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I. METHODOLOGY 

A. Introduction 

Classic Brownian motion has been widely applied in the past to the 
interpretation of experiments sensitive to rotational dynamics. ESR and 
NMR measurements of T ,  and T2 for small paramagnetic probes have 
been interpreted on the basis of a simple Debye model, in which the 
rotating solute is considered a rigid Brownian rotator, such that the time 
scale of the rotational motion is much slower than that of the angular 
momentum relaxation and of any other degree of freedom in the liquid 
system. It is usually accepted that a fairly accurate description of the 
molecular dynamics is given by a Smoluchowski equation (or the equiva- 
lent Langevin equation), that can be solved analytically in the absence of 
external mean potentials. 

Since the pioneering contribution of Debye [ 11, one-body Smoluchow- 
ski equations have provided a general framework for the study of 
dielectric relaxation in liquids, neutron scattering, and infrared spec- 
troscopy. The basic hypothesis is that the solute degrees of freedom are 
the only “relevant” (i.e., slow when compared with the timescale of the 
experiment) variables in the system, and that the surrounding liquid 
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medium behaves as a homogeneous bath whose internal degrees of 
freedom are rapidly relaxing. This simple picture has had many substan- 
tial refinements and improvements. Perrin [2], Sack [3], Fixman and 
Rider [4], Hubbard [5], McClung [6], Morita [7], and many others have 
contributed by including anisotropy and inertial effects and by studying 
detailed numerical solutions to classic Fokker-Planck-Kramers equations 
for the tumbling of a general top. Good agreement between the ex- 
perimental data and theoretical predictions can often be obtained at 
moderate viscosities and pressures. Also, the influence of a mean poten- 
tial of interaction has been extensively studied, since the original work of 
Favro [8]. 

However, when the experimental results associated with the molecular 
tumbling become more precise, as is often the case when magnetic 
resonance techniques are involved, the one-body approach become ques- 
tionable, and a more sophisticated insight into the many-body nature of 
the liquid is required. Usually a simple Debye approach fails in interpret- 
ing molecular dynamics data obtained for liquids of “molecules which are 
highly anisotropic in shape, for example rod-like molecules, or molecules 
which interact via anisotropic forces, such as the case where hydrogen 
bonding occurs, or finally molecules which display high internal mobility 
like bulk polymers” [9]; in short whenever a Markovian description of the 
solute degrees of freedom is unacceptable, due to the effect of solvent 
degrees of freedom whose relaxation timescale is comparable to the 
solute correlation time. Substantial departures from predictions of Brow- 
nian motion theory are observed in extreme conditions, for example, 
when very low temperatures or very high viscosities, such as in super- 
cooled organic fluids, are considered; or when there are strong interac- 
tions between the solute and the immediate solvent surroundings, such as 
in ordered liquid phases or highly polar liquids. ESR studies in ordered 
and isotropic fluids over a wide range of temperatures and pressures 
[ lo ,  111, NMR data [12], highly viscous fluid studies [13-161, dielectric 
experiments performed in glassy liquids [ 17-22], far infrared spectroscopy 
of polar solvents [23] are only a few examples of studies that have been 
particularly sensitive to the inadequacies of stochastic single-body models. 

In principle, the presence of slow stochastic torques directly affecting 
the solute reorientational motion can be dealt with in the framework of 
generalized stochastic Fokker-Planck equations including frequency- 
dependent frictional terms. However, the non-Markovian nature of the 
time evolution operator does not allow an easy treatment of this kind of 
model. Also, it may be difficult to justify the choice of frequency 
dependent terms on the basis of a sound physical model. One would like 
to take advantage of some knowledge of the physical system under 
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investigation to set up a “relevant” time evolution operator that is more 
or less able to account for the main relaxation processes affecting the 
solute. One way this can be accomplished is by including collective 
degrees of freedom, which can, at least partially, account for the non- 
Markovian nature of the motion of the isolated probe. 

Many theoretical models have been proposed in the past for including 
some “solvent” degrees of freedom, representing in a qualitative way the 
complex environment around the solute molecule. The “itinerant oscil- 
lator” model (IOM) developed by Coffey and co-workers [23-251 is an 
interesting attempt to improve on the limitations inherent in the one-body 
Debye approach. The molecule is considered to be coupled by a har- 
monic potential to a cage of solvent particles reorienting as a whole, and 
some calculations with a cosine potential have been attempted. The 
system “molecule + cage” reorients in a fixed plane and the additional 
solvent molecules are described merely as a source for a damping force 
(torque) affecting both the molecule and the cage. A bidimensional 
Langevin equation, or the corresponding linearized Fokker-Planck- 
Kramers equation, is used to calculate the usual correlation functions of 
interest, and dielectric relaxation and far infrared data are interpreted in 
terms of this model (and also compared with molecular dynamics simula- 
tions). 

The itinerant oscillator model can be seen in the context of the more 
general “reduced model” theory due to Grigolini and co-workers [26-291. 
Again, the main idea is to account for the complex behavior of the 
medium as a non-Markovian bath which affects the rotational (and/or 
translational) motion of the probe. This bath is thought of as added 
“virtual” degrees of freedom whose features simulate, in a multi- 
dimensional Langevin equation scheme, the “real” time dependent 
generalized Langevin equation, 

We briefly note, at this point, the contribution of Zwan and Hynes 
[30-321 that is in line with these previous approaches. These authors 
consider a generalization of the IOM for a simple internal-dipole isomeri- 
zation reaction in which the interaction with the rest of the solvent is 
implicitly split into a dissipative interaction (generating the usual damping 
terms, considered small by Zwan and Hynes) and long-distance interac- 
tions with “a pair of solvent outer dipoles”. The picture is very schematic 
(again only linearized potentials are considered), but the concept of a 
third interacting body dynamically coupled to the probe and the “slow 
modes” previously defined, is interesting. Note that Zwan and Hynes use 
their initial multidimensional linear Langevin equation to obtain a 
generalized Langevin equation in a single reaction coordinate, which they 
solve with the aid of a Grote-Hynes approach (cf. a recent comparison 
with MD results [32]). 
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Finally, a comparison with the models developed in the past by Freed 
and co-workers is in order [28, 33-35]. With the objective of interpreting 
observed departures from simple Debye behavior in many liquid state 
ESR experiments, they considered two main physical models based on 
the characteristic correlation times of the stochastic torques acting on the 
probe, compared with that of the probe motion itself. In the so-called 
“fluctuating torques” (FT) models the probe can be seen as larger (and 
slower), or at least of comparable dimensions to the solvent molecules. 
Because of the rapid reorganization of the surroundings, only dissipative 
friction effects are exerted by the solvent on the probe. O n  the other 
hand, in the “slowly relaxing local structure” (SRLS) model, the probe 
can be seen as smaller (and faster) than the solvent “structure”, whose 
motion about the probe is slow enough that the probe reorients relative 
to the instantaneous value of the intermolecular potentials. A rationaliza- 
tion of these models is achieved by Stillman and Freed [33], who are able 
to obtain, using arguments based on the stochastic Liouville approach, 
general augmented Fokker-Planck equations describing simple model 
cases. We note in passing the similar objectives of this stochastic Liouville 
approach and the reduced model theory of Grigolini. 

Recently Kivelson and Miles [36] and Kivelson and Kivelson [37] have 
attempted to rationalize some of the physical observations concerning 
supercooled organic liquids [ 13-20] by adopting a many-body description. 
The reorientational relaxation of an asymmetric top is assumed to take 
place in a potential V(Cn - a*) where Cn are the Euler angles specifying 
the orientation of the top, while In* are defined as an unspecified 
“equilibrium position” for the top in the mean field potential V. The 
so-called p relaxation is related to the diffusional motion within a 
potential well, whereas the so-called a relaxation is identified as a 
“random restructuring of the torsional potential”, that is, of a*, which 
can be considered as a function of some “slow environmental variable X” 
[37]. This model is, in spirit, very similar to the SRLS model of Freed and 
co-workers. Kivelson et al. rationalize the multiexponential form of the 
rotational correlation functions observed in many supercooled fluids in 
terms of a memory function approach; that is, the correlation function is 
expressed as a Mori continued fraction expansion truncated at the second 
term [36]. The second memory function is supposed to be a phenomeno- 
logical biexponential function. In this simple way a qualitative description 
of the a ,  p and Poley relaxation processes is achieved, although the 
behavior of the librational signal is not very well explained if compared to 
the experimental evidence (a weak, temperature dependent signal is 
calculated). No real attempts at relating these considerations with micro- 
scopic or mesoscopic models is made by the authors; the model is 
proposed as an extension of the so-called “three-variable theory” [38]. 
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To summarize, in complex liquids, where the bath cannot be consid- 
ered as a simple collection of very fast modes which can be eliminated in 
the usual Markovian approximation, the spectrum of stochastic torques 
acting on the probe can be modeled in terms of virtual or “ghost” degrees 
of freedom, coupled to the molecular ones in a multidimensional 
Langevin or Fokker-Planck formalism. The new modes are able to 
simulate, in some qualitative way, the complex features of the real 
solvent (e.g., reduced model theory), and they can be interpreted in 
terms of a formal Mori expansion (e.g., a three variables theory), or they 
can be chosen with an intuitive physical meaning (FT/SRLS and IOM 
models). Generally speaking, an interaction potential must be introduced 
to describe the coupling between real and virtual modes, but second 
order interactions, mediated by other solvents modes, should also be 
considered in order to simulate dissipative contribution to the torques 
affecting the probe (Zwan and Hynes models). 

Clearly, a general theory able to naturally include other solvent modes 
in order to simulate a dissipative solute dynamics is still lacking. Our aim 
is not so ambitious, and we believe that an effective working theory, 
based on a self-consistent set of hypotheses of microscopic nature is still 
far off. Nevertheless, a mesoscopic approach in which one is not limited 
to the one-body model, can be very fruitful in providing a fairly accurate 
description of the experimental data, provided that a clever choice of the 
reduced set of coordinates is made, and careful analytical and computa- 
tional treatments of the improved model are attained. In this paper, it is 
our purpose to consider a description of rotational relaxation in the 
formal context of a many-body Fokker-Planck-Kramers equation 
(MFPKE). We shall devote Section I to the analysis of the formal 
properties of multivariate FPK operators, with particular emphasis on 
systematic procedures to eliminate the non-essential parts of the collec- 
tive modes in order to obtain manageable models. Detailed computation 
of correlation functions is reserved for Section 11. A preliminary account 
of our approach has recently been presented in two Letters which address 
the specific questions of (1)  the Hubbard-Einstein relation in a mesos- 
copic context [39] and (2) bifurcations in the rotational relaxation of 
viscous liquids [40]. 

In Section 1.B we discuss how to devise a general MFPKE to describe 
complex liquids. A three-body model will be presented as a description of 
a system in which at least two significant additional sets of solvent degrees 
of freedom are introduced. In Section 1.C we show the relation between 
some of the previously cited approaches and particular cases of our 
model. In particular, augmented Fokker-Planck equations (AFPE) of 
Stillman and Freed are seen to be directly related to the MFPK formal- 
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ism. Section 1.D is devoted to the explicit study of a two-dimensional 
planar version of the three-body model of Section I.B. In Section 1.E we 
consider the actual relation between AFPEs and MFPKEs in a test case. 
A summary is given in Section I.F. The projection procedure employed in 
the treatment of large MFPKEs is described in Appendices A and B. 

B. A Many-Body Approach to Complex Fluids 

A set of collective degrees of freedom representing, at least qualitatively, 
the main effects exerted by the complex medium in the immediate 
surroundings of the rotating solute, needs to be incorporated into the 
initial one-body description of the molecular dynamics. Following sugges- 
tions of many authors, we choose to think in terms of an instantaneous 
structure of the solvent molecules around the reorienting probe, a sort of 
loose “cage” that can be considered as a dynamical structure relaxing in 
the same time range as the solute rotational coordinates (i.e., it is a 
slowly relaxing local structure). Thus the relevant phase space is in- 
creased by three Euler angles for the orientation of the solvent local 
structure, and also by the three components of the corresponding angular 
momentum vector. The resulting two-body scheme is formally that of two 
interacting rigid tops; the first one being the solute molecule, the second 
one the average of the instantaneous orientations of the solvent molecules 
in the near environment of the probe. 

The picture can be improved, if necessary, by adding faster solvent 
degrees of freedom, coupled both to the probe (the first body or body 1, 
from now on) and the solvent structure (the second body). That is, we 
suppose that the second body does not account for all of the effects 
exerted by the real environment, but only for the slowest ones, since 
“. . . motion of an individual molecule in a (ordered) fluid should be a 
complex process involving . . . long-range (and slow) hydrodynamic effects 
to short-range (and fast) molecular couplings” [ll]. Note that if we limit 
our analysis to the timescale of the reduced system solute + solvent 
structure (that we may well suppose to be orders of magnitude slower 
than the rest of the liquid system, except maybe in very viscous fluids), 
any faster mode will be seen as giving an additional frictional effect, after 
its elimination as an explicit degree of freedom by a projection proce- 
dure. Thus it will be possible to see that the introduction of a fast third 
(or additional) collective body interacting with the solute and the solvent 
structure can be considered as the approximate source of the fluctuating 
forces/torques invoked by Freed et al. 

Although our primary interest is concerned with the study of the 
rotational dynamics of the solute, we may consider part or all of the 
additional solvent degrees of freedom as point vectors, or fields. An 
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example of a fast translation-like mode coupled to a rotator is given by a 
stochastic polarization or “reaction field” in polar solvents [41]. Note 
that, at least as a starting point, we shall always include the conjugate 
momentum coordinates in the system phase space. That is, we shall 
always initially consider the multivariate Kramers equation including all 
the position and velocity degrees of freedom. 

1 .  Many-Body Fokker-Planck-Kramers Equations 

Let us suppose that the liquid system is described by a MFPKE in N + 1 
rigid bodies (the solute, or body 1 and N rotational solvent modes or 
“bodies”), each characterized by inertia and friction tensors I, and g,, a 
set of Euler angles a,, and an angular momentum vector L, ( n  = 

1,. . . , N + 1) plus K fields, each defined by a generalized mass tensor 
and friction tensor M, and g k ,  a position vector X, and the conjugate 
linear momentum Pk ( k  = 1,. . . , K ) .  The time evolution of the joint 
conditional probability P(a’ ,  X’, L’, P0Ia,  X, L, P, t )  (where a,  X, etc. 
stand for the collection of Euler angles, field coordinates etc.) for the 
system is governed by the multivariate Fokker-Planck-Kramers equation 

a A 

- P = -TP  
at  

and the initial conditions are 

where the FPKE partial differential operator is given by the sum of 
Kramers operators for each body and field 

N+1 K 

n = l  k =  1 

The rotational operator for the nth body is defined according to Hwang 
and Freed [35] as 

1 p,, = i L n I i l j n  + T,V, - enVn - kBTV,e,  (V,  + - Ii ’L,)  
kBT 

(1.4) 

The vector operator j, is the angular momentum operator for the nth 
body; note that the generator of infinitesimal rotation (M,) is simply 
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proportional to j n  , that 
body, which we take as 
on all the displacement 

is, M, = d,,; T, is the torque acting on the nth 
generated from a general potential V depending 
coordinates of the system 

Finally V, is the gradient operator on the L,, subspace, while @,, is a 
precessional term, whose Cartesian components in the molecular frame 
fixed on the nth body are given by 

where I,, is a principal value of the inertia tensor I,, and eijk is the 
Levi-Ci At a symbol. 

The translation operator for field X, is defined accordingly as the 
three-dimensional Kramers operator 

1 ML'P,) (1.7) f, = PkMklVxk + FkV, - k,TV,t, (VPk + - 
kBT 

where F, is the restoring force generated by the gradient operator Vxk on 
V 

and Vpk is the gradient operator on the subspace Pk. In the following we 
will consider only isotropic space, and we will conveniently define all the 
vectors and vectors operators in a unique laboratory frame. 

The potential function V still must be made explicit in order to 
complete the description of the system. A general multipole expansion in 
terms of first, second rank, etcetera interactions depending only on the 
relative orientation between each pair of bodies can be taken, as well as a 
multipole-field term (e.g., a dipole-field) for the painvise interaction 
between each body and field. Finally each stochastic field is subjected to a 
harmonic potential, to parametrize in the most economical way the 
amplitude of the stochastic fluctuations. The complete potential is then 
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where 

where 9Fi;:n,,. is the (adjoint of) the Wigner rotation function of rank 
R,,,, and components P,,,, Q,,,. The dipolar coupling between each body 
and each field is expressed in terms of the inner product between the field 
X,, and a unit vector u, fixed on the body (so that the quantity p,,u, can 
be interpreted, if desired, as the dipole moment of the nth body); the 
(diagonal) matrix E,, has elements which measure the amplitude of the 
fluctuations of the components of the field X,. 

2. Three-Body Fokker-Planck-Kramers Equation 

In the following paragraphs we shall apply the previous general formulas 
to a simplified description of a liquid system in which only three bodies 
are retained: the solute molecule (body l ) ,  a slowly relaxing local 
structure or solvent cage (body 2), and a fast stochastic field (X) as a 
source of fluctuating torque. Although this is a minimal description if 
compared to the general approach of the previous section, it should still 
represent a considerable improvement with respect to the usual one-body 
schemes, since it explicitly includes both a fast and a slow solvent mode. 

The reduced Markovian phase space is now given by the Euler angles 
specifying the position of the solute rotator a,  and the three components 
of the corresponding angular momentum vector L, , plus the analogous 
quantities a, and L, for the solvent structure plus the fast field X and its 
conjugate linear momentum P. The conditional probability for the system 
P(ay, a:, Xo, Ly, Ly, Polan, ,  a2, X,  L , ,  L,, P, t) is now driven by the 
MFPK operator 

f = f ,  + f, + f, (1.11) 

where f ,  and f, are given by Eq. (1.4) and f, by Eq. (1.7). A further 
simplification will be introduced by considering an isotropic fluid com- 
posed of spherical top molecules (but with embedded dipoles, quad- 
rupoles, etc.). Not much changes for molecules of cylindrical symmetry 
(i.e., symmetric tops). Thus all the inertial, mass and friction tensors for 
each body and the field will be treated as scalars. The precessional terms 
can be completely neglected, and all the suboperators can be written 
easily in a unique laboratory frame. The direct potential term between 
the solute and the solvent cage will include only first and second rank 
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interactions, and they will be dependent only on the relative angle 
between u1 and u2 (see caption to Fig. 1) 

-2  V 3 

2 - = - V 1 P , ( Q 2  - al) - U2P2(f l ,  - a,) - ( plul + p2u,)X + 
kL3T 

x2 
(1.12) 

here PI and P,  are the Legendre polynomials of rank 1 and 2, respective- 
ly. Note that any direct dipole-dipole interaction between body 1 and 
body 2, is included in the first rank part (a minus sign has been extracted 
for future convenience from the first and second rank parameters). 

A variety of interesting physical situations can now be obtained in the 
framework of the three-body model just defined, by carefully choosing 
the range of variation of the frictional parameters: (,, the friction exerted 
by the rest of the solvent on body 1, t2, the friction of body 2 and tx, the 
friction on the field; and the energetic parameters u l ,  u2,  p l ,  p2 (2 being 
renormalized to 1, cf. next section). For instance, one can consider the 
case of a fast solute interacting via a nematic-like interaction potential 
with a slow (large) solvent structure in the absence or presence of a fast 

Figure 1. A three-body scheme for a complex liquid. Note that uI and u2 are aligned 
respectively along the z ,  and z2 axes. 
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fluctuating field ( u ,  = 0, u, # 0, t2 9 6,). Or one can choose the case in 
which only the interaction between the solute probe and the field is 
present, ignoring any local structure ( u ,  = u2 = 0, 5, = 0). A planar 
Smoluchowski equivalent of this latter case was recently used for the 
interpretation of dielectric friction effects in polar isotropic liquids [41]. 

In many physical systems of experimental interest, it is usually possible 
to devise a reduced phase space of coordinates and/or momenta in which 
an accurate description is achievable. For instance, in a highly viscous 
fluid one may neglect all the momenta L , ,  L, and P given their very fast 
relaxation with respect the time scale relaxation of the position coordi- 
nates a,, a,, X. In many cases, the field vector (and its conjugate linear 
momentum) can be considered as a fast mode with respect to the rest of 
the system, so that both X and P can be projected out. One can also 
suppose that, although inertial effects are unimportant for the large 
solvent structure, that is, L2 is a fast coordinate, some inertia is still 
affecting the motion of body 1,  so that L,  must be retained. If all the 
additional solvent degrees of freedom are eliminated, and only a, is left, 
the single body Smoluchowski equation is recovered. 

C. Elimination of Fast Variables 

Our purpose in this section is to obtain a simpler time evolution operator 
from the complete one of the previous section via a systematic elimina- 
tion of any fast variables initially included in the system. In order to 
handle efficiently the algebra involved, with the smallest number of 
independent parameters, it is convenient to introduce from here on 
rescaled, dimensionless quantities (see Table I) and to “symmetrize” [42] 
the initial MFPK operator via the usual similarity transformation 

(1.13) 

where P,, is the Boltzmann distribution function over the total energy 
(potential plus kinetic). It is the unique eigenfunction of zero eigenvalue 
of the unsymmetrized operator. The final symmetrized and rescaled time 
evolution operator is then written explicitly 

F = ui( iL,3,  + T,v,)  - u f  e x p ( ~ : / 4 ) ~ ,  exp( -~ : /2 )~ ,  e x p ( ~ i / 4 )  

+ w;(iL,Q, + T , v ~ )  - 0; e x p ( ~ ; / 4 ) ~ ,  exp(-~ : /2)~ ,  exp(~:/4) 

+ uS,(PV, + FV,) - exp(P2/4)V, exp(-P2/2)V, exp(P2/4) 
(1.14) 
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TABLE I 
Rescaled Units and Parameters".h." 

