from the LA after the same
number of steps. In this manner, the equivalence of these two algorithms can
be used to extend the approximate local solution of the problem (e.g., for
Aw=0) to an approximate global solution (i.e., for all values of Aw), The
observation that a value of rj ~ 1072 to r2 ~ 10™* at Aw =0 is sufficient to
obtain a converged spectrum for all Aw is rather empirical but seems to be
consistent with our observation that the outer portions (or wings) of the
spectrum tend to converge sooner than the central portion for which Aw ~ 0.
This observation is a manifestation of the extreme eigenvalue effect (cf. Eq. 55).
In addition, the fact that only the projection of the approximate solution
vector on the starting vector is important in determining the spectrum can be
used to rationalize the relatively large error that can be tolerated in the
solution vector (cf. Eq. 3). For the same reason, large errors in the approximate
eigenvectors can be tolerated (cf. Eq. 33).

F. Calculating Two-Dimensional ESE Spectra

The CG method has also been used to calculate two-dimensional ESE spectra
using the approximate expression of Millhauser and Freed [30] for the two-
dimensional ESE signal (cf. Section VII):

(@ —w))?
S(w, w]m;cjl_i_ zT: “P(" - 5;01 )’ (78)

where for the jth “dynamic spin pa.cket" (ie., the jth eigenvector |¥;> of A
corresponding to the eigenvalue ), T3 | = Re {4} isits Lorentzian width and
wy;=1Im{4,} its resonant frequency. Also, the weighting factors are given by

={Y;lv)* = (Re(yY,lv))?, (79)

where the approximate equality is valid only in the very slow-motional region
where Eq. 78 is approximately valid. The two-dimensional ESE spectrum is
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inhomogeneously broadened (with respect to the w' sweep variable) by
convolution with a Gaussian distribution of half-width é. For purposes of
testing the computational method, Eq. 78 was utilized with the approximate
form for c} in Eq. 79 even when the motion was too fast for these expressions to
accurately represent an experimentally obtainable spectrum.

It is clear from Eq. 78 that it is necessary to obtain estimates of the
eigenvalues /; that contribute with nonnegligible weight factors. This was
done by diagonalizing the tridiagonal matrix T, derived from the CG method
utilizing standard procedures [3,45]. The approximate eigenvectors ;>
are then, in principle, obtained in terms of their components { @, |y ;7 in the
Lanczos basis set. However, only the components along |®,) =|v) are
needed, and they form a vector of dimension n,, which is easily obtained during
the procedure [12,45] (see also Section IV).

Because the two-dimensional ESE spectra require significantly more
accurate estimates of the eigenvalues and the weights, the convergence with
respect to LA or CG steps occurs only after achieving a residual that is much
smaller than what is required for the corresponding CWESR spectrum. In
particular, we find that rj=~10"% to ri~10"'9 js sufficient for two-
dimentional ESE spectra, whereas the CW spectra have already converged for
rs = 10™*. This much more severe requirement for r2 fortunately does not
require very many more iterations, as illustrated by the results summarized in
Table 3.

In order to study the convergence [urther, it is possible to introduce, by
analogy to Eq. 53, the following definition of the error in the two-dimensional
ESE spectrum:

AS, = J. de-.,, de'| Sy, ') — Sglw, @), (80)

where Sg(w, @’) is the normalized “exact two-dimensional ESE spectrum”
from a complete diagonalization of A or some very good approximation to it,
and §,(w, @') is the normalized approximate spectrum obtained by diagonaliz-
ing T,. The examples studied indicate that ri=~10"'° corresponds to
AS, ~0.007 to AS, ~0.02.

Studies of the MTS for two-dimensional ESE spectra (cf. Table 2) showed
that it is necessary to retain basis vectors for which s5;20.0006 to
5;=0.0003, so a cutoff of 5;=0.0003 was recommended for determining the
MTS for two-dimensional ESE rather than the s; = 0.03 value recommended
for CWESR. It is interesting that a more stringent application of the same
criterion (Eq. 77) that was appropriate for CWESR problems is also useful for
two-dimensional ESE calculations, which require substantially greater ac-
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curacy due to their greater sensitivity to the approximate eigenvalues. This
matter is further discussed by Vasavada, Schneider, and Freed [4].

G. Direct Calculation of Spectra and Spectral Densities by Conjugate
Gradients

In the preceding section it has been shown how the CG algorithm can be
employed to calculate the CWESR spectrum for several values of the sweep
variable in order to determine the MTS and the minimum number of CG or
Lanczos steps. It is, of course, possible to employ the CG algorithm to directly
compute the entire CWESR spectrum from Eq. 3. Preliminary studies show
that the calculation of the magnitude of the spectrum at one value of the sweep
variable is, on the average, about five times faster than doing enough CG steps
to get the entire spectrum from the tridiagonal matrix. This implies that a
direct calculation using the CG algorithm for an entire CWESR spectrum
using 200 values of the sweep variable would take about 40 times longer than
the LA.

One might hope that if the CG calculation is performed for smaller
increments of the sweep variable, only a few iterations per sweep position
would be required if the solution at the previous sweep position is used as an
initial guess for the following point. Numerical experiments show that if the
number of sweep positions is increased by a factor of 10 from 20 (for the MTS
calculation) to 200, the computer time required to complete the calculation
increases by only a factor of 5.5 for termination at r* = 10™* and by only a
factor of 3.6 for r* = 10~ 2. This indicates that one does improve the efficiency
of the calculation in this manner, especially if a relatively large r? is sufficient.
Further improvements in efficiency might also be achieved if the increment in
the sweep variable was chosen in an adaptive manner.

Another way to speed up the direct calculation is by preconditioning the
A’(Aw) matrix, as mentioned previously. Preconditioning is a general device to
improve the convergence of an iterative solution to a matrix problem (e.g.,
Eq. 3). Given an RSPD matrix A'= M — N, one finds that the CG method can
be accelerated utilizing M as a preconditioner provided M is also RSPD [80].
In the case of complex symmetric matrices, if one can let M =T + T, 'I and
N=i(L—Awl), M can be made symmetric and is positive definite. The
preconditioned problem one solves is

M IBAM VM 2 |y = M~ Y2 |p) = AW ) = |v'). (81)

For isotropic Brownian rotational diffusion, where the eigenvalues of the
diffusion operator are proportional to L(L + 1), the stochastic Liouville matrix
A’ becomes dominated by the real parts of the diagonal elements for large L.
The effect of the preconditioning is to set these real parts equal to unity for all
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diagonal elements and to scale the other matrix elements accordingly. For
more general cases, such as when a restoring potential is needed, it is useful to
keep the calculation of M as simple as possible. Taking M to be a diagonal
matrix comprised of the diagonal elements of " + T3 '1 in these instances
seems to work fine. In general, we find that the preconditioned CG
algorithm does speed up the convergence of the calculation. Unfortunately,
because preconditioning is not a similarity transformation, it cannot be used in
a simple way to diagonalize A for purposes of calculating spectra. For an
example of where this is possible see Chapter 6.

Based on these results, it is clear that tridiagonalization by the LA is the
more efficient method for CWESR, and the direct method does not even apply
to two-dimensional ESE using the formula given in Eq. 78. However, there are
some cases where the LA method is not as suitable as the direct CG method.
These include:

« CWESR of transition metal ions, which require a wide range of sweep of
the static magnetic field [17].
« CWESR in the presence of strong saturating radiation fields [97, 99].

« Calculating the effect of finite amplitude—finite length RF pulses on a spin
system.

In all cases, the elements of the matrix A’(Aw) have nontrivial dependence
on the sweep variable.

Further enhancement of the speed and efficiency of the direct CG method
can be made by acceleration of the convergence by extrapolation methods. We
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Figure 3. Effects of number of terms included in the & extrapolation of the approximate
values of the amplitude of the spectrum. This calculation is for slow-motional nitroxide spectrum
at Aw=0: (g)raw data; (b) result of three-term & extrapolation; (c) result of seven-term ¢
extrapolation.

may expect that later recursive steps merely remove undesirable “transients”
in the sequence of approximate values of the spectrum. An effective means of
improving the convergence rate of a sequence of this type is the Shanks
transformation, or Padé extrapolation, or epsilon expansion. A preliminary
study has shown that the Padé extrapolation method can be effective in
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Figure 4. Comparison of experimental and simulated spectra from the fast motional to th
rigid limit for VO(acac,(pn)) in toluene. All calculations use a Brownian rotational diffusio
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225 x 107'%; (¢ 14 = 5.00 x 10™®s; (/) rigid limit. (From Ref. 17. Reprinted with permissio:
from R. F. Campbell and J. H. Freed, J. Phys. Chem. 84, 2668, Copyright 1980 America:
Chemical Society).
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Figure Sa. Model dependence of VO(H,0)3* in sucrose, Series A: Comparison of experi-
ment with moderate-jump diffusion. Series B: Comparison of moderate-jump diffusion (solid
lines) with its free (dashed lines) and Brownian (dotted lines) diffusion equivalent. (Moderate
jump gave best agreement in all cases) (Al) '™ =34 x [07'%s; (A2) tf™ =60x 107195
(A3) T =9.0 x 10~ "s; (A4) rigid limit. (From Ref 7. Reprinted with permission from
R. F. Campbell and J. H. Freed, J. Phys. Chem, 84, 2668, Copyright 1980 American Chemical
Society).
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P:igure 5b.  Model dependence of VO(NCS)] ™ in ethyl acetate. Note that A is approximately
fit with moderate jump, B with free diffusion, and C with Brownian diffusion. (From Ref, 17.)
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reducing the amplitude of the rapid variations in the estimated magnitude of
the spectrum that occur for the first few CG steps (cf. Figure 3). [t is possible
that this could be used to reduce the number of CG steps required to give an
accurate estimate of the value of the spectrum for a given value of the sweep
variable [4]. More details on these techniques and their relationship to the
continued-fraction approximants for the spectrum are given in Appendix B.

Although the full power of such methods has not been fully explored, they do
show substantial promise,
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=R R =77x10st
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=== Calculated
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10G

Figure 6. Experimental (solid) and calculated (dashed) ESR spectra of P-probe dissolved in
liquid crystal 40,6 oriented between plates and in smectic B, phase at 42.5°C. Angle 8
between the magnetic field and the plate normal is denoted in the figure. The ordering parameters
and rotational rates (given by R ,, the perpendicular component of the rotational diffusion tensor,
and N=R,/R,, the rotational diffusion asymmetry) are on the figures. Both a cylindrically
symmetric ordering term, given by A(5/47)"/? = &} /k, T, and an asymmetry term of p(5/4m)'/?
=¢3/kgT, are included (From Ref. 20. Reprinted with permission from E. Meirovitch and J. H.
Freed, J. Phys. Chem. 88, 4995. Copyright 1984 American Chemical Society).




438

2,210
l‘z + E‘__,z =055
¢ =90°

Gzz"'é

tao =30
15°

é=10
a

gned CSL in liquid erystal S2at —8°C

90'

=55 6=15"¢

=0*

=55 f=¢

Figure 7. Experimental spectra of homeotropically ali

for tilt angle y between the liquid crystal director and the st

atic magnetic field (solid lines). Dashed

ng potential. (0, @, ¢) denote the
potential frame, The £ denote

lines: Simulated spectra with anisotropic diffusion in a high orderi
Euler angles between the magnetic frame and the ordering

in spherical harmonics. (From

coefficients in the expansion of the scaled ordering potential

Freed, J. Phys. Chem. 88, 4995,

Ref. 21. Reprinted with permission from E. Meirovitch and J. H.

Canvricht 1984 American Chamieal Camaiol

SPIN RELAXATION AND MOTIONAL DYNAMICS 439 .

H. Slow-Motional ESR Spectra: Examples

We have already pointed out that slow-motional spectra provide considerably
more information about the microscopic models of rotational dynamics than
motionally narrowed spectra. Thus, for example, jump models of rotational
reorientation lead to slow-motional spectra that are distinguishable from
Brownian reorientational models [12-14]. Whereas nitroxide-type spin
probes with '*N nuclear spin of I = 1 are commonly studied [12], previous
work has shown that VOJ complexes (*'V nuclear spin of I = 7/2) are more
sensitive to the choice of motional model. Also, the latter exhibit slow motions
for tp = 100 ps, as compared to | ns for nitroxides at normal 9-GHz (X -band)
frequencies. In particular, the slow-tumbling lineshapes seem to be strongly
dependent on the nature of the ligands and of the solvent such that a range of
different models had to be used (cf. Figures 4 and 5a, b).

-20°C(1)

0°cin

30°C (1)

s0°Cc (1)

70°C(T)

80°C (1)

120°C (m)

Figure 8. ESR spectra from macroscopically unoriented lipid (DPPC dispersions) with
7wt % water containing nitroxide end labeled lipid. Solid lines: Experimental spectra. Dashed
lines: Calculations based on model of microscopically ordered lipid fragments macroscopically
disordered (MOMD model). Phase I: Low-temperature gel phase. Phase II: Liquid crystalline L,
phase. Phase III: New high-temperature phase exhibiting residual microscopic ordering. Typical
order parameters: 0.33, 0.18, and 0.02 in Phases I, 11, and III, respectively. Typical values of R,
perpendicular rotational diffusion coefficient: of 1.0 x 107%, 10x 10™%, and 20 x 107%s~",
respectively, in these phases. (From Rel. 23. Reprinted with permission from H. Tanaka and
J. H. Freed, J. Phys. Chem. B8, 6633. Copyright 1984 American Chemical Society).
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Phys. Chem. 83, 525, Copyright 1979 American Chemical Sociéty).
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represent T in central spectral regime calculated for models of jump diffusion (solid line}, free
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In liquid crystalline phases the most important new feature of molecular
rotational dynamics is that it must occur relative to a mean orienting
potential. In Figure 6 we show spectra of a nitroxide-labeled liquid crystallike
probe molecule in a low-temperature smectic-B phase. The spectrum was fit by
a nonspherically symmetric diffusion tensor and a noncylindrically symmetric
orienting potential. Orienting potentials in uniaxial liquid crystals may
generally be expanded in spherical harmonics, but most experiments provide
insufficient information to evaluate beyond the L = 2 spherical harmonics. In
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Figure 7, we illustrate, with an oriented spectrum from a large and rigid
nitroxide-labeled molecule, one of the exceptional cases where there is
sufficient sensitivity to detect influence of the L =4 spherical harmonics as
well,

In spin label studies on oriented lipid multilayers it was possible to discern
three transitions, the main [gel to L,(1) liquid crystalline] transition, a new
transition from L (1) to a very weakly ordered phase, and finally the transition
to an isotropic phase at the highest temperatures. All these phases could be
characterized in terms of molecular ordering and dynamics (cf. Figure 8).
Thus, the main transition was characterized as primarily a “chain diffusional”
transition, whereas the new transition is primarily a “chain orientational”
transition. That is, there is a larger relative change in the ordering of the spin
probe at the second transition, whereas the diffusion coefficient for the chain
labels experiences a more significant relative change at the main transition.
These are just a few examples of the kind of information that one can obtain
from the slow-motional ESR studies. A related NMR study is shown in
Figure 9. As a result of a number of such studies [113], a variety of rotational
motional models have been inferred [114]. They are summarized in Table 4.

A clear demonstration of the implications of slow motion may be obtained
from ESR spin-echo experiments that directly measure T;. An echo
experiment performed on a nitroxide spin probe in viscous solvent shows that
(cf. Figure 10), at high temperatures corresponding to the motional narrowing
region, T, oc 7z ' (the rotational correlation time), whereas at low tempera-
tures corresponding to the slow-motional regime, T, oc 1}, where 1/2 <a < 1.
The value of « depends on the model for reorientation (e.g., x = | for jump
diffusion and & = 1/2 for Brownian motion). This leads to a T; minimum at the
appropriate midrange temperature.

VI. THE FOKKER-PLANCK APPROACH TO MODELING
MOLECULAR DYNAMICS

In the Fokker—Planck approach to modeling the molecular dynamics of a
complicated many-body system, the exact Newtonian or quantum-
mechanical equations of motion for all of the particles in the system are
replaced by a much simpler equation only involving the relevant dynamical
variables (i.e., those that are relevant for the description of some set of
experimental data) and the coupling of these variables to a stochastic thermal
bath representing the effects of the neglected variables. The rationale for this
procedure is rather well known from a physical point of view for systems at or
very near to thermal equilibrium, but the rigorous mathematical justification
is quite complicated, especially for systems far from equilibrium [108, 115~
121]. The discussion here is mainly directed toward the use of Fokker-Planck
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operators to model the angular position, angular velocity, and translational
degrees of freedom of spin probes in condensed phases and on surfaces for the
purpose of interpreting ESR spectra, though the range of applicability of the
material presented here extends far beyond this relatively narrow topic.

The reduction of the Fokker-Planck operator for a planar rotator,
including both angular position and velocity, to complex symmetric
matrix form is carried out in detail as a simple example of the practical use of
the theoretical and mathematical concepts presented here.

The correlation functions of interest are of the form

g(1) = f1(1)/2(0) (82)

= (fale™"Pol f2), (83)

where the overbar indicates averaging over the canonical ensemble, and f,
and f, are arbitrary functions of the dynamical variables and external forces,

The associated spectral functions are the Fourier—Laplace transforms of the
correlation functions

giz)= J‘ e~ “g(t)dt (84)

0
=J-m(fllﬂ'"'*"”f’alfﬁdf- (85)
]

The observable spectral densities are given by taking the limit of Eq. 85 as the
real part of the complex frequency variable z = d + iw approaches zero from
positive values:

gliw)= Hm fy|[(0 + i)l +T]""Polf;). (86)
d—0

This equation is formally equivalent to Eq. 1.
A. General Fokker—Planck Operators

The general multivariate time-independent nonlinear Fokker—Planck
operator can be written as [115,119]

I l]—i @ Kiqg, A liiK A) (87)
(g, —i=1a—¢h ild, }_5"=laqj il s

where g is an N-dimensional real vector of classical stochastic dynamical
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variables and A represents the parametric dependence on a set of classical
external fields. The term nonlinear here refers to the fact that the real functions
Ki(g, ) are not necessarily linear in the dynamical variables and the real
functions K(g,1) are not constants independent of q. The differential
equations for the various probability distributions (Eqgs. 88, 89, and 91) are all
linear partial differential equations. The set of variables contained in q are
assumed to constitute a stationary Markov process. It will also be useful to
assume that each of the dynamical variables and external fields have well-
defined parity with respect to the operation of (classical) motion reversal (see
Section VL.B). The drift coefficients K,(g,4) and the diffusion coefficients
K (g, 4) = K ;(q, 4) do not explicitly depend on time but may depend on the
external fields. In modeling the motions of spin probes in liquids and liquid
crystals, the external field dependence of the diffusion coefficients can be
neglected,

The Fokker—Planck operator determines the time evolution of the
conditional probability P(q’|g; A,t) via the forward Kolmogorov equation

Eﬁgﬁﬂ=—ﬂmﬂﬂﬂmkﬂ 8%

and its adjoint, the backward Kolmogrov equation,

il FL L PR L) (89)

both subject to the same initial condition
P(q'|g;4,0)=8(q" — q). (90)

It has been assumed here that natural boundary conditions have been
enforced to define a unique solution (i.e., enforcing periodicity in angular
variables and/or the vanishing of the solution and its derivative for large
values of the coordinates and velocities). The conditional probability must
satisfy Eqgs. 88 and 89 for all positive times.

