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I. METHODOLOGY

A. Introduction

Classic Brownian motion has been widely applied in the past to the
interpretation of experiments sensitive to rotational dynamics. ESR and
NMR measurements of 7, and T, for small paramagnetic probes have
been interpreted on the basis of a simple Debye model, in which the
rotating solute is considered a rigid Brownian rotator, such that the time
scale of the rotational motion is much slower than that of the angular
momentum relaxation and of any other degree of freedom in the liquid
system. It is usually accepted that a fairly accurate description of the
molecular dynamics is given by a Smoluchowski equation (or the equiva-
lent Langevin equation), that can be solved analytically in the absence of
external mean potentials.

Since the pioneering contribution of Debye [1], one-body Smoluchow-
ski equations have provided a general framework for the study of
dielectric relaxation in liquids, neutron scattering, and infrared spec-
troscopy. The basic hypothesis is that the solute degrees of freedom are
the only “‘relevant” (i.e., slow when compared with the timescale of the
experiment) variables in the system, and that the surrounding liquid
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medium behaves as a homogeneous bath whose internal degrees of
freedom are rapidly relaxing. This simple picture has had many substan-
tial refinements and improvements. Perrin [2], Sack [3], Fixman and
Rider [4], Hubbard [5], McClung [6], Morita [7], and many others have
contributed by including anisotropy and inertial effects and by studying
detailed numerical solutions to classic Fokker—Planck—Kramers equations
for the tumbling of a general top. Good agreement between the ex-
perimental data and theoretical predictions can often be obtained at
moderate viscosities and pressures. Also, the influence of a mean poten-
tial of interaction has been extensively studied, since the original work of
Favro [8].

However, when the experimental results associated with the molecular
tumbling become more precise, as is often the case when magnetic
resonance techniques are involved, the one-body approach become ques-
tionable, and a more sophisticated insight into the many-body nature of
the liquid is required. Usually a simple Debye approach fails in interpret-
ing molecular dynamics data obtained for liquids of “‘molecules which are
highly anisotropic in shape, for example rod-like molecules, or molecules
which interact via anisotropic forces, such as the case where hydrogen
bonding occurs, or finally molecules which display high internal mobility
like bulk polymers” [9]; in short whenever a Markovian description of the
solute degrees of freedom is unacceptable, due to the effect of solvent
degrees of freedom whose relaxation timescale is comparable to the
solute correlation time. Substantial departures from predictions of Brow-
nian motion theory are observed in extreme conditions, for example,
when very low temperatures or very high viscosities, such as in super-
cooled organic fluids, are considered; or when there are strong interac-
tions between the solute and the immediate solvent surroundings, such as
in ordered liquid phases or highly polar liquids. ESR studies in ordered
and isotropic fluids over a wide range of temperatures and pressures
[10,11], NMR data [12], highly viscous fluid studies [13-16], dielectric
experiments performed in glassy liquids [17-22], far infrared spectroscopy
of polar solvents [23] are only a few examples of studies that have been
particularly sensitive to the inadequacies of stochastic single-body models.

In principle, the presence of slow stochastic torques directly affecting
the solute reorientational motion can be dealt with in the framework of
generalized stochastic Fokker-Planck equations including frequency-
dependent frictional terms. However, the non-Markovian nature of the
time evolution operator does not allow an easy treatment of this kind of
model. Also, it may be difficult to justify the choice of frequency
dependent terms on the basis of a sound physical model. One would like
to take advantage of some knowledge of the physical system under
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investigation to set up a “‘relevant” time evolution operator that is more
or less able to account for the main relaxation processes affecting the
solute. One way this can be accomplished is by including collective
degrees of freedom, which can, at least partially, account for the non-
Markovian nature of the motion of the isolated probe.

Many theoretical models have been proposed in the past for including
some “solvent” degrees of freedom, representing in a qualitative way the
complex environment around the solute molecule. The “itinerant oscil-
lator” model (IOM) developed by Coffey and co-workers [23-25] is an
interesting attempt to improve on the limitations inherent in the one-body
Debye approach. The molecule is considered to be coupled by a har-
monic potential to a cage of solvent particles reorienting as a whole, and
some calculations with a cosine potential have been attempted. The
system ‘‘molecule + cage” reorients in a fixed plane and the additional
solvent molecules are described merely as a source for a damping force
(torque) affecting both the molecule and the cage. A bidimensional
Langevin equation, or the corresponding linearized Fokker—Planck—
Kramers equation, is used to calculate the usual correlation functions of
interest, and dielectric relaxation and far infrared data are interpreted in
terms of this model (and also compared with molecular dynamics simula-
tions).

The itinerant oscillator model can be seen in the context of the more
general “reduced model” theory due to Grigolini and co-workers [26-29].
Again, the main idea is to account for the complex behavior of the
medium as a non-Markovian bath which affects the rotational (and/or
translational) motion of the probe. This bath is thought of as added
“virtual” degrees of freedom whose features simulate, in a multi-
dimensional Langevin equation scheme, the ‘“real” time dependent
generalized Langevin equation,

We briefly note, at this point, the contribution of Zwan and Hynes
[30-32] that is in line with these previous approaches. These authors
consider a generalization of the IOM for a simple internal-dipole isomeri-
zation reaction in which the interaction with the rest of the solvent is
implicitly split into a dissipative interaction (generating the usual damping
terms, considered small by Zwan and Hynes) and long-distance interac-
tions with “a pair of solvent outer dipoles”. The picture is very schematic
(again only linearized potentials are considered), but the concept of a
third interacting body dynamically coupled to the probe and the “slow
modes” previously defined, is interesting. Note that Zwan and Hynes use
their initial multidimensional linear Langevin equation to obtain a
generalized Langevin equation in a single reaction coordinate, which they
solve with the aid of a Grote—Hynes approach (cf. a recent comparison
with MD results [32]).
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Finally, a comparison with the models developed in the past by Freed
and co-workers is in order [28, 33-35]. With the objective of interpreting
observed departures from simple Debye behavior in many liquid state
ESR experiments, they considered two main physical models based on
the characteristic correlation times of the stochastic torques acting on the
probe, compared with that of the probe motion itself. In the so-called
“fluctuating torques” (FT) models the probe can be seen as larger (and
slower), or at least of comparable dimensions to the solvent molecules.
Because of the rapid reorganization of the surroundings, only dissipative
friction effects are exerted by the solvent on the probe. On the other
hand, in the “slowly relaxing local structure” (SRLS) model, the probe
can be seen as smaller (and faster) than the solvent “‘structure”, whose
motion about the probe is slow enough that the probe reorients relative
to the instantaneous value of the intermolecular potentials. A rationaliza-
tion of these models is achieved by Stillman and Freed [33], who are able
to obtain, using arguments based on the stochastic Liouville approach,
general augmented Fokker—Planck equations describing simple model
cases. We note in passing the similar objectives of this stochastic Liouville
approach and the reduced model theory of Grigolini.

Recently Kivelson and Miles [36] and Kivelson and Kivelson [37] have
attempted to rationalize some of the physical observations concerning
supercooled organic liquids [13-20] by adopting a many-body description.
The reorientational relaxation of an asymmetric top is assumed to take
place in a potential V(€2 — 2*) where  are the Euler angles specifying
the orientation of the top, while €2* are defined as an unspecified
“equilibrium position” for the top in the mean field potential V. The
so-called B relaxation is related to the diffusional motion within a
potential well, whereas the so-called a relaxation is identified as a
“random restructuring of the torsional potential”, that is, of *, which
can be considered as a function of some “slow environmental variable X’
[37]. This model is, in spirit, very similar to the SRLS model of Freed and
co-workers. Kivelson et al. rationalize the multiexponential form of the
rotational correlation functions observed in many supercooled fluids in
terms of a memory function approach; that is, the correlation function is
expressed as a Mori continued fraction expansion truncated at the second
term [36]. The second memory function is supposed to be a phenomeno-
logical biexponential function. In this simple way a qualitative description
of the o, B and Poley relaxation processes is achieved, although the
behavior of the librational signal is not very well explained if compared to
the experimental evidence (a weak, temperature dependent signal is
calculated). No real attempts at relating these considerations with micro-
scopic or mesoscopic models is made by the authors; the model is
proposed as an extension of the so-called ‘“three-variable theory” [38].



94 ANTONINO POLIMENO AND JACK H. FREED

To summarize, in complex liquids, where the bath cannot be consid-
ered as a simple collection of very fast modes which can be eliminated in
the usual Markovian approximation, the spectrum of stochastic torques
acting on the probe can be modeled in terms of virtual or “‘ghost’ degrees
of freedom, coupled to the molecular ones in a multidimensional
Langevin or Fokker—Planck formalism. The new modes are able to
simulate, in some qualitative way, the complex features of the real
solvent (e.g., reduced model theory), and they can be interpreted in
terms of a formal Mori expansion (e.g., a three variables theory), or they
can be chosen with an intuitive physical meaning (FT/SRLS and IOM
models). Generally speaking, an interaction potential must be introduced
to describe the coupling between real and virtual modes, but second
order interactions, mediated by other solvents modes, should also be
considered in order to simulate dissipative contribution to the torques
affecting the probe (Zwan and Hynes models).

Clearly, a general theory able to naturally include other solvent modes
in order to simulate a dissipative solute dynamics is still lacking. Our aim
is not so ambitious, and we believe that an effective working theory,
based on a self-consistent set of hypotheses of microscopic nature is still
far off. Nevertheless, a mesoscopic approach in which one is not limited
to the one-body model, can be very fruitful in providing a fairly accurate
description of the experimental data, provided that a clever choice of the
reduced set of coordinates is made, and careful analytical and computa-
tional treatments of the improved model are attained. In this paper, it is
our purpose to consider a description of rotational relaxation in the
formal context of a many-body Fokker—Planck—Kramers equation
(MFPKE). We shall devote Section I to the analysis of the formal
properties of multivariate FPK operators, with particular emphasis on
systematic procedures to eliminate the non-essential parts of the collec-
tive modes in order to obtain manageable models. Detailed computation
of correlation functions is reserved for Section II. A preliminary account
of our approach has recently been presented in two Letters which address
the specific questions of (1) the Hubbard-Einstein relation in a mesos-
copic context [39] and (2) bifurcations in the rotational relaxation of
viscous liquids [40].