L l .2  = (k,TI, , ,)- l /ZL,, ,  
F = (kBTrn)-I"P 
g = (k,T)-"'s"X - ( k , T ) - l / ' = - l P  
P l . 2  = m 

w;,2 = G 6 1 . 2  

w', = m-' 

wi.2 = WBT) '1.2 
o; = rn-1'2E 

Q= ( k , T ) - I V  

I .2 

6x 112 - 1 ' 2  

"Where the tilde symbol stands for rescaled units, and it is 

bRescaled units are dimensionless except for the four w 

'Subscripts 1 ,  2 imply the symbol for either body 1 or 

neglected throughout the text. 

terms, which are in angular frequency units. 

body 2. 

while the rescaled potential (in k,T units according to Table I) is given 
by 

v =  - U , P , ( Q 2  - 0,) - u z P 2 ( 0 2  -0,)  - ( p , u *  + p2u2)X + ;x2 
(1.15) 

The streaming frequencies w ;  and w ;  in Eq. (1.14) are related to the 
inertial motions of body 1 and body 2, respectively (i.e., they are the 
inverses of the correlation times for the deterministic motion of the two 
bodies). The cbllisional frequencies 0;  and w ;  are a measure of the direct 
coupling with the stochastic environment, that is, of the dissipative 
contribution to the dynamics. An analogous interpretation may hold for 
the frequencies w ;  and w k ,  related to the streaming and stochastic drift 
of the field. 

I. Field Mode Projection 

According to the previous section, we shall start by considering X and P 
as fast degrees of freedom, relaxing on a much more rapid timescale than 
the orientational coordinates and momenta of the solute and the solvent 
cage. Many different projection schemes are available to handle stochas- 
tic partial differential operators. Here we choose to adopt a slightly 
modified total time ordered cumulant (TTOC) expansion procedure, 
directly related to the well known resolvent approach. In order to make 
this chapter self-contained, we summarize the method in the Appendices 
and its application to the cases considered here and in the next section. 
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Given only that w i  and wfi: are much larger than any other frequency 
in the system, one can easily eliminate both X and P in a simple step, via 
a projection based on the eigenfunctions of the monodimensional FPK 
operator for a single particle in a harmonic field (431. Following the 
detailed scheme outlined in Appendix A,  after projecting out the field 
and its momentum, one obtains the following MFPK operator in the 
remaining two bodies coordinates: 

F = w ; ( i ~ , 3 ,  + T,v,)  - e x p ( ~ : / 4 ) ~ , o f  e x p ( - ~ i / 2 ) ~ ,  exp(~: /4)  

+ w i ( i ~ ~ j ~  + T,v,) - exp(~: /4)~,wS exp( -~ : /2 )~ ,  exp(~: /4)  

- ~ x ~ ( L : / ~ ) v , w ; ,  exp(-~:/4 - L:/~)v, exp(~: /4)  

- exp(~: /4)~ ,o ; ,  exp(-~:/4 - L:/~)v, exp(~:/4) (1.16) 

One remaining effect from the projected fast field is given by the 
redefined two-body potential with respect to which the torques T, and T, 
are defined; the only modification is a redefined first rank potential 
parameter 

v =  -P,P1(a2 - a,)  - U 2 P , ( J 1 2  -a,)  (1.17) 

Ul’U1 + PIP2 (1.18) 

and a constant term proportional to p; + p: that we neglect since it only 
affects the arbitrary zero of energy. 

But the major contribution of the projected fast field to the resulting 
operator is given by a new frictional tensor (or collisional frequency 
tensor), which includes coupling terms between body 1 and 2 that are of a 
purely “dynamic” nature; that is, they do not affect the final equilibrium 
distribution. The collisional matrices, modified by the averaged action of 
the fast field, may be expressed in the following way: 

(1.19) 1 o f 1  - wlu; -(wl w 2 ) 1 / 2 u 1 u 2  
“21 “ 2  - ( 0 1 w 2 ) 1 / 2 u 2 u l  w;1- wzu,  2 

where w1 and w2 are proportional to the field collisional frequency w‘, 

(1.20) 

with n = 1, 2,; U, and U2 are angular dependent 3 x 3 matrices defined as 

A 

U, -iJn B u n  (1.21) 
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that is, the pqth Cartesian component of Uj is proportional to the result 
of the application of the p component of 3, on the q component of the 
unitary vector u,. Note that the new collisional matrix is naturally a 
symmetric and positive definite matrix. If it is evaluated in the molecular 
frame fixed on body 1 (2), the diagonal block for body 1 (2) is a constant 
diagonal one, while the diagonal friction block for body 2 (1) and the 
coupling friction blocks are only dependent upon the relative orientation 

The effect of the new frictional term can be important whenever a 
strong initial coupling is supposed to exist between the solute and the fast 
mode. It is not difficult to show that a close relation exists between the 
frictional coupling terms of our MFPKE and the Stillman and Freed 
augmented Fokker-Planck equation (AFPE) in the case of a so-called 
“fluctuating torque” model. A close analogy between AFPE and MFPKE 
formalisms can be easily achieved if we consider the motion of the second 
body as completely diffusive. One can eliminate as a fast variable the 
angular momentum L, from the previous two-body MFPKE (cf. Eq. 
(1.16)), following again a TTOC scheme (see Appendix A). A new 
hybrid (partly inertial and partly diffusive) time evolution operator is 
found for the system (a,, a2, L , )  whose form is given as 

ti? -ti1. 

f = w ” , ( i ~ , Q ,  + T,v,) - exp(~T/4 )~ ,o ‘ ,  e x p ( - ~ : / 2 ) ~ ,  exp(~:/4) 

- i exp(~ : /4 )~ , f exp( -~ : /4  - ~ / 2 ) 3 ,  e x p ( ~ / 2 )  

- i e x p ( ~ / 2 ) j , f “  exp(-~:/4 - v / ~ ) v ,  exp(~:/4) 

+ exp(V/2)g,D: exp(-V)Q, exp(V/2) (1.22) 

with new angle dependent matrices that are defined in terms of w i ,  w i  
and oi, 

(1.23) 

(1.24) 

(1.25) 

This is a two-body AFPE that is fully equivalent to those described by 
Stillman and Freed, including borh a fluctuating torque effect (matrix f) 
and a slowly relaxing local structure (interaction potential V ) ;  the 
equivalence of the two approaches will be further investigated in the next 
section for the case of a planar model. 

If the momentum L,  itself is considered as a fast relaxing variable, that 
is, the motion of the solute is supposed to be completely diffusive, then it 
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is possible to further reduce the phase space to only the rotational 
coordinates a, and a,. The two-body Smoluchowski operator that is left 
after performing the I%OC projection is 

f =  exp(V/2)j,Dl exp(-V)j, exp(V/2) + exp(V/2)3,Dl2 

x exp(-V)j, exp(V/2) + exp(V/2)j2D,, 

x exp(-V)j, exp(V/2) + e~p(V/2)3~D,exp(-V)j,  exp(V/2) 
(1.26 

and we can again write down the diffusive matrix blocks in terms of of 
w 2 ,  W , ?  

c c  

In glassy liquids or supercooled organic fluids the viscosity affecting all 
the positional and orientational variables is supposed to be rather large. 
We can then consider a third reduced equation, describing the coupled 
evolution of a,, a,, X,  after a straightforward elimination of all the 
momenta L , ,  L, and P from Eq. (1.14). We then easily obtain a 
three-body Smoluchowski equation with a 9 x 9 diffusion matrix that is 
diagonal and constant 

F = - D, e x p ( ~ / 2 ) ~ ,  exp(-V)v, e x p ( ~ / 2 )  + D, exp(1//2)jI 

x exp(-v) j ,  e x p ( ~ / 2 )  + D, e x p ( ~ / 2 ) j ,  exp(-v)j ,  e x p ( ~ / 2 )  
(1.30) 

and where the diffusion coefficients are related to the initial collisional 
frequencies, that is, 

D. Planar Model 

There are several reasons for considering planar equivalents of some of 
the above 3D-models. First of all, the heavy matrix notation employed in 
the previous section can be discarded, and the number of degrees of 
freedom for the complete system is reduced from 18 to 8 (two polar 
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angles of rotation, their conjugate momenta, which are proportional to 
the angular velocities, and two in-plane components for the reaction field 
plus their conjugate momenta). The numerical treatment of the resulting 
MFPK equation is easier, and a comparison between different levels of 
complexity in the dynamical description can be made; that is, one could 
consider the explicit effects of the static and the dynamic interaction 
between the two rotators in detail. In this way one can obtain useful 
insight for predicting the behavior of the much more difficult three- 
dimensional case. Also, one can use the planar model in order to test 
approximate analytical treatments. 

Planar models are also important for comparing our work to some of 
the previous theoretical studies along the same lines, for example, the 
planar augmented Fokker-Planck equation described by Stillman and 
Freed (see next section) and the itinerant oscillator model of Coffey and 
Evans. 

1. Planar Dipoles in a Polar Fluid 

Let us consider a system made of two planar dipoles, reorienting in the xy 
plane of the laboratory frame, and interacting with the components XI,  
X 2  of a stochastic field lying in the same plane. Our starting equation, the 
planar equivalent of equation (1.14) is much simplified. All the frequency 
matrices are now scalars, the precessional terms are obviously not present 
and only one angular variable for each rotator has to be considered. The 
complete time evolution operator in a rescaled and symmetrized form is 
then given by 
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The potential function for the system is chosen to be 

v =  -u1 cos(4, - 4*) - u2 cos2(4, - 42) 

- ( p l  cos 4, + p2 cos + 2 ) ~ 1  - ( p l  sin 4, + p2 sin 4 2 ) ~ 2  + ;x: + 
(1.32) 

We can now use our projection technique to recover averaged time 
evolution operators in which some of the system coordinates are consid- 
ered as fast. An interesting case is given by the model in which the 
solvent polarization relaxes faster than the reorientational molecular 
modes, that is, the equivalent of equation (1.16). Note that now the 
matrices Ul,2  (where the subscripts 1, 2 imply we are referring to both U, 
and U2),  are simply given by (-sin cos 41,2)fr and the resulting 
diagonal elements of the final friction matrix are constant, so 

a a 
aL2 dL1 

- w2, exp(L:/4) - exp(- L:/4 - L:/4) __ exp(L:/4) (1.33) 

and now o , , ~  and oI2 are 

2 2 
P l W l  

* X  

2 2 

"x 

(1.34) W1 = W f  + - s2 Wf, 

w2= 0; + - s2 o x  (1.35) P 2 W 2  c 

C L l P 2 4 4  COS(41 - 42) (1.36) w12= W21 = 
S 3  

W X  

and the potential V is again the direct interaction between the two planar 
rotators, with a renormalized u l .  The diagonal terms of the friction 
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matrix have the well known Nee-Zwanzig form for the friction exerted 
by a polar viscous fluid on a reorienting dipole (dielectric friction). This is 
not surprising, since our model considers for simplicity only a first rank 
interaction between the system and its environment. Note that the 
frictional coupling depends explicitly only on the relative orientation (in 
this planar model the difference angle between the absolute angles 41 and 
&). as in the case of the three-dimensional model. If one neglects the 
frictional coupling terms, what is left is the IOM equation for two 
Brownian dipoles proposed by Coffey and Evans. 

E. Augmented Fokker-Planck Equations and MFPKEs 

The model proposed by Stillman and Freed (SF) in their 1980 paper [33] 
is very versatile. By choosing carefully (i) the coupling forces between 
molecuie variables (x,)  and augmented ones (x?), and (ii) the potential 
function in the final equilibrium distribution, one can easily recover a 
variety of mathematical forms, reflecting different physical cases. The SF 
procedure starts from considering a system coupled to a second one in a 
deterministic way (interaction potential); the latter, in the absence of any 
coupling is described by a FP operator. The first step to obtain a 
description of the full system is to write the stochastic Liouville equation 
(SLE), according to Kubo [44] and Freed [45] 

(1.37) 

The Liouville operator PI contains a potential term depending on x,; the 
Fokker-Planck operator R ,  is considered for the sake of simplicity 
merely diffusive (so that p2 does not enter into the calculation). The SLE 
is not rigorous, since it does not contain terms related to the back 
reaction of system 1 on system 2. That is, it does not tend to the correct 
equilibrium, zero eigenvalue, solution. Stillman and Freed “complete” it 
by requiring that a given equilibrium solution Peg is recoverable. They 
accomplish this by modifying some reversible or irreversible drift terms, 
in a manner consistent with the Graham-Haken relations [46], which are 
based upon detailed balance, as well as with physical intuition. This 
finally leads to an augmented Fokker-Planck operator for the probability 
function. A number of points can now be highlighted. (1) The only 
physical aspects of the model are the interaction force f(x,, x2) in and 
the potential function V(xl, x2)  defining P e g ;  (2) the result accounts for 
the back reaction of 1 on 2; (3) one can usually obtain an ALE 
(augmented Langevin equation) from the AFPE; (4) as long as sensible 
choices of f and V are made, SF are able to show that the basic FP 
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equation can be recovered, in the limit when x2 or p, become fast 
variables; ( 5 )  two main classes of models have been obtained: Puctuating 
torque models (only frictional effects are found), and slowly relaxing local 
structure models (no frictional effects, but a reorganization of the poten- 
tial energy is found). Finally an AFPE can be generalized to contain 
spin-dependent terms, treating the spin Hamiltonian as a potential. Also, 
other fast modes can be added in a simple way as collisional operators in 
the AFPE. On the other hand, some aspects of the entire procedure are 
not well defined. One starts with a flawed formulation (i.e., the SLE does 
not obey detailed balance); the next step (i.e., the modification based on 
detailed balance conditions) is not uniquely defined and requires physical 
intuition. The MFPKE while initially more constraining, leads to a more 
precisely defined formulation. The relation between MFPKE and AFPE 
is better understood in the context of the general properties of Fokker- 
Planck operators, that are briefly reviewed in the next section. 

1.  Fokker-Planck Operators: The Graham-Haken Conditions 

The general operator of a FP operator is 

(1.38) 

where qi are a set of general variables and Kij is a symmetric tensor. 
Haken defines the irreversible and reversible drift coefficients as 

Di = i ( K i  + e iKi )  

J i =  4(Ki - e,Ki) 

(1.39) 

(1.40) 

where Tqi = Eiqi (ei = kl) ,  T the time reversal operator. In order that 
the FP has the stationary solution Peq = X exp(-V) it follows that 

(1.42) 

(1.43) 

(note that F V =  V). An alternative form of Eq. (1.38) may be obtained, 
in vector notation as 

f =  (”) J -  (”) KPeq (”) Pi: 
as as as 

(1.44) 
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In the following we shall write a general FP operator having the equilib- 
rium solution Peq in the form of Eq. (1.44). The vector J satisfies the 
following relations 

.TJ= -J (1.45) 

(1.46) 

When J = 0 one recovers the so-called “potential condition”, which 
means that the operator has no reversible part. 

Analysis of a Simple System According to the Stillman-Freed 2. 
Procedure 

We consider here for simplicity a one-dimensional system constructed 
from a generalized solute coordinate x1 and its conjugate momentum pI 
coupled to a diffusive solvent coordinate x, via a potential V= Vl(xl) + 
V,(x,) + ynt(xl, x,). According to SF, the (renormalized and rescaled) 
stochastic Liouville operator is 

(1.47) 

The SL operator is given simply by the sum of the FPK operator for 
subsystem 1 plus the Smoluchowski operator for subsystem 2. It is not 
complete, in the sense that it does not have a meaningful solution for 
t+ +w, which should be the equilibrium distribution. If we require that 
the total system tends to the Boltzmann distribution given by the total 
energy (including the interaction term V,,,) 

peq mexp[-(pi/2 + V, + V, + v,,,)] (1.48) 

the slowly relaxing local structure model will be recovered. In this case SF 
modify the irreversible term in x, in a way that is equivalent to substitut- 
ing V, with V in the Smoluchowski part of the operator 

a a 
- D, exp(V,/2) - exp(-V,) - exp(V,/2) 

ax, ax, 

a 

a a 

x exp(-p:/2) ~ exp( pT/4) 

- D,  exp(V/2) - exp(-V) - exp(V/2) 

aP I 

ax, ax, 
(1.49) 
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For clarity the streaming term for subsystem 1 has been rewritten with 
respect to the total V; (obviously aV2/ax, = O ) .  If the equilibrium is 
required to be independent of the interaction energy, that is, 

peq = exP[-( P:/2 + VI + V2)l (1 S O )  

a fluctuating torque model is obtained, with an AFP operator written as 

a 
(1.51) 

a 
8x2 ax2 

- D, exp(V/2) - exp(-V) - exp(V/2) 

where V is now simply V, + V., and the function f is defined by 

(1.52) 

These are essentially SF Eqs. (4.4) (SRLS case) and (2.36) (IT case). 

3. M F P K E  Approach 

It is easy to show that the AFPEs obtained in the previous section can be 
recovered from a complete system (x,, p, ,  x2, pz).  Let us consider a FPK 
operator defined with the potential V(x, , x2) and the collisional matrix 

(1.53) 

where uin, is a general function of xl, x2, which we shall see in the 
following is closely related to the function f used in the SF procedure. 
The total MFKP operator is 
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a av a a 
ax, 8x2 3P2 aP2 

+ ws ( p 2  - - - --) - w ;  exp(p:/4) - 

x exp(-p:/2) - exp(pi/4) 

a a 
- w i  exp(p:/4) - exp(-p:/2) - exp(p:/4) - wIat 

a p ,  aP 1 

a a 
x exp(p:/4) - exp(-p:/4 - p:/4) ~ exp(pt/4) 

aP I aP2 
a a 

- 0 5  exp(p:/4) - exp(-p:/2) - exp(p:/4) - w,,[ 
3P2 aPZ 

a a 
X exp( p:/4) - exp(-p:/4 - pT/4) - exp( p:/4) 

dPZ dP I 

a 
dP: 

(1.54) 

Let us now consider the projected operator obtained when p2 is a fast 
variable, so that subsystem 2 is diffusive. Following the TTOC procedure, 
a reduced MFKP operator is recovered that is given by 

ax, ax, apl 

1 av 
2 ax2 

@ 2  dX2 8x2 

- w ;  [(& - - -) g s ,  + g q  i, - - - 
(1.55 

a a 
- -  exp(V/2) - exp(-V) - exp(V/2) 

$2 
@ I  

where w ;  and g are given by 

2 
I (1.56 c @ i n ,  w 1  = w 1  - - 

@2 

@in[ 
g =  c 

@ 2  
(1.57) 

and the 3;  are the lowering and raising operators (p1/2 T a/apl) .  This 
reduced operator is a unified form for the cases treated by SF provided 
that one does not consider as an additive contribution the correction to 
wy.  (This is due to the fact that the simple treatment of SF merely adds 
the collisional term in p1 as a contribution of other unspecified “fast 
modes” without considering in detail any dependence of the friction 
coefficient for the first system). For instance, if win, is chosen to be zero, 
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the SRLS case is recovered; while if V is given only by V,(x,) and V,(x,) 
and wint is not zero, the FT case is found (just identify the SF function f 
with the actual g ,  thus relating the roles of V,,, in the SF approach and 
win, in the MFPK model through Eqs. (1.52) and (1.57)). From a purely 
algebraic point of view it is straightforward to understand why the AFPEs 
recovered by SF are so intimately related to a bidimensional MFPKE. In 
fact, it is clear that SF can obtain a model that is consistent with simple 
MFPKE provided that they modify, according to Haken’s conditions, 
only the irreversible drift coefficients (vector D) and the reversible drift 
coefficients (vector J) without changing the assumed diffusion tensor 
(matrix K).  The initial system in the SF derivation is made by a Kramers 
subsystem (xl, pl) and by a diffusive one x2 

Pe,=.N”exp(-~p,-Vl-V,) 2 (1.58) 

(1.59) 

(1.60) 

Here J ,  is associated with x , ,  J2 with p l ,  J3 with x2. The SL approach 
requires that we modify J by adding a term to the partial derivative of V,,, 
with respect to x i  

(1.61) 

This is the reactive force on the first system as a result of its interaction 
with the second system. In order to obtain a proper equation in the SRLS 
case, SF modify the irreversible term in x 2 ,  that is, D,. In the present 
notation this is merely equivalent to substituting Eq. (1.59) by Eq. 
(1.48). In the FT case SF modify J 3 ;  that is, they add a term -wsp,fto 
the reversible drift coefficient in x 2 ,  which was previously zero, and leave 
P,, unmodified. In both cases these are the minimal modifications 
required to achieve detailed balance. No changes in the diffusion tensor 
elements are introduced, although such possibilities exist. This “minimum 
effort” choice yields equations derivable from a MFPKE in which the full 
set of variable ( x i ,  p, ,  x 2 ,  p 2 )  is considered. 
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F. Discussion and Summary of Methodology 

In the final section of Section I we summarize our methodology and we 
discuss briefly some of the recent theoretical contributions of other 
authors, that we have found to be useful or complementary to our 
techniques. 

1 .  Discussion 

In the past 10 years or so, there have been a number of theoretical 
contributions to the fundamental problem of describing fluids in a mesos- 
copic context. If one wants to go beyond the usual Debye formulation, it 
is evident that the simplicity of one-body stochastic models must be 
abandoned. Stochastic models which are able to describe the dynamical 
behavior of a complex liquid (for instance, a highly viscous solution), 
exact their price in terms of a more involved formalism. One must be 
careful to achieve a balance between complexity in formulation and new 
information gained from the model. Often one can resort to a phe- 
nomenological model, which may or may not be the starting point for a 
more complete (and complicated) theoretical treatment. 

Kivelson and co-workers [36,37] have recently given some useful 
suggestions. Their models of liquids at high viscosity are “simple” and 
relatively easy to discuss: for instance, in [37] three different dynamical 
models are tested to predict some of the known properties of glassy 
liquids (a single body relaxing in a potential cage subjected to slow 
diffusion (a), or to a strong collision motion (b); or in the presence of 
torsional barriers (c)). Unfortunately, a purely qualitative discussion may 
be not sufficient to analyze “simple” models. It is necessary (i) to define 
exactly all the physical (and mathematical) hypotheses underlying a given 
model and then (ii) to treat it computationally in a rigorous way, in order 
to gain a complete understanding. In this chapter so far, we have 
attempted to clarify the first point, that is, we have described what we 
consider a useful methodology to define exactly the “equation of 
motions” of complex liquids. In Section I1 we consider the second point, 
and we present a systematic study of two- and three-body stochastic 
models, together with the description of the formal tools necessary to 
deal with the multidimensional Fokker-Planck operators in three dimen- 
sions. 