The Fokker—Planck equation for the time evolution of the probability
density,

E%?ﬂ=*rwammﬂ- T

can be derived from Eq. 88 by multiplying both sides by P(q,t’; 1) followed by
integration over g’ and the use of the stationarity properties.
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The stationary probability distribution Py(q, 4) is determined by the unique
solution to

(g, A)Pylq,4)=0. (92)

In most cases discussed in this review, Py(g,4) is just the equilibrium
probability distribution.

B. Time Reversal, Detailed Balance, and Symmetrized Fokker—Planck
Operators

The invariance of the fundamental microscopic equations of motion under
time reversal is one of the central features of both classical and quantum
mechanics. The time reversal invariance of the microscopic equations is
closely related to the conditions of detailed balance for transitions between
macroscopic states characterized by macroscopic observables. Making the
connection between the microscopic dynamics and the macroscopic observ-
ables is one of the central problems in statistical mechanics.

A symmetrized form of a general Fokker—Planck operator that satisfies
certain detailed balance restrictions is derived in this section [122]. The
behavior of the eigenfunctions of the symmetrized Fokker—Planck operator
under the combined operation of complex conjugation and classical motion
reversal suggest that a set of basis functions that are invariant under this
operation will simplify practical calculations. The general scheme for the use of
basis sets of this type in forming a finite-dimensional complex symmetric
matrix approximation to the symmetrized Fokker—Planck operator for
computational work is discussed in Section VL.B.1, and an example of the
application of the general method to the planar rotator problem is carried out
in Section VI.B.3. The use of the LA for calculating spectral functions is dealt
with in Section VI.B.2. The presentation given here regarding detailed balance
and its implications relies heavily on the work by van Kampen [115], Graham
and Haken [123], Risken [122, 119], Haken [116] and Lax [124,125].

In the Hamiltonian formulation of classical mechanics the state of a system
is described as a point in phase space, and the time evolution is given by
Hamilton's equations for the coordinates x, and momenta p,,

dx, JH(x,p)

- 93
I T (93)

dp, dH(x, p)

Tk 94
s ia, " (94)

fork=1,2,..., N, where H(x, p) is the Hamiltonian function for the system,
which is assumed to be time independent, and is a quadratic function of the
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momenta. Under these assumptions, the form of Egs, 93 and 94 is invariant
under the substitutions

t— —1, X=X, p—+—p. (95)

This is the classical version of time reversal invariance of the microscopic
equations of motion for a closed, isolated physical system. This invariance
implies that if the system is at the point (x’, p') in phase space at time ¢’ and the
equations of motion carry this point into a point (x”, p”) at some later time t”,
the same equations of motion predict that if the system had started out at the
point (x", — p”) at time ¢, it would be carried into the point (x, —p’) at time 1"

Il external forces such as a magnetic field are present, the previous
discussion must be modified, since the Hamiltonian is no longer a quadratic
function of the momenta. Instead, a more general relation involving the
reversal of both the momenta and external fields is needed. In this context it is
important to clearly define the operation of motion reversal. The definition of
the motion reversal operation used here is the reversal of the momenta of all
the particles in the system as well as the currents giving rise to the external
fields while leaving the coordinates of the particles in the system unchanged.
The macroscopic dynamical variables and fields were previously assumed to
have well-defined parity with respect to motion reversal. Let § and 4 be the sets
of motion-reversed variables and fields, respectively. The components of these
vectors are given by §;,=¢4q; and Ij= vi4;, where g v=x 1. It is also
convenient to introduce an antilinear classical time reversal operator 7,
which is the combined operation of complex conjugation and motion reversal:

T [1f (g, A)] =v*1*(§. %), (96)

where y is a complex constant and f(q,4) is an arbitrary function of 4. As
pointed out by Lax [124], it is unnecessary to include the complex conjug-
ation operation under some circumstances, but it is required here.

The transition to the macroscopic scale can be accomplished by defining a
set of macroscopic dynamical variables g that are functions of the microscopic
variables x and p followed by a suitable averaging over the equilibrium
distribution in phase space. A careful analysis [115] shows that the time
reversal symmetry of the microscopic equations leads to the detailed balance
relation for the transition rates given by Eqgs. 97 and 99.

The definition of detailed balance for a stationary process in the presence of
external fields is that the conditional and stationary probabilities
satisfy [115, 116]

P(q'|lg;t, APo(q, A) = P(4|d;t, D)Po(d, A). 97)
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An alternative formulation of this definition can be derived by evaluating the

derivative with respect to time of both sides of Eq.97 at t=0 to get a
relationship satisfied by the transition probability defined as

_dP(q'|g:t, A)

W[q'q;l]_d—II,g (98)
and the stationary distribution. It is
w(q, ¢ DPolq. 4) = (G, 4’ DPo(, 2). (99)

It should be noted that these conditions (Egs. 97 and 99) must be satisfied for
all pairs of dynamical variables 4' and q independently. More complete
derivations of the relationship between macroscopic detailed balance and
microscopic time reversal symmetry are given by van Kampen [115] and
Lax [124].

It is physically reasonable and can easily be shown that the stationary
distribution is invariant under motion reversal,

Po(q, A) = Po(§,4). (100)

The stationary probability distribution can be used to define a real-valued
function @(q, 1) that can be interpreted as a generalized thermodynamic
potential function,

Py(q,2) = Ne™ %4, (101)

where N is a normalization factor and the potential function must satisfy
®(q, A) = ®(g, 1) since P, has this property.

It is now possible to derive a set of conditions that must be satisfied by the
drift and diffusion coeflicients and the stationary distribution such that the
detailed balance conditions given in Egs. 97 and 99 hold. Since the functions
K g,A) are arbitrary well-behaved functions of g and 4, the drift terms in
Eq. 87 do not necessarily have simple transformation properties under motion
reversal. However, it is straightforward to define linear combinations of the
drift coefficients and their motion-reversed counterparts,

Di(q. /) =4[Ki(g, ) + &K (3 1)), (102)
Jiq, ) =4[K (g, A) — &K D], (103)

to simplify the analysis. The drift terms in Eq. 87 can now be expressed in a
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form in which the reversible or irreversible nature of the individual terms is
made clear.

The insertion of the form of the general Fokker—Planck operator (Eq. 87)
into the Fokker-Planck equation (Eq. 91) shows that the Fokker-Planck
equation has the form of the divergence of a probability current S,

0P(g,t;4) & 354g,4;4)

: (104)
ot i=1 aq;
where the components of § are given by
. 1é . "
S{q. ;)= {Ki{Q. A =57-Kil4, 4}}P{q. t; A). (105)
4

The components of the probability currents can be broken down into
irreversible and reversible parts using the associated definitions for the drift
coefficients (Eqs. 102 and 103). The irreversible and reversible components of
the probability current are, respectively,

= 0
Si * J(qv i 1) = Dr‘(ﬂl ""') ™ a [KU{Qs A]P[QJ t 'l}]l (106]
J

5{7Xq,t;4) = Ji(q, )P(q, 1; 4). (107)
Equation 92 defining the stationary distribution can now be rewritten as
the vanishing of the divergence of the probability current 5,(q, 4) associated

with Py(q, A). Inserting Py(gq, 4) into Eqgs. 106 and 107 give

0 ]
Sti (g, A) = Dy(q, A)Po(g, 4) — % [Ki (@, A)Polg, 4)]. (108)
i

S[l]; ’(QI '1} - Jl(Qi A}PO[‘L "‘)1 (109:'

Requiring that the divergence of S, vanish and using the known symmetry of
Py(g, 4) with respect to motion reversal gives the following necessary and
sufficient conditions for detailed balance to hold [116,119]:
Kij(a, 2) = &K (4, 2), (110)
0
Y57 [ia.APo(a, ] =0, (111)
dq,

é
D((g, )Polg.4) — ‘;a[ffu.;(q.ﬂ)?n[q.i)l =0. (112)
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The vanishing of the divergence of the stationary probability current does not
mean that the probability current itself must vanish, even in the stationary or
equilibrium state,

The definition of the transition probability (Eq. 98) and the forward and
backward Kolmogorov equations (Eqs. 88 and 89) at t = 0 are very closely
related. In fact, inserting the appropriate initial conditions (Eq. 90) and using
the definition of the transition probability, it follows that [119,122]

T(q',1)5(q' — q)Po(g, 1) = T'(§', D)3(3 — §)Pold’, 2. (113)
Note that there are two sets of free variables in this equation, ¢’ and g. Using
the properties of the delta function, it follows that 6(g' — q) = 6(§' — §), and it is
possible to replace g for ¢’ in the argument of P(g’, 1) on the left side to give

[T(q, APolg’, 2) — Polq’, AT'(§, 1)18(q" — ) =0. (114)

Since Eq. 114 must hold for any arbitrary value of g, it is equivalent to the
operator equation [116, 122]

(g, )Po(q’, A) = Po(q, AT, 7). (115)

In this equation, Py(q', 4) is treated as an operator in the same way a potential
function is treated as an operator in quantum mechanics. It must be stressed
that Eq. 115 is an operator equation that must be valid for operating on
arbitrary functions. The derivation of Eq. 115 is based on the original
presentation of Risken [122] and the review by Haken [116]. For alternative
derivations of this important result based on a master equation, see the book
by Risken [119] and the paper by Lax [124].

The operator equation 115 can be put into a more symmetric form by pre-
and postmultiplication by the operator P5 '%(q', A) to give

Ps'*(q, AT (¢, APy (q', A) = Py*(q, AT"(F, A)Pg " *(q, 4. (116)
The so-called symmetrized Fokker-Planck operator T'(g, 4) defined as
Tlq', 2)=P5"*(q’, AT (g, APY(q’, 2) (117)
then satisfies
(g, 2)=T"q,7). (118)

This symmetrized form of the Fokker—Planck operator will play a central role
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in the derivation of matrix element selection rules and the calculation of
spectral functions using the complex symmetric LA.

The special symmetry of I'(g, 4) is also reflected in its eigenvectors. When T’
contains both reversible and irreversible terms, the Hermitian and anti-
Hermitian parts of T do not, in general, commute and the eigenvectors of
l"[q.;} and I“(q,l} are not the same. However, Eq. 118 can be used in
conjunction with the usual biorthogonality relations [126-129] to derive a
physically important correspondence between members of the two sets of
eigenvectors [116, 122]. &

Let the {¥(q,4)} be the set of eigenfunctions of I'(g, 4) with eigenvalues
{a;} and the set {¥/(g,4)} be the eigenfunctions of I''(q, 4) with associated
eigenvalues {b/},

T(g, AWi(q, ) = a¥ (g, ), (119)
(g, )¥i(q, 4) = b'¥i(q, 4). (120)

The biorthogonality relation is easy to derive by examining matrix elements of
I between eigenfunctions ¥/ and ', [129]. Using the definition of the adjoint
operator and Eqs. 119 and 120, it is clear that

J.‘F-"‘(q, A[T(q, H¥ig. H)]dg=a, j.‘}""‘(q, A¥i(g, ) dq (121)
= I[f‘*(q, A)Wi(g, 2)]*¥i(q,2)dg (122)
= bl* J“P-"{q, A)Wilq,A)dg. (123)
Taking the difference between Egs. 121 and 123 gives
[a.--b“'}J“P""[q, A)Wilq, A)dg =0, (124)
which implies that
J"‘Fj'if;‘. A)¥i(g,4)dg=0 (125)

if a; # b'*. Carrying out the same steps with the adjoints of Eqs. 119 and 120
shows that the sets of eigenvalues must be complex conjugates of one another;
that is a; = b'* for some pair of indices i, j. A relabeling of the eigenfunctions
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and eigenvalues can then be carried out such that the usual form of the
biorthogonality relation

V[*{"“'(*?s A¥i(q,A)dg =4 (126)

is valid. If any of the eigenvalues are degenerate and the sets of eigenfunctions
are complete, an argument similar to the one used in quantum mechanics can
be used here to show that the eigenfunctions corresponding to degenerate
eigenvalues can also be chosen such that they are orthogonal.

The derivation of the general biorthogonality relation (Eq. 126) does not
take advantage of the known symmetry of I‘(q, A) under motion reversal
(Eq. 118). The implications of this symmetry are made most evident by looking
at the motion-reversed counterpart of Eq. 120,

'@ D'Wi(g. 1) =T, )%, 7)
= b'¥i(g, )
= at¥i(g, 4). (127)
Equations 119 and 127, and the fact that f[q, 4) is invariant under complex
conjugation imply that
¥, ) ="Yi(g, A) (128)
that is, biorthogonal partners are simply related by the classical time reversal
operator. Inserting this result into Eq. 126 shows that an eigenfunction of

['(g, ) ust be orthogonal to the motion reversed counterparts of all the other
eigenfunctions,

‘["Pjﬁs I]“I"x('?- A)dg = ‘5u' (129)

If the eigenfunctions {'¥(g, 1)} are expanded in a complete orthonormal set
of basis functions {¢,(g, 1)} that are invariant under the classical time reversal
operation,

D9, 2) =T pg, A= b2 7), (130)

then Eq. 129 can be reexpressed in terms of the components of the
eigenfunctions in this basis,

Td=a, (131)
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where cf = [$(g, 1)'¥i(g, 4)dg. Thus, the eigenvectors are not orthogonal in
the usual unitary or Hilbert space sense. Instead, vectors orthogonal in the
sense of Eq. 131 are called rectanormal rather than orthonormal [90] (see
Appendices A and C), Basis functions obeying Eq. 130 can be constructed
from an arbitrary complete orthonormal set by projecting the linear
combinations that are even or odd with respect to motion reversal and
multiplying the latter by i,

In writing Eq. 131 we have assumed for simplicity that any external fields
exhibit motion reversal (.. A j=4;),and/or (g, 2) (cf. Eq. 118)isinvariant with
respect to A— 4. More generally, as Lax [125] has shown, a generalized motion
reversal operator may be introduced (e.g. by multiplying by a two-fold
rotation in space) so that the field (e.g. a magnetic field) is invariant to this
generalized motion reversal. We assume below that the condition(s) necessary
for Eq. 131 to be valid are fulfilled.

A matrix C constructed from the components of the eigenvectors (Ciy=¢])
in a basis of this type must be a complex orthogonal matrix, C*C =1, by
Eq. 131. This matrix, by its construction, is the transformation matrix that
diagonalizes the matrix A of the operator T,

C"AC =diag(a,, a;,...). (132)

Since A is diagonalized by a complex orthogonal transformation, it must be a
complex symmetric matrix in the basis {¢(q, 4)}. It is extremely important to
realize the fact that A is complex and symmetric. This is a consequence of the
following:

« Symmetry of I'(g, 4) (Eq. 118).
« Choice of basis set adapted to symmetry of T (Eq. 130).

» Invariance of operators I'(g, 1) and T"'(g, 1) under complex conjugation
(Egs. 87, 101, and 117).

There may also be bases that do not satisfy Eq. 130 that also render A complex
symmetric. This is usually traceable to additional symmetries under which
I'(q, 4) is invariant. An example of this phenomenon is given in Section VI.B.3,
Thus, the validity of Eq. 130 is a sufficient but not necessary condition for the
matrix of I' to be complex symmetric. The properties of complex symmetric
matrices, complex orthogonal matrices, and rectanormal vectors are studied
in greater detail in Appendices A and C.

In concluding, we may mention that, in general, any matrix representation
of T may be transformed to complex symmetric form A (representing I') bya
similarity transformation S, which can be written in “polar form™ by S = UH,
where U is a unitary operator and H is a positive definite Hermitian operator
[87]. As a result of the above symmetries, it is immediately possible to identify
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H as P; */? and U as the transformation from an arbitrary orthonormal basis
set to one obeying Eq. 130. Then the special properties of complex orthogonal
spaces will apply to A and C. Note, however, that the matrix forming A and the
scalar products forming C are computed in the context of the appropriate
unitary (or Hilbert) space in which the operators I' and T are defined (e.g.,
Eq. 149 or Eq. 279 below). This duality will be important in the analysis of
time correlation functions (cf. Eq. 133) given in Section 6.B.2.

1. Reduction of General Fokker—Planck Operators to Complex
Symmetric Matrix Form

The reduction of a general multivariate Fokker—Planck operator to a finite

" dimensional complex symmetric matrix form is a prerequisite for the

implementation of the complex symmetric LA for the calculation of classical
correlation functions [3, 43]. A finite dimensional matrix approximation to
the symmetrized Fokker—Planck operator is easily obtained by the method of
expansion in a finite set of basis functions that are invariant under the classical
time reversal operation as outlined in Section VI.B. This discretization
method is very convenient because it allows one to choose basis functions for
the expansion in which the matrix of the symmetrized Fokker—Planck
operator is automatically complex symmetric.

It is useful to make a few comments on the nature of the approximations
made in this discretization process. The first comment is related to the
necessity of identifying a physically relevant time scale for the process of
interest, and the second is related to the close relationship between the method
of moments in Hilbert space and the LA,

First, it is important to keep in mind the spirit of approximations initially
used in constructing the Fokker—Planck operator. In particular, only the
relevant dynamical variables with long relaxation times are included in the set
q (see also Section VI.C). The remaining variables, whose relaxation times are
much shorter, are not explicitly included in the Fokker—Planck description of
the stochastic process. Thus, a physically reasonable time scale must be
identified to even write down an appropriate Fokker—Planck operator. The
mathematical nature of the general Fokker-Planck operator is such that it
may have an infinite number of eigenvalues and eigenfunctions. Furthermore,
the real parts of the eigenvalues, which correspond to the relaxation rates of the
corresponding eigenfunctions, may be arbitrarily large. The inclusion of these
rapidly decaying modes is somewhat unsatisfactory since the dynamics of
these modes may be affected by the time dependence of some of the dynamical
variables that were neglected in the construction of the Fokker—Planck
operator. Thus, a finite dimensional approximation to the Fokker-Planck
operator may be obtained by only using the projection of the Fokker-Planck
operator on the subspace spanned by the slowly relaxing eigenfunctions. The
approximation derived in this manner is consistent with the spirit of the
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physical approximations needed to use a Fokker-Planck operator to model
the dynamics.