In Section I.B we discuss how to devise a general MFPKE to describe
complex liquids. A three-body model will be presented as a description of
a system in which at least two significant additional sets of solvent degrees
of freedom are introduced. In Section I.C we show the relation between
some of the previously cited approaches and particular cases of our
model. In particular, augmented Fokker—Planck equations (AFPE) of
Stillman and Freed are seen to be directly related to the MFPK formal-



ROTATIONAL MOTIONS IN LIQUIDS 95

ism. Section I.D is devoted to the explicit study of a two-dimensional
planar version of the three-body model of Section I.B. In Section 1.LE we
consider the actual relation between AFPEs and MFPKE:s in a test case.
A summary is given in Section I.F. The projection procedure employed in
the treatment of large MFPKEs is described in Appendices A and B.

B. A Many-Body Approach to Complex Fluids

A set of collective degrees of freedom representing, at least qualitatively,
the main effects exerted by the complex medium in the immediate
surroundings of the rotating solute, needs to be incorporated into the
initial one-body description of the molecular dynamics. Following sugges-
tions of many authors, we choose to think in terms of an instantaneous
structure of the solvent molecules around the reorienting probe, a sort of
loose “‘cage” that can be considered as a dynamical structure relaxing in
the same time range as the solute rotational coordinates (i.e., it is a
slowly relaxing local structure). Thus the relevant phase space is in-
creased by three Euler angles for the orientation of the solvent local
structure, and also by the three components of the corresponding angular
momentum vector. The resulting two-body scheme is formally that of two
interacting rigid tops; the first one being the solute molecule, the second
one the average of the instantaneous orientations of the solvent molecules
in the near environment of the probe.

The picture can be improved, if necessary, by adding faster solvent
degrees of freedom, coupled both to the probe (the first body or body 1,
from now on) and the solvent structure (the second body). That is, we
suppose that the second body does not account for all of the effects
exerted by the real environment, but only for the slowest ones, since
“...motion of an individual molecule in a (ordered) fluid should be a
complex process involving . . . long-range (and slow) hydrodynamic effects
to short-range (and fast) molecular couplings” [11]. Note that if we limit
our analysis to the timescale of the reduced system solute + solvent
structure (that we may well suppose to be orders of magnitude slower
than the rest of the liquid system, except maybe in very viscous fluids),
any faster mode will be seen as giving an additional frictional effect, after
its elimination as an explicit degree of freedom by a projection proce-
dure. Thus it will be possible to see that the introduction of a fast third
(or additional) collective body interacting with the solute and the solvent
structure can be considered as the approximate source of the fluctuating
forces/torques invoked by Freed et al.

Although our primary interest is concerned with the study of the
rotational dynamics of the solute, we may consider part or all of the
additional solvent degrees of freedom as point vectors, or fields. An
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example of a fast translation-like mode coupled to a rotator is given by a
stochastic polarization or ‘“‘reaction field” in polar solvents [41]. Note
that, at least as a starting point, we shall always include the conjugate
momentum coordinates in the system phase space. That is, we shall
always initially consider the multivariate Kramers equation including all
the position and velocity degrees of freedom.

1. Many-Body Fokker—Planck—Kramers Equations

Let us suppose that the liquid system is described by a MFPKE in N + 1
rigid bodies (the solute, or body 1 and N rotational solvent modes or
“bodies’), each characterized by inertia and friction tensors I, and §,, a
set of Euler angles €,, and an angular momentum vector L, (n=
1,...,N+1) plus K fields, each defined by a generalized mass tensor
and friction tensor M, and §,, a position vector X, and the conjugate
linear momentum P, (k=1,...,K). The time evolution of the joint
conditional probability P(Q°, X°, L°, P°|Q, X, L, P, t) (where Q, X, etc.
stand for the collection of Euler angles, field coordinates etc.) for the
system is governed by the multivariate Fokker—Planck-Kramers equation

A

d
~ P=-TP (1.1)

and the initial conditions are

N+1 K
Pl..o=I1 8@, —QdsL, -Ly) IT 6(x, - X})8(P, — P})
n=1 k=1
(1.2)

where the FPKE partial differential operator is given by the sum of
Kramers operators for each body and field

. N+1A K .
I'= 2 F,, + 2 Fk (13)
n=1 k=1

The rotational operator for the nth body is defined according to Hwang
and Freed [35] as

N ia - 1
r,=iLL'J,+TV,-PV, ~k,TV,E, (v,, + 7L ‘L”)
’ (1.4)

The vector operator J, is the angular momentum operator for the nth
body; note that the generator of infinitesimal rotation (M,) is simply
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proportional to J,, that is, M, = iJ,; T, is the torque acting on the nth
body, which we take as generated from a general potential V depending
on all the displacement coordinates of the system

T,=-iJ,V (1.5)

Finally V, is the gradient operator on the L, subspace, while P, is a
precessional term, whose Cartesian components in the molecular frame
fixed on the nth body are given by

s (1 1
P, = (7— - 1—) L,L,e€x (1.6)

where [, is a principal value of the inertia tensor I, and ¢, is the
Levi-Civita symbol.

The translation operator for field X, is defined accordingly as the
three-dimensional Kramers operator

L, =PM,'Vy +F,V, — kT, &, (V M, 'P ) (1.7

kT

where F is the restoring force generated by the gradient operator Vy on
14

F,=-VyV (1.8)

and V, is the gradient operator on the subspace P,. In the following we
will consider only isotropic space, and we will conveniently define all the
vectors and vectots operators in a unique laboratory frame.

The potential function V still must be made explicit in order to
complete the description of the system. A general multipole expansion in
terms of first, second rank, etcetera interactions depending only on the
relative orientation between each pair of bodies can be taken, as well as a
multipole-field term (e.g., a dipole-field) for the pairwise interaction
between each body and field. Finally each stochastic field is subjected to a
harmonic potential, to parametrize in the most economical way the
amplitude of the stochastic fluctuations. The complete potential is then

N+1 N+1 N+1 K 1 K
E 2 Vnn (ﬂ Q )_ Z Z ”‘kX llk —2_ kE XkEixk
n=1n'=1 n=1 k=1 =1
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where

R, -
Vnn'(ﬂn - Qn’) = R P§: UP::'QH,,' @l;::'Q,,":(Qn - Qn')
nn’ nn"an'

(1.10)

where @ﬁ::,'gn", is the (adjoint of) the Wigner rotation function of rank
R,,. and components P,,., Q, ... The dipolar coupling between each body
and each field is expressed in terms of the inner product between the field
X, and a unit vector u,, fixed on the body (so that the quantity p, u, can
be interpreted, if desired, as the dipole moment of the nth body); the
(diagonal) matrix E, has elements which measure the amplitude of the
fluctuations of the components of the field X,,.

2. Three-Body Fokker—Planck~Kramers Equation

In the following paragraphs we shall apply the previous general formulas
to a simplified description of a liquid system in which only three bodies
are retained: the solute molecule (body 1), a slowly relaxing local
structure or solvent cage (body 2), and a fast stochastic field (X) as a
source of fluctuating torque. Although this is a minimal description if
compared to the general approach of the previous section, it should still
represent a considerable improvement with respect to the usual one-body
schemes, since it explicitly includes both a fast and a slow solvent mode.

The reduced Markovian phase space is now given by the Euler angles
specifying the position of the solute rotator €3, and the three components
of the corresponding angular momentum vector L, plus the analogous
quantities €2, and L, for the solvent structure plus the fast field X and its
conjugate linear momentum P. The conditional probability for the system
Pl, 03, X° LI, L), P°|Q,, Q,, X, L,, L,, P, t) is now driven by the
MFPK operator

A

D=0 +1,+1 (1.11)

where T, and fz are given by Eq. (1.4) and [ by Eq. (1.7). A further
simplification will be introduced by considering an isotropic fluid com-
posed of spherical top molecules (but with embedded dipoles, quad-
rupoles, etc.). Not much changes for molecules of cylindrical symmetry
(i.e., symmetric tops). Thus all the inertial, mass and friction tensors for
each body and the field will be treated as scalars. The precessional terms
can be completely neglected, and all the suboperators can be written
easily in a unique laboratory frame. The direct potential term between
the solute and the solvent cage will include only first and second rank
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interactions, and they will be dependent only on the relative angle
between u, and u, (see caption to Fig. 1)

2
=—v,P(Q, - Q) = 0,P,(R, - Q) — (pu; + pu))X+ —- X’

(1.12)

1l

14
kT

[\

here P, and P, are the Legendre polynomials of rank 1 and 2, respective-
ly. Note that any direct dipole—dipole interaction between body 1 and
body 2, is included in the first rank part (a minus sign has been extracted
for future convenience from the first and second rank parameters).

A variety of interesting physical situations can now be obtained in the
framework of the three-body model just defined, by carefully choosing
the range of variation of the frictional parameters: &, the friction exerted
by the rest of the solvent on body 1, £,, the friction of body 2 and £, the
friction on the field; and the energetic parameters v,, v,, &, 4, (Z being
renormalized to 1, cf. next section). For instance, one can consider the
case of a fast solute interacting via a nematic-like interaction potential
with a slow (large) solvent structure in the absence or presence of a fast

Figure 1. A three-body scheme for a complex liquid. Note that u, and u, are aligned
respectively along the z, and z, axes.
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fluctuating field (v, =0, v, #0, & > ¢,). Or one can choose the case in
which only the interaction between the solute probe and the field is
present, ignoring any local structure (v,=v,=0, §=0). A planar
Smoluchowski equivalent of this latter case was recently used for the
interpretation of dielectric friction effects in polar isotropic liquids [41].

In many physical systems of experimental interest, it is usually possible
to devise a reduced phase space of coordinates and/or momenta in which
an accurate description is achievable. For instance, in a highly viscous
fluid one may neglect all the momenta L,, L, and P given their very fast
relaxation with respect the time scale relaxation of the position coordi-
nates €,, ),, X. In many cases, the field vector (and its conjugate linear
momentum) can be considered as a fast mode with respect to the rest of
the system, so that both X and P can be projected out. One can also
suppose that, although inertial effects are unimportant for the large
solvent structure, that is, L, is a fast coordinate, some inertia is still
affecting the motion of body 1, so that L, must be retained. If all the
additional solvent degrees of freedom are eliminated, and only €, is left,
the single body Smoluchowski equation is recovered.