We have chosen to encompass our methodology in the necessarily 
limited framework of rotational FPK operators for describing the solute 
molecule and the solvent cages (slow fluctuating solvent structures); with 
translational FPK operators for describing stochastic fields (fast fluctuat- 
ing solvent structures). We are aware that a truly complete description 
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should also include in a many-body stochastic view, the interaction 
between the rotational and translational degrees of freedom of the solute 
and/or  of the solvent. In addition, one can use different formal ap- 
proaches to obtain improved (i.e., many-body) kinetic equations for the 
orientational distribution of a solute molecule strongly interacting with 
the solvent. In this respect, Bagchi et al. [47] have recently provided an 
analysis for explaining the anomalous rotational behavior of glassy liquids 
by including the translational motions of the solvent molecules and the 
density fluctuations of the solvent in the Debye-Smoluchowski descrip- 
tion, which is particularly interesting since it could provide links between 
mesoscopic stochastic theories and advanced microscopic and mode-mode 
coupling treatments. They obtain an integro-differential kinetic equation 
in the orientational distribution probability function of the solute, which 
is appropriate for highly viscous fluids only. No explicit mean field 
potential or inertial effects are included. 

Finally rototranslational coupling has been investigated in two recent 
papers by Wey and Patey [48,49], using the general approach of the Van 
Hove functions described within the Kerr approximation, which relates 
the rototranslational correlation function of the solute to the joint 
conditional probability in both the position and orientation of the mole- 
cule. This method is helpful in providing a physical and mathematical 
framework for rototranslational coupling in complex fluids. However, it 
requires as a starting point a well defined equation of motion for the 
conditional probability. Wey and Patey have tested only one-body sto- 
chastic equations (such as the Fick-Debye and the Berne-Pecora equa- 
tions), which are necessarily restricted. 

2. Summary 

We have attempted to provide a general approach to build multi- 
dimensional stochastic operators of the Fokker-Planck-Kramers type, 
for describing the time evolution of an extended set of degrees of 
freedom in complex liquids. This set contains the orientation of a probe 
molecule (first body) and its conjugate angular momentum vector, plus 
similar coordinates for a collection of N bodies. Each of them is an 
additional solvent body. Also, a collection of K stochastic fields is 
introduced. The time evolution operator for the system of 6 X ( N  + K + 
1) degrees of freedom is given by a sum over rotational and translational 
FPK operators. The only source of coupling (at this stage) is given by a 
potential depending on the mutual orientations of each body and field. 

For the case of two rotators and one stochastic field (N = 1 and K = l),  
it has been shown (using a TTOC expansion procedure) how to eliminate, 
as fast variables, some of the original degrees of freedom (e.g., the 
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stochastic field and its momentum) in order to obtain models which 
contain coupling terms just in the friction tensor of the rotators. The 
reduced two-body Fokker-Planck-Kramers (2BFPK) equation has been 
shown to be formally equivalent to the augmented Fokker-Planck equa- 
tion described by Stillman and Freed [33]. In the planar case, that is, 
when both the probe and the solvent body are described as planar 
dipoles, and any residual frictional effect due to a fast field is neglected, 
one obtains the IOM equation of Coffey and Evans [23-251. 

11. COMPUTATIONAL TREATMENT 

A. Introduction 

In the first section we have discussed a general methodology for the 
theoretical description of rotational dynamics of rigid solute molecules in 
complex solvents. Many-body Fokker-Planck-Kramers equations 
(MFPKE), including collective solvent degrees of freedom (either rota- 
tional ones, i.e., rigid bodies, or translational ones, i.e., vector fields), 
and their conjugate momenta, have been described as convenient tools to 
reproduce (or simulate) the complexity of an actual liquid system. 

In Section 11, we apply our stochastic models to physical systems of 
interest. Although the methodology was developed mainly to interpret 
complex features of ESR spectra over a wide range of temperatures, 
viscosities and solvent compositions, we believe that it could profitably be 
applied to many other experimental techniques, sensitive to rotational 
dynamics effects (such as dielectric relaxation, Raman and neutron 
scattering, NMR measurements) in liquids. Preliminary results on two- 
and three-body models, have been encouraging for the study of “slowly 
relaxing local structure” (SRLS) and “fluctuating torque” (FT) effects in 
isotropic liquids at moderate and high viscosities [39]; and for the 
interpretation of the bifurcation phenomenon in glassy and supercooled 
fluids [40]. Here we describe in detail the computational approach that is 
needed to  treat many-body MFPK operators, provide extensive results on 
several rotational models, and discuss their application for interpreting 
liquid behavior. 

In Section 1I.B we briefly review the usage of the complex symmetric 
Lanczos algorithm for treating MFPK operators, with particular attention 
to the problem of the choice of a suitable set of basis functions for a 
many-body problem. In Section 1I.C we consider the case of two spheri- 
cal rotators in a highly damped fluid (Smoluchowski regime) as a first 
example of the application of angular momentum coupling techniques to 
Fokker-Planck operators (two-body Smoluchowski model, 2BSM). This 
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approach is extended in Section 1I.D for studying a three-body system 
(two rotators plus one field), again in the overdamped regime (3BSM). 
Sections 1I.E. and 1I.F are devoted to the analysis of two-body models in 
the full phase space of rotational coordinates and momenta of the two 
rotators (two-body Kramers models, 2BKM), for a total of twelve 
degrees of freedom, all fully coupled together, at least in principle. 
Section 1I.G. contains a discussion of results concerning the various 
models, Rotational correlation functions and momentum correlation 
functions for body 1 are discussed, together with their dominant eigen- 
values; a detailed analysis of the dominant eigenmodes of the system is 
given in each case. 

Finally, a comparison of the MFPKE approach with molecular 
dynamics, ESR and stimulated light scattering experiments is contained in 
Section 1I.H. Detailed formulations of reduced matrix elements are given 
in Appendix C. 

B. Computational Strategy 

A powerful and general method for numerical solution of Fokker-Planck 
(FP) operators has been given by Moro and Freed [50]. It involves first 
establishing a complex symmetric matrix representation with a basis set of 
orthonormal functions, followed by a tridiagonalization procedure utiliz- 
ing the Lanczos algorithm. The usage of the conjugate gradient algorithm 
as an alternative procedure to tridiagonalize the initial matrix has been 
considered by Vasavada et al. [Sl]. A thorough review of the usage of 
iterative algorithms for solving stochastic Liouville and FP equations has 
been provided by Schneider and Freed [42]. The interested reader can 
consult this reference for further details. In this section we will focus our 
attention on the optimization, for the many-body systems considered, of 
the matrix representation rather than on the detailed computational 
treatment of the matrix itself. 

We start with the time-dependent conditional probability for the 
stochastic system P(q"lq, t ) ,  where q is a complete set of stochastic 
variables. The time evolution of P is governed by the Fokker-Planck- 
Kramers (FPK) equation [cf. Eq. (1.1)]: 

with the intial condition [cf. Eq. (1.2)] 

In the following, q will be the collection of rotational coordinates a,, 
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In,, . . . , I n N + ,  and fields X I ,  X , ,  . . . , X ,  and of their conjugate momenta 
L, , L,, . . . , LNcl  and PI,  P2, . . . , PK (cf. Section I .B. l ) .  The operator f is 
given as a sum of FPK operators, each of them defined in the (a,,, L,) or 
(Xk,Pk)  subspace. The total energy E of the system is given by the 
potential energy of interaction plus the total kinetic energy, and it defines 
the equilibrium distribution Peq(q), that is, the unique eigenfunction of f 
with a zero eigenvalue. Thus 

2 n = l  k = l  
(2.3) 

where ( ) standard for the integration on the full phase-space of q 
coordinates and momenta. It is useful to apply a similarity transformation 
to f ,  which renders it possible to obtain a complex symmetric matrix 
representation of the operator (or a real symmetric one, if f is Hermi- 
tean). The transformation is simply [cf. Eq. (1.13)] 

(2.5) 
f = p - l / ’ f p l / ’  

eq eq 

note that the “symmetrized” operator has the same eigenvalues as the 
unsymmetrized one, yhile the eigenfunctions are multiplied by Pi:”. 
Then by representing r in a complete orthonormal set of basis functions 
that are invariant under the classical time reversal operation, a complex 
symmetric matrix representation is guaranteed [42]. 

1. Correlation Functions, Spectral Densities and Lanczos Algorithm 

Usually we are interested in the (auto)correlation function G(t)  of an 
observable (i.e., a function of some stochastic coordinates). In the 
following we will consider either rotational correlation functions (i.e., 
involving the spherical harmonics y.m(Inl )) or momentum correlation 
functions (i.e., involving the components of L , )  for the first rotator (body 
l ) ,  identified as the solute molecule 
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Following the procedure developed by Moro and Freed, one obtains a 
matrix representation of f and a vector representation of the function 
FPLf (where F is the observable, for example, Y,m(f l l )  or Ll,) ,  utilizing 
an appropriate set of basis functions. Given the (complex) symmetric 
matrix r and the "right vector" v (formed from F P L f ) ,  one is left with 
the evaluation of the resolvent, the generic form of which is 

J ( & )  = v . (iwi + r)-l (2.10) 

We shall set N be the dimension of the finite basis subset used to 
represent f and v. The calculation can be performed with great efficiency 
using an iterative algorithm, such as the Lanczos algorithm, that trans- 
forms r into a tridiagonalized form. A continued fraction expansion is 
then obtained: 

2 2 
P n - 2  P n - 1  PZ P :  . . .  J ( N , " y w )  = 1 

iw + al-  io + a2- iw + a3- iw + a,-l- iw + a, 
(2.11) 

where n is the number of iterations (Lanczos steps) necessary to achieve 
convergence; usually n 4 N. The ayi coefficients are the diagonal elements 
of the tridiagonal complex symmetric matrix, whereas the Pi are the 
extradiagonal ones. Given the tridiagonal matrix, one can also calculate 
the eigenvalues Ai associated with the spectral density, by means of an 
efficient diagonalization procedure for tridiagonal matrices (e.g., the QR 
algorithm). 

In practice, although the entire procedure has been shown to be 
extremely effective in dealing with stochastic systems of 2-3 degrees of 
freedom (as well as in a stochastic Liouville equation with spin coordi- 
nates as well), its application to larger systems (with degrees of freedom 
ranging from 4 to as many as 12) is not so straightforward, because of a 
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dramatic increase in computation time and memory space requirements, 
even if a powerful supercomputer is used. The bottleneck is usually the 
matrix dimension N ,  which can be very large. It is therefore of consider- 
able importance to optimize the basis set utilized to represent the 
operator in order to minimize N .  

C. Two-Body Smoluchowski Model 

The model that we are going to consider in this section is given by two 
spherical rotators, simply called body 1 and body 2. Body 1 is the solute 
molecule, whereas body 2 is the instantaneous structure of solvent 
molecules in the immediate surroundings of the solute. The rest of the 
solvent is described as a homogeneous, isotropic and continuous viscous 
fluid. In the overdamped regime, the system is described by a 
Smoluchowski equation in the phase space (a,, a,), where In, and a2 
are respectively the set of Euler angles specifying the orientation of a 
fixed frame on body 1 with respect the lab frame, and an analogous set 
for the orientation of a fixed frame on body 2. 

In accordance with Table I ,  we will adopt from the beginning a 
dimensionless set of units. The symmetrized, rescaled time evolution 
operator for the model is then (compare with equation (1.30) for the 
three-body case) 

(2.12) 

The equilibrium distribution function P,, is defined according to Eq. 
(2.4); but the relevant part of the total energy is given just by the 
(rescaled to k , T )  potential energy function V (cf. Section I)  

V(f i , ,  st?) = -c U R P R ( f i 2  - f i l l  (2.13) 

where PR(f i )  is the Legendre polynomial of rank R ,  and Eq. (2.13) 
implies that U depends only on the relative orientations of bodies 1 and 2 
(the minus sign is only for convenience). We shall consider the expansion 
of Eq. (2.13) up to R = 2 (Le., only first or second rank interactions are 
included). 3, and 3, are respectively the “angular momentum” operators 
for body 1 and for body 2 in the laboratory frame of reference. For future 
usage, we define also the total “angular momentum” operator of the 
system as 

R 

j=j ,  + Q 2  (2.14) 

and we rewrite f in a more convenient form for the actual calculation of 
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the matrix elements (although less elegant than Eq. (2.12)) as 

= D,j :  + D,j: + D,G,  + D,G, (2.15) 

where the functions G ,  (m = 1 , 2 )  are defined 

1 1 

4 G m  = - ~ : z  + 5 ( j rnTrn) fun  (2.16) 

and where ( )fun indicates that what is contained within, acts as a 
function, not an operator. Also, T, is the torque acting on body m due to 
V,  that is, 

A 

T,, = -iJ,V (2.17) 

1. Uncoupled and Coupled Basis Sets 

A simple choice for a complete basis set of functions for obtaining a 
matrix representation r is the uncoupled set 

where each function IJ,M,K,) is given by [53,54] 

(2.19) 

Hereafter we let [ J ]  = 25 + 1. This is a complete orthonormal set given by 
the direct product of Wigner functions in the set of Euler angles a ,  and 
a,. Note that since the phase space is six dimensional, we have six 
distinct quantum numbers to cope with. However, the potential V that we 
have chosen is independent of the azimuthal angles y, and y2, and this is 
reflected in the fact that r will be diagonal in K ,  and K,. In the following, 
the K,, quantum numbers will be discarded from any formula, if not 
otherwise specified, since only the matrix block with K ,  = K2 = 0 will be 
of interest. 

It is possible to further reduce the number of effective (nondiagonal) 
quantum numbers taking advantage of the spherical symmetry of the fluid 
to determine other “constants of the motion” (note however that a11 the 
following considerations also hold for molecules with cylindrical symmet- 
ry). Let us consider the tensorial properties of the functions and 
operators defined in the previous paragraph with respect the “total” 
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angular momentum operator 3 given by Eq. (2.14). Obviously, 3, and 3, 
are themselves first rank tensor (i.e., vector) operators. Furthermore, one 
may rewrite the Rth component of the potential 

R 

u R P R ( s ~ , , ~ ~ ) = - v R  C (-)’IR-SO),IRSO), (2.20) 
S = - R  

in a form clearly showing its nature as a zero rank tensor (scalar) with 
respect to 3. Note that 

V d R l  
U R  = - 

8rr2 
(2.21) 

Since it is simply an exponential funstion of V ,  Peq is also a scalar. It 
follows directly from Eq. (2.12) that r itself is a scalar, as it must be to 
satisfy Eq. (2.1). One can also arrive at this result from Eq. (2.15), 
noting that T, and T2 are vector operators. It is also easy to see that 

The vector T will simply be called the “torque” in the following, without 
specifying any index. Note also that G, = G, = G. 

From these considerations, one concludes that the coupled basis set 

where C(J ,M,J ,M,  J M )  is a Clebsch-Gordan coefficient, is the most 
suitable set of basis functions for the present problem ( K ,  and K ,  have 
been neglected). In fact, due to spherical symmetry, both J and M are 
“good” quantum numbers, that is, r is diagonal in them (note that this is 
still true for cylindrical spatial symmetry, while for the completely 
asymmetric case only J is a “good” quantum number). 

The initial vector v must also be evaluated. Instead of computing 
directly the vector representation of the given rotational function (i.e., 
the spherical harmonic in a,, which is an element of the uncoupled basis 
set), one can evaluate the matrix representation of the function, which we 
call M, and then multiply it by the vector representation of P::, which 
we call vo, whose calculation is relatively easy utilizing the coupled basis 
set (see Appendix C.2). That is, let 

v = Mv, (2.24) 
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where A stands for the collection of quantum numbers, and the rotational 
observable F is simply the basis vector IPQO), that is, the Qth compo- 
nent of the P rank rotational function in ill. One can see by inspection 
that only the elements with J = 0, M = 0 are not zero in the vector vo,  and 
that only the matrix block defined by the conditions J ' = O ,  M ' = O ,  
A(JPJ') ,  M = Q has to be considered in M (A is the triangle condition); 
then the only nonzero elements of v are those for which J = P, M = Q. It 
follows that the only matrix block we need to compute in r satisfies the 
conditions J = P, M = Q. 

2. Matrix Elements 
A clear advantage of employing angular momentum coupling techniques 
is the possibility of using the Wigner-Eckart (WE) theorem to simplify 
the calculation of matrix elements in the coupled basis set [4]. In this 
two-body case, only two nondiagonal quantum numbers, J ,  and J2  have to 
be considered. (In general, if N + 1 rotators are present, a generalized 
coupled basis set allows one to have 2 N  effective nondiagonal quantum 
numbers.) 

Let us now consider f given by Eq. (2.12). The terms proportional to 
and j i  are diagonal; and we may write for the matrix element of Eq. 

(2.12) 

where the sets A and A' are characterized by K ,  = K ;  = 0,  K 2  = K ;  = 0, 
J = J' = P, M = M' = Q. The matrix element of G is 

that is, it is reduced to a sum of matrix elements of scalar products of 
operators of form A - B .  (For future convenience, we will call r,, the 
complete matrix element without the factor C ~ ~ ~ . S , , .  .) 
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In general one finds, from the WE theorem (weak form for noncom- 
muting operators) 

x ( J ;  .I; J” I I B I I J ; J ;  J’)6,, 3 6,, t 
(2.30) 

where 8, B are either f l  or T. The reduced matrix element o f f ,  is given 
by (see [41) 

J,+J2+J’+1[JJ,l l /2 [ J’, J J 2 )  
( J l J 2 J I l ~ l I I J I J ; J ’ >  = (-1 J J ,  1 

and the reduced matrix element of T is evaluated in Appendix C.l. The 
final matrix r is real symmetric. (Note that [JJ‘] = [J][J’]). 

The matrix element (M)AA. of Eq. (2.27) is easily computed from the 
WE theorem, and one obtains 

with J = P, M = Q ,  J’  = 0, M‘ = 0 and K ,  = Kj  = K2 = K ;  = 0. No ex- 
plicit dependence on Q is present; that is, given the spherical symmetry, 
all the rotational correlation functions are independent of Q. The compo- 
nents of the vector v,, are calculated in Appendix C.2. 

D. Three-Body Smoluchowski Model 

A further elaboration in describing the rotational dynamics of a solute in 
a complex environment is obtained by increasing the number of interact- 
ing solvent modes included in the time evolution operator. Theoretically, 
one could consider a new set of collective degrees of freedom for each 
relaxation process that is relevant for the solute dynamics. In practice, 
computational problems soon arise. However, a three-body description 
can still be treated rather easily, and it is the subject of the present 
section. Instead of considering a third rotational set of coordinates, we 
have chosen to define the third “body” as a stochastic, vector-like field X. 
One can think of a polarization coordinate, or of the fluctuating solvent 
dipole moment interacting with the probe. We shall consider only first 
rank interaction between the solute body and the solvent structure with 
the stochastic field. The effect of a fast field, as a source of a “fluctuating 
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torque” relaxation mechanism on the solute dynamics has already been 
partially explored. A summary of our computational results is presented 
in a later section. Here we deal with the formulation of the three-body 
model and its detailed mathematical treatment. 

1 .  The Model 

The symmetrized and rescaled time evolution operator for the system 
described by the set (In,, In,, X) is simply defined adding to the two-body 
operator in Eq. (2.12) the translational Smoluchowski term for the field 
to obtain [cf. Eq. (1.30)] 

where V, is the gradient operator in the X subspace. The equilibrium 
distribution function is now defined with respect the following potential 

Note that the dimensionless units defined in Table I are used, so that the 
curvature along the X direction is renormalized to 1. Here U, is the 
two-body interaction potential defined in Eq. (2.13). The two terms 
linear in X are the “dipolar” interaction energy (with u, and u, two unit 
vectors, respectively, along the z-axis of the fixed frame for the solute 
and the solvent body, cf. Fig. 1). Finally a quadratic term in X has been 
added in order to confine the fluctuations of the stochastic field. 

2. Matrix Representation 

An efficient treatment of the time evolution operator defined in Eq. 
(2.33) can be achieved by performing a canonical transformation of 
coordinates acting on the field X. We define the shifted vector X-.X - 
plu,  - p,u, as a new set of field coordinates. The potential is now 
decoupled 

V(In,, In,, X) = V,(In,, In,) + ;x2 (2.35) 

Note, however that the first rank coefficient in V, is modified slightly as 
u1 j. u 1  + pl p,. Although the potential form is simplified, new terms 
arise in the operator itself. Skipping straightforward algebraic details, the 
following equation is obtained: 
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f = f, + D,$+S- 

- D , ~ ~ ( ; T ,  + i j I ) ~ , S -  + D , ~ , S + U ~ ( ~ T ,  - i j , )  

- D 2 k (  i T 2  + &)U2S- + D,p2S+U2( $T2 - is,) 
- DIp:S+UtS- - D2pii$+UiS- (2.36) 

where S* = 4X 7 V, are the lowering and raising (vector) operators for 
the three-dimensional harmonic oscillator X. T,  and T, are the torques 
for body 1 and 2, respectively, due to V, (TI = -T, = T); finally U ,  and 
U, are 3 X 3 matrices defined (for m = 1,2)  as 

U m  = i ( j m  8 Urnl fun  (2.37) 

F0 is the two-body Smoluchowski operator given by Eq. (2.12). 
We now have to treat a system of 9 degrees of freedom. It is possible 

to use techniques of angular momentum coupling that are analogous to 
those employed for the two-body case. We define the angular momentum 
operators 

j= -ixxV, (2.38) 

j , = j + J  (2.39) 

and j is defined according to Eq. (2.14). In the following we will 
sometimes call 3 ‘‘little’’ angular momentum, 3 “big” angular momentum 
and 3, “total” angular momentum. We use a double coupling scheme to 
determine the most convenient basis set for the problem. We start from 
the uncoupled basis set 

I J , M , K , ;  J ,M,K, ;  m> = IJ,M,K,)IJ,M,K,)Injm) (2.40) 

given by the direct product of the uncoupled two-body set with the 
functions Injm) defined in terms of the polar coordinates X ,  6 and q5 for 
the field; that is, 
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where 2: is the pth order Laguerre polynomial of degree q [52]. As in 
the previous case, two quantum numbers, K ,  and K,, are obviously 
diagonal. Note that the system is still spherically symmetric and the 
potential does not depend on the Euler angles y, and y,. We shall neglect 
K ,  and K,  in the following whenever possible, since only the matrix 
blocks with K ,  = K ,  = 0 will be computed. 