The difficulty in implementing this projection scheme is that if the
eigenvalues and eigenfunctions of the full Fokker-Planck operator are
known, the problem has already been solved! The resolution of this tautology
is to use physical arguments to identify a set of basis functions whose span
should contain the subspace of slow modes. This process is often simplified by
considering a closely related problem whose solution is known analytically,
the use of asymptotic approximations, or considering the Krylov vectors
generated by T and | P} f,) or T and | P} f, ) (cf. Eq. 137a below). Once a
set of basis functions has been chosen, it is easy to generate a linite dimensional
approximation to I' by simply evaluating matrix elements.

2. Calculation of Classical Time Correlation Functions and Spectral
Densities with the Complex Symmetric Lanczos Algorithm

In order to utilize the complex symmetric LA to calculate spectral functions, it
is necessary to generate a finite dimensional complex symmetric matrix
approximation to the symmetrized Fokker—Planck operator T (see Eq. 117).
This reduction is discussed in Sections VI.B and VI.B.1. The general forms of
the correlation function (Eq.83) and spectral function (Eq.85) can be
reexpressed in terms of the symmetrized Fokker—Planck operator (Eq. 117),

g(t) = (PY2 1 1e~ TPy 1), (133)
§(z) = (PSR LI+ T PYR f2). (134)

The complex symmetric LA is applicable in cases where the components of
|PY2f,» are the complex conjugates of the components of [Py f; ) in the
basis chosen in which the matrix of T is complex symmetric. This is really not a
restriction for the general application of the complex symmetric LA, as will be
shown here.

Let {¢.(g, A),n=1,2,...,N} be a set of orthonormal basis functions that
are invariant under the classical time reversal operation and span the subspace
of slowly relaxing cigenfunctions of . The general symmetrized spectral
function can be expressed in terms of the expansion in this basis as

= i (P2 f11@0< bl lA+T1719,5<9IPI2 f2).  (139)

hj=1

When rewritten in matrix—vector notation, this reads

4(z) =u'[zl + Ay] v, (136)
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where u; = (¢;|P5" f, ), v;= (&P 1), and (Ay),; =< |r|¢'j>

Since the functions f,(g,4) and f,(q,A) are arbitrary functions, the
components of u and v are, in general, complex. The simplest case to study is
where f,(q,4) and f,(q, 4) are simply related by the classical time reversal
operator. If

fz(‘?a i}=ufrf1{Qv "” (I3?]

for some complex constant «, the vectors u and v are linearly dependent. In this
case, the sequence of Krylov vectors generated by successive application of A
on v span the same subspace as the Krylov vectors generated by A}, and u.
Because of this fact, the complex symmetric LA can be used directly to
calculate spectral functions that satisfy Eq. 137. It is important to note that
spectral functions corresponding to autocorrelation functions where the
components of f; are real in the basis chosen fall into this category.
On the other hand, if f, (g, 2) and f;(g, 4) are not related by Eq. 137,uand v
arc linearly independent, the Krylov subspaces generated by A and v and by
} and u are inequivalent, and the basic complex symmetric LA cannot be
uscd without further work. There is a straightforward way to resolve this
difficulty. The complex symmetric LA can still be used on spectral functions of
this type, since they can be rewritten as a linear combination of three spectral
functions for which Eq. 137 does hold [3]; that is,

9(2) = 3{{PY*(f1 + T L) [zl + AN]IPYHT f L + f2))
= (Péjzyzle[ﬂ+AN]-I|P:1:I1f1>
— Py fi1[zl + Ay] " |PER T £}, (137a)

It is easy to verify that the preceding three spectral functions satisfy the
symmetry requirement Eq. 137 and thus can be directly calculated with the
complex symmetric LA. In fact if f, =7, f, and f, =7 _f, (e.g. one may
choose f, and f, from the basis functions ¢, obeying Eq. 130), then Eq. 137a
becomes the sum of three autocorrelation functions, two of which are the
autocorrelations of f, and f;.

Alternatively, the biorthogonal LA can be used to directly calculate the
spectral function as advocated by Wassam [111, 112]. This approach would
be most useful if only the cross-correlation of f,(q, 4) with f,(g, 4) is desired.
However, the autocorrelations of f(g, 1) and f5(g, 1) are usually needed to
properly interpret the cross-correlation function. In this spirit, it is also
necessary to apply the biorthogonal LA three times to get all the required
information. The drawback of using the biorthogonal LA is that it requires
twice as many matrix—vector multiplications as the complex symmetric LA
and its numerical properties are not well understood. Also, in the relatively
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simple models studied in detail, it is found that the symmetrized Fokker—
Planck operators have simpler matrix element structures. This is not
necessarily the case for more complex problems. (A Lanczos algorithm for
real non-symmetric matrices has recently been described [215], and it can
be useful for typical Fokker Planck operators [41]).

3. Example: The Planar Rotator

The Fokker-Planck operator for the angular position and velocity of a planar
rotator in the presence of a potential provides a good illustration of the general
reduction method since it is not too complicated but does include most of the
possible types of terms that can arise in the general Fokker-Planck operator,
This model has been used to gain insight into the problem of including inertial
effects in the SLE in the slow-motional regime [15]. In addition, Stillman and
Freed have used it as a prototypical Fokker-Planck operator in a study of the
stochastic modeling of the non-Markovian many-body features of diffusing
molecules [41] by a procedure involving the augmentation of the basis set of
dynamical variables. The symmetrization and discretization of the simple
planar rotator model is discussed here as an illustration of the practical use of
the basic ideas of Sections VI.B and VI.B.l. Augmented Fokker—Planck
operators for the planar rotator including several different forms of fluctuating
torques are given in Section VI.C after the general discussion on augmented
Fokker-Planck equations.
The Fokker—Planck equation for the planar rotator problem is

dP(y, 7,1) 3 1
=Ll = TGP0V (138)
where y and 7 are, respectively, the angular position and velocity with respect
to a fixed laboratory frame. The Fokker—Planck operator itself is the sum of a
term that is odd under motion reversal,

¥ =—0Cy, =9 (139)
~a0 Foye
e R (40)

and a term that is even under motion reversal,
Ciln 7)) =T — ) (141)

_BaTo (o 5
== af(afrk,r)' (142)
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where f is a phenomenological friction coefficient, I is the moment of inertia

of the rotator, kg is Boltzmann’s constant, and T is the absolute temperature,
The force on the rotator F(y) is derived from the potential function V(3),

d
Fiy)=- % V(). (143)

The simplest case to consider is where the restoring force F(y) is not present,
In this case, the Fokker—Planck operator

piymyl BT (0 3
o =9%+= a},(a};ﬂkﬂ,) (144)

together with the Maxwell-Boltzmann equilibrium distribution

= f}'.!

Po(y, 9) = (27) "3 3(ky T/1)~ 112 eXP 3
B

(145)

satisfy the conditions of detailed balance. Applying the symmetrizing trans-
formation to I gives

= il d
r(?’ﬂ=}16_}r +ﬁ(ﬁ_zﬁ—iﬂ2?z+i)- (146)

where a =, /I/kyT. The symmetrized Fokker-Planck operator assumes a
simpler form when written in terms of the variables g, =y and ¢, =ay,

—~ a az
r<q1.q=)=a-*q;5;+ﬂ(a—£—iqi+%). (147)

It should be noted that the second term in Eq. 147, which arises from the
irreversible part I', has the form of the differential equation for the parabolic
cylinder functions [129, 130], or, to within an additive constant, a harmonic
oscillator Hamiltonian. This observation, together with the particularly
simple dependence on 7y, suggest that the direct-product basis functions of
complex exponentials and harmonic oscillator wavefunctions,

Valdy,g2) = Nye "3l (q. /. /2), (148)

where k=0,1,2,...,K, =0, +1, £2,..., £ L, N, =(2x) " 3*(2*k!)~ 3, and
H,(g,) are the Hermite polynomials (57,129), will be well suited for this
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problem. This basis is orthonormal but not complete since K and L are finite
integers, and it is not invariant under the time reversal operation (see Eq. 130).
The matrix elements of T in this basis are

-~ zﬂ I‘CI‘J -~
('ﬁ':tlrM’m):J‘ J dq, dg, ¥ (9,,92)T (9, 90V el 42) (149)
0 -

= Py mdy0+ ima 18 W[ /n+ 18,04y + /061011 (150)

It is easy to verify that the matrix of [ is complex symmetric in this basis, that
is, ('f"lk'r"ﬁ'm} (4"mir|'|"'u> -
In the presence of a potential [F(y) # O cf. Eqs. 140and 143], the matrix of "
is not necessarily complex symmetric in the basis specified by Eq. 148. A new
set of basis functions that satisfy Eq. 130 and span the same subspace can be
constructed by taking linear combinations of the old basis functions,

Brunpl1,42) = ("Nl [1 + 8,,01) V2e "5 H,_(q,/./2)

—
x{cos{nqd if p

X : (151)
sin(ng,) ifp=—1,

where n=1, 2,...,N if p=—1 and n=0, 1, 2,....N if p=1. Also,
m=0,1,2,...,M. The symmetry ol the resulting matrix can be verified
directly from the integral definition of the matrix elements by using the fact
that F(y) is a real function and from the structure of the matrix elements of
the position and momentum operators in the harmonic oscillator eigen-
function basis.

This basis is not the only possible choice that satisfies the symmetry
condition given in Eq. 130. For instance, the basis derived from @,.,,(4;,4) by
omitting the factor (i)™ for even m is also a valid basis that satisfies the
symmetry requirement. In addition, any basis that can be expressed in terms of
real linear combinations of the basis ¢(q,,4;), (i.6. A@pp, + BPpnp With 4 and
B real constants) will also satisfy the symmetry requirement. The choice of
basis can be adapted to the calculation of a specific spectral function or class of
spectral functions by taking advantage of the spatial symmetry group under
which I is invariant. The use of spatial symmetry adapted basis functions may
reduce the dimension of the matrix.

We can use the functions given by Eq. 151 to illustrate the correlation
functions for which Egs. 137 and 137a hold, so that auto and cross correla-
tions are readily obtained. That is, we may set f, a:e*””"qb_., and
Jaoce® “a‘*hz‘ﬁm g 10 fact, any desired correlation function would be obtained
directly or as a ]mear combination of such correlation functions.
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C. Extensions of the Fokker-Plank Approach

Stillman and Freed [41] have outlined an extension of the traditional Fokker-
Planck approach that can be used to model the non-Markovian many-body
features of diffusing molecules. It introduces, in a transparent manner, the
basic physics of the relevant degrees of freedom and their couplings and is not
restricted to linear transport laws. This approach can also describe both
equilibrium and nonequilibrium dynamics but does require the independent
specification of the proper equilibrium or stationary probability distribution
for the system by independent means.

In this method, the set of relevant dynamical variables (see sections VI.A
and VLB.1) is augmented with stochastic bath variables assumed to have
simple Markovian behavior. The augmented set of variables then represents a
multidimensional Markov process that obeys a classical SLE. In general, the
SLE does not obey the detailed balance conditions given previously since it
ignores the back reaction of the dynamical variables on the bath variables.
This is a well-known defect in the SLE approach (see section VII). To proceed,
the back reaction(s) are incorported into the model by adding term(s) to the
SLE to satisfy the detailed balance conditions. The resulting augmented
Fokker-Planck equation (AFPE) describes the relaxation of the system to its
stationary state, and under appropriate conditions, it also reduces to a
classical Fokker-Plank equation for the initial set of dynamical variables.
Augmented Langevin equations (ALE) that automatically satisfy the
fluctuation—dissipation relationships may be readily obtained from the AFPE.

The relevant dynamical variables A of the system are assumed to obey an
equation of motion of the form

dA

73 = F(A; E(1), 4), (152)

where E(t) represents the set of independent stochastic bath variables.
Furthermore, the stochastic process for the bath variables is assumed to be
stationary and Markovian with an associated master equation,

dP(E,t; 4)

6: = —TgP(E, 1 ) (153)

With these assumptions, the SLE for the joint probability distribution
function of the augmented set of variables can be written as [131-133]

dP(A, 2, t;4)

5 = —[VaF(AE )+ [PAE 1), (154)
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Here the symbol V, represents the divergence with respect to the initial set of
dynamical variables A. The first term on the right side of Eq. 154 is then the
Liouville form of Eq. 152. If the variables A and = are merged to form a new set
g, Eq. 154 has the form of a generic Fokker-Planck equation (see Eqs. 87 and
91),

_"‘“ap[g}“ Y o TP, (133

It must be reemphasized that Eq. 154 is incomplete in the sense that the
back reaction of the dynamical variables on the bath has been ignored.
Therefore, the stationary solution to Eq. 154 will, in general, only yield the
correct Boltzmann distribution in the limit of infinite temperature. Another
way of stating this is that the joint probability density in the augmented set of
variables does not relax to thermal equilibrium! Clearly this is not satisfactory
for present purposes. In order to obtain the physically correct approach to the
stationary state, additional terms that have been omitted from Eq. 1 54 must be
included. A sufficient condition for the solution of the SLE to relax to the pro-
per stationary state is that it obey the detailed balance conditions stated in
Section VI.B. An AFPE that satisfies the requirements of detailed balance can
be obtained by adding appropriate reversible and/or irreversible drift terms to
Eq. 155. The correct (or, at least reasonable) form of the terms must be
determined from physical considerations. The same reasoning that went into
specifying the proper stationary state is also applicable in determining these
correction terms.

If desired, it is possible to generate a set of ALE from the AFPE [116]. The
ALE for each variable g, in the augmented set can be written as

dq
d_t' = ki(q, 4) + Ej:gu{'?- A)x(e),

where the x;(t) are independent Gaussian d-correlated random functions of
time with zero mean, that is,

{x(t)) =0,
{xy(e + t)x(t) ) = dy;0(x).

The functions ki(g,4) and g(q,4) are related to the drift and diffusion
coefficients by

l agu(%j-:'
2k Ogy

Kﬁ[fb A) = Z,Q'j:(@- A)gulq, 4).

Kl{qs j‘] ot ki[qs "'} + gl:j{q1 .j..:l‘
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The inversion of these equations to obtain the g, #4.4) and the kg, 4) is
discussed in [116]. It is not, in general, unique in the absence of additional
constraints [119].

An example of this scheme is the explicit introduction of fluctuating torques
into the planar rotator problem. If N(y) and T(3,, ) are the mean field to rque
and fluctuating torques, respectively, the SLE for the process is

aP(y,9,1) 8 wsd I r
—-E?—=—{ra—?+f ‘a—};[N[?HT(?.'f.rlj}?{?,r,z]. (156)

One physically plausible model for the fluctuating torque is given by
assuming that angular position that minimizes the torque is undergoing a
simple diffusion process, but the functional form of the mean square torque is
dependent only on the deviation from the minimum. That is, it is reasonable to
assume that

~

T[?, :'.'l I} = VIJ'\,-' IR.II Tf(? =N ¢{I}L

where ¢(r) is the stochastic variable characterizing the fluctuations in the
position of the minimum of the torque, and the associated master equation for
a simple diffusion in ¢ is valid:

5P(¢.I]__t_ L G2P(9,1)
a 0t

In addition, the stationary state must be specified. A natural choice is to let the
equilibrium state be a Maxwell-Boltzmann distribution with respect to the
angular velocity and assume that the mean torque is derivable from a potential
function that depends only on y — ¢(z), thatis, N(y) = — dU n(7? — @)/dy so that
the equilibrium state is given by

L IR Uy
O, 9) = el 1174
D=7t 1T

With these assumptions about the nature of the equilibrium state and the form
of the fluctuating torque, Eq. 156 does not satisfy the requirements for detailed
balance. In particular, the divergence of the reversible probability current is
nonzero (i.e., Eq. 111 is violated). The effects of the back-reaction terms can be
included through the addition of a reversible drift term to Eq. 156 of the form

Jo=/1/kgTVyigly — @), where f(y — ¢)= — dg/dy such that the detailed
balance conditions are satisfied.
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Another physically interesting choice for the equilibrium distribution is to
assume that the system relaxes to the instantaneous value of the fluctuating
potential,

L Iy? Unly)
q)(hf]_zksT'F knT

+ /IkgTVog(y — ¢).

As before, the detailed balance conditions are not met without the addition of
further terms. In this case, an irreversible drift term can be added to offset the
nonzero irreversible probability current (cf. Eq. 112). This choice of potential
is appropriate for cases where the torques relax on a time scale long compared
to the angular position such as in the slowly relaxing local structure model
used in the interpretation of magnetic resonance spectra of spin probes in
liquid crystals and model membranes [16, 134].

The methods developed previously to symmetrize standard Fokker-
Planck operators and the use of the LA to calculate spectral functions and
spectral densities applies equally well to AFPE. In addition, this method
which relies on the construction of an equation of motion for an augmented set
of variables (AFPE or ALE) rather than a generalized Langevin equatior
(GLE), might prove useful in the area of stochastic molecular dynamic:
calculations since it is easy to include nonlinear couplings and the coefficient:
of the ALE are time independent. The absence of the memory kernel:
characteristic of GLE is due to the fact that the set of relevant variables ha:
been extended to include the effects of these interactions. This can be though'
of as a redefinition of the projection operators used to define the memonr
functions or as imposing some physically relevant, nontrival structure on the
bath.

D. Reduction of the Stochastic Liouville Operator to Complex
Symmetric Matrix Form

An analysis of the general problem of the reduction of the stochastic Liouvill
operator to a complex symmetric matrix form is more complicated than th
reduction for the general Fokker—Planck operator discussed previously. The
source of the added complication is the coupling of classical and quantum
mechanical degrees of freedom.

From general considerations, Hwang and Freed [135] have shown tha
spin-dependent force and torque terms must appear in the stochastic Liouvill
operator. Such terms represent the back reaction of the spin system on th
classical orientational, positional, or velocity degrees of freedom. For example
the coupling of a spin system to the SLE for the planar rotator in Eq. 15
would require that the mean field torque N(y) be replaced by N(y)-
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(i/2)[d2# ] (y)/dy], where the new term is the spin-dependent torque due to
the angular dependence of the semiclassical spin Hamiltonian ,(y), and the
plus superscript indicates an anticommutator superoperator. It arises from
applying the Poisson bracket with respect to y in the classical part of the
Liouville equation. The anticommutator feature is required to maintain a
Hermitian density matrix at all times. Thus, the classical probability
distribution must also be replaced by the generalized spin density operator of
Eq. 7and Section VII. The existence of a spin-dependent force term had earlier
been inferred by Pedersen and Freed [67] in considering the problem of spin-
dependent reactive trajectories of interacting radical pairs. A spin-dependent
torque term was also inferred by Vega and Fiat [136]. It is easy to show that
within the high-temperature approximation, the equilibrium potential should
include the term J ,(Q)/k, T, that is the spin force or spin torque acts as an
additional effective potential energy term. It is necessary, but need not be
sufficient, to guarantee the relaxation of the spin system to thermal equilib-
rium [68]. Monchick [137] has more recently obtained similar results, and
Wassam and Freed [138, 139] have provided a detailed theory that deals with
the inclusion of such terms. Both these more recent works employ the Wigner
distribution function to pass from a fully quantum-mechanical treatment to
the semiclassical limit.