C. Elimination of Fast Variables

Our purpose in this section is to obtain a simpler time evolution operator
from the complete one of the previous section via a systematic elimina-
tion of any fast variables initially included in the system. In order to
handle efficiently the algebra involved, with the smallest number of
independent parameters, it is convenient to introduce from here on
rescaled, dimensionless quantities (see Table I) and to “symmetrize” [42]
the initial MFPK operator via the usual similarity transformation

I=pr. TP (1.13)

where P,  is the Boltzmann distribution function over the total energy
(potential plus kinetic). It is the unique eigenfunction of zero eigenvalue
of the unsymmetrized operator. The final symmetrized and rescaled time
evolution operator is then written explicitly

['=i(L,J, +T,V)) — o exp(LY4)V, exp(~L2/2)V, exp(L2/4)
+ 3(iL,J, + T,V,) — 0 exp(L2/4)V, exp(—L3/2)V, exp(L3/4)

+ 0y (PVy + FV,) — 0 exp(P*/4)V, exp(—P*/2)V, exp(P*/4)
(1.14)
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TABLE 1
Rescaled Units and Parameters

ab.c

fﬂ,z = (kBT11,2)71/2L1.3
P=(k,Trm) P
X=(k,T)'"EX

/11,2 = (kBT)-lmE?l“'Lz
Wi, = l;.éfl,z

wy=m g

@i, =(ky 7)1,

V=(k,T)'V

“Where the tilde symbol stands for rescaled units, and it is
neglected throughout the text.

*Rescaled units are dimensionless except for the four w
terms, which are in angular frequency units,

“Subscripts 1, 2 imply the symbol for either body 1 or
body 2.

while the rescaled potential (in k,T units according to Table I) is given
by

V=—v, P (2, — Q) —v,P, (2, - Q)= (pu, + Hyu,)X + %Xz
(1.15)

The streaming frequencies ) and w3 in Eq. (1.14) are related to the
inertial motions of body 1 and body 2, respectively (i.e., they are the
inverses of the correlation times for the deterministic motion of the two
bodies). The collisional frequencies w| and wj are a measure of the direct
coupling with the stochastic environment, that is, of the dissipative
contribution to the dynamics. An analogous interpretation may hold for
the frequencies wy and wy, related to the streaming and stochastic drift
of the field.

1. Field Mode Projection

According to the previous section, we shall start by considering X and P
as fast degrees of freedom, relaxing on a much more rapid timescale than
the orientational coordinates and momenta of the solute and the solvent
cage. Many different projection schemes are available to handle stochas-
tic partial differential operators. Here we choose to adopt a slightly
modified total time ordered cumulant (TTOC) expansion procedure,
directly related to the well known resolvent approach. In order to make
this chapter self-contained, we summarize the method in the Appendices
and its application to the cases considered here and in the next section.
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Given only that wy and wy are much larger than any other frequency
in the system, one can easily eliminate both X and P in a simple step, via
a projection based on the eigenfunctions of the monodimensional FPK
operator for a single particle in a harmonic field [43]. Following the
detailed scheme outlined in Appendix A, after projecting out the field
and its momentum, one obtains the following MFPK operator in the
remaining two bodies coordinates:

['=w(L.J, +T,V,) — exp(LY¥4)V,0° exp(—L/2)V, exp(L2/4)
+ wi(iL,J, + T,V,) — exp(L/4)V, w5 exp(—L3/2)V, exp(L2/4)
— exp(L/4)V,w$, exp(—L/4 — L2/4)V, exp(L3/4)
— exp(L3/4)V,ws, exp(—L2/4 — L2/4)V, exp(L3/4) (1.16)

One remaining effect from the projected fast field is given by the
redefined two-body potential with respect to which the torques T, and T,
are defined; the only modification is a redefined first rank potential
parameter

V=—uP(Q,~ Q) —v,P,(, - ) (1.17)
i Y ) (1.18)

and a constant term proportional to u + u? that we neglect since it only
affects the arbitrary zero of energy.

But the major contribution of the projected fast field to the resulting
operator is given by a new frictional tensor (or collisional frequency
tensor), which includes coupling terms between body 1 and 2 that are of a
purely “dynamic” nature; that is, they do not affect the final equilibrium
distribution. The collisional matrices, modified by the averaged action of
the fast field, may be expressed in the following way:
( ] wiz) _ ®il- U —(w,0,)' "0, U, (1.19)

Wy @ —(w, w2)1/2U2U1 wy1— w2U§ -

where o, and w, are proportional to the field collisional frequency wy

®, = i, = (1.20)

with n =1, 2,; U, and U, are angular dependent 3 X 3 matrices defined as

U,=-iJ,®u, (1.21)
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that is, the pgth Cartesian component of U, is proportional to the result
of the application of the p component of J, on the g component of the
unitary vector u,. Note that the new collisional matrix is naturally a
symmetric and positive definite matrix. If it is evaluated in the molecular
frame fixed on body 1 (2), the diagonal block for body 1 (2) is a constant
diagonal one, while the diagonal friction block for body 2 (1) and the
coupling friction blocks are only dependent upon the relative orientation
Q,-Q,.

The effect of the new frictional term can be important whenever a
strong initial coupling is supposed to exist between the solute and the fast
mode. It is not difficult to show that a close relation exists between the
frictional coupling terms of our MFPKE and the Stillman and Freed
augmented Fokker—Planck equation (AFPE) in the case of a so-called
“fluctuating torque” model. A close analogy between AFPE and MFPKE
formalisms can be easily achieved if we consider the motion of the second
body as completely diffusive. One can eliminate as a fast variable the
angular momentum L, from the previous two-body MFPKE (cf. Eq.
(1.16)), following again a TTOC scheme (see Appendix A). A new
hybrid (partly inertial and partly diffusive) time evolution operator is
found for the system (2, €2,, L) whose form is given as

= wi(L,J, +T,V,) - exp(LY/4)V, 0’ exp(—L2/2)V, exp(L’/4)
—i exp(L2/4)V fexp(—L3/4 — VI2)J, exp(V/2)
—i exp(V/2)J,£" exp(—L3/4 — VI2)V, exp(L}/4)
+ exp(V/2)1,DS exp(— V)], exp(V/2) (1.22)

with new angle dependent matrices that are defined in terms of w{, w;
and o,

w\ = 0] - oj(@;) ', (1.23)
f=owj0) ;)" (1.24)
D} = wf(w;) ™ (1.25)

This is a two-body AFPE that is fully equivalent to those described by
Stillman and Freed, including both a fluctuating torque effect (matrix f)
and a slowly relaxing local structure (interaction potential V); the
equivalence of the two approaches will be further investigated in the next
section for the case of a planar model.

If the momentum L, itself is considered as a fast relaxing variable, that
is, the motion of the solute is supposed to be completely diffusive, then it
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is possible to further reduce the phase space to only the rotational
coordinates £, and ,. The two-body Smoluchowski operator that is left
after performing the TTOC projection is

r= exp(V/2)J,D, exp(—V)J, exp(V/2) + exp(V/2)],D,,
x exp(—V)J, exp(V/2) + exp(V/2)J,D,,
x exp(—V)J, exp(V/2) + exp(V/2)3,D,exp(—V)J, exp(V/2)
(1.26)

and we can again write down the diffusive matrix blocks in terms of w{,
w3, 0,

D, = wslzl‘”i - wiz(‘”;)il‘”;l]_l (1.27)
D,= w;2[w§ _‘”gl(wi)’lwizl_l (1.28)
D,, =D}, = 0} [0, ~wj(e},) '] (1.29)

In glassy liquids or supercooled organic fluids the viscosity affecting all
the positional and orientational variables is supposed to be rather large.
We can then consider a third reduced equation, describing the coupled
evolution of €,, Q,, X, after a straightforward elimination of all the
momenta L, L, and P from Eq. (1.14). We then easily obtain a
three-body Smoluchowski equation with a 9 X 9 diffusion matrix that is
diagonal and constant

= — Dy exp(V/2)Vy exp(—V WV exp(V/2) + D, exp(V/2)],
x exp(—V)J, exp(V/2) + D, exp(V/2)J, exp(—V)J, exp(V/2)
(1.30)

and where the diffusion coefficients are related to the initial collisional
frequencies, that is,

_. 82 c .52 < .52 c
Dy =wy/wy, D =wilw], D, =0y /w5 .

D. Planar Model

There are several reasons for considering planar equivalents of some of
the above 3D-models. First of all, the heavy matrix notation employed in
the previous section can be discarded, and the number of degrees of
freedom for the complete system is reduced from 18 to 8 (two polar
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angles of rotation, their conjugate momenta, which are proportional to
the angular velocities, and two in-plane components for the reaction field
plus their conjugate momenta). The numerical treatment of the resulting
MFPK equation is easier, and a comparison between different levels of
complexity in the dynamical description can be made; that is, one could
consider the explicit effects of the static and the dynamic interaction
between the two rotators in detail. In this way one can obtain useful
insight for predicting the behavior of the much more difficult three-
dimensional case. Also, one can use the planar model in order to test
approximate analytical treatments.

Planar models are also important for comparing our work to some of
the previous theoretical studies along the same lines, for example, the
planar augmented Fokker—Planck equation described by Stillman and
Freed (see next section) and the itinerant oscillator model of Coffey and
Evans.