We may proceed in our coupling scheme by first considering the 
coupling of f ,  and f ,  to give f ,  

(J ,J ,JM;  njm) = c C ( J , M , J , M , J M ) I J , M , ;  J2M2;  njm) (2.44) 

In this basis set only the two-body operator F, is diagonal with respect to 
J and M .  A fully coupled basis set is then obtained by coupling together 3 
and f to give 3, 

InJ,J,JjJ,M,) = C(JMjmJ,M,)IJ,J,JM; njm) (2.45) 

J ,  and M ,  are “good” (i.e., diagonal) quantum numbers for f .  Note that 
from an initial nine-dimensional problem, we are left with a five-dimen- 
sional one. The relevant quantum numbers are n ,  J , ,  J , ,  J and j .  

The calculation of the matrices r and M, and the vector vo can now 
proceed along the same lines as the previous section. The general vector 
element ( v , , ) ~  is exactly the same one given by Eq. (C.10) in Appendix 
C.2, but the factor 9 in that equation is now 6JTo6MT,6n,6,06,0. The 
matrix element (M)A,At is simply 

MlM2 

rnM 

(A[FlA’) = 6 J 2 J 2  !6 J 1 J 2  .6 J P  6 I 0  I 6 nn Jii! (8 IT’)’ 
(2.46) 

with J ,  = P, M ,  = Q ,  J k  = 0 ,  M k  = O .  It follows that the only matrix 
block of that is needed is defined by J ,  = J k  = P and M ,  = M k  = Q. 
The matrix r is obtained by a systematic usage of the WE theorem. We 
may write F of Eq. (2.36) in the straightforward but convenient form 

+ D1pl(O; + 0,) + O2p2(0): + 0,) 

+ Dip;$ : c, + D,&S : c2 (2.47) 

where the double dot symbol means the scalar product of two second 
rank Cartesian tensors. Here r, is the two-body operator; 0, and 0, are 
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vector operators, while 6, G I  and Gz are matrix operators, introduced for 
their convenient tensor properties (cf. below). They are defined according 
to the following equations (rn = 1,2): 

(2.48) 

s = $ + $ - I r  (2.49) 

(2.50) 

O , = S  - +  U , , , X ( ~ T , - ~ ~ , )  

G m =-u2 m 3  - 2 1  

where we have systematically used a Cartesian notation for representing 
the various tensor products and the general property of the matrix U, is 
given in terms of the unit matrices u,, by 

Ulnr = u, X r (2.51) 

where r is a generic vector. 
We can now consider each term separately. The two-body operator Fo 

has the same matrix representation in the two-body coupled basis set and 
in the present three-body coupled basis set. The next term in S S is 
diagonal in the chosen basis set [4]. Then the matrix representation of 
these diagonal terms is 

,.+A’- 

The term with off-diagonal elements from Ol is considered next. From 
the WE theorem (strong form), and using the equivalence between a first 
rank tensor product and the external product of two vectors, we obtain 

I + j + J ’ + J ,  J i J 
(A10;lA’) = i(2)’”(-) (i‘ J ,  T ]  

x ( J , J~J (~ [U,  CQ( ; T ~  - i ~ l ) ] ( l ) l l ~ ~ ~ ; ~ ’ )  

x (ni I I s + I I n ‘i ) aJrJ + aMTM (2.53) 

The reduced matrix element of ,$+ is evaluated in Appendix C.3; the 
reduced matrix element involving ul is straightforwardly evaluated using 
the general formula 

( J + I + J ’ )  2 { I  1 I }  
J J” J ’  (J,J,JII[;i  €3 B]‘”(IJ;J;J’) = [1]”’(-) 

J ;  I ;  I” 
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where and B can be T , ,  j,, u , .  The reduced matrix element of the 
torque and of the angular momentum operator are given respectively in 
Appendix C. 1 and in the previous section. The reduced matrix element of 
u1 is proportional to the reduced matrix element of the function 1100), 
(see Appendix C.l) 

(Jlll1llJI) [1]1/2 
(8 n-2)1'2 

X (2.55) 

where (Jl(I111J;) is the reduced matrix element of a first rank spherical 
harmonic. The matrix element proportional to 0: is obtained by exchang- 
ing A and A' in the previous formulas. The matrix elements of 0, and 0; 
are evaluated in a similar manner. 

Finally the matrix elements of the mixed operators in GI and G 2  may 
be considered. Both 5 and el (G , )  are second rank spherical tensors. It 
follows that 

and the reduced matrix element of !$ is given in Appendix C.3. The 
reduced matrix element of GI is proportional to the reduced matrix 
element of the function 1200), 

The calculation of the matrix element of g : G ,  proceeds along the same 
lines. Note that, as was the case with the two-body problem, a real 
symmetric matrix is obtained. 

E. Two-Body Kramers Model: Slowly Relaxing Local Structure 

The next model considered in this work is Kramers description of a 
two-body system, that is, the generalization of model (a) in order to 
account for inertial effects. The time evolution operator is given by a 
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Fokker-Planck-Kramers rotational operator involving the rotational 
coordinates of bodies 1 and 2, and their conjugate angular momenta, L, 
and L,. The final phase space to be considered is then twelve-dimension- 
al. In practice, we will find that only eight effective (nondiagonal) 
quantum numbers need to be considered in a properly chosen coupled 
basis set of functions, for two spherical (or symmetric) rotators. Still, the 
matrices needed for computations have huge dimensions, and the numeri- 
cal treatment is far from easy, especially when large potential couplings 
and/or low friction regimes are explored. 

1 .  Slowly Relaxing Local Structure Model 

Again we consider the symmetrized and rescaled time evolution operator, 
obtained by summation of the two rotational FPK operators €or bodies 1 
and 2, in the presence of the usual interaction potential. Since we suppose 
that both the bodies are spherical, no precessional terms are present [6] 
[cf. Eq. (1.14) €or the three-body case]: 

The same definition and properties of the torque vectors holds as in Eq. 
(2.17); V, and V2 are the gradient operators acting respectively in the 
subspaces L, and L,. The frequency parameter w ;  is the streaming 
frequency; it is the characteristic frequency for the deterministic motion 
of body 1 and it is inversely proportional to the square root of the 
moment of inertia I,. wf is the collisional frequency of body 1, and it is a 
direct measure of the dissipative effect due to the solvent, since it is 
proportional to the friction exerted by the medium on the body. Analog- 
ous parameters 6-1; and w i  are defined for body 2. See Table I for the 
explicit definitions. 

The equilibrium distribution function is defined with respect to the 
total energy of the system 

E = v”(n,, a,) + tL; + :L; (2.59) 

including the interaction potential between the two bodies and the 
(rescaled) kinetic energy. The coupling between body 1 and body 2 is 
given only by the potential; no “hydrodynamic” interactions, that is, 
frictional coupling terms, are included. A situation close to models in 
which the solute (body 1) reorients in a potential resulting from a slowly 
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relaxing solvent local structure (body 2) is then recovered, as was 
discussed previously. 

2. Matrix representation 

The numerical treatment is again based on the matrix representation of 
the operator on a coupled basis set of functions, followed by the 
application of the Lanczos algorithm. Following the same method used in 
the previous section, we define the two ‘‘little’’ angular momentum 
operators (one for each body) and the overall “little” angular momentum 
operator 

3, = -iL, x v, (2.60) 

3, = -iL, x V, (2.61) 

j=j, +j2 (2.62) 

and the total angular momentum operator 
. . A  

j , = j + J  (2.63) 

where 3 is defined by Eq. (2.14). It is easy to see that f is a scalar with 
respect to 3,. The initial uncoupled basis set is given by 

lJ,M,K,; J,M2K2; n l j lm, ;  n,i,m,> 

= lJ,M,K, )IJ2M2&) x l ~ 1 ~ 1 ~ , ~ l ~ 2 ~ 2 ~ 2 ~  (2.64) 

where the functions In,j,m,) and In,j,m,) are defined with respect to 
the polar coordinates L , ,  O , ,  6, and L,, O,, y2, respectively. As usual, the 
K ,  and K ,  quantum numbers are diagonal and will be neglected in the 
following. The coupling scheme involves the coupling of 3, and 3,; then 
the coupling of j, and j,; finally 3 and are coupled together to give j T .  

) J I M , ;  J2M2; n ,n2i , i , j4  

= c C(j,m,j2m,jm)IJ,M,; JzM,; n , j ,m, ;  n,j,m,> 
m1m2 

(2.65) 



ROTATIONAL MOTIONS IN LIQUIDS 131 

The total angular momentum quantum numbers, J ,  and M ,  are diagonal, 
that is, “constants of motion”. 

The calculation of the matrix r is now a straightforward application of 
previous formulas. The vector representation of P again has the ele- 
ments defined in Appendix C.3, where 9 IS now equal to 
6JToSM70Sj06j10Sj20Snl~6n~o.  The matrix elements for the rotational correla- 
tion function ( F  = Y p a )  (MR)A,A, are given by 

e9 

and J ,  = P, J ;  = 0, M ,  = Q ,  M k  = 0, K ,  = KI = K ,  = K ;  = 0; whereas 
the matrix elements (MJ)A,A, for the momentum correlation function 
(mth spherical component of the first rank tensor L , ,  F = L, ) are given 
by 

I (AIFln,)  = ( - ) l + / , + l ~ + J [ l J ] - ~ ~ ? [  j , f ] l i 2  (ii ;, 1 2  

1 1  

x ( a  ,il IIL, I 1  4L )6JlJi aJ2Ji 6 J J ” J j ’ 6 n 2 n ~ 6 j 2 j ~  (2 .69)  

and J ,  = 1, J ;  = 0, M ,  = m, M ;  = 0, K ,  = KI = K, = K ;  = 0. We con- 
clude this section by writing down the complete matrix element for the 
time evolution operator: 
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(2.70) 

Note that the final matrix is complex symmetric, since the operator is 
non-Hermitean. 

F. Two-Body Kramers Model: Fluctuating Torques 

As was discussed in Section I ,  if one considers a three-body Kramers 
model and projects out the third set of solvent coordinates (and the 
conjugate momenta), a MFPKE is found in the remaining coordinates, 
with a frictional coupling between the solute and the solvent cage. This is 
a system close to the fluctuating torque (FT) case discussed by Stillman 
and Freed, except that an explicit description of the momentum of the 
solvent cage is added and the structure of the (frictional) coupling is 
deduced from an analytic model, rather than chosen to satisfy conditions 
of detailed balance. Therefore a more precise model is obtained at the 
price of less freedom in choosing the physical parameters. 

1. Fluctuating Torque 

After projecting the fast variables X, P what is left is a two-body Kramers 
operator having the form [i.e., Eq. (1.16)] 

The streaming operator is substantially unchanged compared to Eq. 
(2.58) (except for an additional contribution to the first rank interaction 
potential). The collisional operator is defined in terms of an orientational 
dependent friction matrix (or “collisional frequency” matrix in the pres- 
ent dimensionless formulation) as 

(2.72) 1 W f l  - WJJ; - (w ,W2) ’ /2u ,u ,  
- ( W 1 W 2 ) 1 / z u 2 u 1  w;1- W 2 U 2  2 
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where are defined with respect p1,2,  D, [see Eqs. (1.19)-(1.21)]. 
Obviously, all the new collisional terms retain the characteristic tensorial 
properties allowing the use of the same coupled basis set as in the 
previous section. 

2. Matrix Elements 

The calculation of the matrix M and the starting vector v proceeds exactly 
along the same lines discussed in the previous paragraph (since they 
depend only on the structure of P,,). The matrix element r can be 
conveniently evaluated by Eq. (2.71) in the form 

+ [ S y l + S y ] : [ ( w ; +  502) l+02eI]  2 

where 

(2.74) 

g y  = gl+ 0s; - S1(0)1 (2.75) 

gg) = 6: . g ;  (2.76) 

9;;) = $+ 8 8 ;  - qq (2.77) 

with i, j = 1 , 2  ( i  # j ) .  These are the zero and second rank irreducible 
tensors built from Slz,  the raising and lowering operators in L, 

1 
. sl- ^ ( O )  - - g +  

Sl - 3  I 

3 

g z  1 = 1 2 Ll Ql (2.78) 

The collisional operator is obtained by taking the product with the zero 
and second rank irreducible tensors built from U,,-that is, 

(2.79) 

(2.80) 
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The matrix element of the streaming operator f5 is equal to the one 
evaluated in Section E (cf. the terms in uf and w i  in Eq. (2.70)). The 
contribution of the collisional part is given by 

{ hlFcJh’) = s, + s2 + s I 2  + s2, (2.81) 

That is, it is a sum of matrix elements from the four terms that Fc was 
split into in Eq. (2.73). Here only s, and s , ~  are written, since s2 and s21 
are obtained by permuting indices 1 and 2 (note that J ,  = J k ,  M ,  = Mk, 
K = K ’ = O  K = K ’ = O ) .  

1 I 7 1  1 

1 ; + ’  + J , + J , i J + J ’ + J ,  [ j j ’ J J ’ J , J i ] ’ / 2  ( d  J 2 J ‘  d)  . (-)” + 2 w, ( - )  ’ 
(iI 2 i;) 

0 0 0  

{ J J T } { j l  i j 2 ] { J 1  J J 2 }  
J ’  j ’  2 j ’  J ;  2 J’ J I  2 

The reduced matrix elements are given by 

(2.83) 



x ( 11 1 1 ; )  ( 12 G) 
- k O k  - k O k  

(2.85) 

(2.86) 

(2.87) 

G .  Results 

In this section, we discuss the numerical results we have obtained for the 
four different models discussed in the previous sections: the 2BSM 
(two-body Smoluchowski model) and its generalization given by the 
3BSM (three-body Smoluchowski model) describe diffusional systems; 
whereas the 2BKM-SRLS (two-body Kramers model in the “slowly 
relaxing local structure” version) and the 2BKM-FT (two-body Kramers 
model in the “fluctuating torque” version) include the conjugate momen- 
tum vectors. 

In discussing a many-body stochastic model one needs an overview of 
the time evolution behavior of the system over a significantly large range 
of parameters, in order to explore physical regimes of interest. Thus, in 
all cases, we have obtained results for both first and second rank 
orientational correlation functions for the first body (the solute), while 
varying the energetic and frictional parameters; for the inertial models, 
momentum correlation functions have also been computed. 

A common feature of all the stochastic models considered here is the 
presence of several important decay times, usually at least as many as the 
number of stochastic coordinates included in the system, but even more 
are found under certain conditions. To display the multiexponential decay 
of a process one can use different representations. First of all, such 
evidence can be obtained by plotting the correlation function G ( t )  versus 
t. Also a representation in the frequency domain by spectral densities 
J ( w )  versus w can be useful. Cole-Cole plots may also have a certain 
usefulness, but they do not give much more information. We have chosen 
to give only time domain representations here, largely for reasons of 
space. A few spectral densities are shown in our initial reports. If a more 
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detailed description is required, the best way to proceed seems to be the 
analysis of the dominant kinetic constants (i.e., eigenvalues of the time 
evolution operator), contributing significantly to the decay process (see 
below). The correlation function G(t )  can be written in terms of the 
eigenvalues hi of the time evolution operator according to the following 
expansion: 

G(t) = c w i  exp(-Ait) 
i 

(2.88) 

where each eigenvalue hi has a weight w i .  In all the table entries we show 
the set of eigenvalues having weights larger than or equal to a cut-off 
value E .  A measure of the overall correlation time of the process (i.e., the 
best approximation to a single exponential decay constant) is given, 
calculated as the zero frequency value of the spectral density. 

It is interesting to investigate the eigenvectors corresponding to the 
dominant eigenvalues in a few cases. From the explicit expansion over the 
basis functions used for the matrix representation of the operator, one 
can obtain insight into the kind of motion represented by the ith mode 
(e.g., one can decide if it is mainly the isolated motion of the first body or 
if the solvent degrees of freedom are involved). Also, it is possible to gain 
information on the truncation criteria with respect to the different 
quantum numbers. This is particularly useful in dealing with models with 
more than three relevant (i.e., nondiagonal) quantum numbers. 

1 .  Computational Procedures 

As pointed out above, the numerical algorithm with which we have 
chosen to evaluate the eigenvalues and eigenvectors of the many-body 
stochastic operators, and to compute the temporal decay of a given 
correlation function G(t) ,  consists of: (1) determining a suitable set of 
basis functions via standard angular momentum techniques; (2) obtaining 
the matrix representation r of the symmetrized operator, and the initial 
vector v; (this vector is calculated as the product of the matrix representa- 
tion M of the observable function and the vector vo,  which represents 
Pi; ,  cf. Eq. (2.26));  ( 3 )  applying a real symmetric implementation of the 
Lanczos algorithm (for Hermitean operators) or a complex symmetric 
one (for non-Hermitean cases) to transform r into tridiagonal form T; 
(4) obtaining from T, by straightforward diagonalization of the eigen- 
value spectrum, and computing the temporal decay of G( t )  (alternatively 
one can directly calculate the spectral density J ( o )  using a continued 
fraction expansion [50,42]); ( 5 )  determining the eigenvectors correspond- 
ing to some eigenvalues (see below). 

In this subsection, we wish to clarify some technical details concerning 
the computational procedure. One of the most serious difficulties one has 
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to  deal with when considering a many-body operator is how to check the 
internal consistency of the expressions. After all, when considering a 
2BKM one has to solve a partial differential equation with 12 variables 
(i.e., the dimension of the phase space), and this is by no means a 
straightforward task. First of all, one requires a test of the algebraic 
formulas that give r, vo, and v. Even though the procedures are clear, 
and based on the systematic usage of the Wignert-Eckart theorem, the 
large numbers of degrees of freedom involved, means possible algebraic 
mistakes that may be hard to find. For this purpose, we have found it 
very useful to check our algebraic manipulations made by hand, using 
standard computer algebra software packages such as Reduce [55] and 
Mathematica [56]. We did not write complete programs to perform all the 
algebraic steps; rather we checked separate parts of the calculation. 

Another very useful way of testing our results has been to use two 
independent routes to numerically evaluate vo. The first route is reviewed 
in Appendix C. It consists of the direct evaluation of the vector elements 
in the coupled basis which largely involves numerical integration of the 
function Pa:. This direct approach is convenient for the case of rotation- 
al invariance which is characteristic of the physical systems we have 
studied. A second route has previously been recommended by Moro and 
Freed [50] and Schneider and Freed [42]. They consider the following 
expression 

lim [sI + r]vo = c (2.89) 
s4n+ 

where c is an arbitrary vector with a component along vo. Equation (2.89) 
follows from the fact that P:i* is the unique stationary solution of the 
symmetrized operator f (i.e., the eigenvector of zero eigenvalue). One 
solves it for v", by using some efficient algorithm for large linear systems 
(e.g., the conjugate gradient method). Note that the calculation of vo by 
Eq. (2.89) involves the direct use of r. Since the formulation of r is 
algebraically the most challenging step, we regarded agreement of vo 
obtained by both methods as largely a confirmation of a correctly 
expressed r (as well as a reliable v"). In all cases we succeeded with this 
test to within appropriate numerical round-off error. 

When one is reasonably sure of the algebraic formulas and programs, 
it is still necessary to check the convergence of each calculation, both with 
respect to the number of basis functions used (i.e., the dimension N of r) 
and the number of Lanczos steps (i.e., the dimension n of T). Although 
one can use sophisticated pruning procedures in order to minimize N [51], 
we have used the simple criterion of repeating the calculation by increas- 
ing both N and n until there is a relative variation less than 6 in all the 
dominant eigenvalues (i.e., all the eigenvalues having a relative weight 
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larger than or equal to E ) .  Usually S and E have both been chosen to 
equal 

Finally, we discuss the procedure adopted to evaluate the eigenvector 
vA corresponding to a chosen eigenvalue A,  since that is not normally 
delivered by the Lanczos algorithm. We have followed the suggestion of 
Cullum and Willoughby [57]. First, we evaluated the eigenvector v', of T 
in the basis of Lanczos vectors. This is an n-dimensional vector, which 
can be easily obtained by an expression similar to Eq. (2.89) 

lim [(s + h)I + Tlv', = c (2.90) 
s+o+ 

One can now evaluate the Ritz eigenvector vA (i.e., the eigenvector of r 
in terms of its components in the original basis set) by simply premultiply- 
ing vl  by the transformation matrix S 

T = S"rS (2.91) 

where S is the n X N matrix whose ith row is the ith Lanczos vector 
(within round-off errors, S"S is the n x n unit matrix). This last proce- 
dure is usually done by repeating the Lanczos tridiagonalization, so there 
is no need to store the n Lanczos vectors. 

2. Two-Body Smoluchowski Model 

We start with the two-body Smoluchowski model (2BSM); the details of 
the formulation (matrix and starting vector) are discussed in Section 1I.C. 
A stochastic system made of two spherical rotators in a diffusive 
(Smoluchowski) regime has been used recently to interpret typical bifur- 
cation phenomena of supercooled organic liquids [40]. In that work it was 
shown that the presence of a slow body coupled to the solute causes 
unusual decay behavior that is strongly dependent on the rank of the 
interaction potential. 

In all the 2BSM calculations presented here, the diffusion coefficient 
D ,  equals 1, which defines the unit of frequency (inverse time); whereas 
the diffusion coefficient for the solvent, D, varied from 10 (very fast 
solvent relaxation) to 1, 0.1, 0.01 (very slow solvent relaxation). In the 
D, = 10 case, one finds that the reorientation of  the solute is virtually 
independent of the solvent; a projection procedure could easily be 
adopted in this case to yield a one-body Smoluchowski equation for body 
1 with perturbational corrections from body 2. The temporal decay of the 
first and second rank correlation functions is then typically monoexponen- 
tial. When the solvent is relaxing slowly (i.e., D, is in the range 1-O.Ol),  
the effect of the large cage of the rapid motion of the probe becomes 
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increasingly important. The decay of the correlation functions of both 
ranks is already different from that of a single exponential for D, = 1, and 
for D, = 0.1 the biexponential behavior is characterized by significantly 
different decay rates, since the separation of timescales for the two bodies 
is large. 