The preceding considerations show that the spin density matrix of the SLE
should relax to a canonical distribution in #,(Q) as well as to the equilibrium
distribution for the molecular degrees of freedom. As long as | #,(Q)/k; T| « 1,
it is not necessary to explicitly include these spin force and spin torque
terms into the SLE. Instead, the term T'p( 1) can be approximated by
Cur[p(2 1) — po(2,1)], where Ty is the high-temperature limit of " that
does not include spin force or spin torque terms. This form of the SLE will
still be consistent with a suitably extended detailed balance criterion, and
after the symmetrization of 'y, one can again construct complex symmetric
matrix representations of the stochastic Liouville operator, The high-
temperature form of the relaxation term in the SLE had been inferred by Freed
[8], who found that it was required in order to have the general density matrix
theory of the SLE reduce to the correct linear response result in the limit of
weak irradiation fields (cf. Section II). This correspondence further required
Pol82, t) to be the canonical density matrix associated with the instantaneous
value of #,(Q), including the effects of the irradiating field. This high-
temperature limit of the SLE is the form used in the next section.

We have found that this approach does indeed lead to a complex symmetric
form of the stochastic Liouville operator in a careful treatment of the high
temperature limiting case involving a generalization of the work of Lax
[124,125]. The previous work by Lynden-Bell [61,62] and Pyper [59, 60] on
the symmetries of the SLE is also useful. It should also be mentioned that a
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Figure 11a, Comparison of line shapes for axially symmetric g tensor for different [re
rotational diffusion models. (A) absorption lineshapes; (B) first-derivative lineshapes. Differen
rotational diffusion models denoted by dotted lines for Brownian diffusion and solid lines fo
motion described in full three-dimensional angular momentum space for Brownian particle witl
damping coeflicient f§=4R; dashed lines: motion described in one-dimensional angula
momentum space for Brownian particle with § = 4R and R = 0.13|F|; dotted-dashed lines: simpl
free diffusion with /R = (Rt)™' =4, All have 1, = 1.72 x 10™7s. (From Ref. 15. Reprinted witl
permission from G. V. Bruno and J. H. Freed, J. Phys. Chem. 78, 935. Copyright 1974 America
Chemical Society).
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Figure 11b. Derivative lineshapes for axial nitroxide for motion described in full three-
dimensional angular momentum space with §=4R and 1, = 1.5 x 10775, Case 1: No ordering
potential. Case 2: Potential of i} =4§. (Approximate basis set utilized; cf. Refl. 142.) Separation
between x-axis markers is 8.56G.
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general prescription for symmetrizing the stochastic Liouville matrix for
rotational diffusion problems was given previously [20].

In Figurés 11a and 11b we show ESR spectral simulations [15, 140] based
on the SLE for rotational diffusion, where I is described by a Brownian
Fokker-Planck equation in angular and angular momentum space [141].
Related results were obtained with an extended diffusion model [15, 140-142].

fa)

Figure 12. Comparison of experimental and simulated spectra for small nitroxide probe PD-
TEMPONE in nematic phase of liquid crystal Phase V. Experimental results at (a) 45°C, 3450
bars, and (b) 45°C, 4031 bars, shown as dashed lines. Broken lines are for isotropic Brownian
diffusion with (a) 2.25 x 10~ 5; (b) 1 = 4.3 x 10?5 with moderate asymmelric orienting potent-
ial; solid lines correspond to calculation based on approximate fluctuating torque model. (From
Ref. 114. Reprinted with permission from J. 5. Hwang, K. V. 5. Rao, and J. H, Freed, J. Phys.
Chem, 80, 1790. Copyright 1976 American Chemical Society).
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Inertial effects were shown to modify the spectrum for low friction. Methods
equivalent to those of this section including the use of a symmetrized diffusion
operator were employed [15]. Model calculations based on the fluctuating
torque model (cf. Table 4) have also been performed [114] (cf. Figure 12) and
are expected to be more relevant in viscous fluids than the inertial models.

VII. NONLINEAR PHENOMENA: SATURATION, DOUBLE
RESONANCE, AND SPIN ECHOES

A. The Stochastic Liouville Equation in the Presence of Radiation

In the general case, when linear response theory is no longer valid, we may
employ the stochastic Liouville equation of motion for the density matrix
p(82,¢), which is both a spin density operator as well as a classical probability
function in the stochastic variables Q [5, 8, 143-145]:

ap(8,1)

at

=[—iL—-T(Q)—R][p(8 1) — po(Q, 1)]. (157)
One may recover the ordinary spin density matrix by averaging over €:
plt)= j.dﬁ p(E 1) = p(Q, 1). (158)

The diffusion operator in Eq. 157 has been augmented by the addition of a
term R that is that part of the spin relaxation matrix that is orientation
independent [7, 143—-145]. The Liouville superoperator may be written as (cf.
Eq. 20)

LI, t)=#7 + #[(Q)+e",

where the cross superscript implies the commutator superoperator form,
H " p=Hp— piH. As before, # is the time- and Q-independent part of the
spin Hamiltonian, »# () the Q-dependent part, and £(t) the new term due to the
interaction with the radiation field:

he(t) =4hy, B[S, e + S_e“]=[e. (1) +&_(1)],
which is the interaction of the electron spin with a rotating magnetic field

B, = B,({coswt + fsinwt) that defines the x axis of the rotating frame. Relax-
ation in Eqg. 157 is taken toward the instantaneous value of the spin
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Hamiltonian [8, 51, 98, 144, 145], that is,

exp [ — hoH(Q, 1)/kyT]
Trexp[— ho#(Q,0)/ksT]

Pol€d t) = Py(S2)

1 hot

(159)

where N is the total number of spin eigenstates and kg is Boltzmann’s constant.
The approximate equality in Eq. 159 is a high-temperature approximation.
At this point it is useful to introduce the operator

18,0 = p(Q, 1) — po(Q, 1) (160)
to simplify the form of the following equations. It follows from Egs. 157 and

160 that

0x(Q,1) 6pa(fl. t)
at at

= [~ L-T]xQ.1) (161)

(where R in Eq. 157 has been omitted for convenience) and from the high-
temperature approximate form of Eq. 159;

3po(@,1) __iheo "
L CCN R )] (162)

Except for the driving term involving the time derivative of p,(Q, £), Eq. 161
is formally similar to Eq. 10 for the spin operator in the Heisenberg
representation. By introducing the symmetrized diffusion operator given by
Eq. 17 in Section II, Eq. 161 can be converted to

Eﬁu(fl. 1)

55."16‘:' D 4 pry) 2P _ i Fp@,), (163)

with 1
7, 0) = Pg "2 {Q) (€2, 1),

Thus, from Eq. 158, one has
x(r) =J P Q)7 1) = Pg 2 (Q)F(, 0).

B. General Methods of Solution

The general solution of Eq. 163 is obtained by first expanding 7(£,t) in a
Fourier series in the harmonics of the monochromatic radiation field,
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Q=3 exp(inw)7™E,1). (164)

(This may be regarded as a simple application of Floquet theory [129].) The
Hermitian nature of p and p, leads to the relation for the matrix elements of
fin]'

CalF™1b) = C(blF~"la)*. (165)

In a CW experiment where the steady state is maintained by application of
the radiation field at all times, one has

"8 1) = 7).

Thatis, the Fourier coeflicients, which are still spin density operators, are time-
independent matrix elements of an ordinary spin operator.

The notation in common use in this field for various types of matrix
elements of an ordinary spin operator O is

0:=0,-,., (166)
0,:80,,., (167)
O i=0, (168)

In eq. 166 the labeling is such that A refers to the Ath ESR transition between
the states @~ and b* where the lowercase letters indicate nuclcar spin states
and the minus and plus refer to the electron spin states m, = —fand m, = L If
a=b, this is an allowed ESR transition; otherwise, it is a forbidden ESR
transition. Equation 167 refers to the diagonal matrix elements, whereas
Eq. 168 for a # bis a “pseudodiagonal” matrix element [12,97, 143-148] since
it is diagonal with respect to the electron spin but the nuclear spin states are
different. These are more properly included with the diagonal matrix elements
(in part because of the very small differences in energy between nuclear spin
states), and this will be done in what follows. In fact, the summations over 1*
utilized in the following will imply both types of matrix elements Eqgs. 167 and
168.

More generally, it is possible to expand an orientation-dependent operator
0(Q) in the direct product space of spin operators and the space of square
integrable functions of © as was done in Eq. 25:

IG[Q CI:J} >u o AE ol.u('w:li‘L m}:
10Q,w))y= Y 0. (w)|A*,m). (169)

A m
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The subscripts o and d refer to the off-diagonal and diagonal subspaces. Then,
utilizing Eqs. 162 and 164 for the off-diagonal spin matrix elements of Eq. 163,

nl(t) = — i[nw — @320 — Y, (A, mI T4, m' > 20 (0)
—i T | (@)X, m 20 (1)
A'm

—i ¥ (Am AT QA mFR (1)

itm

—id,[fn = 1)+ ., — F(n = 1),- ]+ iqwd,{A,m|Pg*S _).  (170)

The off-diagonal matrix elements of #(t) in Eq. 170 are denoted Y, following
the established convention [143-145]. Also, the other symbols in Eq. 170 are
defined as

oy = e — By (171)

where E,. = (ho#,),. ,. is the zero-order energy of the A* spin eigenstate of ',
and the “transition moment™ for the Ath allowed or forbidden ESR transition
d, is given by

d;=30,(S_)s - =}wy, (172)

with w, =9.B, and g = h/NkgT. Note that in the last term on the right in
Eq. 170 the matrix element { 4, m|P}*S_) is nonzero only for allowed ESR
transitions.

Similarly, the diagonal and pseudodiagonal matrix elements of Eq. 163 are

o ) = — inF, — T (A%, mITIA%, m Y (0
= 2, (A%, m 0 (Q)a,m' Y (1)
+ 2d,[2% ) -z (9], (173

where the subscript A~ = 4 refers to the O,- ,+ matrix element as before (cf.
Eq. 166), whereas 4~ refers to the O,- .+ matrix element. In the third term on
the right in Eq. 173 the summation index o runs over all A=, 2", and 1*, Alsc
note that from Eq. 165, 2" V(1) = z{2"* V'*(t), whereas X = 7,2"*.

The steady-state solutions of Eqs. 170 and 173 are obtained by setting
(=77 =0 to yield a set of time-independent coupled algebraic
equations.

One sees, from Egs. 170 and 173, that it is only through the effects of the

OF MY DA L EWVIY UYL AW VYR W YT D R

radiation field, where the strength of the interaction with the spins is
characterized by w,, that the harmonics of the ofl-diagonal matrix elements
Z' ) and 2fTY are coupled to the harmonics of the diagonal and
pseudodiagonal elements 71 . An analysis of these equations leads to the
result that the extent of coupling depends essentially on the ratio w,/w,,
which is very small in the presence of large static magnetic fields. Thus, in
this case it will be possible to decouple the various harmonics. Next, it will
be shown that for high-field saturation cases, it is sufficient to retain only the
z{2 ., 2471 and the 7{% | terms. The higher harmonics become important in a
variety of multiple-resonance schemes [98, 99, 143-145, 149] or experiments
done at low static magnetic fields [5,6].

Consider the power absorbed in a steady-state spectrum given by [51]
P =wB,M,= —1iwB,(M,e™" — M _é&), (174)

where M » is the magnetization along the rotating y axis, and the associated
operators . , are given in terms of the electron spin raising and lowering
operators 5, by

M ()= NPy, Tr[p(Q,0)S,] (175)

(cf. Egs. 8 and 9). By analogy to Egs. 15 and 16, this can be rewritten as

Tr,[5()S,] = Tr,o(@, S, . (176)

Only the terms in p(£2, ) that contribute to the net time-averaged power
absorption via Egs. 174-176 need be retained. From Eq. 160 we must consider
the time evolution of both ¥(€2, t) and p4 (€2, ). We first note that py(L2, f) given
by Eq. 159 cannot contribute to the time-averaged absorption since (i) the
time-independent terms in 2, + 2, have no components oscillating at &'
needed to cancel the oscillations in Eq. 174, and (ii) the term in &(t) that has the
needed oscillatory part is found to make contributions to the M, terms in
Eq. 174 that are equal in magnitude and opposite in sign. The only terms in the
expansion of 7(€, ¢) that contribute to the net time-averaged power absorption
are the z{), and z{"! _occurring in the form 20 = Im {z{},} = (2) 7' [2{Y, —
z{=""]. The definition zi =Re{z{!)} will also be needed. Thus, from
Eq. 174 the steady-state power absorption is given by

P =24he ¥ d,280 (PS_|Am). (177)
Adm

In the sum over A only the allowed transitions contribute. In large static
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magnetic fields only the coupling to 7% is required, and these are simply
interpreted in terms of deviations from the equilibrium population.

The structure of the coupled differential equations that emerges in the high-
field limit from Egs. 170 and 173 may be written in block matrix form as

AR R —-iK 0 id PRI (3] iQ
"= 0 R+iK —id||z" |+ |-iQ|. (178)
i'm{ﬂ id' — id w frﬂl(” 0

The vector z'*)(r) is a vector defined in an (m x A)-dimensional subspace with
elements z!'), where 7%(¢) is a vector defined in the (A* x m)-dimensional
subspace with elements {2’ (t), and z'"*(1) is the vector whose elements are the
complex conjugates of the elements of z'"(1).

The relaxation matrix R in Eq. 178 is the matrix representation of I’ + R
from Eq. 157, and the coherence matrix K is the matrix representation of L
from Eq. 170. By analogy with Section II, let A’ =R + iK be the submatrix
that governs the dynamics of the off-diagonal density matrix elements, noting,
however, that K can include the effects of multiple quantum coherences, if
present [144]. The symmetric matrix W plays the same role as A’ but for the
diagonal and pseudodiagonal density matrix elements [143-146]. The matrix
d is the matrix of transition moments d; that couples the space of electron spin
transitions that contains the vector z'"(t) to the space of populations and
nuclear spin transitions that contains the vector x'®(t), and itis not, in general,
square. It has nonzero matrix elements only between electron spin transitions
and their associated components in the subspace of diagonal and pseudo-
diagonal matrix elements. The vector Q represents the driving terms in the
space of electron spin transitions; its elements are given by the last term on the
right side of Eq. 170.

The form of Eq. 178 is sufficiently general to be applicable to multiple-
resonance schemes, and the methods for constructing the various matrices are
discussed elsewhere [84, 143, 146]. It would, however, be necessary to include
higher harmonics than z*'(t) and x'®(t). Also note that the terms involving z{?),
and x{¥ _in Eq. 178 have been neglected. The omission of these terms amounts
to neglecting the nonsecular terms from | ; this is readily justified for slow
motions in high field [5, 6].

Note that the form of Eq. 178 is of a matrix Bloch equation [143, 144],
where z and z’ are the multidimensional analogues of M, and ﬁ,.
respectively, where y is the analogue of M, — M. In the limit of a very weak
radiation field where d,—0, the couplings due to the d matrices can be
neglected in Eq. 178. The neglect of these terms in the weak perturbation limit
decouples the off-diagonal space from the diagonal and pseudodiagonal terms.
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This allows one to solve just for the latter to obtain the power absorbed (cf.
Eq. 174). In fact, in a steady state one has, %' =0, and

P =N hw?qui(v|[A'(@)] o) (179)

from Eqs. 170, 174, and 178 with |v ) given by Egs. 25 and 27. This is seen to be
proportional to the expressions for the absorption given by Egs. 1 and 26. The
actual experimentally observed signal is proportional to #/w, [51].

For finite-amplitude irradiating fields it is necessary to consider the full
matrix in Eq. 178, which is of complex symmetric form. Thus, the complex
symmetric Lanczos and/or conjugate gradients algorithms can in principle be
applied to Eq. 178 also.

C. Steady-State Saturation and Double Resonance

Because of the complexity of Eq. 178, it is beneficial to consider some specific
cases where simplifications are possible. For CW saturation [5, 97, 144, 150]
and double-resonance schemes such as electron—electron double resonance
(ELDOR) [98, 143, 144, 145, 149, 151] or electron—-nuclear double resonance
(ENDOR) [98, 143, 144], the steady-state solution of Eq. 178 involves setting
#(t) = 2*(t) = x(r) = 0, so the spectrum may be solved either by tridiagonalizing
the matrix in Eq. 178 using the LA or by solving the linear algebraic equations
directly using the CG algorithm. The latter would appear to have the
advantage because it is not possible to remove the sweep variable Aw from all
the diagonal elements. Thus, a Lanczos tridiagonalization would have to be
performed for each value of Aw. However, it is possible to rearrange Eq. 178 in
a partitioned form to obtain

R—iK—S S z —iQ
( S R+iK—-S)(z*)=( iQ ) e

where the saturation matrix S is defined by
S=dW~1¢". (181)

Equation 180 may now be diagonalized only once to yield the entire spectrum.
The details of constructing the symmetric W matrix and dealing with its
singular nature are discussed elsewhere [5,97, 144, 148]. The solution of
Eq. 180 in previous studies has been accomplished by tri-diagonalization
using Rutishauser’s variant of Givens method (cf. Section IV) followed by
diagonalization, but not by the LA, Thus, further work is needed to determine
whether the solution of Eq. 180 using the LA or the solution of Eq. 178 (with
time derivatives equal to zero) by the CG algorithm is preferred. Methods
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based on Gaussian elimination (see Section [V) have previously been used to
analyze cases involving modulation of the static magnetic field with detection
of various harmonics [98,99].

In Figure 13 we show results of an experimental study on ESR saturationin
the slow-motional regime along with the associated calculations.