1. Planar Dipoles in a Polar Fluid

Let us consider a system made of two planar dipoles, reorienting in the xy
plane of the laboratory frame, and interacting with the components X,
X, of a stochastic field lying in the same plane. Our starting equation, the
planar equivalent of equation (1.14) is much simplified. All the frequency
matrices are now scalars, the precessional terms are obviously not present
and only one angular variable for each rotator has to be considered. The
complete time evolution operator in a rescaled and symmetrized form is
then given by

= W _a__EK_a_>_c 2/4) =2 exp(—L2/2) —
F—wl<Ll 26, 9%, oL, wi exp(Li/4) aL, exp(—L1/2) 3L
X exp(L3/4)
s 9 _ 9V _8_)_ c 200 90 r 24y O
+w2(L2 26, o0, oL, w; exp(L3/4) oL, exp(—L3/2) 3L
x exp(L3/4)

R 3 gV a )
+ —— e —_———— — —_—
wX(Pl 8Xl aXl aPl erxp(pl/4) aP exp( pl/z)

xexp(pf/4)
s(p 8 9V _a_) _
+ “’x(Pz 39X, 90X, P, erXp(p2/4) exp( Pz/z)

X exp( p3/4) (1.31)
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The potential function for the system is chosen to be

V=—v, cos(¢; — ¢,) —v,c082(¢; — ¢,)
— (y €Os &, + w1, cos ) X, — (g sin ¢ + p, sin )X, + 1 X° + 1 X3
(1.32)

We can now use our projection technique to recover averaged time
evolution operators in which some of the system coordinates are consid-
ered as fast. An interesting case is given by the model in which the
solvent polarization relaxes faster than the reorientational molecular
modes, that is, the equivalent of equation (1.16). Note that now the
matrices U, , (where the subscripts 1, 2 imply we are referrlng to both U,
and U,), are simply given by (—sin ¢, ,, cos ¢, ,)" and the resultmg
diagonal elements of the final friction matrix are constant, so

A i_ﬂi>_ 24y -2 exp(= L2/2) ~>-
I'= (L w, exp(Li/4) oL, exp(—L71/2) Y3

Yo¢, d¢, oL
X exp(L:/4)
s d aV 4 )
+ —— e ——— c——
w5 (L2 56, 89, L, w, exp(L; /4) exp( L} /2)
X exp(L;/4)

d d
— wp, exp(L7/4) =~ exp(=Li/4 — L3/4) 57— exp(L3/4)
1 2
d
~ w0y, exp(L2/4) 5%; exp(~Li/4=LY/4) 5 exp(Li/4) (1.33)

and now , , and w,, are

. )
W=t wy (1.34)

w2=w§+—s2~wx (1.35)

5

w0y = oy, = PEIIE2 co(g, — &) (1.36)

and the potential V is again the direct interaction between the two planar
rotators, with a renormalized u,. The diagonal terms of the friction
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matrix have the well known Nee—Zwanzig form for the friction exerted
by a polar viscous fluid on a reorienting dipole (dielectric friction). This is
not surprising, since our model considers for simplicity only a first rank
interaction between the system and its environment. Note that the
frictional coupling depends explicitly only on the relative orientation (in
this planar model the difference angle between the absolute angles ¢, and
¢,). as in the case of the three-dimensional model. If one neglects the
frictional coupling terms, what is left is the IOM equation for two
Brownian dipoles proposed by Coffey and Evans.

E. Augmented Fokker—Planck Equations and MFPKEs

The model proposed by Stillman and Freed (SF) in their 1980 paper {33]
is very versatile. By choosing carefully (i) the coupling forces between
molecule variables (x,) and augmented ones (x,), and (ii) the potential
function in the final equilibrium distribution, one can easily recover a
variety of mathematical forms, reflecting different physical cases. The SF
procedure starts from considering a system coupled to a second one in a
deterministic way (interaction potential); the latter, in the absence of any
coupling is described by a FP operator. The first step to obtain a
description of the full system is to write the stochastic Liouville equation
(SLE), according to Kubo [44] and Freed [45]

d . .
aP(xl,pl,xz,t)=—($1+R2)P(xl,p1,xz,t) (1.37)

The Liouville operator 521 contains a potential term depending on x,; the
Fokker—Planck operator f\’2 is considered for the sake of simplicity
merely diffusive (so that p, does not enter into the calculation). The SLE
is not rigorous, since it does not contain terms related to the back
reaction of system 1 on system 2. That is, it does not tend to the correct
equilibrium, zero eigenvalue, solution. Stillman and Freed “complete™ it
by requiring that a given equilibrium solution P,  is recoverable. They
accomplish this by modifying some reversible or irreversible drift terms,
in a manner consistent with the Graham—-Haken relations [46], which are
based upon detailed balance, as well as with physical intuition. This
finally leads to an augmented Fokker—Planck operator for the probability
function. A number of points can now be highlighted. (1) The only
physical aspects of the model are the interaction force f(x,, x,) in %, and
the potential function V(x,,x,) defining P, ; (2) the result accounts for
the back reaction of 1 on 2; (3) one can usually obtain an ALE
(augmented Langevin equation) from the AFPE; (4) as long as sensible

choices of f and V are made, SF are able to show that the basic FP
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equation can be recovered, in the limit when x, or p, become fast
variables; (5) two main classes of models have been obtained: fluctuating
torque models (only frictional effects are found), and slowly relaxing local
structure models (no frictional effects, but a reorganization of the poten-
tial energy is found). Finally an AFPE can be generalized to contain
spin-dependent terms, treating the spin Hamiltonian as a potential. Also,
other fast modes can be added in a simple way as collisional operators in
the AFPE. On the other hand, some aspects of the entire procedure are
not well defined. One starts with a flawed formulation (i.e., the SLE does
not obey detailed balance); the next step (i.e., the modification based on
detailed balance conditions) is not uniquely defined and requires physical
intuition. The MFPKE while initially more constraining, leads to a more
precisely defined formulation. The relation between MFPKE and AFPE
is better understood in the context of the general properties of Fokker—
Planck operators, that are briefly reviewed in the next section.

1. Fokker—Planck Operators: The Graham—Haken Conditions
The general operator of a FP operator is

2—— >

aql ij aqraq/ ij

(1.38)

where g, are a set of general variables and Kj; is a symmetric tensor.
Haken defines the irreversible and reversible drift coefficients as

D,= 5(K;+ €K)) (1.39)

{

J;i= %(Ki_eiKi) (1.40)

where Jq, = €4, (¢, = 1), J the time reversal operator. In order that
the FP has the stationary solution P, = # exp(—V) it follows that

K“= e.e.,de“ (141)
D,-2> —Z K, (1.42)
j aq} / Bq}
aJ, 1%
2( — 1, —> =0 1.43
aq; aq; ( )

(note that IV = V). An alternative form of Eq. (1.38) may be obtained,
in vector notation as

I= ((%)J— (%) KP,, (5‘:) % (1.44)
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In the following we shall write a general FP operator having the equilib-
rium solution P, in the form of Eq. (1.44). The vector J satisfies the
following relations

Fy=-J (1.45)
9
(£>JPCQ=0 (1.46)

When J=0 one recovers the so-called “potential condition”, which
means that the operator I' has no reversible part.

2. Analysis of a Simple System According to the Stillman—Freed
Procedure

We consider here for simplicity a one-dimensional system constructed
from a generalized solute coordinate x, and its conjugate momentum p,
coupled to a diffusive solvent coordinate x, via a potential V="V,(x,) +
V,y(x,) + V,,(x,, x,). According to SF, the (renormalized and rescaled)
stochastic Liouville operator is

2

- 1% 9
= A R | | S A /4) ——
= <p1 dx; dx; dp; ax, ‘9171> @y exp(pi/4) ap,

3 s
X exp(—p1/2) Py exp(pi/4)

0
0X,

— D, exp(V,/2) % exp(—V;) exp(V,/2) (1.47)
2

The SL operator is given simply by the sum of the FPK operator for
subsystem 1 plus the Smoluchowski operator for subsystem 2. It is not
complete, in the sense that it does not have a meaningful solution for
t— +o, which should be the equilibrium distribution. If we require that
the total system tends to the Boltzmann distribution given by the total
energy (including the interaction term V, )

Pgxexp[—(pi/2+V +V, + V)] (1.48)

the slowly relaxing local structure model will be recovered. In this case SF
modify the irreversible term in x, in a way that is equivalent to substitut-
ing V, with V in the Smoluchowski part of the operator

f_os(, 9 _ 9V i) ot 24y 9
1—‘_a)l<pl axl axl apl wlexp(pl/4) ap!
d 5
X exp(—p31/2) ap. PP

1

d ]
— D, exp(V/2) Py exp(—V) F exp(V/2) (1.49)
2 2
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For clarity the streaming term for subsystem 1 has been rewritten with
respect to the total V; (obviously oV,/dx, =0). If the equilibrium is
required to be independent of the interaction energy, that is,

P, xexp[—(pl/2+V, +V,)] (1.50)

a fluctuating torque model is obtained, with an AFP operator written as

o 9 3V 9 ) ‘ 240 0 2y 0

_—— e —} - 4y — — —

r w1<p1 ox, ax, ap,) ~ 1 exppd) 5 mexp(=pi2) 5
X exp( pi/4)

~w) (exp(wz) B%f exp(—V/2— pi/4) Bipl exp(pi/4)
+ exp( p/4) = fexp(~VI2— ptld) exp(V/2)>
ap, ox,
— D, exp(V/2) 4 exp(=V) 4 exp(V/2) (1.51)
dx, ax,

where V is now simply V| + V,, and the function f is defined by

av"") (1.52)

dx,

f=exp(vy) | dr, exp(-v2)

These are essentially SF Egs. (4.4) (SRLS case) and (2.36) (FT case).
3. MFPKE Approach

It is easy to show that the AFPEs obtained in the previous section can be
recovered from a complete system (x,, p,, x,, p,). Let us consider a FPK
operator defined with the potential V(x,, x,) and the collisional matrix

o= ( “1 “’“zf) (1.53)

Wiy w,

where w,, is a general function of x,, x,, which we shall see in the
following is closely related to the function f used in the SF procedure.