An analysis of the different effects of a first rank versus a second rank 
interaction is instructive. A second rank potential between the bodies 
generates an apparent “strong collision” effect; that is, the motion of the 
first body in the potential field of the slow solvent body is dominated by 
the jump rate between the two equivalent minima. Only correlation 
functions of odd parity are sensitive to this jump motion, so that if an 
averaged unique correlation time is computed, this is significantly modi- 
fied for the first rank case (i.e., 7,) with respect to the free diffusional 
motion (i.e., no coupling) regime. Thus, for a fairly large range of 
parameters, the ratio r 1 / T 2  is lower than 3 (which is the typical value for a 
purely diffusive description) and often very close to 1 (typical of a strong 
collision description). When the potential is first rank, there is no 
comparable “jump” motion, and the ratio 7 / T  is always equal to or 
larger than 3. In other words, a second rank interaction potential (i.e., 
u2 ZO) causes the solute (usually the faster body) to reorient in the 
instantaneous cage induced by the solvent (the slower body) or to jump 
to the other potential minimum. In this way, a two-body small-step 
diffusion model can exhibit features that are typical of a one-body-strong 
coffision description [58]. 

The numerical results are collected in Tables I1 and 111 (respectively, 
for first rank and second rank correlation functions for a first rank 
interaction potential) and Tables IV and V (second rank potential). Each 
entry is defined for a value of the potential parameter ( u ,  or u , )  and a 
value of the diffusion coefficient of the second body ( D 2 ) .  The column on 
the left contains the zero-frequency spectral density or autocorrelation 
time 

1. 

+ia 

71.2  = dtG1.2 = 5 1 . m  (2.92) 

(note again that the subscript 1, 2 refers to both T~ and T ~ ,  etc.), whereas 
the column on the right contains the dominant eigenvalue(s) of the 
process: for each mode A; the corresponding weight wi is given in 
parentheses. 

Let us consider Table I1 in detail. When the solvent body is fast 
( D ,  = lo), the only effect on the rotational correlation time T~ for an 
increasing tight interaction with the probe is a modest variation (going 
from 0.5 for u 1  = 0 to 0.53 for u ,  = 4). The solvent readjusts itself rapidly 



Y
 

b
 

0
 

T
A

B
L

E
 I

1 
2B

S
M

: 
Fi

rs
t 

R
an

k 
C

or
re

la
ti

on
 T

im
es

 (
L

ef
t 

C
ol

um
n)

, 
D

om
in

an
t 

E
ig

en
va

lu
es

 (
R

ig
ht

 C
ol

um
n)

" 
an

d 
So

m
e 

of
 t

he
 

C
or

re
sp

on
di

ng
 E

ig
en

ve
ct

or
sb

 

D
2 

"1
 

10
.0

 
1 .o

 
0.

0 
0.

50
0 

2.
00

0(
1.

00
0)

 
0.

50
0 

2.
00

0 
(1

,0
00

) 
0.

50
0 

1.
0 

0.
50

6 
1.

97
0 

(0
.9

97
) 

0.
55

5 
1.

50
0 

(0
.6

50
) 

0.
99

9 

2.
0 

0.
51

9 
1.

91
9 

(0
.9

96
) 

0.
66

5 
1.

25
1 

(0
.7

63
) 

1.
98

0 

3.
0 

0.
52

9 
1.

88
3 

(0
.9

96
) 

0.
75

7 
1.

13
9 

(0
.8

31
) 

2.
81

2 

4.
0 

0.
53

4 
1.

86
3 

(0
.9

96
) 

0.
81

5 
1.

08
9 

(0
.8

70
) 

3.
38

0 

2.
86

5 
(0

.3
40

) 

4.
15

3 
(0

.2
74

) 

5.
82

9 
(0

.1
56

) 

7.
76

5 
(0

.1
19

) 

0.
1 2.
00

0 
(1

.0
00

) 
0.

50
0 

0.
19

7 
(0

.1
18

) 
5.

41
0 

2.
19

0 
(0

.8
69

) 
0.

19
1 

(0
.3

34
) 

14
.9

7 
2.

72
5 

(0
.6

31
) 

0.
18

8 
(0

.5
04

) 
23

.1
1 

3.
51

5 
(0

.4
48

) 
0.

18
6 

(0
.6

12
) 

28
.7

4 
4.

46
9 

(0
.3

43
) 

0.
01

 

2.
00

0 
(1

.0
00

) 
0.

01
9 

(0
.0

96
) 

2.
16

0 
(0

.7
62

) 
0.

01
9 

(0
.2

92
)2

a 
2.

60
3 

(0
.5

71
)2

h 
0.

01
9 

(0
.4

56
) 

3.
28

1 
(0

.4
28

) 
0.

01
9 

(0
.5

60
)*

' 
4.

13
0 

(0
.3

56
1'

d 

E
ig

en
va

lu
e 

2a
 

E
ig

en
va

lu
e 

2b
 

E
ig

en
va

lu
e 

2c
 

E
ig

en
va

lu
e 

2d
 

lc
,l'

 
J

l 
J

, 
k,

IZ
 

J
, 

JZ
 

Ic
,IZ

 
Jl

 
J

2
 

Ic
,IZ

 
J

l 
J

, 

0.
76

1 
0 

1 
0.

00
3 

0 
1 

0.
48

1 
0 

1
 

0.
51

2 
1 

0 
0.

07
7 

1
 

0 
0.

70
5 

1 
0 

0.
14

2 
1 

0 
0.

24
5 

1
 

2 
0.

14
6 

1 
2 

0.
23

7 
1 

2 
0.

27
5 

1 
2 

0.
12

9 
2 

1 
0.

00
6 

2 
1 

0.
03

6 
2 

1 
0.

03
7 

2 
1 

0.
08

1 
2 

3 
0.

00
8 

2 
3 

0.
01

6 
2 

3 
0.

05
3 

2 
3 

0.
01

7 
3 

2 
0.

00
1 

3 
2 

0.
00

4 
3 

2 
0.

01
2 

3 
4 

0.
00

5 
3 

4 
0.

00
4 

4 
3 

"T
he

se
 a

re
 c

al
cu

la
te

d 
fo

r 
D

, =
 1

 (
w

hi
ch

 d
ef

in
es

 t
he

 f
re

qu
en

cy
 s

ca
le

) 
fo

r 
in

cr
ea

si
ng

 f
ir

st
 r

an
k 

po
te

nt
ia

l 
co

up
lin

g.
 F

or
 e

ac
h 

'J
 i

s 
co

ns
ta

nt
 a

nd
 e

qu
al

 t
o 

1.
 

do
m

in
an

t 
ei

ge
nv

al
ue

 t
he

 r
el

at
iv

e 
w

ei
gh

t 
is

 g
iv

en
 (

in
 p

ar
en

th
es

es
). 



T
A

B
L

E
 I1

1 
2B

SM
: 

Se
co

nd
 R

an
k 

C
or

re
la

ti
on

 T
im

es
 (

L
ef

t 
C

ol
um

n)
, 

D
om

in
an

t 
E

ig
en

va
lu

es
 (

R
ig

ht
 C

ol
um

n)
” 

an
d 

S
om

e 
of

 t
he

 
C

or
re

sp
on

di
ng

 E
ig

en
ve

ct
or

sb
 

0
2

 

u
i 

10
.0

 
1 .o

 
0.

1 
0.

01
 

0.
0 

0.
16

7 
6.

00
0(

1.
00

0)
 

0.
16

7 
6.

00
0 

(1
.0

00
) 

1.
0 

0.
16

8 
5.

91
0(

0.
99

4)
 

0.
17

5 
3.

80
5 

(0
.1

97
) 

6.
29

7 
(0

.4
64

) 
6.

63
2 

(0
.3

27
) 

2.
0 

0.
17

1 
5.

75
6 

(0
.9

90
) 

0.
19

6 
3.

53
2 

(0
.4

27
) 

7.
16

0 
(0

.3
76

) 
8.

19
4 

(0
.1

52
) 

3.
0 

0.
17

5 
5.

65
0 

(0
.9

89
) 

0.
21

7 
3.

35
3 

(0
.5

72
) 

8.
49

9 
(0

.3
19

) 
10

.4
5 (

0.
07

2)
 

4.
0 

0.
17

7 
5.

59
1 

(0
.9

88
) 

0.
23

4 
3.

24
9 

(0
.6

60
) 

10
.1

7 
(0

.2
68

) 
13

.3
4 

(0
.0

36
) 

0.
16

7 
6.

00
0 

(1
.0

00
) 

0.
18

7 
0.

59
1 

(0
.0

06
) 

2.
40

4 
(0

.0
67

) 
6.

18
6 

(0
.8

95
) 

0.
26

9 
0.

57
5 

(0
.0

56
) 

2.
97

5 
(0

.1
75

) 
6.

73
8 

(0
.6

90
) 

0.
40

4 
0.

56
5 

(0
.1

45
) 

3.
81

3 
(0

.2
81

) 
7.

64
7 

(0
.4

70
) 

0.
55

0 
0.

55
9 

(0
.2

44
) 

4.
80

5 
(0

.3
33

) 
8.

89
8 

(0
.2

93
) 

0.
16

7 
6.

00
0(

1.
00

0)
 

0.
24

4 
0.

05
9 

(0
.0

04
) 

2.
18

6 
(0

.0
62

) 
6.

16
3 

(0
.8

45
) 

0.
83

8 
0.

05
9 

(0
,0

39
)’

” 
2.

89
1 

(0
.0

28
)3

h 
6.

62
5 

(0
.5

00
)“

 
2.

02
7 

0.
05

9 
(0

,1
01

) 
3.

31
9 

(0
.2

37
) 

7.
36

4 
(0

.2
58

) 
3.

42
2 

0.
05

9 
(0

.1
95

)’
d 

4.
16

9 
(0

.3
01

)”
 

8.
35

0 
(0

.1
34

)”
 

E
ig

en
va

lu
e 

3a
 

E
ig

en
va

lu
e 

3b
 

E
ig

en
va

lu
e 

3c
 

E
ig

en
va

lu
e 

3d
 

E
ig

en
va

lu
e 

3e
 

E
ig

en
va

lu
e 

3f
 

Id
 

J
, 

Jz
 

IC
,I

Z
 

J
, 

J2
 

IC
,l

2
 

J
, 

J
, 

lc
,1

2 
Jl

 
J

?
 

IC
,I

Z
 

J
, 

J
, 

lC
,l

2
 

Jl
 

J*
 

0.
76

1 
0 

2 
0.

00
9 

0 
2 

0.
05

5 
1 

1 
0.

48
1 

0 
2 

0.
00

1 
0 

2 
0.

10
2 

1 
1 

0.
09

4 
1 

1 
0.

69
4 

1 
1 

0.
00

3 
1 

3 
0.

17
2 

1 
1 

0.
46

7 
1 

1 
0.

12
9 

1 
3 

0.
13

0 
1 

3 
0.

24
1 

1 
3 

0.
63

0 
2 

0 
0.

24
5 

1 
3 

0.
29

0 
1 

3 
0.

29
4 

2 
0 

0.
00

3 
2 

0 
0.

02
6 

2 
0 

0.
26

5 
2 

2 
0.

01
9 

2 
0 

0.
08

8 
2 

0 
0.

00
9 

2 
2 

0.
00

4 
2 

2 
0.

01
1 

2 
2 

0.
02

1 
2 

4 
0.

02
6 

2 
2 

0.
03

1 
2 

2 
0.

39
0 

2 
4 

0.
00

1 
2 

4 
0.

01
5 

2 
4 

0.
01

8 
3 

1 
0.

04
5 

2 
4 

0.
09

0 
2 

4 
0.

02
8 

3 
1 

0.
00

1 
3 

1 
0.

00
5 

3 
3 

0.
00

2 
3 

3 
0.

01
4 

3 
1 

0.
03

5 
3 

5 
0.

00
4 

3
 

5 
0.

00
2 

3 
3 

0.
00

4 
4 

2 
0.

01
2 

3 
5 

0.
00

6 
4 

6 

“T
he

se
 ar

e 
ca

lc
ul

at
ed

 f
or

 D
, =

 1
 fo

r 
in

cr
ea

si
ng

 fi
rs

t 
ra

nk
 p

ot
en

tia
l 

co
up

lin
g.

 F
or

 e
ac

h 
do

m
in

an
t 

ei
ge

nv
al

ue
 th

e 
re

la
tiv

e 
w

ei
gh

t 

’5
 i

s 
co

ns
ta

nt
 a

nd
 e

qu
al

 t
o 

2.
 

is
 g

iv
en

 (
in

 p
ar

en
th

es
es

).
 



T
A

B
L

E
 I

V
 

2B
SM

: 
Fi

rs
t 

R
an

k 
C

or
re

la
ti

on
 T

im
es

 (
L

ef
t 

C
ol

um
n)

, 
D

om
in

an
t 

E
ig

en
va

lu
es

 (
R

ig
ht

 C
ol

um
n)

" 
an

d 
So

m
e 

of
 t

he
 

C
or

re
sp

on
di

ng
 E

ig
en

ve
ct

or
sb

 

1.
0 

~~
 

0.
1 

0.
01

 

0.
0 

0.
50

0 
2.

00
0(

1.
00

0)
 

0.
50

0 
2.

00
0 

(1
.0

00
) 

0.
50

0 
1.

0 
0.

50
5 

1.
97

9 
(0

.9
99

) 
0.

53
4 

1.
83

5 
(0

.9
73

) 
0.

60
8 

2.
0 

0.
51

8 
1.

92
6 

(0
.9

61
) 

0.
64

1 
1.

48
7 

(0
.9

45
) 

1.
06

8 

3.
0 

0.
53

1 
1.

87
7 

(0
.9

98
) 

0.
77

2 
1.

22
6 

(0
.9

37
) 

2.
02

7 

4.
0 

0.
54

0 
1.

84
9 

(0
.9

98
) 

0.
86

9 
1.

09
7 

(0
.9

47
) 

3.
26

3 

9.
36

8 
(0

.0
45

) 

12
.3

9 
(0

.0
41

) 

16
.6

3 
(0

.0
31

) 

2.
00

0 
(1

.0
00

) 
1.

29
1 

(0
.6

37
) 

3.
10

8 
(0

.3
56

) 
0.

69
3 

(0
.6

94
) 

4.
42

4 
(0

.2
75

) 
0.

38
7 

(0
.6

94
) 

6.
30

5 
(0

.1
58

) 
0.

25
6 

(0
.8

31
) 

8.
75

3 
(0

.1
02

) 

0.
50

0 
2.

00
0 

(1
.0

00
) 

0.
64

2 
1.

06
4 

(0
.4

94
) 

2.
81

1 
(0

.4
91

) 
1.

35
3 

0.
49

5 
(0

.6
27

)'"
 

4.
04

0 
(0

.3
37

)J
b 

3.
52

2 
0.

21
0 

(0
.7

31
) 

5.
77

4 
(0

.2
24

) 
9.

16
7 

0.
08

7 
(0

.8
01

)''
 

8.
02

5 
(0

.1
43

)4
d 

E
ig

en
va

lu
e 

4a
 

E
ig

en
va

lu
e 

4b
 

E
ig

en
va

lu
e 

4c
 

E
ig

en
va

lu
e 

4d
 

k,
IZ

 
J

, 
J

2
 

IC
,I

Z
 

J
, 

J*
 

Ic
,1

2 
J

, 
J

2
 

I
c

f
 

J
, 

J
, 

0.
32

1 
1
 

0 
0.

64
0 

1 
0 

0.
26

3 
1
 

0 
0.

61
0 

1 
0 

0.
62

0 
1 

2 
0.

33
1 

1
 

2 
0.

51
6 

1
 

2 
0.

31
0 

1
 

2 
0.

02
5 

3 
2 

0.
01

5 
3
 

2 
0.

08
6 

3 
2 

0.
03

5 
3 

2 
0.

03
4 

3 
4 

0.
01

2 
3 

4 
0.

11
2 

3 
4 

0.
02

7 
3 

4 
0.

01
0 

5 
4 

0.
00

9 
5 

4 
0.

01
2 

5 
6 

0.
00

6 
5 

6 

"T
he

se
 a

re
 c

al
cu

la
te

d 
fo

r 
D

, =
 1

 f
or

 i
nc

re
as

in
g 

se
co

nd
 r

an
k 

po
te

nt
ia

l 
co

up
lin

g.
 F

or
 e

ac
h 

do
m

in
an

t 
ei

ge
nv

al
ue

 t
he

 r
el

at
iv

e 
w

ei
gh

t 
is

 g
iv

en
 (

in
 p

ar
en

th
es

es
). 

'J
 i

s 
co

ns
ta

nt
 a

nd
 e

qu
al

 t
o 

1.
 



T
A

B
L

E
 V

 
2B

S
M

: 
S

ec
on

d 
R

an
k 

C
or

re
la

ti
on

 T
im

es
 (

L
ef

t 
C

ol
um

n)
, 

D
om

in
an

t 
E

ig
en

va
lu

es
 (

R
ig

ht
 C

ol
um

n)
” 

an
d 

S
om

e 
of

 t
he

 
C

or
re

sp
on

di
ng

 E
ig

en
ve

ct
or

s’
 

u,
 

10
.0

 
1 .o

 
0.

1 
0.

01
 

0.
0 

0.
16

7 
6.

00
0(

1.
00

0)
 

0.
16

7 
6.

00
0(

1.
00

0)
 

0.
16

7 
1 .

O 
0.

16
8 

5.
93

6 
(0

.9
98

) 
0.

17
8 

4.
78

5 
(0

.5
95

) 
0.

25
2 

7.
56

7 
(0

.3
86

) 

2.
0 

0.
17

2 
5.

77
7 

(0
.9

96
) 

0.
20

9 
3.

89
9 

(0
.7

09
) 

0.
50

6 
10

.0
 (0

.2
68

) 

3.
0 

0.
17

6 
5.

63
1 

(0
.9

95
) 

0.
24

6 
3.

41
4 

(0
.7

92
) 

0.
80

9 
13

.4
3 

(0
.1

74
) 

4.
0 

0.
17

9 
5.

54
6(

0.
99

5)
 

0.
17

3 
3.

19
2(

0.
84

6)
 

1.
05

0 

6.
00

0 
(1

,0
00

) 
0.

16
7 

0.
59

3 
(0

.0
59

) 
0.

98
1 

5.
93

9 
(0

.6
53

) 
7.

32
7 

(0
.1

48
) 

0.
57

7 
(0

.2
30

) 
3.

40
2 

6.
54

8 
(0

.5
65

) 
S

.la
O

(0
.1

07
) 

0.
56

3 
(0

.4
12

) 
6.

30
3 

7.
94

9 
(0

.3
65

) 
9.

47
0 

(0
.1

20
) 

0.
55

4 
(0

.5
61

) 
8.

64
8 

10
.0

6 (
0.

21
6)

 
11

.5
4(

0.
13

8)
 

6.
00

0(
1.

00
0)

 
0.

05
9 

(0
.0

50
) 

5.
56

5 
(0

.3
23

) 
6.

04
2 

(0
.2

74
) 

0.
05

9 
(0

. 1
90

)5
” 

6.
04

3 
(0

.2
58

) 
6.

67
9 

(0
.3

57
)5

b 
0.

05
9 

(0
.3

69
) 

7.
19

8 
(0

.1
51

) 
8.

01
9 

(0
.3

32
) 

0.
05

9 
(0

.5
11

)5
‘ 

9.
99

6 
(0

.2
98

)5
d 

L
 

P
 

w
 

~~
 

~ 
~~

 
~~

 
~ 

E
ig

en
va

lu
e 

5a
 

E
ig

en
va

lu
e 

5b
 

E
ig

en
va

lu
e 

5c
 

E
ig

en
va

lu
e 

5d
 

lc
,IZ

 
J

, 
Jz

 
I

C
f

 
J

, 
Jz

 
lc

,l
l 

J
, 

Jz
 

lc
f

 
J

, 
J

2
 

0.
78

9 
0 

2 
0.

00
2 

0 
2 

0.
47

4 
0 

2 
0.

00
6 

0
 

2 
0.

04
0 

2 
0 

0.
33

9 
2 

0 
0.

09
3 

2 
0 

0.
32

5 
2 

0
 

0.
05

6 
2 

2 
0.

08
5 

2 
2 

0.
13

2 
2 

2 
0.

08
5 

2 
2 

0.
09

7 
2 

4 
0.

55
0 

2 
4 

0.
22

6 
2 

4 
0.

48
0 

2 
4 

0.
00

2 
4 

2 
0.

00
8 

4 
2 

0.
02

0 
4 

2 
0.

03
8 

4 
2 

0.
00

2 
4 

4 
0.

01
3 

4 
6 

0.
01

7 
4 

4 
0.

00
2 

4 
4 

0.
00

3 
4 

6 
0.

03
4 

4 
6 

0.
05

7 
4
 

6 
0.

00
1 

6 
4 

0.
04

3 
6 

4 
0.

00
1 

6 
6 

“T
he

se
 a

re
 c

al
cu

la
te

d 
fo

r 
D
,
 =
 1

 f
or

 i
nc

re
as

in
g 

se
co

nd
 r

an
k 

po
te

nt
ia

l 
co

up
lin

g.
 F

or
 e

ac
h 

do
m

in
an

t 
ei

ge
nv

al
ue

 t
he

 r
el

at
iv

e 
w

ei
gh

t 
is 

gi
ve

n 
(i

n 
pa

re
nt

he
se

s)
. 

’J
 i

s 
co

ns
ta

nt
 a

nd
 e

qu
al

 t
o 

2.
 



144 ANTONINO POLIMENO AND JACK H .  FREED 

to the solute motion. For lower values of the diffusion coefficient of the 
solvent body, the decay of the correlation function is controlled by two 
dominant modes: one of them (the fast one) may be related to the 
rotational diffusion of the first body relative to the instantaneous orienta- 
tion of the solvent body, and the other one to the free rotational diffusion 
of the solvent body. One can see that for increasing potentials the process 
is more and more differentiated from the original free rotational diffusion 
(FRD), that is, the rotational diffusive motion of a spherical body in the 
absence of any coupling. The slow mode becomes more and more 
effective when the potential strength is increased (i.e., the weight goes 
from 0.096 for u ,  = 1 to 0.560 for u1 = 4, for D2 = 0.01). This is the cause 
of the dramatic increase of the autocorrelation time, since the solute 
rotation is heavily damped by the large cage. 