The general features of the method can be illustrated by considering the
simple example of the ESR spectrum of a paramagnetic molecule with an
axially symmetric g tensor that is tumbling in an isotropic liquid. In the secular
approximation, the orientation-dependent part of the spin Hamiltonian is

fa)
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Figure 13. (a) Experimental saturation spectra for peroxylamine disulfonate in viscous
solvent: “transition moments™: (A) 0.025 G; (B) 0.079 G; (C) 0.45 G. (b) Simulated spectra for free
diffusion with t/§** = 2.0 x 10~ *s and appropriate transition moments. Magnetic tensors taken
as axially symmetric for simplicity (From Ref. 97b).

simply
H1(Q) = F 25,(Q)S.,
with
28.B.
§= 3ﬁo{gﬂ—gj_}|'

where g, and g, are, respectively, the parallel and perpendicular components
of the g tensor. It is possible to introduce the orientation-independent
contribution to the linewidths, namely the relaxation rates T3 " and T}, ', by
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including these terms in the operator R. With the inclusion of these terms and
the definition

ofL 2 b
kpp=[Q2L+ 1)(2L" +1)] I(o 0 ﬂ)y'

Egs. 170 and 173 yields

[Aw —i(T " + 17 "ICh(Aw) — Y Ky 1 CholAw) + ﬁa‘bﬁo(ﬂw) =qwddy o
—
and (182)

—i(Ty7 + 17 ")bho(Aw) + \/2d Im{ Cho(Aw)} =0, (183)

where 7, ' are the eigenvalues of the isotropic diffusion operator given in
Section II. In Eqs. 182 and 183 the standard notation [144] has been used
where z{!), - C§, and lfﬁ(x'f’,, — 1% )= bky. The matrix elements of
the problem are

Ryp=(=T7 " +17" )0

Kpp=4Aw+kK,,,

Woe=(T7 + 10 )60,
QL =qwdd o.

Note that R and W are diagonal in this representation but K is not. In this
problem W has nonzero elements only in the subspace spanned by the linear
combinations bf,. By the structure of the vector Q, the steady-state absorption
lineshape is delermmcd solely by Im{ C, }. The physically interesting feature
here may be appreciated by first realizing that b},, which represents the
ensemble-averaged deviation of the difference in spin population from its
equilibrium value due to saturation effects, has a relaxation rate determined by
Ty ! alone. However, the bf, for L > 0, which represent the nonspherically
symmetric components of this deviation due to saturation, relax like
T, ' + 17 '. The rotational motion can relax the saturation at one region of the
spectrum by transferring the saturated spins to another region of the spectrum.

Another example is the ELDOR signal of the same radical [149]. Here, two
radiation fields, a pumping and an observing field, are employed. Therefore,
one must label the expansion coefficients with two indices that keep track of
the harmonics of each field. Equations 182 and 183 now become

125 -094 -062 -0D31 O 031 063 094 12
w, lgouss)—

wp

-.25 -094 -063 -032 -00! 030 06 092 12
w, (gouss) —

Figure 14. Predicted ELDOR lineshapes for axially symmetric g tensor undergoing
isotropic Brownian rotational diffusion. Pump frequency w, set at fixed value as shown and
observing frequency w, is swept. Note how CW saturating effect of pump only partially
transmitted to rest of spectrum by rotational motion. Here 1, = 5.75 x 107 %5, T, = 5.7 x 10~ %s;
(A) absorption; (B) first derivative. Solid line; pure ESR. Dashed and dotted lines: ESR line with
pump on. (From Rel 149.) Courtesy of North-Holland Publ. Co.




480 D. ). SCHNEIDER and J. H. FREED

[Aw, — (T3 + . ') ] Chola) — ; ki1 Chola) + /2d,bh(Aw) = gu,d,0¢ o
and (184)
—i(T7 4o Dbbo(Aw) + \/2Y d Im{Cho(2)} =0,  (185)

where @ =0 or d =p, referring to the observing and pumping fields, res-
pectively. Here, d, = w, ,/2 and Chy(0) and Ck,(p) are the z{s" for the n, =
l,n,=0,and n, =0 and n, = | harmonics, respectively. By setting Aw, to be
in resonance at positions in the absorption line different from Aw,, it is
possible to monitor the transfer of the saturating effects of the pumping field to
the region around the observing field. This absorption of the observing field is
proportional to Im{ C§o(0) }, which is a function of both Aw, and Aw,. In this
simple example, the “saturation transfer” is induced by the rotational diffusion
modes with rates 7, ', as in the previous example. This “saturation transfer”
effect in CW ELDOR is illustrated by the calculations shown in Figure 14,

D. Spin Echoes and Two-Dimensional ESE

For general time domain experiments such as saturation recovery
[143, 145, 152] or electron spin echoes [84], one must solve the complete
form of Eq. 178 either in the time or frequency domain. However, there are
special cases for which the saturation recovery problem can yield analytical
forms [143, 144, 145]. Also, electron spin echoes and free induction decays
may be greatly simplified by considering somewhat idealized models
[26,28, 30, 33, 35, 146]. Let us briefly consider the latter.

An idealized description of spin echoes is to assume that the radiation field
is intense and of sufficiently short duration so that the sole effect of a pulse is a
rotation of the density matrix by an appropriate angle, Thus, we assume that
g(t) dominates the spin Hamiltonian in the rotating frame (ie., for the
equations written in terms of the zi),) during the essentially infinitesimal time
that the radiation field is on. Then, in the absence of any radiation, Egs. 170
and 173 with d, =0 give the (uncoupled!) time evolution of the off-diagonal
and diagonal subspaces during such evolution periods. Thus, for the first
evolution period we have

Pl t + 1) =exp[ —ie"t]p(€2 1), (186)
where the subscript rf implies that only z§}, and »'¥,, are considered in the

expansion of p(€, t) according to Eqgs. 160, 164, and 169. Also, t is considered
as an infinitesimal quantity. The result of this type of idealized pulse is simply a
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rotation of the density matrix that only affects the electron spins. Whereas for
the second period we have

Q0= — AP Q. 0), (187)
where

AW = —i[H#5 - nwS; + #1(Q)]-T(Q)

is the rotating frame stochastic Loiuville operator. Thus, for example, a 7/2—1~
n—t' spin echo experiment leads to the following time evolution for Z"(Q, ¢):

ZNQt+ 1) =exp[— A, v Jexp[— AS]ZUMQ,07), (188)

where the complex conjugation implied by the asterisk in Eq. 188 is more
precisely the complex conjugate of all operators linear in the components of
electron spin while those operators independent of the electron spin (such as
the nuclear Zeeman term) are unaffected, and Z{}}(Q,0*) gives the value of
Z'Y(Q, t) resulting from a n/2 rotation of p,, [28, 146]. In this sequence, one first
rotates the equilibrium z magnetization about the rotating x axis into the
rotating y axis with the n/2 pulse. The spins evolve for a time 1, after which the
n pulse rotates the y electron spin magnetization into the negative y axis. It
then evolves again in the x—y plane for a time 7. In typical pulsed ESR
experiments the echo signal is measured at the time 27 after the first pulse.

After one introduces expansions of the form of Eq. 169, one obtains from
Eq. 187 the matrix differential equation for z(t):

= —A'z(t),

where the matrix A’ is readily obtained from the operator A,. Also, Eq. 188
yields

Zit+t)=exp[—A't"]exp[ — A™*1]U*,

where the vector U is obtained from Z,,(€,07). Finally, the averaged signal
may be written as

S(r+t)ccRe{U"exp[ — A't'Jexp[— A"*t]U}. (189)

This expression can be rewritten in terms of eigenvectors and eigenvalues of A’
(cf. Eq. [28]) as

S(2t +1)oc Re{g cyexp[ —(Ar+ Af)Jexp [ —Agl), (190)
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where 1,t >0 and t = t" — 1. The coefficients c,; are given by
cy= Y. U;040,050%,Ux, (191)
k,im

where O is the complex orthogonal matrix that diagonalizes the matrix A,
These eigenvectors are referred to as “dynamic spin packets” [30]. After
performing a two-dimensional Fourier transform of Eq. 190 with respect to 2t
and ¢ and using Eq. 192, we recover the general expression for two-
dimensional ESE spectra for which Eq. 78 is a special case. The LA may easily
be applied, as already discussed in Section V. Equation 191 shows that, in
general, one would require the full O matrix to obtain the signal. This
requirement could significantly reduce the power of the LA (but see what
follows). However, in the very slow-motional regime where actual experiments
of this type are performed, | 3] | /|| > | so that O must be very nearly real. By
setting 0* ~ O in Eq. 191, the approximate form of ¢;; is

CIJ'Z(O"U]J;EU = leo-u. “92]

The calculation of the approximate c;; from Eq. 192 is much simpler than
accumulating the full transformation matrix O. The approximate c;; are easily
computed by storing only one vector containing the elements (QjU), where
the matrix Qp is now the matrix that diagonalizes the Lanczos tridiagonal
matrix, This procedure is implied in Eq. 78. However, the full matrix
representation is needed in Eq. 191. This matter can be studied by first writing
0 =Q;Qp, where Q is the matrix of Lanczos vectors that reduces A’ to
tridiagonal form (QfA'Q,=T,). Now Eq. 191 may be approximated as

Cj = Z Q1119006 Q1LnQL.520.5i20,1 )0 (193)

[ |

where we have used the fact that 3, U,Q, ,, = 6, ,, since the starting vector U
is just the first Lanczos vector. [Note that the very slow-motional form in
Eq. 192 can further be approximated as ¢;; =~ (Qp.j1)?;;.] The sum over i in
Eq. 193 is over the N-dimensional space spanned by the original basis states,
whereas the r and s indices refer to the n,-dimensional subspace spanned by the
Lanczos vectors. The needed Lanczos vectors are seen to be the ones required
to adequately represent the relevant eigenvectors and eigenvalues in Eq. 190,
and these are the same as those that are important in the approximate form
Eq. 192. Thus, it seems reasonable to expect that the MTS required for the
approximate solution, discussed in Section V.B and Table 2, would be
adequate for the original N-dimensional basis set, whereas the n,-dimensional
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Figure 15. (a) Two-dimensional ESE spectra for small nitroxide probe in viscous solvent at
—100°C. (b) Simulated spectrum based on theory described in text. (From Ref. 30.)
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set of Lanczos vectors from the approximate solution would suffice for the
actual calculation of the two-dimensional ESE spectrum. Thus, the number of
matrix elements in Q, in Eq. 193 would be N x .

Rather than the time-consuming accumulation of the transformation
matrices, it should be more efficient to adopt the strategy proposed by Cullum
and Willoughby [89]. This would involve applying the LA to obtain T,
followed by the diagonalization of T, by the QR or QL procedure without
accumulating the transformation matrix Q. After this is complete, the subset
of eigenvectors of T, corresponding to slowly decaying modes could be
reconstructed by inverse iteration [80,89] and the LA reapplied to A’ to
supply the Lanczos vectors required for the transformation of the subset of
eigenvectors of T, into a set of approximate eigenvectors of A”, This procedure
has the advantage that the Lanczos vectors need not be stored: they are
regenerated when needed. Alternatively, if it appears that the reapplication of
the LA is more time consuming than the storage of the Lanczos vectors, they
can be stored. This might often be the case in the class of problems under
consideration, where n, « N. Another advantage of this approach is that, in
general, the number of relevant eigenvectors, n,, is typically n, « n,, so even less
storage and fewer matrix multiplications are required to calculate the ¢ by
Eq. 193.

The theoretical curve in Figure 10 was obtained from Eq. 190 by setting
t =0 corresponding to the echo maximum and then stepping out 7 to get
the T,-type decay. Figure 15 illustrates experimental and simulated two-
dimensional ESE spectra for a nitroxide in a viscous fluid. The variation of
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Figure 16. Two-dimensional ESE normalized contour plots‘\ (a) Experimental spemrum_for
same case as Figure 15 but at —75°C, with signal-to-noise ratio a‘uhanoemmt and dlud-nn-!n:
corrections calculated by LPSVD methods. (b) Theoretical calculation for a model of isotropic
Brownian motion. (c) Same as (b) but for rotational anisotropy of N = 2. Contours normalized to
the 0-MHz slice, shown in each figure by dashed lines. (From Ref. 32.)
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T, across the spectrum is illustrated in the experimental and theoretical
contour plots shown in Figure 16. In the very slow-motional regime studied,
the CWESR spectra are no longer sensitive to motion, but these two-
difrlensional ESE spectra remain very sensitive to the motion and to the
rr_ucrosccpic model. Note that-the two-dimensional spectral resolution and
signal-to-noise ratio in the experimental data have been very significantly
enhanced by modern techniques of data processing based on linear prediction
[32, 153, 154],

Finally, we note that when the approximation of Eq. 192 is not valid and
Eq. 191 must be used, the two-dimensional Fourier transform of Eq. 189 with
respect to rand ' can lead to cross-correlations between the different dynamic

spin packets. Analogous types of cross-correlations will show up in the next
section,

E. Stimulated Echoes, Magnetization Transfer, and Two-Dimensional
Fourier Transform Spectroscopy

We now consider more sophisticated but still idealized pulse sequences. An
important pulse sequence is the stimulated echo sequence n/2—t,-n/2-T-
n/2-1,~echo. In this case, the second n/2 pulse rotates the y magnetization
into alignment along the negative z axis. Alter evolving for a time T along the z
axis, it is returned to the x—y plane by the third n/2 pulse, and an echo is
formed. By stepping out the time T, one can study relaxation of the z-
magnetization. We refer to this as a T,-type, or magnetization transfer,
experiment.

This more sophisticated sequence yields the following expression for the
desired stimulated echo signal [33, 146]:

S(T + 1, + ;) ocRe{ Y by(ry, v )exp [ - T/}, (194)
P

where 7 are the eigenvalues of the W matrix in Eq. 178 representing relaxation
of the diagonal and pseudodiagonal density matrix elements. Also,

bp[th 1'2] = E {quo.q-n}on.mol.npol.kpo:.kj(oo.sjU:)** {195)

Lk.m.n.q.5

In Eq. 195 we distinguish the complex orthogonal transformation that
diagonalizes A’ as in Eq. 191 by O, and the complex orthogonal transform-
ation that diagonalizes W by O,. One might expect W to be a real symmetric
matrix. But because it couples the diagonal and pseudodiagonal matrix
elements (which rigorously are off-diagonal density matrix elements), it is, in
general, complex and symmetric. However, all complex eigenvalues and
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eigenvectors occur in complex-conjugate pairs, such that true diagonal density
matrix elements, which represent populations, are always real [144-148].

Equation 195 is based on the simplifying assumption that the whole
spectrum is irradiated by the idealized pulse. Also it assumes the existence of a
“congruence” between the basis sets used to expand the off-diagonal and
diagonal subspaces. This congruence, or one-to-one relationship, may be
established via the d matrix of Eq. 178 in a number of useful cases [144—-148].
In order to obtain the full time evolution of the signal, one must separately
diagonalize A and W. Furthermore, there are no known simplifications
analogous to Eq. 192 for the two-dimensional ESE case. Thus, in principle,
one requires the full transformation matrices O, and Q. As already noted in
other contexts, this would greatly reduce the speed of the LA, and this
procedure has not been used to date on this problem, although the
Rutishauser algorithm has been employed [146].

Let 'us consider what would be involved in employing the LA in such
calculation. We start by first comparing Eq. 195 for b,(r,,7;) versus
Eq. 191 for c;;. In the latter the complicating feature was the appearance of
the sum 3,0,,0%; whereas in the former it is the double sum
Y mkQo.mn04.mpQuip0oxj- The arguments given previously for the efficient
calculation of the important subset of eigenvectors of A’ also apply here, when
the vector U is used as the starting vector for the LA, One is thus left with the
job of diagonalizing W. The application of the LA in this case is less well defined
given that there is no well-defined time-independent starting vector to use.
Given a congruence between the basis sets, it would seem physically
reasonable to use the vector U, that is congruent to U as the starting vector in
the diagonal subspace. Again, the important subset of eigenvectors of W could
be constructed by the Cullum-Willoughby procedure. Past experience
[34, 35, 146] has shown that only a few of the slowest decaying eigenvectors of
W are significant, Given that the LA is efficient in generating the eigenvalues of
smallest real part (cf. Section V.A), it should not require many Lanczos steps to
obtain good approximations to them.

Another possible approach is suggested by rewriting Egs. 194 and 195 in
the form

S(t, + T+ 13)cRe{Uexp[—A't; ]V, exp[—WT]IV,exp[—A'7, JU},
(196)

where V., expresses the effect of the second and third n/2 pulses. A triple
Fourier transform gives

S(w,, @3,07) < Re {(U[w, T+ AT 1)V, [0 1+ W]!
x V([ 1+ A']7'U)}. (197
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The two expressions in parentheses could, in principle, be calculated using the

CG algorithm to solve
[w, I+ AJz,(w,) = U (198
for zl_[w') for a range of values of w, and @, and to store these vectors. Wha
remains to be calculated is then
S(wy, 0y, 0r) oc Re{z"(@,)V, o[l + W]V, 2(,)). (199
Now, when a simple congruence exists, the effects of V.2 aresimple and lead tc
[146] _I(w;] = i\/fz‘(m,j from the second pulse, and Zlw,)= iﬁx(w:} from
the third pulse so that Eq. 199 becomes
S(@y, w;, wr) oc Re{ "(w,) [wrl + W]~ ylewy)}. (200)
It would probably still be best to diagonalize W for the slowest decaying

modes blj’ the LA, as discussed in the preceding.
Equathns 199 agd 200 suggest that S(w,, w,, @) can be viewed as a matrix
of correlation functions of x(w, ) with #(@;) due to the effects of the relaxation

Figure 17. Two-dimensional exchange spectrum of 1.17mM PD-TEMPONE spin probe in
perdeuterated toluene at 21 °C obtained by Fourier transform methods. Cross-peaks are due to
H-ciscnberg spin exchange inducing magnetization transfer between the primary three lines along
diagonal. (Spurious peaks, which do not come at the magnetization transfer positions, are due

to residual efects of axial peaks). (From Ref. 34,)
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processes associated with W, Such a correlation matrix (still a function of w;)
would contain all of the relevant information obtainable by the stimulated
echo sequence. A form intermediate between Egs. 196 and 197, which we write
as S(w,,w;, T), can be used to interpret actual two-dimensional exchange
experiments that have been performed both by NMR [155] and by
ESR [34,35] (cf. Figure 17). Work is in progress in making the full three-
dimensional experiment a practical reality.

We illustrate some experimental and calculated results in Figure 18 for the
stimulated echo and inversion recovery sequences, both of which are
magnetization transfer experiments. The inversion recovery experiment is
based on the following pulse sequence: The first n pulse inverts the z
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Figure 18. Experimental results and calculations on inversion recovery (IR) and stimulated

echo (SE) sequences for small spin probe in viscous solvent. (a) Apparent T, versus inverse
temperature for IR (squares) and SE (circles) sequences with partial irradiation. Solid line:
Measured T, for center line. Dashed line: Extrapolated fast-motional ty for reference.
(b) Comparison of experimental and calculated apparent T;. Solid line: Experimental [R. Dashed
line: Experimental SE. Circles: Calculated IR. Triangles: Calculated SE. (From Rel. 33.) Courtesy

of North-Holland Publ. Co.
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Experimental stepped-field ELDOR echo amplitude versus time between first &
pulse and n/2 pulse for small spin probe in viscous solvent at —93°C. Solid line: Best two
exponentizl fit to data. (From Ref. 29.) Courtesy of North-Holland Publ, Co.
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Figure 19b. Calculated ELDOR curves for slowly tumbling nitroxide. In sequence a—d

orientation-independent nuclear spin flip rate increased, thereby increasing ELDOR effect. (From
Rel. 146
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magnetization; after a time T its magnitude is probed by forming an echo by
tipping the magnetization into the x—y plane with a n/2 pulse and then
refocusing with another n pulse. Closely related to inversion recovery
is the echo-ELDOR experiment [29, 156]. It utilizes the same pulse
sequence, but the magnetic field is stepped after the first = pulse, so the
transfer of inverted magnetization to a different spectral position can be
studied as illustrated in Figure 19a and 19b.