The total MFKP operator is

< 2 dJ
A A 14) ——
P ax, ax, apl) w exp(p) )3P1

5 F
X exp(—p,/2) . exp(pi/4)
1
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, 8 av 3 ) . , 8
+ 2 2 - N L - T
@2 (p_ 8x, 0x, 9p, w2 exp(p3/4) op,
2 d
X exp(~pa/2) 5~ exp(pal4)
c 2 d 2 d 2
—@vexp(pi/4) 5 - exp(=pi/2) 5 exp(pi/d) = oy
1 1
X exp( p1/4) 2 exp(—pi/4 — p3l4) 9 exp( p/4)
TS p{—p, P ap, PP,
c 2 d 2 0 2
— @y exp(pa/4) 5 exp(=pa/2) 7 - exp(p2/4) = oy
2 2

d 2 d
X exp( p3/4) W exp(—p3/4— pi/4) Fr exp(pi/4)  (1.54)
2 1

Let us now consider the projected operator obtained when p, is a fast
variable, so that subsystem 2 is diffusive. Following the TTOC procedure,
a reduced MFKP operator is recovered that is given by

Feui(p 2= Y )i,
lﬁ*“"1<1’1 ax, ax, ap, t w88
s _f’__lﬂ> $- "+(i_lav>]
“"[(axz 2 ax, 851 + 85 ax, 2 ax,
s2
_ @ 9 e~V
o exp(V/2) o, exp(—V) o, exp(V/2) (1.55)

where ', and g are given by

o) =0 - 7 (1.56)
2
_ wim
8= 0t (1.57)

and the 87 are the lowering and raising operators (p,/2 ¥ d/dp,). This
reduced operator is a unified form for the cases treated by SF provided
that one does not consider as an additive contribution the correction to
;. (This is due to the fact that the simple treatment of SF merely adds
the collisional term in p, as a contribution of other unspecified ‘“‘fast
modes” without considering in detail any dependence of the friction
coefficient for the first system). For instance, if w,, is chosen to be zero,
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the SRLS case is recovered; while if V is given only by V,(x,) and V,(x,)
and w,,, is not zero, the FT case is found (just identify the SF function f
with the actual g, thus relating the roles of ¥, in the SF approach and
w,,, in the MFPK model through Egs. (1.52) and (1.57)). From a purely
algebraic point of view it is straightforward to understand why the AFPEs
recovered by SF are so intimately related to a bidimensional MFPKE. In
fact, it is clear that SF can obtain a model that is consistent with simple
MFPKE provided that they modify, according to Haken’s conditions,
only the irreversible drift coefficients (vector D) and the reversible drift
coefficients (vector J) without changing the assumed diffusion tensor
(matrix K). The initial system in the SF derivation is made by a Kramers
subsystem (x,, p,) and by a diffusive one x,

Peqzﬂexp(_%pf_vl_VZ) (158)
@\ p,
J={_ M (1.59)
Oax1
0 0 0
K=|0 of 0 (1.60)
0 0 w5

Here J; is associated with x,, J, with p,, J, with x,. The SL approach
requires that we modify J by adding a term to the partial derivative of V,
with respect to x,

w1 P
J=| -} 4! ) Wine (1.61)
dx, 5 oox,
0

This is the reactive force on the first system as a result of its interaction
with the second system. In order to obtain a proper equation in the SRLS
case, SF modify the irreversible term in x,, that is, D;. In the present
notation this is merely equivalent to substituting Eq. (1.59) by Eqg.
(1.48). In the FT case SF modify J,; that is, they add a term ~w}p, f to
the reversible drift coefficient in x,, which was previously zero, and leave
P,, unmodified. In both cases these are the minimal modifications
required to achieve detailed balance. No changes in the diffusion tensor
elements are introduced, although such possibilities exist. This “minimum
effort” choice yields equations derivable from a MFPKE in which the full
set of variable (x,, p,, x,, p,) is considered.
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F. Discussion and Summary of Methodology

In the final section of Section 1 we summarize our methodology and we
discuss briefly some of the recent theoretical contributions of other
authors, that we have found to be useful or complementary to our
techniques.

1. Discussion

In the past 10 years or so, there have been a number of theoretical
contributions to the fundamental problem of describing fluids in a mesos-
copic context. If one wants to go beyond the usual Debye formulation, it
is evident that the simplicity of one-body stochastic models must be
abandoned. Stochastic models which are able to describe the dynamical
behavior of a complex liquid (for instance, a highly viscous solution),
exact their price in terms of a more involved formalism. One must be
careful to achieve a balance between complexity in formulation and new
information gained from the model. Often one can resort to a phe-
nomenological model, which may or may not be the starting point for a
more complete (and complicated) theoretical treatment.

Kivelson and co-workers [36,37] have recently given some useful
suggestions. Their models of liquids at high viscosity are “‘simple” and
relatively easy to discuss: for instance, in [37] three different dynamical
models are tested to predict some of the known properties of glassy
liquids (a single body relaxing in a potential cage subjected to slow
diffusion (a), or to a strong collision motion (b); or in the presence of
torsional barriers (c)). Unfortunately, a purely qualitative discussion may
be not sufficient to analyze “‘simple” models. It is necessary (i) to define
exactly all the physical (and mathematical) hypotheses underlying a given
model and then (ii) to treat it computationally in a rigorous way, in order
to gain a complete understanding. In this chapter so far, we have
attempted to clarify the first point, that is, we have described what we
consider a useful methodology to define exactly the “equation of
motions” of complex liquids. In Section II we consider the second point,
and we present a systematic study of two- and three-body stochastic
models, together with the description of the formal tools necessary to
deal with the multidimensional Fokker—Planck operators in three dimen-
sions.

We have chosen to encompass our methodology in the necessarily
limited framework of rotational FPK operators for describing the solute
molecule and the solvent cages (slow fluctuating solvent structures); with
translational FPK operators for describing stochastic fields (fast fluctuat-
ing solvent structures). We are aware that a truly complete description
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should also include in a many-body stochastic view, the interaction
between the rotational and translational degrees of freedom of the solute
and/or of the solvent. In addition, one can use different formal ap-
proaches to obtain improved (i.e., many-body) kinetic equations for the
orientational distribution of a solute molecule strongly interacting with
the solvent. In this respect, Bagchi et al. [47] have recently provided an
analysis for explaining the anomalous rotational behavior of glassy liquids
by including the translational motions of the solvent molecules and the
density fluctuations of the solvent in the Debye—Smoluchowski descrip-
tion, which is particularly interesting since it could provide links between
mesoscopic stochastic theories and advanced microscopic and mode-mode
coupling treatments. They obtain an integro-differential kinetic equation
in the orientational distribution probability function of the solute, which
is appropriate for highly viscous fluids only. No explicit mean field
potential or inertial effects are included.

Finally rototranslational coupling has been investigated in two recent
papers by Wey and Patey [48, 49], using the general approach of the Van
Hove functions described within the Kerr approximation, which relates
the rototranslational correlation function of the solute to the joint
conditional probability in both the position and orientation of the mole-
cule. This method is helpful in providing a physical and mathematical
framework for rototranslational coupling in complex fluids. However, it
requires as a starting point a well defined equation of motion for the
conditional probability. Wey and Patey have tested only one-body sto-
chastic equations (such as the Fick—Debye and the Berne-Pecora equa-
tions), which are necessarily restricted.

2. Summary

We have attempted to provide a general approach to build multi-
dimensional stochastic operators of the Fokker—Planck-Kramers type,
for describing the time evolution of an extended set of degrees of
freedom in complex liquids. This set contains the orientation of a probe
molecule (first body) and its conjugate angular momentum vector, plus
similar coordinates for a collection of N bodies. Each of them is an
additional solvent body. Also, a collection of K stochastic fields is
introduced. The time evolution operator for the system of 6 X (N + K +
1) degrees of freedom is given by a sum over rotational and translational
FPK operators. The only source of coupling (at this stage) is given by a
potential depending on the mutual orientations of each body and field.

For the case of two rotators and one stochastic field (N =1and K =1),
it has been shown (using a TTOC expansion procedure) how to eliminate,
as fast variables, some of the original degrees of freedom (e.g., the
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stochastic field and its momentum) in order to obtain models which
contain coupling terms just in the friction tensor of the rotators. The
reduced two-body Fokker—Planck—Kramers (2BFPK) equation has been
shown to be formally equivalent to the augmented Fokker—Planck equa-
tion described by Stillman and Freed [33]. In the planar case, that is,
when both the probe and the solvent body are described as planar
dipoles, and any residual frictional effect due to a fast field is neglected,
one obtains the IOM equation of Coffey and Evans [23-25].

II. COMPUTATIONAL TREATMENT

A. Introduction

In the first section we have discussed a general methodology for the
theoretical description of rotational dynamics of rigid solute molecules in
complex solvents. Many-body Fokker-Planck—Kramers equations
(MFPKE), including collective solvent degrees of freedom (either rota-
tional ones, i.e., rigid bodies, or translational ones, i.e., vector fields),
and their conjugate momenta, have been described as convenient tools to
reproduce (or simulate) the complexity of an actual liquid system.

In Section II, we apply our stochastic models to physical systems of
interest. Although the methodology was developed mainly to interpret
complex features of ESR spectra over a wide range of temperatures,
viscosities and solvent compositions, we believe that it could profitably be
applied to many other experimental techniques, sensitive to rotational
dynamics effects (such as dielectric relaxation, Raman and neutron
scattering, NMR measurements) in liquids. Preliminary results on two-
and three-body models, have been encouraging for the study of “slowly
relaxing local structure” (SRLS) and “fluctuating torque” (FT) effects in
isotropic liquids at moderate and high viscosities {39]; and for the
interpretation of the bifurcation phenomenon in glassy and supercooled
fluids [40]. Here we describe in detail the computational approach that is
needed to treat many-body MFPK operators, provide extensive results on
several rotational models, and discuss their application for interpreting
liquid behavior.

In Section II.B we briefly review the usage of the complex symmetric
Lanczos algorithm for treating MFPK operators, with particular attention
to the problem of the choice of a suitable set of basis functions for a
many-body problem. In Section II.C we consider the case of two spheri-
cal rotators in a highly damped fluid (Smoluchowski regime) as a first
example of the application of angular momentum coupling techniques to
Fokker—Planck operators (two-body Smoluchowski model, 2BSM). This
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approach is extended in Section II.D for studying a three-body system
(two rotators plus one field), again in the overdamped regime (3BSM).
Sections IL.LE. and IL.F are devoted to the analysis of two-body models in
the full phase space of rotational coordinates and momenta of the two
rotators (two-body Kramers models, 2BKM), for a total of twelve
degrees of freedom, all fully coupled together, at least in principle.
Section I1.G. contains a discussion of results concerning the various
models. Rotational correlation functions and momentum correlation
functions for body 1 are discussed, together with their dominant eigen-
values; a detailed analysis of the dominant eigenmodes of the system is
given in each case.