The composition of the eigenvectors corresponding to the dominant 
modes is analyzed in two cases (D, = 0.01 and u ,  = 2, 4) in terms of the 
basis sets used in the representation of the time evolution operator (see 
Table 11). The square moduli of the coefficients c i ,  each of them 
representing the contribution of the basis set function labeled by the 
collective index A to the ith eigenvector, are shown together with the 
index A itself. In the present case, only the quantum numbers J ,  and J ,  
are nondiagonal, while the total angular momentum quantum number J is 
a constant, and it is equal to 1 (2) for first (second) rank correlation 
functions. From the entry of Table I1 to the eigenvalue labeled 2a 
(D, = 0.01 and u1 = 2), one can see that the slow mode is largely a FRD 
of the solvent body ( I c i I 2  equal to 0.76 for J ,  = 0, J ,  = 1) with a small 
component of “dynamic interaction” between the two bodies ( lci12 equal 
to 0.14 for J ,  = 1, 5, = 2). From entry 2b it is seen that the fast mode is 
mostly due to FRD of the solute body ( l c i I 2  equal to 0.70 for J ,  = 1, 
J2  = 0), again with a dynamic interaction contribution (lci12 equal to 0.23 
for J ,  = 1, J ,  = 2). The dynamic interaction becomes more important for 
the case of a tighter interaction ( u ,  = 4); cf. entries 2c and 2d. 

Table I11 contains correlation times and dominant eigenvalues for a 
second rank observable in a first rank potential. There are still roughly 
two ranges of decay rates when the solvent body is slow (D, 5 1). The 
slower range is mostly due to the FRD of the solvent body, while the 
faster one is described by motions of the solute body and/or dynamic 
interactions. This faster decay is hardly described by a single frequency, 
unlike the case of a first rank correlation function. Rather, it is controlled 
by a few eigenvalues of the same order of magnitude. Thus for D, = 0.01 
and u1 = 2 the slow mode, entry 3a in Table 111, is largely described by a 
J ,  = 0, 5, = 2 term; the fast mode 3b is’mostly due to dynamic interactions 
(5, = 1, J2 = 1 and J ,  = 1, J ,  = 3 are the important terms); and the fast 
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mode 3c is mainly due to FRD of the solute ( J ,  = 1, J2 = 0 is dominant). 
Dynamic interaction terms are more important in the eigenvectors when 
the potential is stronger ( u l  = 4): see entries 3d (similar to 3a), 3e (similar 
to 3b) and 3f (similar to 3c), and note that mode 3e, which is dominated 
by dynamic interactions, is now heavily weighted in the correlation 
function. 

When a second rank potential is considered, the previous description 
must be modified, particularly when odd rank autocorrelation functions 
are involved, as we have pointed out above. We present results here that 
confirm our previous interpretation [40]. In Table IV we show correlation 
times and eigenmodes for a first rank observable. As in Table 11, two 
dominant modes are present for D, 5 1; the fast one is again a FRD of 
the solute body, whereas the slow one is a thoroughly “mixed” nature 
(i.e., dynamic interactions), and may be loosely related, for very slow 
cages, to the jump motion of body 1 from one metastable orientation to 
another (cf. the cases in Table IV for D, = 0.01, u, = 2 and u2 = 4). 

Finally, results on second rank correlation functions for a second rank 
potential are collected in Table V. The situation is now very similar to the 
corresponding set of data for a first rank potential (Table 111), since even 
rank correlation functions are not sensitive, for symmetry reasons, to 
jump motions. The slow mode is then again mostly due to the FRD of the 
larger solvent body while the fast modes are mainly dominated by 
motions of the first body (cf. the entries for D, = 0.01, u2 = 2 and 4 in 
Table V). Note that other faster eigenvalues are present, with smaller 
weights, whose nature is mostly mixed, but are not listed in the table. 
Their individual contribution to the overall decay of the correlation 
function is small, but their cumulative weights may be around 0.1-0.3 or 
even more. 

In Figs. 2a-d,  we show the time decay of the first rank correlation 
function G , ( t )  for a first rank potential. In Fig. 2a results for different 
values of u ,  for D, = 10 are shown (they correspond to the first column in 
Table 11). Observe that even for large potentials the effect of the light 
solvent body is negligible. For intermediate values of D,  (cf. Figs. 2b and 
2c) the contribution of the slow decay mode is more effective. A 
complete separation of time scales is evident in Fig. 2d ( D ,  = 0.01). 
Similar behavior is obtained in the case of a second rank potential (Figs. 
4a-d) .  Finally, the same features are observed in the case of second rank 
correlation functions G2(t) both for a first rank potential (Figs. 3a-d) 
and a second rank one (Figs. 52-4, although the sensitivity of second 
rank correlation functions to the size of the solvent body seems to be less 
pronounced than for first rank correlation functions (compare for exam- 
ple Fig. 2c with Fig. 3c). 
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Figure 2. 2BSM First rank correlation functions for a first rank potential coupling: 
- u = o .  __- -  u = 1. -.-.- , ~ , = 2 ;  ' . . . . , ~ , = 3 ; - . . - . . - , ~ , = 4  . ( a )Dz=10 ; (6 )  

, I  , , I  1 

D ,  = 1; ( c )  D,  = 0.01. The unit of time in Figs. 2-7 has been taken by setting 0;' = 1 .  

From the strictly computational point of view, we may note that all the 
computations were made with truncation parameters J1,,, , J2,,, ranging 
from 4 to 8; the number of Lanczos steps necessary to achieve conver- 
gence (with respect to the correlation times and the dominant eigen- 
values) was usually less than 50. 
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Figure 3. Second rank correlation functions for a first rank potential coupling: -, 
" = o .  _ _ _ _  u = 1 .  _._._ u = 2 .  . . . . . u = 3 .  _.._.._ , u ,  = 4. ( a )  D, = 10; ( b )  D, = 1; 
( c )  D, = 0.1; ( d )  D, =0.01. 

I ,  3 1  9 3 1  2 3 1  1 

3. Three-Body Smoluchowski Model 

The next model that we have treated in order of complexity is a 
three-body Smoluchowski model (3BSM). A field X has been included, 
coupled exclusively through first rank (dipole-field) interactions to the 
two spherical rotators. No direct coupling has been taken to exist 
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Figure 4. ZBSM. First rank correlation functions for a second rank potential coupling: 
__ t 2  u =o. 3 _ _ _ _  , ,  " 7 _.-.- , ~ , = 2 ; . . . . . , ~ , = 3 ; - . . - . . - , ~ , = 4 .  (a )D2=10;  ( b )  
D,  = 1; (c)  D, = 0.1; ( d )  D ,  = 0.01. 

between the probe and the solvent body in order to show the effect of the 
field on the motion of the two bodies, and to examine its role in providing 
an indirect coupling between them. According to Eq. (2.34) the only 
parameters that now define the system energies are p, and p2. We have 
kept p2 = lopl in all the computations. Then p1 has been varied from 0.0 
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Figure 5. 2BSM. Second rank correlation functions for a second rank potential 
coupling: - v = o .  ---- v = 1' -.-.- . v 2  = 2 :  . . . . .  v z  = 3 ;  -..- ..-( v2=4. ( a )  , 2  1 9 2  1 

D, = 10; ( b )  D, = 1; (c) D, = 0.1; ( d )  D2 = 0.01. 

to 0.5 in 0.1 steps. The diffusion coefficient D ,  for the first body has been 
taken as the unit of frequency, while D,, the diffusion coefficient of the 
solvent body, has been set at 0.1. That is, we are simulating the effect of 
increasing coupling between two rotating spherical dipoles in a polar 
medium, with the second dipole ten times slower than the first one. Three 
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sets of results have been obtained: ( 1 )  a fast interacting field (D, = 10); 
(2) a field with a correlation time comparable to that of the lighter body 
(D, = 1);  (3) a slow field (D, = 0.1). 

From our results, one can see that the departure from simple single- 
exponential decay is even more evident than for the 2BSM case. The 
correlation functions of both ranks are greatly affected by the motion of 
the field, so that a third decay constant is almost always necessary to fit 
the decay. Notice that the effect is most pronounced, as expected, for the 
case D ,  = 0.1. In Table VI the correlation times and the most important 
decay frequencies (eigenvalues) are collected for each set of values of p, 
and D,, for a first rank rotational observable. When the field is relaxing 
rapidly ( D ,  = 10, first column), the system is always biexponential for a 
significant coupling ( p1 2 0.2): that is, the fast third body just provides an 
effective coupling between the two bodies. For slower fields (D, = 1 and 
0.1) the decay is roughly triexponential, since now the timescale of the 
field is interfering with the motional timescales of the rotators. The 
dominant modes are described largely as pure motions of the first and the 
second body, without any appreciable component of the field. This may 
be seen from the composition of the corresponding eigenvectors in Table 
VI. The eigenvector corresponding to the slow mode labeled 6a (for 
p1 = 0.2 and D, = 1) is almost completely described as a FRD of body 2, 
whereas the fastest one (6b) is a FRD of body 1. An increase in coupling 
leads to dynamic interaction terms; for example, for p, = 0.5 the slowest 
mode (6c) is more than half composed of a FRD of body 2, and the 
fastest one (6d) of a FRD of body 1,  but there are significant contribu- 
tions to both from mixed terms. Note that in Table VI the field related 
quantum numbers (i.e., n and j )  are always less than 2. Terms with n 
equal to 1 contribute almost negligibly to the dominant eigenmodes; i.e., 
relaxation of first rank observables seems to be largely independent of 
fluctuations in the magnitude of the field, and more affected by fluctua- 
tions in its orientation. 

In Table VII, numerical results are shown for second rank correlation 
functions. For low values of the potential coupling, the motions are 
largely FRD. Some new features arise for large couplings. Let us look 
more closely, for example, at the eigenvectors associated with eigenvalues 
7b, 7c, 7d (the dominant modes for D, = 1 and pl = 0.5). One can see 
that the slowest mode (7b) is mainly the FRD of the slow, large second 
body (the largest coefficient being for the case of n = 0, j = 0, J ,  = 0 and 
J2 = 2; and J = 2). The second mode has a dominant term with n = 0 and 
j = 0, J ,  = 1 and J2 = 1, (i.e., a “mixed” motion involving only the two 
rotators). Finally, the third and fastest one has as its most important basis 
function (but with a weighting coefficient of only 0.380): n = 1, j = 0, 
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P, 

\ '-. 

J ,  = 0 and J2 = 2 ,  it is a mode in which the fluctuation of the field 
magnitude, and not only its orientation in space, is important. 

Figures 6 and Fig. 7 contain respectively first rank autocorrelation 
functions G, ( r )  and second rank autocorrelation functions G2(r) versus 
time for the three values of D, considered. Note that for the time range 

9 j a  
I I 

0 

0.0 2.0 4.0 6.0 8.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0 
t 
(a) 

t 
(b )  

0.0 2.0 4.0 6.0 8.0 10.0 
t 

(C)  

Figure 6.  3BSM. First rank correlation functions: - p = O .  ---- p =0.1; 
=0,2. ..... PI =0,3; -..-..- PI  = 0.4; --. --. -- , p, = 0.5. (a )  D ,  = 10; ( b )  

, I  9 , I  

_.-._ 
' 1  

D ,  = 1 ;  (c) D ,  =0.1. 



154 ANTONINO POLIMENO AND JACK H. FREED 

\:-.-. 

Figure 7. 3BSM. Second rank correlation functions: ~ . I  P =o.  3 ----, pI =0.1; 
, pI = 0.5. ( a )  D, = 10; ( b )  -.-._ I.L = 0.2. . . . . ., =0,3;  -.._.._ = 0.4; 

D, = 1; ( c )  D, = 0.1 
. I  

considered (ten times the inverse of D l ) ,  first rank correlation functions 
are much more affected by a large coupling via the fluctuating field than 
are second rank functions. This is primarily due to the slow eigenvalues 
which are strongly dependent on yl. This drastically changes the long- 
time behavior of GI,  such that T ,  for the first rank processes is much 
larger for large yl. 
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The additional two parameters due to the presence of the field, nmai 
and j , , ,  were both equal to 1 in the fast field case, 2 in the intermediate 
case, and 5 in the slow field case, while J , , , ,  and J2 m a x  were fixed at 6; J,,, 
has been set equal to the maximum value given by the triangle rule, that 
is from 14 to 17. Note that a careful analysis of the eigenvector tables 
suggests that if one is interested only in evaluating the dominant modes of 
the system (with a relative error, say, less than 20%), much smaller 
matrices could be used. The number of Lanczos steps was always between 
50 and 100. 

4. Two-Body Fokker-Planck-Kramers Model: SRLS Case 

In the previous two subsections the coupling between two bodies in a 
completely diffusional regime was investigated. It was seen that, for the 
two-body model with direct coupling at least two characteristic decay 
times are always present (and their order of magnitude and physical 
interpretation depend strongly on the rank of the interaction potential). 
When a third, translational degree of freedom was added as a source of 
indirect coupling, a third characteristic time was often observed. 

In this subsection we include the conjugate momentum degrees of 
freedom in the two-body model. Thus, we obtain a multidimensional 
rotational Fokker-Planck-Kramers equation for the stochastic motion of 
the two bodies. According to Section II.F, we have now to deal with a 
phase space of dimension equal to 12, specified by the orientations of the 
two bodies 0, and 0, and by their angular momentum vectors L, and L,. 
The one-body Fokker-Planck-Kramers model for rotational motions has 
been studied (in the absence of potentials) by many authors including 
Fixman and Rider [4] and McClung [6]. Physically, inertial effects (i.e., 
the effects due to the explicit inclusion of momenta) will be negligible 
when the collision frequency of the rotational body is much greater than 
its streaming frequency. In this case the relaxation of the momentum 
vector is much faster than the reorientation of the body. But inertial 
effects are important for smaller collision frequencies. In a two-body 
model one must also consider the collision frequency of the second body, 
which can be in an inertial regime. Also, strong potential couplings will 
yield inertial effects, especially for short times. 

In all our 2BKM calculations, we had a physical picture in mind in 
which the first body is in a diffusive or inertial regime, while the 
surrounding, massive, solvent cage is always in a heavily damped regime. 
Thus, by varying the frictional parameter (collision frequency) of the 
solute body, we have studied its motion in the cage provided by the 
second body, from the Smoluchowski regime to an almost inertial regime 
in which librational modes become important. The only source of cou- 
pling is assumed to be due to the interaction potential. No “third body” 
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effects are included for simplicity, and the model can be regarded as a 
generalization of the “slowly relaxing local structure” (SRLS) models of 
Freed and co-workers [33,35]. 

Throughout this set of simulations, the unit of frequency has been 
chosen as the streaming frequency of body 1, that is, o; = 1; the ratio 
between the moments of inertia has been set equal to 10, that is, 
Z2/Zl = 10, so that the streaming frequency of the second body is given by 
oS, = l/m. Finally, the collision frequency oi of body 2 has been 
maintained at 100. The only parameters varied were the collision fre- 
quency of body 1,  w ;  (for values of 50 (damped case), 5 (intermediate 
case), 0.5 (inertial case)). The computations were performed both for a 
first rank potential (u ,  = 0, 1 , .  . . , 3 )  and for a second rank potential 
(u2 = 0, 1, . . . ,3 ) .  Orientational correlation functions of rank 1 and 2 for 
body 1 have been computed; also, correlation functions for the reorienta- 
tion of the conjugate momentum L, have been evaluated. 

Table VIII contains the autocorrelation times and the dominant modes 
for first rank correlation observables. Note that in this table, and in the 
following tables for Kramers models, the eigenvalues and their weights 
are complex numbers (but the real part of any eigenvalue is nonnegative). 
In this and succeeding tables we write the real and imaginary parts for 
each and we use the convention of placing a bar over the first figure of a 
negative number. Since the correlation function must be real, each 
complex eigenvalue is accompanied by irs conjugate, which is not shown 
in the table. 

As was the case in the 2BSM, a slow eigenmode (equal to twice the 
diffusion coefficient of the solvent body) is always present. It represents 
the FRD of the large cage in the diffusive regime. The only exception is 
for zero coupling (u ,  =0) where the model reduces to a one-body case 
(that is completely equivalent to the spherical rotational Kramers case 
treated by McClung). The motion of the solute body is responsible for 
the other fast modes whether in the diffusive regime (of = 50), the 
intermediate regime (of = 5 )  or the inertial regime (of = 0.5). In the last 
case there are eigenmodes with nonzero imaginary parts having a signifi- 
cant weight. These motions are of a librational kind. But there are also 
fast modes whose eigenvalues are purely real, and they correspond to 
solute modes that are largely diffusional (i.e., the coupling to angular 
momentum is not very significant). Thus the model seems to provide 
three different types of decay process: namely, a pure rotation of the 
solvent body (slow mode), a librational motion of the solute body 
(complex mode), and a fast reorientation of larger amplitude, more or 
less related to the FRD of the solute body. 

Table IX gives the equivalent results for a second rank observable. 
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Here the slow eigenvalue is equal to six times the diffusion coefficient of 
the solvent body (since we are looking at a second rank property). For 
nonzero values of the coupling parameter we find a larger number of fast 
eigenmodes than in the first rank correlation case; but it is usually 
possible to put them together as “clusters” of similar magnitude. We can 
again identify at least three processes. 

In Fig. 8 corresponding to Table VIII, the first rank correlation 
functions G,(t)  have been plotted for the various values of u ,  and 0;. 
The overdamped and intermediate cases (Figs. 8a and 8b)  are close to 
the 2BSM. As was expected, the situation is rather different for the 
inertial case. Here the librational motion of the light first body, that is 
only slightly damped by an effective friction, becomes important at least 
for short times. The presence of librations is indicated by the damped 
oscillations in the graph, which are more pronounced for an increased 
potential (dotted line in Fig. 8c). The effect of the first rank coupling 
potential on the second rank correlation functions shown in Figs. 9a 
(uf = 50) ,  9b (uf = 5 )  and 9c (ui = O S ) ,  is somewhat weaker, as was the 
case for the two-body Smoluchowski model. The librational peaks in Fig. 
9c are still present, but they are less pronounced. 

Table X contains numerical data concerning the temporal decay of 
momentum correlation functions (for body 1, i.e., L l ) .  One realizes 
immediately that in this case the influence of the cage body is much 
weaker than it was for orientational observables. For uf = 50 the relaxa- 
tion of the momentum of body 1 is almost totally decoupled from 
reorientation of body 2, even for large potentials. For uT = 5 ,  a cluster of 
eigenvalues close in value to the collision frequency is present. This is 
also the case for uf = 0.5, but librational modes are beginning to play a 
nonnegligible role. 

These features are confirmed by an analysis of the correlation function 
plots for the momentum, G,(t), in Fig. 10. The coupling to a second body 
is almost ineffective both in the Smoluchowski regime (Fig. 10a) and in 
the intermediate regime (Fig. 106). The departure from monoexponen- 
tial decay, which is rigorously observed for the uncoupled case, is quite 
small. On the other hand, a strong effect on the angular momentum 
relaxation is observed in the inertial regime (Fig. 1Oc). Note that the 
potential coupling makes the decay of the momentum vector faster, and 
the librational motion is more prominent. 

When a second rank potential (u2 # 0) is considered, there are signifi- 
cant differences in behavior of both the reorientational correlation func- 
tions (as in the 2BSM) and in the momentum correlation functions. 
Tables XI and XI1 give the results for first and second rank correlation 
functions, respectively. In both cases we have at least three decay modes. 
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Figure 8. 2BKM-SRLS. First rank correlation functions for a first rank potential 
coupling: - u = O .  .... u = I .  ..... u = 2 .  ....., ~ , = 3 .  (a )  ~ ; = 5 0 ;  ( b )  

7 1  9 ? I  1 7 1  1 

0: = 5; ( c )  0; = 0.5. 

One of them is much slower than the others, and the fastest one becomes 
librational (i.e., it acquires a detectable imaginary part) in the inertial 
regime (of = 0.5). Note, however, that since the second rank potential 
coupling provides two potential minima in which the solute can reorient 
(with the possibility of “jump” motions), the nature of the slow mode in 
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Figure 9. 2BKM-SRLS. Second rank correlation functions for a first rank potential 
> I  u = 2 .  7 . . .  .., u , = 3 .  (a)  w ; = 5 O ;  ( b )  coupling: -, u , = o ;  _ _ _ _  3 1  u = 1. 1 

w ;  = 5; ( c )  w ;  = 0.5. 

the case of first rank correlation functions is no longer simply the overall 
relaxation of the solvent body. The situation is very close to the 2BSM for 
a second rank potential for w i  = 50. The relaxation of the momentum 
vector L, is so fast that we are virtually in a completely diffusive regime. 

In the intermediate regime ( w T  = 5) inertial effects become more 
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Figure 10. 2BKM-SRLS. Momentum correlation functions for a first rank potential 
coupling: - 
OJ; = 5; ( c )  O J ;  = 0.5. 

u = 0. - _ _ _  , I  " = 1. 7 -.-.- , u1 = 2 ;  ....., U ,  =3 .  (a )  w ; = 5 0 ;  ( b )  
3 1  7 

important. The relaxation of the momentum L, is coupled to the slow 
mode corresponding to the jump motion. The net result is a decreased 
effective friction acting on this mode, so that the dominant frequency of 
first rank correlation functions is increased. This effect is also present 
when the collision frequency is further reduced (OJ; = 0.5). Note however 
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that the rate of change of the eigenvalue with decreasing w ;  is slowed 
down, and it is negligible when the potential is high; that is, for u2 = 1 the 
eigenvalue goes from 0.023 (wT=50) ,  to 0.198 ( w i = 5 )  and 0.270 
( w ;  = 0.5); for u2 = 2 it goes from 0.012 to 0.085 and 0.094; finally for 
u2 = 3 it goes from 0.006 to 0.034 and 0.034, that is, it remains unchanged 
when the collision frequency is reduced by a factor of ten. This may be 
due to an incipient Kramers turnover effect. It is possible that for a larger 
potential, the jump eigenmode would invert its dependence versus wf by 
starting to increase when the collision frequency is decreased. 