The possibilities of a two-dimensional magnetization transfer experiment
based on the stimulated echo sequence in studies of motional dynamics are
illustrated in Figure 20 for NO, adsorbed on a VYCOR surface. The
anisotropy of the motion can be immediately discerned from the two-
dimensional contour plot.

Another class of experiments probe the z magnetization to study the
phenomenon of chemically induced dynamic spin polarization [69]. In this
experiment, free radicals are produced with a laser pulse, and the development
of the spin polarization with its subsequent decay is monitored by a standard

0488 —T1—F -4
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Figure 20. Two-dimensional ESE contours from stimulated echo sequence for NO; on
vycor at 35 K showing rates of magnetization transfer. It shows relatively rapid rotation about the

molecular y axis (i.e., axis parallel to oxygen—oxygen internuclear vector). (From Rel. 33.)
Courtesy of North-Helland Publi. Co
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Figure 21a. Evolution of CIDEP polarization with time from a photoelectron ejected froi
Rb~ in THF solvent (From Rel. 157. Reprinted with permission from U. Eliav and J. H. Freed,
Phys. Chem, 88, 1277, Copyright 1984 American Chemical Society).

two-pulse spin echo sequence. In the case of a transient photoelectro
generated by the process

Rb*Rb- 2 Rb* +Rb+e-

in an inert solvent, the polarization is produced with a time constant of 10
50 ns [157]. When the Rb concentration is increased sufficiently, an oscillator
z magnetization is observed (cf. Figures 21a and 21b). It is taken as direc
evidence for the radical pair mechanism for the spin polarization, as illustrate:
by a simple model calculation using the appropriate SLE (cf, Figure 21b) [157

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

The underlying theme in this chapter has been the general applicability of th
complex symmetric Lanczos and conjugate gradients algorithms to th
numerical solution of problems in quantum and classical irreversible statist
ical mechanics. This theme has been exemplified by specific examples from th:
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Figure 21b. A predicted oscillatory polarization evolution curve for jump reencounters of
the Rb’ and the e~ with two solvent-dependent species of radical pairs present (From Ref. 157,
Reprinted with permission from U. Eliavand J. H. Freed, J. Phys. Chem. 88, 1277. Copyright 1984
American Chemical Society).

study of molecular dynamics in liquids by spin resonance and relaxation. The
form of these algorithms has been shown to be appropriate for a wide range of
such problems through the examination of the implications of time reversal
symmetry and detailed balance. The development of such computational
methods, in conjunction with new experimental techniques, should make
possible even more powerful methods to study molecular dynamics. Recent
work in other areas has further demonstrated the generality and utility of the
complex symmetric LA. It has now been used in scattering [158] and
optical spectroscopic [159] calculations in conjunction with the complex
rotated Hamiltonian method. The properties of the matrices that arise in these
studies are closely related to those considered here [126].

We wish to conclude by summarizing some of the ways we believe the
application of the LA and CG methods to the class of problems mentioned in
the preceding can be improved or enhanced. First, it should be possible to
employ a block version [80, 89] of the complex symmetric LA that would be
capable of simultaneously calculating the spectral functions corresponding to
several auto- and cross-correlation functions. An interesting application of
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this algorithm would be in cases where the finite-element discretization is used.
A block LA might allow one to very efficiently calculate the cross-correlation
of dynamical variables in different localized regions of space. In addition, the
block LA and CG methods are more easily adapted to take advantage of the
architecture of modern supercomputers. The use of nonorthogonal finite-
element functions requires a form of the LA designed to treat the generalized
eigenvalue problem. Again, this type of algorithm is well known for real
matrices. The nonorthogonal LA has only been used in the study of simple
problems to date [44, 160, 161], but applications to more complicated
magnetic resonance problems might be fruitful.

The CG method was found to be useful in determining the proper minimum
basis set for an accurate numerical calculation of spectra. Future work,
possibly relying on artificial intelligence techniques, should be directed toward
extending the existing database and developing effective methods of accessing
this information. Also, further work on preconditioning and sequence
convergence acceleration techniques for the direct calculation of spectra using
the CG algorithm would be useful.

Given that the underlying mathematical theory for the complex symmetric
LA and CG methods involves the theory of bilinearly metric spaces, further
study of the properties of these spaces, especially complex orthogonal spaces,
could provide further insight into the behavior of these algorithms and into
irreversible statistical mechanics in general.

The analysis of the enormous amount of data generated by modern time
domain magnetic resonance techniques has become a complex and so-
phisticated matter. One method that has recently been proven to be very
powerful in time domain ESR experiments is based on using linear prediction
in conjunction with the singular-value decomposition. We believe that a
Lanczos-based singular-value decomposition [89] can be designed to take
advantage of the special structure of the matrix generated by the linear
prediction modeling of the signal. The development of such an algorithm has
the potential of dramatically reducing the computer time and storage
requirements for the routine analysis of experimental data using the linear
prediction—singular value decomposition method compared to other al-
gorithms that cannot exploit the special structure of the matrix [215].

An important way in which the comparison of theoretical model calcul-
ations and experimental data can be improved is by the automation of the
process using nonlinear least-squares fitting procedures. Since this process
would involve the calculation of large numbers of approximate spectra, a very
efficient LA or CG algorithm that can take advantage of a minimum basis set
database is required. This is a very complicated effort because the minimum
basis set and optimal number of LA or CG steps might vary widely as the
nonlinear fitting algorithm searches for the best set of parameters. This is a
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problem on which members of our group have recently been making some
progress utilizing the CG tridiagonalization procedure.

APPENDICES

A. Lanczos Algorithm: A Simple Derivation

A short description of the LA appropriate for matrices of different types is
given in this appendix as a reference for readers who are unfamiliar with the
algorithm. The derivation given here is slanted toward the generalizations
needed for complex symmetric matrices and to simplify the discussions on the
connections between the LA method of calculating spectral functions and
related methods involving Pade approximants and continued fractions. A
convenient starting point in the derivation of the LA is the introduction of a
sequence of Krylov vectors generated by successive application of A on v (see
Section V.A),

k,=A" " iv=Ak,_,, m=12.... (201)

The Lanczos basis is generated by the Gram-Schmidt orthonorma-
lization [80, 87] of the sequence of Krylov vectors in the order of their
occurrence.

To start the process, assume that the first member in the orthonormal set,
q,. is parallel to the starting vector foq, =k, = v. The requirement that the
new set of vectors be normalized (q{'q, = 1) implies f, = |/ v|.

The second member is given by

F1a; =k; —ak, =(A—u1)q,. (202)

The coefficient «, is determined by multiplying Eq. 202 on the left by qf,
whereas 8, is chosen to normalize q;, giving

x, =qyAq,, (203)
By = (A —ual)q,l. (204)

In a similar fashion, the third vector is

B2q; =(A —a;1)q; — 7,14;. (205)

Again, y, and «, are determined from the orthogonality requirements

11 =q7Aq;=f,, (206)
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23 =q7AqQ;. (207)

Inserting these coefficients into Eq. 205 gives a specific case of the general
three-term recursion relation that is the heart of the LA,

BJ‘I:=(J"‘“‘¢2I:“|2—.S1‘|1- (208)

Again, B, is chosen such that g is normalized.
The calculation of the fourth vector demonstrates the appearance of the
desired recursion relation. In general, q, can be expressed as

ﬁa‘!¢=[-“~—qsl]%“}'z"h_ézqz- (209)

Il Eq. 208 is indeed a prototype of a three-term recursion relation, & 1=0and
72 = B,. To verify &, = 0, premultiply Eq. 209 by q¥ and use the orthogonality
property to see that

d, =q7Aq;. (210)
Using Eq. 202, this can be rewritten as

0 =(B19z +2,q,)"q,, (211)

which vanishes by the orthogonality of the ¢'s. In addition, premultiplying
Eqgs. 208 and 209 by qYf gives 8, =17,.

The same behavior is observed for all further vectors. Therefore, the three-
term recursion relation

.BmQM-Fl:(A_amnqmﬁﬂm-lqm—l [212}

can be used to generate all successive q's so long as the f’s are nonzero. The
orthonormal basis of #,(A, v) generated in this manner is called the Lanczos
basis, and the individual vectors are called Lanczos vectors.

It is informative to rewrite these relations in a matrix form. The
transformation matrix Q,,, whose jth column is given by the elements of g; for
Il <j<m, transforms the original N x N matrix A into an m xm real
symmetric tridiagonal matrix T,,,

T.=QrAQ,. (213)
The nonzero matrix elements of T,, on and above the diagonal are given by

(T )i = 2, (214)
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(Tm]!.i+ 1 = ﬁi‘ l:zlj‘]

In addition, the orthonormalization process can be rewritten as a matrix
equation relating Q,, to the matrix of Krylov vectors K,, and the moments (see
Appendix B)

py=vTAI Ty (216)
using the relations
Boq: = ki,
B19z: =k; — (kyk, )k,
= I‘z —Fll‘l
B29;=k; — (kiky)k; — (kik, )k,
=Ky — pusk; — prk,,

and so forth. These relations follow directly from the definitions of the
quantities involved. In matrix form these equations read

Q.B.=K,U,, (217)

where B =diag(f,, f,, f,,...) and the matrix U, is the upper triangular
matrix

—Hy —Hy —Hy — g

1
0 1 —ps —psg —ps-
U 1 —Hs —He
= : 218
Un 0 0 0 1 — g A
0O 0

0 0 1

L -

Since U,, is nonsingular (all its eigenvalues are equal to unity), Eq. 217 can be
reexpressed as

K,=Q.B,U,)=Q.R,. (219)

In this equation U, * and R,, are upper triangular since U,, has this property.
Therefore, Eq. 219 represents the factorization of the matrix of Krylov vectors
into a product of a real matrix with orthonormal columns Q,, and an upper
triangular matrix R,, = B, U !, Furthermore, if B,, is nonsingular, so is R,,.
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Matrix factorizations such as that given by Eq. 219 are of great importance
in modern numerical linear algebra. The existence of factorizations of this type
for arbitrary real or complex matrices is guaranteed by the following
theorem [87].

Theorem 1 (QR Factorization) For any given N x M complex matrix A
(N = M), there exists a matrix Q of the same dimensions with orthonormal
columns (Q'Q=1,) and an upper triangular M x M matrix R such that
A=QR. If Aisreal, Q and R can also be chosen to be real.

The Gram-Schmidt orthonormalization procedure can always be used to
accomplish this factorization, though there are also many other ways [80].

The extension of the LA to handle Hermitian matrices can be derived in a
straightforward manner by replacing the transposition operations with
Hermitian conjugation in the previous equations and taking advantage of the
symmetry of the usual inner product in a unitary space (see Appendix C). The
desired decomposition of the matrix of Krylov vectors is ensured by the QR
factorization theorem above. The result of these operations gives the Lanczos
recursion relation for a general Hermitian matrix A:

ﬂmqm+l=(A“mml)qu“.Bm—]qn—l> {220)

where a; = qjAq, and §, is again chosen to normalize Qi+ . The reduction of A
to a tridiagonal matrix is given by

T, =QLAQ,, (221)

where Q,, satisfies Q[ Q,, =1I,,. It is easy to see from the Eq. 220 that an
arbitrary Hermitian matrix will still be reduced to a real symmetric tridiagonal
form by the general Hermitian LA. It is important to note that the form of the
recursion relation is the same as before. The only way the complex nature of
the matrix enters is in the definition of the scalar product,

The extension of the LA to handle non-Hermitian, complex symmetric
matrices is not so simple, One way to summarize these difficulties is to say that
although the QR factorization of the matrix of Krylov vectors generated is
natural in the Hermitian case, it is fundamentally inappropriate for the Krylov
matrices generated by a complex symmetric matrix. This fact is emphasized by
examining Eq. 221 for a case where the Hermitian matrix A has no degenerate
eigenvalues such that the matrix can be completely reduced to a tridiagonal
form [89, 80] of the same dimension by the LA. In this instance, the matrix Q
becomes unitary and Eq. 221 is a statement that the Hermitian matrix A is
unitarily similar to Hermitian matrix T. However, if two complex symmetric
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matrices are similar, they must be similar via a complex orthogonal
transformation [86, 87]. Thus, a generalization of the LA along different lines
must be sought. It turns out that the required generalization amounts to a
redefinition of the inner product.

To develop a complex symmetric LA, a different factorization of the matrix
of Krylov vectors must be adopted. This amounts to developing an analog of
the Gram-Schmidt orthonormalization procedure, which will naturally lead
to complex orthogonal matrices rather than unitary matrices, Choudhury and
Horn have studied this problem in detail and have shown when such a
factorization is possible [90]. In contrast to the Hermitian case, it turns out
that there are instances where this generalized Gram-Schmidt procedure fails
even where a related factorization of the Krylov matrix exists. In the present
context it is the generalization of the Gram-Schmidt procedure that is the
more important. The statement of the relevant definitions and theorem and
further discussion can be found in Appendix C. Using the result of Theorem 2
in Appendix C, the Gram-Schmidt-like orthogonalization of the Krylov
vectors generated by a complex symmetric matrix A and an arbitrary
normalized starting vector depends on the determinants

det (KJK,,) (222)

being different from zero for all m in question. One of these determinants being
zero implies that the associated Lanczos vector is nonzero but has zero norm,
and the matrix Q,, of Lanczos vectors cannot satisfy Q¥Q,, =I,.. If none of
these determinants are nonzero, the complex symmetric LA behaves in the
same fashion as the Hermitian LA [80, 89].

Since the columns of K,, are the Krylov vectors, the product K¥K,, can be
rewritten in terms of the moments. Using the definition of the Krylov vectors
(see Eq. 201), it is easy to show that

[ 1o Hy Ha Hy Bt |
Hy Hz KHa Ba 0 Hmey
Ha H3 He  Hs " Hmaa

A,, = det (KUK,) = det (223)

M3 Hy Hs He

Pm HPmti Hmez = 0 Ham

In Appendix B determinants of this type will also arise in discussing continued
fraction and Padé approximants to the spectrum.
The requirement that the determinants in Eq. 223 be nonzero seems to be
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the only constructive criterion for the existence of a well-behaved complex
symmetric LA in exact arithmetic. A derivation of a similar criterion for
Hermitian matrices is given by Householder [162]. The result given here is
actually a special case of Householder’s analysis of the biorthogonal LA.
Other criteria can be found for the existence of a well-behaved complex
symmetric LA, such as the requirement that the minimal polynomial of the
matrix with respect to the starting vector be a product of distinct linear factors
[1]. This type of criterion is not constructive in the sense that if one already
knew the minimal polynomial, the problem would already be solved!

B. Continued Fractions, Padé Approximants, and the
Lanczos Algorithm

The essence of the Lanczos method of calculating spectral functions is to use
the sequence of symmetric tridiagonal matrices generated by the LA todefine a
sequence of rational, or continued-fraction, approximants to the desired
spectral function. The purpose of this appendix is to develop the theory of
these approximants and to demonstrate the close connection of this method to
related methods involving the calculation of continued fractions and Padé
approximants directly from the moment expansion. The focus of this
discussion will be on cases where the time evolution of the system is governed
by a non-Hermitian complex symmetric matrix Ay, since results similar to
those developed here are well known for the Hermitian case.
The generalized spectral density

JNz)=u'[zly + Ay] "' (224)

will serve as a reference point in this discussion. It is assumed that the
projections Py defining the truncated matrix Ay = PyAPy have been chosen
such that J™!(z) is a very good approximation to the “true” spectral function
and that the components of u are the complex conjugates to the components of
v in the orthonormal basis set chosen in which Ay is complex and symmetric
(see Sections VI.B.1 and VI.D) [3]. With these assumptions, J'"(z) can be
expressed as

JWZ) = vzl + Ay] " My (225)

1. Continued Fraction Approximants Derived from the
Lanczos Algorithm

The rational approximants JV'(z) to J'*)(z) are defined as
JM(2) = (V' Q,)Qy[zly + Ax] ' Q.(QY) (226)
=(Qyv)'"[z1, + T,]~ ' (Qxv). (227)
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Since the matrix Q, satisfies Q!'Q, = I, and the elements in the first column of
Q, are just the components of v, the nth approximant to J™)(z) is just the (1, 1)
matrix element of the inverse of [zI, + T,] (see Sections IT and I1.A);

I =[zF, + T, ]7 1. (228)

A similar result can be derived for the Hermitian case if the complex
orthogonal matrix Q, is replaced with the appropriate unitary matrix

To systematically develop these ideas in a manner that will simplify the
discussion of the relationship between the rational approximants, continued
fractions, and Padé¢ approximants to the spectral function it is useful to
introduce the determinants Df,, of the diagonal blocks of [z, + T,],

z240y B
i I+, Biss
Dj (z) = det Bis Z4+ 4, o (229)
! Bm-1
Py zH0o,

where it is assumed that m> |,

In terms of these determinants, the application of Cramer's rule to Eq. 228
gives

Dj .(2)

(N e
F= D} ..(2)

for n>2. (230)

It is clear from Eq. 230 that J"(z) is indeed a rational function since D] ,(z)
and D}, are polynomials of order at most n and n— 1, respectively, in the
complex variable z. A recurrence relation for the determinants D}*% ,(z) and
D334 1(z) can easily be derived by expanding the determinants in question
using Laplace’s method along the last row or column.

The sequence of rational approximants can be converted to a continued
fraction by expanding the determinants in a slightly different fashion. The
expansion of D} ,(z) about its first row or column gives the result

D} a(2) = (z + 2,)D3 »(2) — B1 D3 4(2). (231)

Inserting this expansion into the denominator of Eq. 230 and dividing both
numerator and denominator by D3 ,(z) gives

Dj .(2)

O = D, — PG

(232)
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=(z+u1— i'ﬁni'%)— . (233)

This process can be repeated for the ratio of determinants occurring in the
denominator to yield

=1
B

z+o,— B3

JMz) =z +a,—

D) (234)

Dj Jz2)

The recursive nature of the expansion of the rational approximant into a
continued fraction is now obvious. Using the standard notation for continued
fractions, the complete expansion of J{¥(z) can be written as

/. B B, A

IV = : -
4y, —z40;, —z24+ay3— ZH0-;—z+a,

(235)

A few definitions are in order at this time to establish the terminology and
notation for continued fractions used here.