Finally, a comparison of the MFPKE approach with molecular
dynamics, ESR and stimulated light scattering experiments is contained in
Section II.H. Detailed formulations of reduced matrix elements are given
in Appendix C.

B. Computational Strategy

A powerful and general method for numerical solution of Fokker-Planck
(FR) operators has been given by Moro and Freed [50]. It involves first
establishing a complex symmetric matrix representation with a basis set of
orthonormal functions, followed by a tridiagonalization procedure utiliz-
ing the Lanczos algorithm, The usage of the conjugate gradient algorithm
as an alternative procedure to tridiagonalize the initial matrix has been
considered by Vasavada et al. {51]. A thorough review of the usage of
iterative algorithms for solving stochastic Liouville and FP equations has
been provided by Schneider and Freed [42]. The interested reader can
consult this reference for further details. In this section we will focus our
attention on the optimization, for the many-body systems considered, of
the matrix representation rather than on the detailed computational
treatment of the matrix itself.

We start with the time-dependent conditional probability for the
stochastic system P(q'|q, t), where q is a complete set of stochastic
variables. The time evolution of P is governed by the Fokker—Planck-
Kramers (FPK) equation [cf. Eq. (1.1)]:

0 ~
o; P@’la.n=-TP(c’lq, ) (2.1)
with the intial condition [cf. Eq. (1.2)]

P(q"lq,0)=8(q—~q°) (2.2)

In the following, q will be the collection of rotational coordinates {2 ,,
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Q,,...,Q,,, and fields X, X,, ..., X, and of their conjugate momenta
L,,L,,...,Ly, and P,, P,,... P, (cf. Section 1.B.1). The operator ["is
given as a sum of FPK operators, each of them defined in the (Q,,L,) or
(X,,P,) subspace. The total energy E of the system is given by the
potential energy of interaction plus the total kinetic energy, and it defines
the equilibrium distribution P, (q), that is, the unique eigenfunction of r
with a zero eigenvalue. Thus

E(qQ)=U,Q,,....0,. . X, X,,....X;)
N+1

+12L1 L+—ZPMP (2.3)

exp[—E(q)/k;T]
(exp[—E(q)/k,T])

where ( ) standard for the integration on the full phase-space of q
coordinates and momenta. It is useful to apply a similarity transformatlon
to I', which renders it possible to obtain a complex symmetric matrix
representation of the operator (or a real symmetric one, if I' is Hermi-
tean). The transformation is simply [cf. Eq. (1.13)]

Pe(q) = (2.4)

[=p TP (2.5)

note that the ‘‘symmetrized” operator has the same eigenvalues as the
unsymmetrized one, while the eigenfunctions are multiplied by P_'".
Then by representing I in a complete orthonormal set of basis functions
that are invariant under the classical time reversal operation, a complex
symmetric matrix representation is guaranteed [42].

1. Correlation Functions, Spectral Densities and Lanczos Algorithm

Usually we are interested in the (auto)correlation function G(¢) of an
observable (i.e., a function of some stochastic coordinates). In the
following we will consider either rotational correlation functions (i.e.,
involving the spherical harmonics Y, (€,)) or momentum correlation
functions (i.e., involving the components of L, ) for the first rotator (body
1), identified as the solute molecule

G (D) = (Y, (D]Y,,(0)) = (V. (@) Pellexp(-T1)] ¥, (€, )Pm)

G (8)= (L, ()L, (0)) = (L, Plllexp(-T1)|L, PLI?) 2.7)
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Instead of computing the correlation functions directly, one can take the
Fourier—Laplace transforms, or spectral densities

V@)=, drexp(-ion)(¥,,(0]Y,,(0))

=(Y,(Q) P |(iw +T)'|Y,,(@,)PL) (2.8)

J) (@) =J; dt exp(—iwt){(L,()|L,(0))

= (L, P.l\(iw +T)'L, P} (2.9)
Following the procedure developed by Moro and Freed, one obtains a
matrix representation of I' and a vector representation of the function
FP,I:;2 (where F is the observable, for example, Y, (©2,) or L, ), utilizing
an appropriate set of basis functions. Given the (complex) 'symmetric
matrix I and the “right vector” v (formed from FP.'?), one is left with

. . eq . -
the evaluation of the resolvent, the generic form of which is

Jw)=v- (il +T)'-v (2.10)

We shall set N be the dimension of the finite basis subset used to
represent I and v. The calculation can be performed with great efficiency
using an iterative algorithm, such as the Lanczos algorithm, that trans-
forms I into a tridiagonalized form. A continued fraction expansion is
then obtained:

2 2 2 2
1 B: B3 Br-2 B
iw+ o~ o+ a,— v+ a,— io+a, - io+a,

(2.11)

J(N‘")(w) —

where n is the number of iterations (Lanczos steps) necessary to achieve
convergence; usually n < N. The ¢, coefficients are the diagonal elements
of the tridiagonal complex symmetric matrix, whereas the B, are the
extradiagonal ones. Given the tridiagonal matrix, one can also calculate
the eigenvalues A; associated with the spectral density, by means of an
efficient diagonalization procedure for tridiagonal matrices (e.g., the QR
algorithm).

In practice, although the entire procedure has been shown to be
extremely effective in dealing with stochastic systems of 2-3 degrees of
freedom (as well as in a stochastic Liouville equation with spin coordi-
nates as well), its application to larger systems (with degrees of freedom
ranging from 4 to as many as 12) is not so straightforward, because of a
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dramatic increase in computation time and memory space requirements,
even if a powerful supercomputer is used. The bottleneck is usually the
matrix dimension N, which can be very large. It is therefore of consider-
able importance to optimize the basis set utilized to represent the
operator in order to minimize N.

C. Two-Body Smoluchowski Model

The model that we are going to consider in this section is given by two
spherical rotators, simply called body 1 and body 2. Body 1 is the solute
molecule, whereas body 2 is the instantaneous structure of solvent
molecules in the immediate surroundings of the solute. The rest of the
solvent is described as a homogeneous, isotropic and continuous viscous
fluid. In the overdamped regime, the system is described by a
Smoluchowski equation in the phase space (€2, §),), where Q, and €,
are respectively the set of Euler angles specifying the orientation of a
fixed frame on body 1 with respect the lab frame, and an analogous set
for the orientation of a fixed frame on body 2.

In accordance with Table I, we will adopt from the beginning a
dimensionless set of units. The symmetrized, rescaled time evolution
operator for the model is then (compare with equation (1.30) for the
three-body case)

f = Dl[)e7q1/ZjIPerIP;q]/2 + DZP;qllszPequPe—qllz (212)

The equilibrium distribution function P, is defined according to Eq.
(2.4); but the relevant part of the total energy is given just by the
(rescaled to k;T) potential energy function V (cf. Section I)

V(Q,, 9,) = —2 0Pr(Q,— Q) (2.13)

where PR(2) is the Legendre polynomial of rank R, and Eq. (2.13)
implies that U depends only on the relative orientations of bodies 1 and 2
(the minus sign is only for convenience). We shall consider the expansion
of Eq. (2.13) up to R =2 (i.e., only first or second rank interactions are
included). J, and J, are respectively the “‘angular momentum” operators
for body 1 and for body 2 in the laboratory frame of reference. For future
usage, we define also the total “angular momentum” operator of the
system as

i=3+], (2.14)

and we rewrite I' in a more convenient form for the actual calculation of
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the matrix elements (although less elegant than Eq. (2.12)) as
=D+ D,i2+D,G, + D,G, (2.15)
where the functions G,, (m =1,2) are defined
G,=~T+LiG,T )tan (2.16)
m= g tm T 5 Umls

and where ( ), indicates that what is contained within, acts as a
function, not an operator. Also, T, is the torque acting on body m due to
V, that is,

T,=-i,V (2.17)

1. Uncoupled and Coupled Basis Sets

A simple choice for a complete basis set of functions for obtaining a
matrix representation I' is the uncoupled set

[\ M K3 MoK ) = |0, MK ) LMK ) (2.18)
where each function |J M, K, ) is given by [53,54]

- n ])w D% (@) (2.19)

Hereafter we let [J] = 2J + 1. This is a complete orthonormal set given by
the direct product of Wigner functions in the set of Euler angles £, and
),. Note that since the phase space is six dimensional, we have six
distinct quantum numbers to cope with. However, the potential V that we
have chosen is independent of the azimuthal angles y, and v,, and this is
reflected in the fact that I" will be diagonal in K| and K,. In the following,
the K, quantum numbers will be discarded from any formula, if not
otherwise specified, since only the matrix block with K, = K, =0 will be
of interest.

It is possible to further reduce the number of effective (nondiagonal)
quantum numbers taking advantage of the spherical symmetry of the fluid
to determine other “constants of the motion” (note however that all the
following considerations also hold for molecules with cylindrical symmet-
ry). Let us consider the tensorial properties of the functions and
operators defined in the previous paragraph with respect the ‘““total”

|7.M, K, )
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angular momentum operator J given by Eq. (2.14). Obviously, J, and J,
are themselves first rank tensor (i.e., vector) operators. Furthermore, one
may rewrite the Rth component of the potential

R

vpPr(2,, Q) ==V, 2 (=)|[R—50),|RSO),  (2.20)

in a form clearly showing its nature as a zero rank tensor (scalar) with
respect to J. Note that

VelR]
87’

(2.21)

Up =

Since it is simply an exponential function of V, P,  is also a scalar. It
follows directly from Eq. (2.12) that I itself is a scalar, as it must be to
satisfy Eq. (2.1). One can also arrive at this result from Eq. (2.15),
noting that T, and T, are vector operators. It is also easy to see that

T,=-T,=T (2.22)

The vector T will simply be called the “torque” in the following, without
specifying any index. Note also that G, = G, = G.
From these considerations, one concludes that the coupled basis set

(1, IM) = 2 CU,M, I, M M), M) |1 M,) (2.23)

MM,

where C(J,M,J,M,JM) is a Clebsch-Gordan coefficient, is the most
suitable set of basis functions for the present problem (K; and K, have
been neglected). In fact, due to spherical symmetry, both J and M are
“good” quantum numbers, that is, I is diagonal in them (note that this is
still true for cylindrical spatial symmetry, while for the completely
asymmetric case only J is a “good” quantum number).