Nothing of this sort is observed for second rank correlation functions, 
since the dominant slow mode is simply a FRD of the solvent body. In 
both first and second rank correlation functions one notes that librational 
modes are slightly more important when the potential coupling is second 
rank than they were for a first rank potential coupling. This may be due 
to the increased curvature of the potential near the minima. 

The complex nature of the slow mode responsible for the long-time 
behavior of first rank correlation functions for a first rank interaction 
potential is illustrated by the composition of the eigenvector correspond- 
ing to the slow mode l l a  in Table XI, for u2 = 3 and wf = 0.5. Note that 
n , , n, ,  jl , j ,  describe the magnitudes and the orientations of the momen- 
tum vectors L, and L,; j is referred to the orientation of L, + L,, J ,  and J2 
are related to the orientations of the two bodies, and the total orienta- 
tional angular operator defines the quantum number J ;  finally J , ,  which is 
not included in this table, is the total angular momentum quantum 
number, and it is always equal to 1 for first rank orientational and 
momentum correlation functions, and to 2 for second rank correlation 
functions. In Fig. 11 we show the first rank correlation functions for 
different collision frequencies of body 1. The second rank correlation 
function decays are plotted in Fig. 12. The librational motions in the wells 
are more important than they were in the first rank potential case (since 
there is now a more accentuated curvature of the potential wells). 

In Table XI11 we show momentum correlation functions. One finds 
that there are increased librational effects from the second rank potential. 
Compare for instance the case of u2 = 3 and w i  = 5 with the correspond- 
ing entry in Table X (u l  = 3 and w i  = 5 ) .  In the present case the 
librational mode is dominant and the simple decay mode has a weight 
only half that of the case in Table X, for which most of the decay is by a 
nonlibrational mode. The interpretation of the dominant modes is com- 
plicated when the potential is large and the regime of motion of the solute 
body is inertial. In Table XI11 some of the eigenvectors corresponding to 
the dominant eigenvalues for u2 = 3 and w i  = 0.5 are shown. It is not 
possible to isolate a single component having a coefficient larger than 0.5 
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Figure 11. 2BKM-SRLS. First rank correlation functions for a second rank potential 
coupling: - - 2  u = 0. 3 ---- r 2 .  u = 1. -.-.-, u2 = 2; . . . . ., u2 = 3. ( a )  OJ; = 50; ( b )  
O J ;  = 5; ( c )  OJ:  = 0.5. 

in the three eigenvectors given. However, the angular momentum quan- 
tum numbers for the solvent body, n2 and j 2 ,  are always zero, given the 
large viscosity imposed on i t .  

Figure 13 shows G,(t) for a second rank potential coupling. The effect 
of the second body is still negligible in the overdamped case (Fig. 13a), 
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Figure 12. 2BKM-SRLS. Second rank correlation functions €or a second rank potential 
coupling: - u = 0. _--- u x 1. -.-.- , u 2 = 2 ;  ..... , u2 = 3. (a)  OJ; = 50; ( b )  r 2 ,  7 2  9 

~f = 5; (c) m f  = 0.5. 

since the momentum relaxation is so fast that it is not affected by the 
details of the solvent. But even for the intermediate case shown in Fig. 
136, the librational motions in the cage have a large enough amplitude to 
make the momentum reorient in the opposite direction with respect to 
the starting orientation. This is reflected in the negative part of G,(t) .  
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Figure 13. 2BKM-SRLS. Momentum correlation functions for a second rank potential 
coupling: __ 7 2 ,  u = o .  _--- , 2 ,  u = 1' - .-.- , u2 = 2 ;  . . .. . , u2 = 3. (a)  w ;  = 50; ( b )  
w ;  = 5 ;  ( c )  w f  =0.5. 

When the first body is in an underdamped regime of motion (Fig. 13c) 
and the potential is high (dotted line), the momentum vector actually 
fluctuates back and forth for a while before decaying toward zero. 

For all the computations, J,,,, = JZnlax - 5 and n2,,, = j2, , , ,  = 1 (since 
body 2 is always in an overdamped regime); n,,,, and j , , , ,  have been 

- 
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both set equal to 1 for wf = 50, to 2 for wf = 5 and to 5 for wf = 0.5 and 
the number of Lanczos steps was between 100 and 500. Note that the 
largest matrices treated (for w ;  = 0.5 and u2 = 3)  had dimensions of order 
los! 

5. Two-Body Fokker-Planck-Kramers Model: FT Case 

The last model considered in this work is a variation on the previous 
inertial two-body approach. Instead of allowing a direct source of cou- 
pling between the two bodies via a simple interaction potential, we now 
introduce a frictional coupling between them. This is the residual effect 
after the elimination as fast variables, of a stochastic field vector and its 
conjugate linear momentum (see Section 1I.G). The model is an inertial 
counterpart of the 3BSM described above, provided the “third body” is 
relaxing fast enough that only its averaged effect on the torques acting on 
the two principal bodies is left. This case is equivalent to similar models 
with “fluctuating torques” (FT) features (cf. Stillman and Freed [33]). 

Both the SRLS and the FT inertial models were discussed in the 
context of the Hubbard-Einstein relation, that is, the relation between 
the momentum correlation time T, and the rotational correlation time 
(second rank) T~ for a stochastic Brownian rotator [39]. It was shown that 
both models can cause a substantial departure from the simple expression 
predicted by a one-body Fokker-Planck-Kramers equation: 

I 
7,r2 = - 

6k,T 
(2.93) 

In the IT case, it was found that the additional friction due to the fast 
field has a different effect on the rotational versus momentum relaxation, 
such that, whereas T~ still behaves in a “normal” fashion (i.e., it is 
roughly proportional to the total friction, from both the solvent terms and 
the field terms), T, is not much influenced by the friction generated by the 
fast field. These comments apply to the case in which the sources of 
friction are large, so that the system is always in a diffusional regime. 

These matters are described in more detail in the last set of calcula- 
tions included in the present work. We have considered a fixed “core” 
friction (from the unspecified fast solvent modes) and fixed dimensions 
for the second body: w i  = l/m, wS = 100, with w ;  = 1 for the first body 
(so it is ten times smaller than body 2). We have investigated two cases: 
w i  = 50 and wf  = 5.  The additional source of coupling, according to 
Section II.F, is specified by the frictional parameters w l ,  w2. To further 
simplify the analysis we have kept w2 = l o w , ,  and we have varied w,  from 
0 to 400. 



172 ANTONINO POLIMENO A N D  JACK H .  FREED 

In Tables XIV and XV we show the dominant eigenvalues and 
correlation times for a first rank and for a second rank orientational 
observable, respectively. Only the real parts of the eigenvalues have been 
written, since we have just explored a range of parameters for which all 
imaginary parts are negligible. (The same is also true for the relative 
weights.) The existence of slow modes is due to the large values of the 
frictional parameters, both for the solvent and the solute body. In all 
cases at least four important decay frequencies are reported. Note the 
great difference in magnitude between the first and second rank au- 
tocorrelation times, due to the presence of a slow mode in the first rank 
case that is absent in the second rank case. The effect of the core 
frictional parameter w i  is less relevant than in the SRLS model, since for 
the range of parameters used, most of the friction comes from the fast 
relaxing stochastic field. Let us look at the case of w1 = 200 and w i  = 50. 
In Tables XIV and XV the eigenvectors corresponding to the most 
important eigenvalues for each case are shown. The very slow mode 
(entry 14a) in the first rank decay is dominated by a FRD of the solvent 
cage. The next eigenvalue corresponds to a dynamic interaction mode 
(entry 14b), with an important component of FRD of body 1. Finally the 
eigenvalue labelled 14c, which is the one with the highest weight, is 
mostly described as the relaxation frequency of body 1, with a component 
of mixed dynamics. For second rank correlation functions, the decay 
process for the same set of parameters is governed by a set of frequencies 
which are difficult to relate to simple motions of the two isolated bodies. 
That is, for all entries in Table XV one sees that the eigenvectors always 
have a mixed character. Not surprisingly, the momentum quantum 
numbers do not appear to influence the rotational properties (i.e., there 
are no eigenvectors with a significant projection on basis set functions 
with nonzero values of n,,  n,, j , ,  j ,  or j ) .  

Table XVI contains numerical data for the momentum correlation 
functions. As previously shown, one finds that by increasing the coupling 
parameter w1 the correlation time tends to reach a constant value that 
appears to be only a function of the core frictions w i  and w ; .  Analysis of 
the eigenvectors suggests a strong dynamic interaction between the two 
bodies. In Table XVI we show the eigenvectors for the same set of 
parameters given above. In all cases, components depending on basis 
functions with quantum numbers j ,  and/or j ,  equal to 1 are present, while 
n ,  and n, are almost always equal to 0. That is, the motions correspond- 
ing to the eigenvalues of Table XVI are coupled modes of the vectors L, 
and L, involving their (mutual) orientations, but unaffected by fluctua- 
tions in their magnitudes. 

In Fig. 14 we show first rank correlation functions, G , ( t ) ,  for wf = 50 
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Figure 14. 2BKM-FT. First rank correlation functions: - 3 1  w = 0. 3 ---- , w, = 100; 
-._.- , ~ , = 2 0 0 ;  ....., ~ , = 3 0 0 ; - . . - . . - ,  ~ , = 4 0 0 .  (a )  ~ ; = 5 0 ;  ( b )  ~ ; = 5 .  

and wT = 5 ,  in Fig. 15 second rank correlation functions, G2(t),  and in 
Fig. 16 momentum correlation functions, G,(t). Slower modes appear to 
be more important than in the SRLS model (but this may be due to the 
range of frictional parameters utilized). Note the significant difference 
between the zero coupling (one-body) case and the other ones, especially 
when the core friction is small. Neither negative tails are present in the 
momentum correlation functions, nor librational oscillations in the orien- 
tational ones. Since the potential coupling is set equal to zero, no “cages” 
are present in which the light probe can librate. 

All the computational parameters were chosen in this set of calcula- 
tions exactly as they were in the SRLS case; and n,,,,, n2,,,, jl,,, and j2,,,  
were always equal to 2. 

H. Discussion and Summary 

In the final section of this paper we discuss some of our results in 
comparison with the studies of other authors. We also consider available 
experimental data and MD results. 

1 .  Asymptotic Forms for Spectral Densities 

We start by considering the works of Freed and co-workers [lo, 591. ESR 
relaxation studies of small deuterated nitroxide probes have been per- 
formed in their laboratory, showing the sensitivity of this spectroscopic 
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Figure 15. 2BKM-FT. Second rank correlation functions: - 3 1  w =0. 3 ----, 
0 = 100. -.-.-, w1 = 200; . . . . . , w1 = 300; -..-..-, w, = 400. (a) w ;  4 0 ;  ( b )  w:  = 5. 
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Figure 16. 2BKM-IT. Momentum correlation functions: - , I ,  w =0 .  ---- , 0, = 
100; _._.- , 0,=200;  ....., wl=300; -..-..-, wl=400. (a )  w ; = 5 0 ;  (b )  w ; = 5 .  
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technique to molecular reorientational dynamics in liquids. Hwang, 
Mason, Hwang and Freed conducted an analysis of line shapes for the 
nitroxide radical PD-Tempone in deuterated solvents, and they discussed 
simple asymptotic formulas for fitting the observed reorientational spec- 
tral densities, based on the theoretical analysis of Hwang and Freed [35]. 
Zager and Freed [59] have conducted ESR relaxation studies to rational- 
ize (i) the solvent and pressure dependence of non-Debye spectral 
densities and (ii) the relation between rotational and momentum correla- 
tion times (compared with the existing simple one-body prediction, i.e., 
the Hubbard-Einstein relation; see below). 

They have shown that a simple SRLS model predicts, in the limit of 
very slow relaxation of the solvent body, the following form for spectral 
densities of rank L [59]: 

(2.94) 

where T~ is the correlation time for the isolated solute, while T~ is the 
correlation time (of the same rank) for the isolated solvent body; S ,  is the 
order parameter (i.e., the equilibrium average of the Lth Legendre 
polynomial in R, assuming the second body is fixed). That is, in the limit 
of a very large solvent cage, the motion is expected to be a linear 
combination of the fast FRD of the isolated solute and the slow FRD of 
the isolated cage. One may expect this limiting expression to be adequate 
when compared to actual computations based on our 2BS and 2BK-SRLS 
models when D, is much larger than D,. 

In Fig. 17 we show how computed spectral densities compare, in a few 
cases, with Eq. (2.94) for second rank correlation functions. Figure 17a 
corresponds to the 2BSM case for D, = 0.1 and for a first rank potential 
coupling u,  = 4 (cf. Table 111), whereas Fig. 176 refers to the equivalent 
2BSM case with a second rank potential coupling u, = 4. One observes 
some deviation both for J(0)  and the frequency dependence of J(w) .  Note 
that the asymptotic formula underestimates the spectral densities in the 
low frequency region, while it overestimates it in the high frequency 
region. 

Spectral densities are less sensitive to inertial effects than correlation 
functions. We show the spectral density for the 2BK-SRLS case oT = 0.5 
and u ,  = 2.0 (cf. Table IX) in Fig. 17c, at u, = 2 in Fig. 17d. The 
asymptotic formula (2.94) provides a good fit, especially for a second 
rank coupling potential. This is due to the large difference between the 
correlation times for the isolated FRD of the two bodies (i.e., 0.08 for 
body 1 and close to 167 for body 2). 
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Note that Eq. (2.94) fails completely when one attempts to  reproduce 
first rank spectral densities calculated in a second rank potential coupling 
(see Fig. 17e), since it is based on a model in which the solute is a FRD 
when the solvent body is frozen. One could probably use Eq. (2.94) for 
L = 1 when the potential contains different minima by redefining T, as the 
inverse of the jump rate in the fixed potential provided by an infinitely 
damped cage. 

Zager and Freed have also compared their experimental data against 
line shapes predicted by perturbational treatments of simple FT models 
[35]. To lowest order, such models predict (cf. also Hwang et al. [lo]) 
that the original Lorentzian shape of a pure FRD for the isolated first 
body should be replaced by a modified function 

0 10 

Figure 17. Comparison between exact spectral densities (-) and asymptotic 
spectral densities given by Eq. (94) (. . .. .). ( a )  Second rank, 2BSM, D2 = 0.1 and u ,  = 4; 
(b)  second rank, 2BSM, D, = 0.1 and u2 = 4; (c) second rank, 2BKM - SRLS, w ;  = 0.5 and 
u ,  = 2; (d) second rank, 2BKM-SRLS. w ;  = 0.5 and u, = 2; (e) first rank, 2BSM, D, = 0.01 
and u,  = 3 (note that J ( 0 )  = 3.5 whereas Ja,>,,,p(0) = 18.6). For ( a )  and (b) unit of frequency 
is relative to D, = 1; for (c ) - (e )  i t  is relative to 0; = 1 .  
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(2.95) 

where E 2 1 and it should be a constant. 
Note that Eq. (2.95) is valid only for smaller values of w and relatively 

rapidly fluctuating torques. Also, T;  need not be the correlation time for 
the Lth rank FRD of the isolated solute, but depends on the relaxation 
time of the process providing the FT effect. We except Eq. (2.95) to be 
acceptable in reproducing the low frequency region of the 3BS spectral 
densities when the diffusion coefficient of the field is large; 2BK-FT 
spectral densities are likely to obey Eq. (2.95) if w is not too large. Note 
however that in both cases we can expect to apply Eq. (2.95) only for 
small values of the coupling between the solute and the solvent cage. 
Equation (2.95) is an adequate approximation for spectral densities (in a 
limited range of frequencies) only when SRLS effects are absent or 
negligible; and when the sources of the fluctuating torques are fast 
relaxing and weakly coupled to the solute. 

0 5 

(a) 
w 

Figure 18. Plots of [ J (w) / J (O)  - l]/[w’J(O)’] versus w. (a )  Second rank, 3BSM, 
y, = 0.2 and D, = 1 ;  ( b )  second rank, 2BKM-FT, w, = 100, u: = 50; (c) second rank, 
2BKM-FT, w,  = 300, w ;  = 50. For (a )  unit of frequency is relative to D, = 1; for ( b )  and (c) 
it  is relative to w :  = 1. 
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We show in Fig. 18 plots of the function E ( W )  = [ J ( w ) / J ( O )  - 1/  
[w2J(0 )2 ]  versus w. If Eq. (2.95) were valid we should have a horizontal 
line corresponding to the value of E .  In practice one obtains a slowly 
decreasing plot at low frequencies, which eventually goes asymptotically 
to one. In fact the actual spectral densities are sums of a finite number of 
Lorentzian functions, each of them corresponding to a dominant eigen- 
value, and for larger frequencies only the Lorentzian corresponding to 
the largest eigenvalue is nonnegligible. In Fig. 18a we show what we get 
for a second rank spectral rank spectral density obtained by a 3BS 
calculation ( p1 = 0.2 and D, = 1). One may note that the validity of Eq. 
(2.95) is limited to short frequencies; a rough evaluation of E is in the 
range 1.1-1.2. In Figs. 18b and 18c we show similar plots for the 2BK-FT 
model; Fig. 18b is for w1 = 100 and Fig. 18c is for w1 = 300 ( w ;  has been 
taken equal to 50). In the weak coupling case (Fig. 176 the €-fitting is 
much better than in the strong coupling one (Fig. 17c); in this last case 
one can approximately use a value of E close to 3 .  The departure from 
Eq. (2.95) is then much more evident at lower frequencies when the 
coupling is increased. 

2. The Hubbard-Einstein Relation 

The next application we discuss is the interpretation of the anomalous 
behavior of the product T,T? observed by Freed and co-workers [lo] in 
isotropic and ordered liquid phases. In the absence of mean field effects, 
a simple one-body Fokker-Planck treatment predicts that the product of 
the second rank correlation time and the momentum correlation time for 
a spherical rotator obeys the Hubbard-Einstein relation Eq. (2.93). It is 
correct in a diffusive (high friction) regime only, where is linearly 
dependent on the viscosity 77. Since T~ is proportional to 1/77, then in 
order to satisfy Eq. (2.93) for large 77 T/ must be short, that is T/ -e 7:. 
According to Hwang et al., ESR studies give T?> lo-" s for PD- 
Tempone in several solvents, corresponding to T/ < 5  x 10-l4, that is, of 
the same order as molecular vibrational periods. A careful analysis of the 
experimental data suggests that for decreasing temperatures (i.e., increas- 
ing viscosities) the left hand side of Eq. (2.93) tends to be larger than the 
right hand side. One may expect that this is 'due to a T~ which has a 
weaker than linear dependence on 1/77. 

Since one-body models fail to reproduce such behavior, even if large 
mean field potentials are included, one must turn to a many-body 
description. One would expect that the solute body should be described 
as coupled to a collective solvent body in such a way that the potential 
energy of the system is not affected, in order to maintain the normal 
diffusive behavior of (i.e., proportionality to 77). We may then intro- 
duce a friction tensor affecting the motion of the molecule and the first 
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solvation sphere, such that the variation of T~ is “damped” when the 
friction is large. 

We choose to describe our coupled system by using the 2BK-FT 
model, without any torque contribution (zero potential). The collisional 
matrix is provided by Eq. (2.72). The diagonal terms wf and 0 4  are kept 
constant, whereas the coupling terms w1 and w2 are changed, for a fixed 
ratio of the moments of inertia of the two bodies. In this way one expects 
to model the effect of a fast fluctuating torque (directly related, in our 
approximation, to the fast relaxing reaction field) which provides the 
largest friction, and which rapidly varies with temperature and/or pres- 
sure. The rest of the solvent provides merely a constant damping that is 
supposed to be less affected by a change in temperature and pressure, at 
least in the range of parameters considered in the few experiments that 
are available. 

An analysis of this kind has been made in our recent paper [39], for a 
solvent cage ten times larger than the solute, a streaming frequency for 
the solute equal to  lo1* and an overall friction, parametrized by w1 
ranging from lo1* to 10ls s-l, using the same numerical techniques 
described in this chapter. In that study, it has been confirmed that for 
such pure FT models, the correlation time behaves approximately in a 
“diffusive” way, that is, it increases with the increase of the total friction 
acting on the solute (proportional to w1 + w ; ) .  

An entirely different behavior is observed for the angular momentum 
correlation time. The coupling terms in the collisional matrix, causing the 
mutual friction between body 1 and body 2 are much more important. 
The momentum correlation function is largely dominated by the eigen- 
values of the collisional matrix. This means that for large coupling 
( w l S = - u f )  the dominant eigenmode for the momentum tends to be 
proportional to the smallest eigenvalue of the collisional matrix, which is 
practically equal to w f , the “core” friction. Thus the particular structure 
of the friction tensor of a 2BKM-FT provides a way of interpreting the 
slow change with temperature of 7,. Our present, more extensive study 
confirms this analysis (cf. Table XVI). 

The 2BKM-SRLS model can also cause a substantial departure from 
the Hubbard-Einstein relation [39]. This is because T~ = ~ ~ ( 1 -  S:) + 
T,S: [cf. Eq. (2.94)], so rR increases with increased potential coupling and 
with increase in size of the solvent cage. However, momentum relaxation 
is dominated by eigenmodes that are primarily the FRD of the isolated 
solute (cf. Tables X and XIII). 

3. Molecular Dynamics Simulations 

Molecular dynamics (MD) simulations are an important way of providing 
insight into motions in liquid phases. In recent years, such simulations 
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have been extensively employed to study the properties of model fluids 
consisting of interacting molecules and to obtain reorientational and 
angular velocity correlation functions. Stochastic models can be thought 
of as complementary theoretical tools to MD, since they may provide (i) 
general models to interpret results from MD observations, which may be 
regarded as ideal experiments, and (ii) information at long-times, where 
for computational reasons MD simulations are not feasible. 

The complex rotational behavior of interacting molecules in the liquid 
state has been studied by a number of authors using MD methods. In 
particular we consider here the work of Lynden-Bell and co-workers 
[60-621 on the reorientational relaxation of tetrahedral molecules [60] 
and cylindrical top molecules 1611. In [60], both rotational and angular 
velocity correlation functions were computed for a system of 32 molecules 
of CX, (i.e., tetrahedral objects resembling substituted methanes, like 
CBr, or C(CH,),) subjected to periodic boundary conditions and inter- 
acting via a simple Lennard-Jones potential, at different temperatures. 
They observe substantial departures of both G,,*(f) and G,(t) from 
predictions based on simple theoretical models, such as small-step diffu- 
sion or J-diffusion [58]. Although we have not attempted to quantitatively 
reproduce their results with our mesoscopic models, we have found a 
close resemblance to our 2BK-SRLS calculations. Compare for instance 
our Fig. 13 with their Fig. 1 in [60]. 