Definition 1 ( Elements of Continued Fraction) The complex numbers a,, and
b,, are the called the elements of the (infinite) continued fraction

a, a; da;

bt IS T 236
by +b,+by+ 9

Definition 2 ( Partial Numerators and Denominators) The complex numbers
a,, and b,, are the m'" partial numerator and partial denominator, respectively, of
the continued fraction Eq. 236.

Definition 3 (Convergents) The continued fraction

a 4 4 O (237)

. %
C’"“!:n1 +b,+by+ b

is called the m™ convergent of the continued fraction Eq. 236. The m™
convergent can be collapsed into a single fraction by simple arithmetic. The
numerator A,, and denominator B, of this fraction are simply called the m™
numerator and denominator of Eq. 236. In terms of these quantities, the m™
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convergent is just

Cn=

LIRS

(238)

The approximants Ji¥'(z) are the convergents of the continued fraction
Eq. 235.

Some of the most basic and useful results of the theory of continued
fractions are the fundamental three-term recurrence relations for the numer-
ators and denominators:

Am+1=bm4l‘4m+an+|-‘4“—|; (239}
Bm+1=bm+]BM+am+|Bm-1+ [24‘0':'

form=0, 1,2,.... The value of any convergent is easily calculated using these
recurrence relations with the initial conditions

7 (O R (241)
B‘. L= B, Bg =], [242)

These recurrence relations are numerically unstable in most cases but are quite
useful for analytical studies.

Definition 4 (Convergence of Continued Fraction) A continued fraction such
as Eq. 236 is said to converge if the limit of its sequence of convergents

lim -':1-5= lim C,_, (243)

m=o Oy m-x

converges to a finite number C and only a finite number of the denominators
vanish. The number C is called the value of the continued fraction. A continued
JSraction that does not satisfy these requirements is said to diverge.

The other basic results from the general theory of continued fractions
needed here are those concerned with equivalent continued fractions and
equivalence transformations.

Definition 5 ( Equivalent Continued Fractions) The continued fraction with
elements a,, and b,, and convergents C,, is said to be equivalent to another
continued fraction with elements a;, and b,, and convergents C,, if C,, = C., for
all m.
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Definition 6 ( Equivalence Transformations) An equivalence transformation
is a mapping of the elements of one continued fraction into an equivalent
continued fraction defined by a sequence of nonzero complex constants r,,:

By = Vol o= 1 m=012..., (244)

by = b m=1,2,3,.., (245)
where rg = 1.

Itis not hard to show that two continued fractions are equivalent if and only if
they are related by an equivalence transformation [163].

Continued fractions of the form given in Eq. 235 have been extensively
studied by Wall and co-workers and are known as J-fractions [163-167]. The
advantage of identifying the continued fractions derived from the tridiagonal
matrices generated by the LA as J-fractions is that the general theory of J-
fractions can then be used to treat approximants to the spectral functions in
both the Hermitian and complex symmetric cases in a uniform fashion.

Of special interest in physical applications is the class of positive definite
J-fractions. The class of positive definite J-fractions is characterized by
the requirement that the real-valued quadratic form derived from the
imaginary parts of the elements of the continued fraction is nonnegative for all

n [164].
Definition 7 ( Positive Definite J-Fractions) A continued fraction of the form

| at a3
b: +§—b1+c_b3+{—

(246)

is called positive definite J-fraction if, for all M and all real values of y,,
Wy Maawnsa

M M-1
*E Sy —2 l):1 YeViVe+1 20, (247)
=1 -

where 8, = Im(b,) and y,, = Im(a,).

To simplify the connections to the mathematical literature, it is useful to
perform an equivalence transformation on the continued-fraction expansion
of the spectral function derived from the Lanczos tridiagonal matrices of the
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form given in Eq. 235 to yield the alternative form

ol . . S (. )
by+{—by+{—by+{—by+{~ b, +{

(248)

where b,, = ity a,, = iff,.,and { = — iz. The continued fraction on the right side

of Eq. 248 is a J-fraction as defined by Wall [164].

The numerator and denominator of a positive definite J-fraction can
be found by inserting the elements of the continued fraction Eq. 246 into
Eqgs. 239 and 240 and the initial conditions in Eqs. 241 and 242:

A Q) =(by+ DA, — a5 4, -5(0), (249)
B,({) =(by + {)B,-, — a5 B,-({), (250)

where a, is defined to be unity.

To study the convergence and analytical behavior of infinite J-fractions,
it is convenient to introduce the two series

Xn+ 1[‘2’] = -‘:1'..(*:]!

[1aq

j=1

B,({)

Yn+1(’ﬂ= " »
[1a; -

Jj=1
and the infinite series
;2:1 | X (012, (251)
;Zl | Y,(0)%. (252)

The polynomials X () and Y,({) each satisfy a three-term recursion relation.
Ifeither or both series in Eq. 251 or 252 diverges it is said that the determinate
case holds for the continued fraction Eq. 246; otherwise, the indeterminate

case holds. It appears that only the indeterminate case is important for the
study of spectral functions,
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The interest in the class of positive definite J-fractions for which the
determinate case holds arises from the following observations [163, 164]:

« The denominators of such continued fractions are nonzero for all
complex values of { in the open upper half-plane Im({) > 0.

« They converge uniformly over every closed bounded region in the upper
half-plane, and their values are analytic functions of { there.

« Explicit truncation error bounds and inclusion regions for the value of an
infinite continued fraction can be derived in terms of the elements of the
truncated continued fraction.

« The values of the convergents of a continued fraction of this class satisfy
Im {C,({)} <0 for all { such that Im {{} > 0.

A comparison of these properties with the requirements that must be satisfied
for a spectral function to be physically meaningful [51, 108, 109, 168] shows
that finite positive definite J-fractions possess the mathematical features
necessary to properly approximate a spectral function. The physical interpret-
ation of the analytic behavior of J'™(z) in the upper half-plane is that adding a
real constant matrix to A, is equivalent to increasing all the relaxation rates by
that same amount, which should not alter the basic mathematical structure of
the approximation. A related idea has been used by Dammers [49] as a test of
the numerical stability of various methods of calculating magnetic resonance
spectra (see what follows).

From the point of view of approximating the true spectral function by the
sequence of continued-fraction approximants generated by the LA, the only
difference is that the Hermitian LA gives rise to continued-fraction approxi-
mants with purely real elements, whereas the complex symmetric LA gives rise
to complex elements. The previous discussion on positive definite J-fraction
approximants to spectral functions applies equally well to the complex
symmetric and Hermitian LA,

2. Spectral Functions as Moment Problems

One systematic way to develop an approximation to J(z) is to use a binomial
expansion of Eq. 225:

1 3
J""'(z}=%v“[lﬁ—%+(%ﬁ) —(%ﬁ) - ]v (253)

2 3
=1{v"v—v"ﬂv+v"(h) v—v"(iﬁ) v+~-} (254)
Z Zz Z 4

log f—1

1 (_)"F_“, (255)
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where quantities y, ., = v*A}v are known as the moments of A with respect
to v, (cf. Eq. 216). The expansion in Eq. 255 is commonly referred to as the
moment expansion. Numerical results using this expansion directly are quite
disappointing: The convergence is slow, and the truncated expansion does not
have the proper analytic behavior as a function of z.

The generalized, or relaxation, moment expansion Eq. 255 can be used
to calculate a continued-fraction approximant with better convergence pro-
perties. Several groups have addressed these issues [48,169,170] from the
point of view of calculating magnetic resonance spectra by developing
formulas for the moments ., for n=0,1,2,..., N, and using the moments to
calculate the elements of a continued fraction of the type of Eq. 248. This seems
to be a useful approach for simple problems where tractable formulas for the
moments are available. The formulas needed to calculate the moments given
by Giordano et al. [48] are extremely complicated even for the simple cases
(¢.g., where the g and A tensors of the spin probe are axially symmetric in the
principal axis frame of the diffusion tensor and nonsecular terms have been
omitted from the spin Hamiltonian). Nevertheless, this is useful for such simple
problems, especially if analytical formulas are needed. Very often nonaxially
symmetric magnetic tensors are required to quantitatively fit experimental
data [12]. Experiments have also shown that much more information is
available if the spectra of oriented radicals in liquid crystalline phases are
studied as a function of the tilt angle between the director and the static
field [20,21]. The lack of generality, together with the fact that extended
precision computer arithmetic is often needed to stably compute the elements
of the continued fraction [48, 169], suggest that the Lanczos method is more
appropriate than the relaxation moment method for the routine analysis of
complicated experimental spectra.

An interesting connection exists between the J-fraction approximants of
the moment expansion (Eg. 255), the existence of a set of polynomials
orthogonal relative to the sequence of moments [164, 171], and the determi-
nants A, (Eq.223). First, it is necessary to define what is meant by the
orthogonality of a set of complex polynomials relative to a complex sequence.

Definition 8 (System of Polynomials Orthogonal Relative to a Sequence)
A sequence of complex polynomials Q,(x) in the complex variable x,
Q.(x)= Y awx", n=0,12..., (256)

m=0

is said to be orthogonal relative to a sequence of complex constants
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is nonzero if and only if m=n.

A necessary and sulficient condition for a set of M + 1 such polynomials to
exist that are orthogonal relative to the sequence of moments (Eq. 255) is that
the determinants A,, be nonzero for all m < M — 1 [164]. Moreover, it can be
shown that these polynomials are identical to the denominator polynomials
given by Eq. 250 of the continued fraction given in Eq. 248. Thus, it is evident
that the relaxation moment method is equivalent to the Lanczos method.

An alternative approach involving continued fractions is to seek a classical
moment expansion of the absorption spectrum or spectral density. There is a
vast mathematical literature on classical moment problems and their relation-
ship to the theory of general orthogonal polynomials, continued fractions, and
Padé approximants [163, 164,172, 173]. This viewpoint differs significantly
from the LA or relaxation moment approaches, where the continued-fraction
expansion of a generalized spectral function is studied. The difference between
these approaches lies in the fact that the absorption spectrum or spectral
density can be treated as a real nonnegative function over the entire range of
frequencies, whereas the related generalized spectral function is inherently
complex valued.

In the classical moment method, the quantities of interest are the moments
of the frequency with respect to the absorption spectrum or spectral density,
Iew),

(™ =J.m w"l(w)dw, (258)

-

and not the moments of the operator A, as in Eq, 255.

Gordon [174] has studied the response of a spin system to a pulsed
excitation as a classical Hamburger moment problem [172, 173] and has deri-
ved truncation error bounds and inclusion regions similar to those alluded to
earlier in connection with positive definite J-fractions. This is not surprising
given that the solution to the Hamburger moment problem can be expressed
as a real, positive definite J-fraction [164]. Lado, Memory, and Parker have
used similar techniques in conjunction with memory function ideas [175].
Lonke has also derived related results for the spectral density of excitations in
a many-body system of fermions [176]. A nice review of the application of the
theory of continued fractions to physical problems involving relaxation is
given by Grosso and Pastori Parravicini [170].
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3. Padé Approximants to Spectral Functions

Pade approximants [164,178,179] have also been used to calculate slow-
motional ESR spectra by Dammers, Levine, and. Tjon [46, 49], These
calculations involve the determination of the coefficients of a certain sequence
of rational approximants to the moment expansion of the spectral function
(see Eq. 255). A Padé approximant is a rational approximant that satisfies the
restrictions stated in the following definition.

Definition 9 (Padé Approximants) Let A(z)=ag+ a,z + ;2% + asz® + -
be a given formal power series and P,(z) and Q,,(z) be polynomials of degree at
most L and M, respectively, where Q,,(0) = 1. Let

S-M+1 HL-M+2 GBrome3 a, ]
Ar-m+2 Op-M+3 Qr-p+a " Gpey
C[LfM]=def aL'N+3 A —M+4 al_u.‘,s L ﬂL+2 ?EQ; (259]
ag ap+ ez v Arapm—

IfA(z) = Py(2)/Qu(z) = O4*M*1), then [L/M] ,(2) = P (2)/Qu(z) is called the
L/M Padé approximant to A(z).

Since the Padé approximants to the moment expansion might exist for
arbitrary L and M, it is necessary to determine which of these approximants
have the proper analytical structure as a function of the complex variable z to
represent physically reasonable spectral functions. The conclusions given by
Dammers from these analyses, together with the examination of model
calculations and the connections of this method to Mori’s projection operator
method, was that the [M — 1/M] Padé approximant to zJ™)(z) is the proper
choice. (See also [3]).

In light of the selection of the class of [M — I/M] Padé approximants
as the preferred set, it is interesting to examine the connections between this
class of rational approximants and the continued-fraction approximants
from the LA or relaxation moment methods. In particular, the determinant
C(M —1/M) occurring in the definition of the [M — 1/M] Padé approxi-
mant (Eq. 259) is identical to the determinant A,, (Eq. 223) occurring in the
analyses of the LA and the relaxation moment method. Thus, the exis-
tence of the class of [M — 1/M] approximants is equivalent to saying that the
related LA is well behaved or that the elements of the continued fraction can be
calculated from the moments ;.

The other way in which Padé approximants have been used in the
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calculation of magnetic resonance spectra is to accelerate the convergence of
the sequence of estimates of the amplitude of a spectrum given by the CG
algorithm at a particular field position [4]. Because of the equivalence of the
results of the LA and CG algorithm, it is possible to identify the sequence of
estimates given by the CG method with the values of the successive
convergents of the continued fraction given by the LA evaluated at the same
point. Given the set {C, } of CG estimates, the series

Co+ L (Cus1 = Cp)x™ (260)

can be constructed. Inserting the eigenvector—eigenvalue decomposition of
the matrix A, in Eq. 255 for the moment expansion shows that the moment
expansion has a form that suggests that a Padé or generalized Shanks
resummation technique might accelerate its convergence [130]. It also follows
from the preceding discussion that the sequence of values of the convergents of
continued-fraction expansion and the series Eq. 260 also have this property.
The literature on Padé or generalized Shanks resummation techniques and
related topics such as the epsilon algorithm is far too voluminous and
technical to be reviewed here, especially since excellent treatments are
available elsewhere [130, 179-182].

The general idea of using generalized Shanks transformations to accelerate
the convergence of series is equivalent to evaluating a sequence of Padé
approximants to the series Eq. 260 at x = 1. In practice, it is not necessary to
explicitly construct the Padé approximants and evaluate them at x=1.
Instead of this cumbersome procedure, the values of the Padé approximants
can be calculated very efficiently directly from the coefficients of the series
using the scalar epsilon algorithm [180-182].

It is also of some interest that the LA and CG algorithm are closely related
to a vector version of the epsilon algorithm [178]. The vector epsilon
algorithm can even be used to diagonalize matrices [183]! Matrix-valued
continued fractions have also been applied to the solution of Fokker—Planck
operators [119] and boundary problems [184].

4, Summary

The mathematical thread that ties these various ideas together is the
determinants that arise throughout in the discussions about the existence of
the various approximations. The determinants A, play a crucial role in:

. The existence of a well-behaved complex symmetric LA (Appendix A,
Eqs. 222 and 223);
. The definition of the denominators of the rational approximants and
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continued fractions derived from the Lanczos tridiagonal matrix
(Eqgs. 248 and 250);

« The existence of a J-fraction solution of the generalized or relaxation
moment problem (Eq. 257); and

« The definition of the relevant class of Padé approximants to zJ™(z)
(Eq. 259).

A study of the implications of this connection between these different
approaches shows that the LA, relaxation moment problem, and Padé
approximant methods are all essentially equivalent from an analytic point of
view. The difference between these methods lies in the stability and efficiency of
the numerical algorithms required to implement them on a computer.

In his thesis, Dammers [49] compared the Padé approximant [46,49],
relaxation moment [47,48], and Lanczos methods [3] with respect to the
invariance of the calculated spectrum under origin shifts. It is obvious that

Jz)=v[(z—zo)l + (A +z,I)] " 'y

is independent of the value chosen for z,. However, the exact analytical
invariance of the preceding expression is not necessarily reflected by the
numerical procedures under comparison. In his study, only the results of the
LA were found to be invariant with respect to origin shifts of this type. The
other two methods show substantial deviations in the computed value of J(z)
as a function of z,.

Dammers analyzed this phenomenon in terms of the problems associated
with the iterative generation of the sequence of moments in the Padé and
relaxation moment methods. The LA does not suffer from such problems since
the Lanczos projections automatically cancel the effect of the origin shift to the
machine precision at every step. These observations are consistent with the
well-known problems associated with the numerical stability of calculating
high-order Padé approximants [181] and the need for extended precision
arithmetic when performing very slow-motional calculations with the relax-
ation moment method [47,48]. The use of extended precision arithmetic has
never been necessary in any of our calculations with the LA, even for two-
dimensional ESE spectra [4,30,88] and extremely complicated slow-
motional CWESR studies [20, 21]. These studies indicate that the LA is the
method of choice for calculating slow-motional ESR spectra.

Whitehead and Watt [185, 186] have also examined this matter from an
analytical view point. They found that the rearrangement to the calculation of
the elements of the continued fraction from the moments in a manner that
eliminates terms that would cancel in exact arithmetic leads to the LA in a
natural way. These ideas are also related to the cumulant and moment
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expansion methods that have previously been applied in analytical studies of
magnetic resonance and relaxation [10, 11,175, 187-189].

The penultimate point of this appendix has been to summarize the various
mathematical methods that have been developed to calculate spectral
functions. In his pioneering work, Mori [107] presented a general and
powerful statistical mechanical methodology to develop the continued
fraction form of spectral functions. These different mathematical methods
have been shown (e.g. in this appendix) to be analytically equivalent to one
another and ultimately are equivalent to the Mori method as well
[43,44,49,111,112]. However, these different mathematical realizations give
rise to numerical algorithms which differ significantly in their numerical
reliability and stability.

C. Bilinearly Metric Spaces and Relaxation Phenomena

In a very general manner, Moro and Freed [3] showed that calculations of
magnetic resonance spectra and related Fokker-Planck forms can be
simplified by taking advantage of the fact that the matrix of the operator
generating the time evolution of the system can always be put into a complex
symmetric form. If A is the non-Hermitian complex symmetric matrix
generating the time evolution, and A' is its complex-conjugate transpose, the
following holds:

« The eigenvectors of A are not orthogonal with respect to the usual
unitary space inner product.

« Theeigenvectors of A and A' are not identical; instead, they are related by
complex conjugation.

» The time evolution of the system is not unitary but has a different
structure related to a complex orthogonal transformation.

« The transformation (if it exists) that diagonalizes the matrix that
generates the time evolution of the system is also complex orthogonal,
not unitary.