The initial vector v must also be evaluated. Instead of computing
directly the vector representation of the given rotational function (i.e.,
the spherical harmonic in £, which is an element of the uncoupled basis
set), one can evaluate the matrix representation of the function, which we
call M, and then multiply it by the vector representation of P:gz, which
we call v, whose calculation is relatively easy utilizing the coupled basis
set (see Appendix C.2). That is, let

v=My, (2.24)
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Then
(V)4 = (A|FP.?) (2.25)
(vo)a = (AP (2.26)
(M), 4 = (A|FIAT) (2.27)

where A stands for the collection of quantum numbers, and the rotational
observable F is simply the basis vector |PQO0), that is, the Qth compo-
nent of the P rank rotational function in £,. One can see by inspection
that only the elements with J =0, M = 0 are not zero in the vector v, and
that only the matrix block defined by the conditions J' =0, M' =0,
A(JPI"), M = Q has to be considered in M (A is the triangle condition);
then the only nonzero elements of v are those for which J = P, M = Q. It
follows that the only matrix block we need to compute in T satisfies the
conditions J = P, M = Q.

2. Matrix Elements

A clear advantage of employing angular momentum coupling techniques
is the possibility of using the Wigner—Eckart (WE) theorem to simplify
the calculation of matrix elements in the coupled basis set [4]. In this
two-body case, only two nondiagonal quantum numbers, J, and J, have to
be considered. (In general, if N + 1 rotators are present, a generalized
coupled basis set allows one to have 2N effective nondiagonal quantum
numbers.)

Let us now consider r given by Eq. (2.12). The terms proportional to
J? and J; are diagonal; and we may write for the matrix element of Eq.
(2.12)

<A|f‘|A’> =[DJ,(J; + 1) + D,J,(J, + 1)]65p + (D, + D2)<A|G|A,>
(2.28)

where the sets A and A’ are characterized by K, = K; =0, K, = K, =0,
J=J' =P, M=M= Q. The matrix element of G is

(AIGIA') = HAITIA) = 5 (AJS, - TIN) (2.29)

that is, it is reduced to a sum of matrix elements of scalar products of
operators of form A-B. (For future convenience, we will call I, the
complete matrix element without the factor &,,.8,,,,-.)
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In general one finds, from the WE theorem (weak form for noncom-
muting operators)

(AA-BIAY=[J]7" 2 ()Y, LAl 507

JysJ"

X (ST BT 1T 29)8,5-8y (2.30)

where A, B are either J, or T. The reduced matrix element of J . is given
by (see [4])

3 rr! +J'+ J. J ]
LW = (e
JoJ1

X [,(J, + )21, + D)'?8, .8, (2.31)

and the reduced matrix element of T is evaluated in Appendix C.1. The
final matrix I is real symmetric. (Note that [JJ']=[J][J']).

The matrix element (M), ,. of Eq. (2.27) is easily computed from the
WE theorem, and one obtains

. P 172 J P JI
<A|F|A > = (é_ﬂ]zil_/i [-’1]”2<01 0 01) 8/2581‘” (2.32)

with J=P, M=Q,J =0, M'=0 and K, =K;=K,=K, =0. No ex-
plicit dependence on Q is present; that is, given the spherical symmetry,
all the rotational correlation functions are independent of Q. The compo-
nents of the vector v, are calculated in Appendix C.2.

D. Three-Body Smoluchowski Model

A further elaboration in describing the rotational dynamics of a solute in
a complex environment is obtained by increasing the number of interact-
ing solvent modes included in the time evolution operator. Theoretically,
one could consider a new set of collective degrees of freedom for each
relaxation process that is relevant for the solute dynamics. In practice,
computational problems soon arise. However, a three-body description
can still be treated rather easily, and it is the subject of the present
section. Instead of considering a third rotational set of coordinates, we
have chosen to define the third “body’ as a stochastic, vector-like field X.
One can think of a polarization coordinate, or of the fluctuating solvent
dipole moment interacting with the probe. We shall consider only first
rank interaction between the solute body and the solvent structure with
the stochastic field. The effect of a fast field, as a source of a “fluctuating
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torque” relaxation mechanism on the solute dynamics has already been
partially explored. A summary of our computational results is presented
in a later section. Here we deal with the formulation of the three-body
model and its detailed mathematical treatment.

1. The Model

The symmetrized and rescaled time evolution operator for the system
described by the set (£2,, Q,, X) is simply defined adding to the two-body
operator in Eq. (2.12) the translational Smoluchowski term for the field
to obtain [cf. Eq. (1.30)]

I'= DIP;qllz*lPequPe—ql/z + D2Pe_q1/2A2PequP¥1/2

eq

- 1),(19;;vxpeqvxpgql’2 (2.33)

where V, is the gradient operator in the X subspace. The equilibrium
distribution function is now defined with respect the following potential

V(Q,, 2,,X) = Vi (@2, Q) — p Xu; = p,Xu, + 5X? (2.34)

Note that the dimensionless units defined in Table I are used, so that the
curvature along the X direction is renormalized to 1. Here U, is the
two-body interaction potential defined in Eq. (2.13). The two terms
linear in X are the “dipolar” interaction energy (with u, and u, two unit
vectors, respectively, along the z-axis of the fixed frame for the solute
and the solvent body, cf. Fig. 1). Finally a quadratic term in X has been
added in order to confine the fluctuations of the stochastic field.

2. Matrix Representation

An efficient treatment of the time evolution operator defined in Eq.
(2.33) can be achieved by performing a canonical transformation of
coordinates acting on the field X. We define the shifted vector X— X —
pu; — pou, as a new set of field coordinates. The potential is now
decoupled

V(Q,,Q,,X)=V,(2,,Q,) + iX* (2.35)

Note, however that the first rank coefficient in V, is modified slightly as
v, U, + u,u,. Although the potential form is simplified, new terms
arise in the operator itself. Skipping straightforward algebraic details, the
following equation is obtained:



ROTATIONAL MOTIONS IN LIQUIDS 125
[=0,+D,8"§"
- D, (AT, +iJ)US™ + D, n,STU, (AT, - iJ))
- Dzﬂz(%Tz + ijz)UzS_ + Dz#2S+Uz(%T2 - ijz)
D pI87U8” - DS US” (2.36)
where §* = !X ¥V, are the lowering and raising (vector) operators for
the three-dimensional harmonic oscillator X. T, and T, are the torques

for body 1 and 2, respectively, due to V;, (T, = =T, =T); finally U, and
U, are 3 X 3 matrices defined (for m=1,2) as

U, =iJ,®u,)m, (2.37)

fo is the two-body Smoluchowski operator given by Eq. (2.12).

We now have to treat a system of 9 degrees of freedom. It is possible
to use techniques of angular momentum coupling that are analogous to
those employed for the two-body case. We define the angular momentum
operators

j=—iXxV, (2.38)
J,=j+J (2.39)

and J is defined according to Eq. (2.14). In the following we will
sometimes call j “little” angular momentum, J “big” angular momentum
and J, “total” angular momentum. We use a double coupling scheme to
determine the most convenient basis set for the problem. We start from
the uncoupled basis set

[, M, K; J,M,K,; njm) = |J1M1K1>|12M2K2>|njm> (2.40)

given by the direct product of the uncoupled two-body set with the
functions |njm) defined in terms of the polar coordinates X, 6 and ¢ for
the field; that is,

|njm) = |nj)| jm) (2.41)
N n!
'”">“[2f”(j+n+1/z)!

J X' LU (XY2) exp(—X714)
(2.42)
|jm) =Y,.(o,9) (2.43)
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where &7 is the pth order Laguerre polynomial of degree g [52]. As in
the previous case, two quantum numbers, K, and K,, are obviously
diagonal. Note that the system is still spherically symmetric and the
potential does not depend on the Euler angles v, and y,. We shall neglect
K, and K, in the following whenever possible, since only the matrix
blocks with K, = K, =0 will be computed.

We may proceed in our coupllng scheme by first considering the
coupling of J, and J, to give J,

(4,4, dM; njm) = 2, C(J,M,L,M,JM)|J,M; J,M,; njm)  (2.44)
MM

b3

In this basis set only the two-body operator F is diagonal with respect to
Jand M. A fully coupled basis set is then obtamed by coupling together j
and J to give J,

|nd, J,0 I M) = ZM CUMjmIM)|J, 1,IM; njm) ~ (2.45)

J,and M, are “good” (i.e., diagonal) quantum numbers for I". Note that
from an initial nine-dimensional problem, we are left with a five-dimen-
sional one. The relevant quantum numbers are n, J,, J,, J and j.

The calculation of the matrices I' and M, and the vector v, can now
proceed along the same lines as the previous section. The general vector
element (v,), is exactly the same one given by Eq. (C.10) in Appendix
C.2, but the factor & in that equation is now §, 10041,08400,00,0- The
matrix element (M), ,. is simply

, [P]'? I P U]
(A[F|A") = (811'2)1/2 [-’1]”2 (01 0 0‘) 812155111561P61'05,".'6/‘,"
(2.46)
with J, =P, M, =Q, J; =0, M;=0. It follows that the only matrix
y

block of I" that is needed is deﬁned byJ,=J,=Pand M, =M= Q.
The matrix I is obtained by a systematic usage of the WE theorem. We
may write I' of Eq. (2.36) in the straightforward but convenient form

~

r= i:‘0 +[Dx + %(Dxl‘«? + Dz/‘é)]SJrS
+ DlIJG(OI + ()1) + Dzl"vz(é; + 62)
+DuS:G,+ D,ulS:G, (2.47)

where the double dot symbol means the scalar product of two second
rank Cartesian tensors. Here I, is the two-body operator; O and O are
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vector operators, while S, Gl and G2 are matrix operators, introduced for
their convenient tensor properties (cf. below). They are defined according
to the following equations (m =1, 2):

0,=8%, x(iT, -iJ, ) (2.48)
§=8'§" (2.49)
G,=-U)-31 (2.50)

where we have systematically used a Cartesian notation for representing
the various tensor products and the general property of the matrix U, is
given in terms of the unit matrices u, by

U,r=u, xr (2.51)

where r is a generic vector.