In particular they consider a set of simulations for a system of CX, 
molecules at three different temperatures (“hot”, “intermediate” and 
  COO^") which bears a close resemblance to our computations made in the 
presence of a second rank interaction potential. Their “hot” case corre- 
sponds to our low potential coupling cases, whereas their “cool” simula- 
tion is related to our high potential results: that is, a decrease in 
temperature corresponds in our rescaled coordinates to an increase in the 
potential coupling. One may note that the presence of a negative tail, 
assigned by Lynden-Bell to librational motion of the observed molecule 
in an instantaneous cage, causes the momentum correlation functions to 
behave differently in the “cool” state with respect to the purely diffusive 
decay observed for the “hot” state. This behavior is very similar to our 
2BKM-SRLS case for ~f = 5 and u2 = 3 (cf. Fig. 13b). 

4. Impulsive Stimulated Scattering Experiments 

In the last few years Nelson and co-workers [63-6.51 have presented a new 
approach to light scattering spectroscopy, named impulsive stimulated 
light scattering (ISS), which seems to be able to detect one particle 
rotational correlation functions. In ISS, one induces coherent vibrational 
motion by irradiating the sample with two femtosecond laser pulses, and 
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then observes a light scattering intensity signal decaying in time. The ISS 
spectrum is resolved in the time domain and can be directly related to 
second rank rotational correlation function G,(t) [65].  Thus ISS is one of 
the few spectroscopic techniques which appears to give, at least in some 
cases, direct information on single-molecule rotational dynamics, together 
with nuclear magnetic resonance (NMR), electron spin resonance (ESR) 
and neutron scattering. 

In particular, Nelson and co-workers have collected a set of ex- 
perimental data concerning the reorientational dynamic of CS, both in 
temperature-dependent [64] and pressure-dependent [65] ISS experi- 
ments. In both cases they observed “weakly oscillatory responses” in the 
signal either for low temperature regimes or for high pressure regimes. 
These have been identified as librational motions of the probe molecule 
in the transient local potential minima inside the instantaneous cages 
formed by its neighbors. 

Comparable behavior has been observed by Fayer et al. in a series of 
subpicosecond transient grating optical Kerr effect measurements on the 
reorientation of byphenyl molecules in neat biphenyl and n-heptane 
solutions [66,67]. They have shown that on the ultrafast timescale 
( t  < 2 ps) the dynamics of the probe is controlled by librational motions 
having an inertial character, although diffusive reorientational relaxation 
of the whole molecule and internal torsional motions can also have a role. 

The analysis of local librations in terms of the few existing tractable 
theoretical models (e.g., IOM) have shown that although a qualitative 
agreement can be reached with experiments, the interpretation of the 
short time dynamic behavior remains an open problem. We think that our 
methodology could help to clarify some aspects of the experimental 
observations. 

5. Summary 

A careful analysis has been performed on several stochastic models for 
rotational relaxation of rigid molecules in complex liquids. These include 
two-body rotational diffusion in the overdamped (Smoluchowski) regime 
(2BSM), as well as a related three-body model (3BSM). Inertial effects 
have been considered in two other models which are two-body Fokker- 
Planck-Kramers models in the full phase space of rotational coordinates 
and momenta (2BKM). In one, the two bodies interact via an orienta- 
tion-dependent interaction potential, and this leads to a “slowly relaxing 
local structure” (SRLS) description. In the other there is an orientation- 
dependent frictional coupling, derivable from other faster solvent modes, 
which leads to a “fluctuating torque” (FT) description. The computation- 
al challenge of solving multidimensional Fokker-Planck equations has 
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been dealt with by (i) constructing efficient sets of basis functions utilizing 
angular momentum coupling techniques; (ii) utilizing the complex sym- 
metric Lanczos algorithm to obtain the orientational and angular momen- 
tum correlation functions. These correlation functions have been ana- 
lyzed in terms of the dominant “normal modes” with their associated 
decay constants. 

For the 2BSM, the effect of a large solvent cage yields biexponential 
behavior with significantly different decay rates. While this behavior may 
be approximated by modes related to the original free rotational diffusion 
(FRD) of each body in the absence of coupling, these modes become 
more influence by “dynamic interactions” for increased interaction poten- 
tial and/or more nearly equal rotational diffusion coefficients of the two 
bodies. It has been shown that first rank versus second rank potentials 
lead to significantly different behaviors, especially for first rank correla- 
tion functions (i.e., G,( t ) ) .  In this case, a second rank potential leads to 
an apparent “strong collision effect”, that is, a two-body small-step 
diffusion which exhibits features typical of a one-body strong collision 
model. Previous simpler SRLS models are inconsistent with this effect. 
Also, one finds that second rank correlation functions [ G2(r)] have 
somewhat complex behavior with several decay modes, and with in- 
creased importance of dynamic interactions. The 3BSM leads to more 
pronounced departure from single exponential decay. When inertial 
effects are included via the 2BKM-SRLS case, there are still fast modes 
for orientational relaxation with purely real decay constants (correspond- 
ing to solute modes that are largely diffusional), but now there are solute 
modes with complex decay constants corresponding to librational motion. 
For G , ( t )  with second rank potentials, the coupling of the angular 
momentum to the jump motion leads to unusual behavior that may be an 
incipient Kramers turnover effect. Angular momentum correlation func- 
tions [GL(r)] have been found to be much less influenced by the solvent 
cage than are orientational observables, except for the importance of 
librational motion in nearly inertial regimes with such motion being 
enhanced by second rank potentials. These librational modes have been 
found to have a complex character. In the 2BKM-FT case there are no 
librational motions. Instead one observes that the FT has little effect on 
the solute angular momentum correlation time despite the fact that it 
leads to strong dynamic coupling of the two angular momenta. However, 
the FT makes an important frictional contribution to the orientational 
relaxation, such that there is a significant breakdown of the Hubbard- 
Einstein relation. 

These results have been compared with previous studies to show: ( i )  a 
simple SRLS model used in ESR is reasonable in the asymptotic limit of a 
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very slow solvent cage except when a “strong collision effect” (cf. above) 
is important; (ii) the E correction to a Debye spectral density, used in 
ESR to  account for FT, only has a limited validity for low frequencies and 
relatively rapid but weak torques; (iii) the G,(t)  with a second rank 
potential resembles molecular dynamics simulations on spherical tops in 
showing librational motion in an instantaneous cage; (iv) new light 
scattering results for G2(t) appear to have features accountable with the 
present models. 

APPENDIX A: CUMULANT PROJECTION PROCEDURE 

In this appendix we review briefly the TTOC (total time ordered cumul- 
ant) procedure applied to a general linear time evolution operator. The 
same technique was used by Stillman and Freed [33]; for other details see 
Yoon et al. [28] and Hwang and Freed [35], and references quoted 
therein. Also we show how to apply the TTOC procedure for projecting 
out a subset of fast momenta, from a phase space of coordinates and 
momenta. 

1 .  General Algorithm 

We start by considering a system described by the set of generalized 
coordinates (and momenta) (qs, qf )  

The time evolution operator is supposed to be given by 

We now introduce a biorthonormal complete set of functions defined in 
the q, subspace 

(nln’) = 8(n - n’) (A.3) 

where n is a collective index for the set of quantum numbers labeling 
these functions. Note that (1) In) and (nI could be the set of eigenfunc- 
tions of r, and its adjoint, respectively, or at this stage, of any other 
operator acting on the phase space spanned by qf ;  (2) in general we do 
not suppose here that n is a collection of integers, that is, we can consider 
a continuum of quantum numbers. The function 10) is supposed to be 
unique and to fulfill the following properties: 
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f,lo) = 0 

(elf;= 0 

that is, 10) is the unique eigenfunction of zero eigenvalue of f; (while this 
may be not necessarily true for n # 0, according to the previous remark). 
Note that here we are always dealings with symmetrized operators: for 
example, if the subsystem defined by q, tends to the equilibrium dis- 
tribution P,,(q,) for t+ +w then (0) = Pi: = (01. Although not neces- 
sary from a mathematical point of view, in all the physical applications we 
have considered, the following equation holds: 

Following [33] closely, we now take the time evolution equation for the 
reduced probability density in just q, as the average over qf obtained by 
computing the "expectation value" with respect to 10); that is 

aP(qs7 f ,  = -(OlfP(q,, q,, [)lo) 
at 

After Laplace transformation we easily recover the following exact 
multidimensional equivalent of the result shown in [33]: 

h,, 4 = (OKs + f)-'lo)P(q,, 0) (A.8) 

where the resolvent (Ol(s + f)-'lO) can be evaluated according to [28,35] 
as 

(OI(s + f)-'lo) = (s + fs - G)-' ('4.9) 

and G is defined as 

+m 

G = c (-)k+'(OIFi",[(s + f, + f,)-'(l - lo>(ol)f,,*lkl0~ * 

k = O  
(A. 10) 

If we may assume that the In) are the eigenfunctions of f,, then 

ffld = E"l4  (A . l l )  

(,If;= (nlE,* (A.12) 



ROTATIONAL MOTIONS IN LIQUIDS 193 

Then G can be further expanded in 
+ m  

G = EJ- n, . . . ~ n j ( O l ~ i n t ~ n l ) ( n l l ( s  + ps + Enl)-1pintln2) . . 
j = l  

+ p s  + E n ~ - " ~ n t I O )  (A.13) 

where 9' n; is a restricted sum (or integral) over all possible ni # 0. If we 
consider the first order correction only (in the approximation %- IFs\), 
and we restrict our analysis to low frequencies (s - 0) we obtain 

(A.14) 

as the first perturbation correction to Fs. 
2. Elimination of Some Momenta from a MFPKE 

We apply the technique reviewed in the previous section to a MFPKE 
defined for a set of general coordinates (x, , x2) and their conjugate 
momenta (p l ,  p2). The system is divided into two subsystems interacting 
via a general potential function V and a friction matrix wc 

(A.15) 

oc is a symmetric definite positive ( N ,  + N 2 )  X ( N ,  + N 2 )  dimensional 
matrix, and it depends on x l ,  x2. We want to obtain a reduced equation 
after eliminating all momenta p2. That is, according to the previous 
section we are considering q, = (x, , p l ,  x2) and q, = p2. The initial MFPK 
operator is written as the sum of 

Fs = s:,;fi, - R&$; + s;o;s; (A.16) 

F,= s;,;s, (A.17) 

(A. 18) Fint = s;o;fi, - a,+,;s, + q w r r s ,  + s;,q 
where the vector operators R,,, and s,,, are defined as 

(A.19) 

(A.20) 
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For instance, this is the compact form for the symmetrized time evolution 
MFPK operator for two Brownian particles (or rotators; see below) 
coupled via a potential V and a frictional (collisional) matrix 0'. Al- 
though both the terms acting on the momentum space and the positional 
space are written, for the sake of simplicity, as formal raising and 
lowering operators, actually only the properties of the $: operators will 
be used in the following. Note that we have not specified the nature of 
the gradient operators in xmr so they could be a set of rotational 
coordinates (in this case we should include a precession-like term in pint; 
but we shall see in the next section that the presence of the precession 
operator is irrelevant). We define In) as the direct product of the 
eigenfunctions of S2iS, i  

A +  A _  

In) = I.JI.2). . . I.,,) (A.21) 

s;.s,l.;) = (A.22) 

Then n is a collection of integers and the set of functions is orthonormal 
[52] (i.e., we can neglect the integral symbol in Eq. (A.9)); 5; are the 
raising and lowering operators with respect to the ith momentum in p2; 
10) is the Boltzmann distribution on the momenta p2. However, we 
cannot apply Eq. (A.13) directly, because 0 5  is not diagonal. We then 
utilize Eq. (A.9) under the assumption that r, - 1041 is the dominant 
term (i.e., p2 relaxes very fast relative to the remaining coordinates). 
Then for low frequencies 

(A.23) 

where we have used Eq. (A.6) twice. Given that In) is a complete set of 
basis functions in the subspace p2, we then rewrite Eq. (A.23) in the form 

(A.24) 

When pint acts on lo), it generates only single excited states, for example, 
10. . . 1 . . . O ) .  If we call Ilj) the singly excited function in the j th position, 
it is easy to rewrite the previous expression for G in the form 

(A.25) 

the summation indexes run from 1 to N7. From the equations 
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it follows that the final reduced operator is given by 

where 

W; = Of - 000'' 

f = 000; 
0 D, = o;&o; 

(A.29) 

(A.30) 

(A.31) 

The new matrix 0 is defined as 

(0)$ = (ljlf7' Ilj.) (A.32) 

It is now relatively simple to see that 0 is exactly equal to 02'. Let us 
consider the matrix representation of 4 on In): by inspection, one soon 
realizes that pf mixes In) and In') if and only if C ni = C n: ; that is, only 
states equally excited are mixed. The matrix is then partitioned in 
diagonal blocks; the first block is 1 X 1 (fundamental state); the second 
one is N2 x N,,  mixes only the states C n, = 1, that is the Ilj) functions, 
and it is given by m;. 

3. Precessional Operator 

For a rotational system one has to include the precessional operator in 
the rotational FPK operator, in case a nonspherical top is considered. In 
terms of the raising and lowering operators SZ defined in the last section 
(systematically suppressing the subscript 2 since it is understood here that 
we are dealing entirely only with the subspace p2), we can write the 
precessional operator as 

(A.33) 
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where A , ,  A?, A3 are functions of the streaming frequency matrix 
elements. Note that 

A, + A, + A3 = 0 (A.34) 

The crucial point in the ITOC expansion delineated in the last section is 
that the interaction operator pint acting on 10) generates only single 
excited states. In this rotational case, we may include the precessional 
term in rint, and it is easy to see that 

A 

Pw'VlO,O,O) = -(A, + A, + A,)[(), 0,O) (A.35) 

In fact all the factors containing a lowering operator go to zero; and one 
obtains zero because of Eq. (A.34). This means that it is not necessary to 
consider the precessional effects in projecting out to lowest order the role 
of angular momentum. 

APPENDIX B: ELIMINATION OF HARMONIC DEGREES 
OF FREEDOM 

Here we show how to implement the ITOC procedure for eliminating in 
a single step a set of harmonic degrees of freedom together with their 
conjugate momenta from an initial MFPKE. This technique is applied in 
Section 1.C to project out the fast field X and its momentum P from the 
initial three body Fokker-Planck-Kramers equation. 

1 .  Elimination of One Harmonic Degree of Freedom 

We start by considering a one-dimensional example given by the rescaled 
symmetrized MK evolution operator in the coordinates (xl, x,) and 
conjugate momenta ( p l ,  p,), 

where the potential V is defined as 

1 2  v =  VO(Xl) - p ( x l ) x *  + -x2 2 
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We introduce the shifted coordinates .f2 = x 2  - p. This canonical trans- 
formation enables us to obtain a more suitable form for the operator, in 
which V is decoupled. Neglecting the tilde symbol in the following, we 
identify q, with (x l ,  p , )  and qJ  with ( x 2 ,  p2)  

and the potential V is now 

It is useful now to recall the general properties of the harmonic Kramers 
operator. We utilize the summary provided by Risken [43]. The raising 
and lowering operators for the momentum p 2  and the position x2 are 
given by 

where in Eqs. (B7) and (B8) and below in this subsection we suppress the 
subscript 2 for convenience. The quantities hl,?,  solutions of the secular 
equation A’ - w‘A + wS2 = 0, are calculated. We also define a parameter W 

The following operators are then defined: 

(B. l l )  
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112 A + 1 
A -  -- ( A : ' , $ -  - A,  R ) 

w c1- 

C,+ = -1/2 ( - A l  S + A:'2k+) 

c2- - 1 / 2  

1 112 .. t 
w 

-- - 1 ( A ; / 2 $ -  + A ; / 2 R - )  

w 

The following identity is deduced: 

f = AIC,+tl- + A2C,+C2- 

and eigenfunctions and eigenvalues are easily obtained as 

where 

and 

For the adjoint operator similar equations hold: 

where 

(B.12) 

(B.13) 

(B.14) 

(B.15) 

(B.16) 

(B.17) 

(B.18) 

(B.19) 

(B.20) 

(B.21) 

(B.22) 

(B.23) 

(B.24) 

(B.25) 

(B.26) 
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(B.27) 

(B.28) 

(B.29) 

We have so defined a biorthonormal set of functions 

b 1 3  n2lnl,, 4) = %,,n;%*,ni (B.30) 

We may now use the method of Appendix A for the case of a biorthonor- 
ma1 discrete set of eigenfunctions. We then have that 

From the identities 

w ;  ap 1 a 
0 ax, dP1 

t n t l O ,  0 )  = - -112 - [-A:” (5 p1 + -) ] L O )  

(B.32) 

one obtains easily the reduced operator 

(B.35) 
a 

aP1 
x exp(-p:/2) - exp(p:/4) 

where the effective collisional frequency is defined as 

(B.36) 

Note that both reversible effects (correction to the potential function) and 
irreversible ones (correction to the initial friction) are obtained. 
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2. Elimination of N2 Harmonic Degrees of Freedom 

We now generalize this result to a multidimensional case. The initial 
rescaled and symmetrized operator is split into three parts: 

where the averaged potential, on which Rl and R, are defined, is a 
quadratic function of the vector dipole p, 

1 2  V = V , - - p  
2 

(B.40) 

and R:, 8; are the vector equivalents of the previous similar one- 
dimensional operators. For the sake of simplicity we choose and ~ f , ~  
as diagonal and constant. We generalize the previous definitions intro- 
ducing the matrices 0, A , , 2  and the vector operator i ,+ ,  2,- and their 
adjoints. The eigenfunctions of 4 are the direct product of theeigenfunc- 
tions of the one-dimensional harmonic Kramers operators. We label each 
member of the set with the obvious symbol In,, n2) .  The zero eigenvalue 
function is 

exp(-p:/4 - x34)  (B.41) 

and we call fij, O} the first excited state with respect to n, j ,  etcetera; it is 
easy to show that 

1 
) O , O )  = (0,ol = - 

( 2 7 r y 2  

(B.42) 

(B.43) 

(B.44) 
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6 is now given by 

201 

(B.45) 

and the final reduced operator has the form 

I? = q w ; a ;  - R,’w$; + i q w f ’ q  (B.46) 

where the frictional (collisional) matrix is 

(B.47) 

APPENDIX C: THE REDUCED MATRIX ELEMENTS 

We evaluate in this appendix the reduced matrix elements employed in 
the WE calculations throughout the main text. 

1. Reduced Matrix Element of the Torque 

To evaluate the reduced matrix element of the torque T, we first rewrite 
Eq. (2.17) as 

T = - i [ (S ,V) , ,  - (V3,),,1 (C- 1) 

where for ( )op what is contained within acts as an operator. From the 
WE theorem (weak form for noncommuting operators) 

The 6 j  symbol is readily reduced 

The reduced matrix element of 3, is given by Eq. (2.31), while the 
reduced matrix element of the potential V is 
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where the reduced matrix element in the a, subspace only was used 
(rn = 1 ,  2 )  

Finally, one obtains 

J ,  J2 J ~ ~ ( ~ l V ) o p l l  J I J I  J ’ )  = - u,( - ) J i  + J 2  [ JJ’J ,  J J2  J ? ] l i 2  

X [ J 1 ( J 1  + 1 ) ( 2 J 1  + 1)]”2 

X 

{ J~ J 2 } { J 1  J 2  ” }  (C.6)  
J’ J, 1 J ;  J ;  R 

where the definition u, = [R]V, /8r r2  was used. An analogous formula 
holds for the reduced matrix element of ( V j , ) , ,  

[ JJ ‘J ;  J2J;]1’2 J1 + J i  + I  + J ’  
~ J , J , J l / ~ ~ ~ l ~ , , , l l J ; J ~ J ‘ ~  = -u,(-) 

X [ J I ( J i  + 1 ) ( 2 J I  + 1)]1’2 

J ,  R J i )  ( J 2  R J ;  

I’ J ;  J ;  J ;  R 

x ( o o o  0 0 0  
[ I ;  J ?}{ J ,  J ,  J ’ ]  

so that, finally 

( J , J , J I I T I I ” J ; J ‘ ) = ~ u , [ J J ’ J , J ; J ~ J ; ] ’ ’ ~ (  J I )  
J ,  R J I ) ( J 2  R 

x [ ( - ) J i+J2[J , ( J l  + 1)(2J, + l>J”z { J”: ?} 

- (-)J,+JG+J+J’ [ J ; ( J ;  + 1 ) ( 2 J ;  + 1 ) ] l i 2  

X { J I  J ? } ( J 1  5 2  J ] ]  
J ’  J I  J ;  J ;  R 
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2. Vector representation of P:: 

Since PLr is a zero rank tensor, we can simply write Eq. (2 .26)  as 

since we have already found J = 0 and M = 0. By inspection, one can see 
that I J , J200)  (coupled basis set function) is proportional to 9&*(n, - 
n1)6,,, (just write explicitly the coupled basis set function in terms of the 
uncoupled basis set functions). Then, by making the (canonical) change 
of variables (a,, n2)+(n2 - ill, a2 + a,), and integrating over n2 + 
ill , after a few algebraic manipulations the following expression is found: 

(C.10) 

where the factor 9 is simply 6,,,6,,,,,. Note that the original 4-variable 
integral is thereby reduced to a simple integral in the dummy variable x. 

3. Reduced Matrix Elements in the Inj) Subspace 

The reduced matrix elements of s' are suitably evaluated as linear 
combinations of the reduced matrix elements of X and V ,  

The explicit evaluation of these reduced matrix elements is simple, taking 
into account the properties of Laguerre polynomials (cf. [52 ] ) ;  the only 
nonzero cases are 

(C.12) 



204 ANTONINO POLIMENO AND JACK H .  FREED 

Finally, the reduced matrix elements of 
form of the WE theorem 

are evaluated using the weak 

(C.16) 
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