It is obvious that there are many aspects of the structure of complex vector
spaces equipped with the usual unitary space norm and scalar product that
make theoretical and numerical studies quite cumbersome for this class of
problems. Two separate approaches have been developed to cope with these
difficulties. One approach is to retain the usual unitary space inner-product
structure and introduce two basis sets [111,112]. The basis vectors within
each set are not orthogonal to one other but are orthogonal to all but one
member of the other set. This type of basis is called biorthogonal. The second
approach is to simply redefine the norm and scalar product and retain a single
basis set. Though it is not apparent, these two approaches are actually
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identical for complex symmetric matrices [4,44]. It is in the spirit of the
second approach that this section is directed toward the systematic develop-
ment of the generalization of the concepts of the norm and scalar product in a
finite dimensional complex vector space in which complex symmetric and
complex orthogonal matrices play the same respective roles as Hermitian and
unitary matrices play in the usual scalar product space. In the latter part of the
section some of the peculiar aspects of geometry in this new space will be
discussed. All of this material is well known to mathematicians but has not
been presented in this fashion to the chemical physics community.

The approach used here is that based on the work of Heuvers [190] on the
types of functions that can serve as scalar products in complex vector spaces.
In this manner any explicit definition of dual spaces and related matters can be
avoided. As emphasized by Znojil [191], it is unnecessary to define a scalar
product of any type in order to use the LA. The Lanczos recursion relation
given by Eq. 212 can be simply viewed as a linear three-term recursion relation
that is well defined by the algebraic properties of the complex vector space in
which it is defined. The middle-of-the-road view taken here is valuable in that
some notion of geometry can be defined through the introduction of a new
type of scalar product that is more natural for the problems at hand. This new
geometry is naturally associated with the known mathematical structure of the
class of problems under consideration (see Section VI.B).

The concept oflinear independence of a set of complex N vectors is strictly a
property of the algebraic structure associated with the complex vector space
and thus is unrelated to the definitions of orthogonality or normalization of
vectors.

Definition 10 (Linear Independence) A set of vectors y, yeV<@Y,
i=1,2,...,M, is called linearly dependent if there exists a corresponding
set of constants a;e%, i=1,..., M, not all of which are zero, such that

thxl-I-tIzXz-’r "'+1Mx_”=0. {261}
A set of vectors that is not linearly dependent is called linearly independent. The

linear independence of a set of vectors implies that Eq. 261 can only be satisfied if
all the constants are simultaneously equal to zero,

Definition 11 (Bases and Dimension) A finite set of vectors feV, i=

l,..., M, is called a basis of V if the set {, is linearly independent and if for any
xeV there exist constants x;€%, i=1,2,..., M, such that

2. (262)

]
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It can be shown that the maximum number of linearly independent vectorsin 'V is
equal to M. This number is independent of the choice of basis and is called the
dimension of V.

For reference, it is useful to introduce the concept of bilinear forms as a
stepping stone to the usual definitions of norm and inner product. This will
enable us to formulate the required generalization of the norm and scalar
product of a vector for the class of problems at hand.

Definition 12 ( Primitive Bilinear Form) A complex scalar-valued function
pix,y) of two independent vector variables x,yeV is called a primitive bilinear
Sorm on V x V if, for all vectors zeV and scalars «, fe€,

p(x+z,y)=p(x,y) + plz, y) (263)
p(x, xy + fz) = ap(x,y) + Bp(x, z). (264)

The adjective primitive comes from the fact that the usual types of bilinear
forms are special cases of these primitive bilinear forms. It is very important to
realize that this definition does not specify the relationship of p(x, y) to p(y, x).
The reason that this “zero-order” definition is introduced here is that it will
serve as a common starting point for the various types of bilinear metrics. The
definition of a particular class of bilinear forms involves the specification of the
properties of a primitive bilinear form with respect to interchange of the vector
variables.

Definition 13 (Classes of Bilinear Forms) A primitive bilinear form p(x, y) on
V x V is a symmetric, antisymmetric, or Hermitian bilinear form in V if, for all
vectors X, Y€V,

ply, x) = p(x, y), (265)
ply, X) = — p(x, y), (266)
p(:‘rl X) = P. (x. r]: {267)

respectively.

These three types of bilinear forms generate the three essentially unique types
of scalar products in complex vector spaces [190].

Definition 14 (Scalar Product) A scalar product on V is a bilinear form on
V x V that satisfies p(z, x) = 0 where z # 0, for all x if and only ifz = 0. A scalar
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product is defined to be symmetric, antisymmetric, or Hermitian if the associated
bilinear form has this property.

In this discussion only symmetric and Hermitian scalar products will be
considered. A complex vector space with a positive definite Hermitian scalar
product is known as a unitary space, whereas if the scalar product is indefinite,
itis known as an indefinite inner-product space. A complex vector space witha
symmetric scalar product is called a complex orthogonal, or complex
Euclidean, space.

The motivation for introduction of a scalar product in a complex vector
space is that it can be used to define a geometry on the space.

Definition 15 ( Bilinearly Metric Space) A complex vector space V with a
scalar product is a bilinearly metric space.

The two most important geometric concepts for the present discussion are
those of orthogonality and normalization,

Definition 16 ( Orthogonality of Vectors) Two vectorsx,yeV are orthogonal
with respect to the scalar product p(-,") if p(x,¥)=0.

Definition 17 ( Norms and Normalizable Vectors) A vector xeV is normaliz-
able with respect to the scalar product p(-,") if there exists a constant fe€ such
that

plBx, fx) = 1. (268)

The constant f is called the norm of x if some convention is specified to uniquely
determine it. If a vector is nonzero but not normalizable, it will be called
nonnormalizable or quasi-null, and it cannot be assigned a norm.

From this definition it is easy to see that all vectors such that p(x,x) # 0 are
normalizable. In particular, the usual scalar product of two complex vectors

x,ye¥", (x,y) = ¥/L, x’y, and the vector norm [|x | = /3™, |x|? conform
to the definitions given here of a positive definite Hermitian scalar product.

The adjoint of a matrix with respect to a scalar product is also an important
quantity in the study of bilinearly metric spaces.

Definition 18 ( Adjoint with Respect to Scalar Product) The adjoint A* of a
square complex matrix A with respect to a scalar product p(x,y) is defined by

p(x, Ay) = p(A’x, y). (269)

A matrix A is called self-adjoint with respect to p(-,") if A = A’.
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[fthe scalar product is Hermitian, A’ = A", if it is symmetric, A* = A". A closely
related construct is that of an isometric matrix or transformation in a
bilinearly metric space.

Definition 19 (Isometric Transformation) An isometric transformation B on
a complex vector space V with scalar product p(x,y) is a linear transformation
that preserves the scalar product between any two vectors X, yeV, that is,

p(x,y) = p(Bx, By). (270)

The matrix of an isometric transformation will also be called isometric,

A table summarizing the features of real Euclidean, unitary, and complex
orthogonal spaces is given in the following,

Space Field Symmetry of Isometric
Scalar Product Transformation

Euclidean X Symmetric Real orthogonal
Unitary € Hermitian Unitary
Complex orthogonal & Symmetric Complex orthogonal

The geometry in a unitary space is a natural generalization of the geometry
of real Euclidean spaces to complex vector spaces (e.g., all nonzero vectors
have positive norms, one can define an angle between any two nonzero
vectors, the vector norm satisfies the triangle inequality, etc.). The infinite
dimensional analogue of a unitary space is a Hilbert space. Despite the wide
use of unitary and Hilbert spaces in modern physical theories, there are many
applications where these definitions are too restrictive. One way to generalize
these ideas that has proven quite useful is to relax the requirement that the
inner product be positive definite and work in an indefinite inner-product
space rather than a unitary space. The general mathematical theory for both
finite and infinite dimensional indefinite inner-product spaces has been
worked out (192-198). These ideas have been applied to the study of quantum
field theory [199], electrical networks [200], and the stability of systems of
differential equations with periodic coefficients [201]. The theory of indefinite
inner-product spaces has been tailored to the study of problems where the time
evolution of the system is governed by an operator B that is self-adjoint with
respect to an indefinite Hermitian scalar product. It can be shown that a general
complex matrix B is similar to its Hermitian conjugate if and only if there
exists a nonsingular Hermitian matrix J such that BJ = JB' [91,94]. This
Hermitian matrix can then be used to define a Hermitian bilinear form in
which B is self-adjoint (i.e, p(x,y)=X=,Jyxy,, where J;=J} and
BJ = JB' 5o that p(x, By) = p(Bx, y)). It is not always possible to find a scalar
product with these properties if the time evolution is governed by a complex
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symmetric matrix. In fact, the existence of the matrix J with the preceding
properties implies that B is similar to a matrix with only real elements [87,91].
This is certainly not the case for all complex symmetric matrices since any
general square complex matrix is similar to a complex symmetric
matrix [86,87]. If the matrix governing the time evolution of the system is not
similar to its Hermitian conjugate, the desired Hermitian scalar product does
not exist. In practice, since there are no rules or algorithms to derive the
matrix J (if it exists) from the matrix B, the indefinite inner-product formalism
cannot be used unless the equation for the time evolution of the system or
other physical insight can be used to specify J. It appears that the indefinite
inner-product spaces are not the most convenient framework for the study of
magnetic resonance lineshapes and related phenomena since the construction
of the required indefinite inner product is difficult or impossible.

An alternative to the loosening of the requirement that the (Hermitian)
inner product be positive definite is to use a symmetric rather than a Hermitian
bilinear form in the definition of the fundamental scalar product. In this
manner, it is always possible to construct a scalar product in which the
complex symmetric matrix in question is self-adjoint. The simplest choice fora
symmetric scalar product is to use the N x N identity matrix to generate a
symmetric bilinear form a(x, y) = (x,¥) = X~ , x,; in the same way as is done
to construct the usual inner product p(x,y)=<{x,y>=Y" x*y. It is
important to note that all complex symmetric matrices are self-adjoint with
respect to the scalar product (-, -) the same way that all Hermitian matrices are
self-adjoint with respect to {-,-).

The geometry in complex orthogonal spaces is much more complicated
than that of unitary spaces. The description of the geometry in complex
orthogonal spaces given here relies heavily on the work of Choudhury and
Horn [90] and Malcev [128]. One of the biggest differences is the fact that the
orthogonality of two vectors in a complex orthogonal space does not imply
that they are linearly independent. A simple example of this phenomenon is
given by the two vectors u=(1,/)" and v=«(1,i) in ¥* equipped with the
symmetric scalar product (x,¥) = x,y; + x,¥,. [t is easy to verify that (u,v) =0
for all ae 6. Note that when o = 1 this example also demonstrates there can be
nonzero vectors that are not normalizable. The analogue in a complex
orthogonal space of a set of orthonormal vectors in a unitary space is a set of
rectanormal vectors (90).

Definition 20 ( Rectanormality of a Set of Vectors) A set of vectors y,eV,
i=1, 2,...,M, is called retanormal with respect to the symmetric scalar
product o(,") if

oy, ¥;)=0;; foralli,j. (271)
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Obviously a rectanormal set of vectors cannot contain any non-normalizable
vectors.

Given the fact that not all nonzero vectors in a complex orthogonal space
are normalizable, the existence of a well-defined complex orthogonal space
analogue of the unitary space Gram-Schmidt orthonormalization procedure
is called into question. Choudhury and Horn have studied this problem and
have proven under what conditions a complex orthogonal space Gram-
Schmidt rectanormalization procedure can be established. Before stating
these conditions, it is useful to define the triangular equivalence of two sets of
vectors.

Definition 21 (Triangular Egquivalence) Two sets of vectors x;, i=
1,2,...,M, and y;, j=1,2,...,M, from an N-dimensional complex ortho-
gonal space V are called triangularly equivalent if the span of the set x,,
i=1,2,...,K, is identical with the span of y;, j=1,2,...,K, for all K <M.

The Gram-Schmidt rectanormalization procedure is the same as the Gram-
Schmidt orthonormalization procedure except that the unitary space Her-
mitian scalar product is replaced everywhere by the symmetric scalar product
appropriate for the complex orthogonal space (see Appendix A). The con-
ditions under which this procedure makes sense is the topic of the following
theorem by Choudhury and Horn [90]:

Theorem 2 (Existence of Gram—Schmidt Rectanormalization Procedure)
Given a set of linearly independent vectors x,, i=1, 2,..., M, in a complex
orthogonal space, define the sequence of matrices X, Xj,...,Xy, where
the elements of the jth column of X, are given by the elements of x; for j<i.
The set x, is triangularly equivalent to a rectanormal set y; (cf. Def. 21) if and
only if

det(X{7X;)#0 for I<ig<M. (272)

The Gram-Schmidt rectanormalization of the sequence of Krylov vectors
generated by a complex symmetric matrix and an arbitrary normalizable
starting vector is discussed in Appendix A. The existence of the Gram-
Schmidt rectanormalization procedure for the Krylov vectors implies that the
complex symmetric LA is well defined. This result was referred to in
Appendix A.

In summary, complex orthogonal spaces enjoy the following properties:

« All CSMs are self-adjoint.

« The spectral function can be expressed as a symmetric bilinear form or a
sum of symmetric bilinear forms.
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« Iftwo CSMs are similar, they are related by an isometric transformation.
In particular, the transformation that diagonalizes a diagonalizable CSM
is isometric.

« Under suitable restrictions, a Gram-Schmidt rectanormalization proce-
dure can be used to sequentially convert a linearly independent set of
vectors into a triangularly equivalent rectanormal set. The conditions
under which this procedure is valid are the same as those needed to have a
well-defined complex symmetric LA.

« The rectanormality of vectors is closely related to the known properties of
the eigenvectors of general Fokker-Planck operators [119] (see
Section VI.B).

Thus, complex orthogonal spaces can be used as a similar type of framework
for the calculation of magnetic resonance spectra and spectral densities
derived from Fokker-Planck forms as unitary spaces provide for quantum-
mechanical problems in the absence of relaxation.

D. Matrix Elements in ESR Problems

We consider a spin probe with one hyperfine interaction, described by the spin
Hamiltonian (in [requency units) in the high-field approximation

H(Q) =045, +745.1,+ T (= 1FFP P QARM,  (273)
K.M,u

where the nuclear Zeeman interaction is not taken into account. We assume

that the rotational motion is described by the symmetrized Smoluchowski
equation:

= [J = (1/2ks TYJIV)IR[I + (1/2k5 TII V)], (274

where J is the generator of infinitesimal rotations of the molecule, R is the
diffusion tensor, and V' is the pseudopotential for oriented phases.

We provide only the simplified expression for the matrix elements of I' — iL
resulting from the following conditions: (i) the contribution of the nonsecular
terms to the spectrum is negligible, (ii) the magnetic tensors (g and 4) and R
tensor are all diagonal in the same molecular frame, (iii) the diffusion tensor is
axially symmetric with respect to the z axis of the molecular frame, and (iv) the
orienting pseudopotential is axially symmetric and is given by the relation

— ViQ)/ksT = Z5(Q). (275)

The matrix elements of the operator I’ — iL will be calculated in the direct-
product space of generalized spherical harmonics and the space of the spin
transitions [m', m" », where m’ and m” are the eigenvalues of I, of the initial and
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final states, respectively, and the electron spin projection indices are implicit,

2L+ 1
8n?

12
|L,M,K;m',m") =( ) D Q)m',m", (276)

where L=0,1,2,...,L,,,K=0,+2, +4,...,min(L, K, ), and M =0, +1,
i 21 v miﬂ (L‘) 'Mml:}'

In general, the symmetry of the operator and the definition of the starting
vector allow one to work with a reduced basis set. The symmetries in the
molecular frame allow one to redefine basis elements as

L, M,K'sm',m"y = [2(1 4+ 80.4)] 2L, M, K:m',m")
+(= LM, —K;m',m")), (277

with K’ nonnegative and even. The symmetry in the laboratory frame allows a
further reduction to redefined basis elements:

IL, M, K", p, g3 = [2(1 + 30,000.,)1 " ""*(IL, M, K'; p. ¢ )
+{- l]L+M[L—M1K';_p1q>}! (2?8]

where the index M’ is now nonnegative. The quantum numbers p and g are
defined as p=m'—m" and g=m’' +m", where p=0 (p #0) for an allowed
(forbidden) ESR transition. Our calculations were performed specifically for
**N-containing nitroxides with nuclear spin I = 1, so m’, m" =0, + 1. Thus,
p=0, £1, +2 and q=-Q, —Q+2,...,0—2, Q, where Q=2—|p|.
In isotropic fluids and in ordered fluids where the symmetry axis of
the potential is colinear with the static magnetic field, there exist
symmetries such that only the terms with p = M’ need be considered so that
M'=0, 1,2. In the following formulas, the primes on M and K are dropped for
convenience.

The matrix elements for the diffusion operator in this basis are given by

<L1sM|sK1;P1-41|F|L2-M11K2;P1:qz>
=P 1P2, 27 6k, x:0m, R,

x {I:Ll(Ll +1) +(%-—- l)K? +“:36(5§]2:|5:_1.L;+ (— DM &N (L, Ly)

1

L 2 1 L 2 L
xl:3£§(l-—‘1115§)(xi 0 _;2(2)(M11 0 —;‘12)

R R TR G R T
(o %) o o)l '
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where N (L, L;) = [(2L, + 1)(2L; + 1)]"%. The components of the starting
vector [v) are given as

(L, M,K;p,qlv) =3¢ 004 <{P.q|S- >jdﬂ@30[ﬂ]f’é”[ﬂ]- (280)

Finally, the Liouville operator has the following matrix elements:
(L]; M],;K[;pli'?i IL|L2!M1! KI:-PZ"‘II)
={L M, K\:q,| Ly My, K3 2 ) (w5 + daq,7,) + (= 1M
X [“ + 62.1(1 +K1]“ =+ 1f"ill...ﬂnil +M:]]”2NL['L1’ LI}

X(L, Rl W 2 i
Kl KI_K| Kz JM} MJ_MI MJ

xEF{yLKI_K”GB{MUQE;ML'?ZL [28]}
1
fﬁw
Gy(M 1,91 My, ;) =2 {g}f'. (282)
GuMy,q; M3, q5)= éH|.H15-|'|.uQ1Pe|"II\/E F 5:,|Mi —M:I&ql,q!i 1YelMz—M,)
x {1+ 1) =g, £ M, [M, — M,;])(g; + My[M, — M,])}'2. (283)

We remark that the matrix associated with T —iLis complex symmetric, both
I' and L being real and symmetric.

While it is a sparse matrix, the structure of the matrix elements is clearly
complicated. The more general case, wherein the preceding simplifying
assumptions are removed, leads to an even more complicated (but still sparse)
matrix structure, as is detailed elsewhere [20].
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