We can now consider each term separately. The two-body operator F
has the same matrix representation in the two-body coupled basis set and
in the present three-body coupled basis set. The next term in $*§-
diagonal in the chosen basis set [4]. Then the matrix representation of
these diagonal terms is

Faiagonat =T 5/,1 SMTMTSJJ By 8yt [Dx + 3(D1P‘f + Dzﬁg)](zn + ]()26,%3)

The term with off-diagonal elements from O, is considered next. From
the WE theorem (strong form), and using the equivalence between a first
rank tensor product and the external product of two vectors, we obtain

(A7 1Ny = i) -y L]
X (4, |[u, ® (3T, - ijl)]“)”‘l;‘lé‘]’)
x (nj”§+“n,jr)61T!;~6MTM’T (2.53)
The reduced matrix element of §* is evaluated in Appendix C.3; the

reduced matrix element involving u, is straightforwardly evaluated using
the general formula

U LINAB 715 = 3 4L
J1J57" JJ J

X (L LJNAI LTI T50" BT T3
(2.54)
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where A and B can be T,, J,, u,. The reduced matrix element of the
torque and of the angular momentum operator are given respectively in
Appendix C.1 and in the previous section. The reduced matrix element of
u, is proportional to the reduced matrix element of the function [100),
(see Appendix C.1)

T + I+ J' ’ J J J
N AR S O 7 e M
877_2)1/2 ,
x ([—1]— AR (2.55)

where (J,[|1]|J;) is the reduced matrix element of a first rank spherical
harmonic. The matrix element proportional to O] is obtained by exchang-
ing A and A’ in the previous formulas. The matrix elements of 0, and 0]
are cvaluated in a similar manner.

Finally the matrix elements of the mixed operators in G, and G, may
be considered. Both § and G, (G,) are second rank spherical tensors. It
follows that

A A lar i |4 J 0 d
(AIS:G,|A) = (=) {1 J' zT}
X (11121”61||JiJéf')(’lf||§l|"'I")3JT/'T5MTM'T

(2.56)

and the reduced matrix element of S is given in Appendix C.3. The
reduced matrix element of G, is proportional to the reduced matrix
element of the function |200),

2, T + ‘4 ' J J ]
G LING 1017507 = (=)= 2[”1”2{15 s, z}
) 8772)1/2 ,
x <‘§ ([2]1/2 (11”2“-’1)> (2.57)

The calculation of the matrix element of 8 : G, proceeds along the same
lines. Note that, as was the case with the two-body problem, a real
symmetric matrix is obtained.

E. Two-Body Kramers Model: Slowly Relaxing Local Structure

The next model considered in this work is Kramers description of a
two-body system, that is, the generalization of model (a) in order to
account for inertial effects. The time evolution operator is given by a
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Fokker~Planck—Kramers rotational operator involving the rotational
coordinates of bodies 1 and 2, and their conjugate angular momenta, L,
and L,. The final phase space to be considered is then twelve-dimension-
al. In practice, we will find that only eight effective (nondiagonal)
quantum numbers need to be considered in a properly chosen coupled
basis set of functions, for two spherical (or symmetric) rotators. Still, the
matrices needed for computations have huge dimensions, and the numeri-
cal treatment is far from easy, especially when large potential couplings
and/or low friction regimes are explored.

1. Slowly Relaxing Local Structure Model

Again we consider the symmetrized and rescaled time evolution operator,
obtained by summation of the two rotational FPK operators for bodies 1
and 2, in the presence of the usual interaction potential. Since we suppose
that both the bodies are spherical, no precessional terms are present [6]
[cf. Eq. (1.14) for the three-body case]:

I'=w!(LJ, +T,9,)— o exp(LY/4)V, exp(—L2/2)V, exp(Li/4)

+ w3(iL,J, + T,V,) — 0§ exp(L3/4)V, exp(—L2/2)V, exp(L3/4)
(2.58)

The same definition and properties of the torque vectors holds as in Eq.
(2.17); V, and V, are the gradient operators acting respectively in the
subspaces L, and L,. The frequency parameter ) is the streaming
frequencys; it is the characteristic frequency for the deterministic motion
of body 1 and it is inversely proportional to the square root of the
moment of inertia /,. w is the collisional frequency of body 1, and itis a
direct measure of the dissipative effect due to the solvent, since it is
proportional to the friction exerted by the medium on the body. Analog-
ous parameters w3 and o’ are defined for body 2. See Table I for the
explicit definitions.

The equilibrium distribution function is defined with respect to the
total energy of the system

E=V,(Q,,Q,)+ L+ iL2 (2.59)

including the interaction potential between the two bodies and the
(rescaled) kinetic energy. The coupling between body 1 and body 2 is
given only by the potential; no ‘“hydrodynamic” interactions, that is,
frictional coupling terms, are included. A situation close to models in
which the solute (body 1) reorients in a potential resulting from a slowly
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relaxing solvent local structure (body 2) is then recovered, as was
discussed previously.

2. Matrix representation

The numerical treatment is again based on the matrix representation of
the operator on a coupled basis set of functions, followed by the
application of the Lanczos algorithm. Following the same method used in
the previous section, we define the two “little” angular momentum
operators (one for each body) and the overall “little” angular momentum
operator

—iL XV, (2.60)
j,=—il, xV, (2.61)
i=i+5 (2.62)

and the total angular momentum operator
Jr=3+] (2.63)

where J is defined by Eq. (2.14). It is easy to see that T is a scalar with
respect to J,. The initial uncoupled basis set is given by

|\ M K5 MKy nyjimys ngjmy)
=[/;M K )J,M,K, ) x Injim,)|nyjm,) (2.64)
where the functions |n,j,m,) and |n,j,m,) are defined with respect to
the polar coordinates L,, 6,, ¢, and L,, 6,, ,, respectively. As usual, the
K, and K, quantum numbers are diagonal and will be neglected in the

followmg The couplmg scheme mvolves the coupling of j, and j,; then
the coupling of J, and Jz, finally j j and J are coupled together to give J -

]JlM13-’2M2§"1n2j1j2jm>
mZm C(jym,j,m 2]m)|-] M5 J, My nyjimys ngjomy)
(2.65)
(L LIM; nynyj j,jm) = 2 C(J,M,J,M,JM)

MM,
X IJIMI; JoMy; ”1n2j1j2jm> (2.66)
\rnyfy o\ Jojd T My ) = EM C(jmIMI M)

X !11J21M§ nn,jij,jm) (2.67)
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The total angular momentum quantum numbers, J, and M, are diagonal,
that is, ‘‘constants of motion”.

The calculation of the matrix I' is now a straightforward application of
previous formulas. The vector representation of P, again has the ele-
ments defined in Appendix C.3, where % is now equal to
8,,0011,09/05;,08,,08, 00,,0- The matrix elements for the rotational correla-
tion function (F = Y,,Q) (M* Ja.a- are given by

Py

(A|FIA') = B2

x(’lpjl)a 8, .8,.8, 8.5 .5

0 0 0 JyJ 3 3 IPYI 0V Y ng ]1]]6n2n26;2]2

(2.68)

and J, =P, J, =0, M, =Q, M, =0, K,= K, =K, =K, =0; whereas
the matrix elements (M’) a.a for the momentum correlation function

(mth spherical component of the first rank tensor L,, F=L, ) are given
by

, _ T+jy+ja+d ]—1/7 . 1/7{]:} .]" ]2}
ALY = () e
X(”1]1||L1””'1]'1)511“51211511'511"5,12,.55,‘2,5 (2.69)

and J;.=1,J,=0, M;=m, M; =0, K, =K, =K,=K, =0. We con-
clude this section by writing down the complete matrix element for the
time evolution operator:

al A Se NI HTpt+jitjap .e11/2 ] J JT jl ] j2
(AIT|A') = @i (=) "2 ] {J’ i1 }{j' il 1}
x 8]T]'T5MTM’T6j2jéb‘nzn2’

. Jo J U
[‘( SRR P2 ]1/2{]' J! }(”1]1”141”"1/1

1

X[ (J, + 1)(2J, + 1)]1/251,1, INK = (i lIVi 7 40)
x (2 dT1030) |
+(2n +j)wi8, &

S _NFHIp i i 172 J JT J» J Ji
+ i (=) TR ] {J’ j' 1}{]" is 1}

X &

JTJ}6MTM§-6jlji 6}11711'
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) A L J J . -
X [l(*)jlwz[-” ]1/2{12' 75 11}("2]2”1‘2!‘”2]2)

X [L(J, + D)(2J; + 1)]“2511”812” + (12,1 V,lIn2i2)

< (LT3
+ (20, + o) w58, A (2.70)

Note that the final matrix is complex symmetric, since the operator is
non-Hermitean.

F. Two-Body Kramers Model: Fluctuating Torques

As was discussed in Section I, if one considers a three-body Kramers
model and projects out the third set of solvent coordinates (and the
conjugate momenta), a MFPKE is found in the remaining coordinates,
with a frictional coupling between the solute and the solvent cage. This is
a system close to the fluctuating torque (FT) case discussed by Stillman
and Freed, except that an explicit description of the momentum of the
solvent cage is added and the structure of the (frictional) coupling is
deduced from an analytic model, rather than chosen to satisfy conditions
of detailed balance. Therefore a more precise model is obtained at the
price of less freedom in choosing the physical parameters.

1. Fluctuating Torque
After projecting the fast variables X, P what is left is a two-body Kramers
operator having the form [i.e., Eq. (1.16)]
['= wi(L,J, + T,V,) - exp(L3/4)V, @ exp(—L3/2)V, exp(L}/4)

+ w;(iszz +T,9,) - CXP(L§/4)V2‘”§ exp(—L§/2)V2 exP(L§/4)

— exp(L3/4)V, @, exp(~L1/4 — L3/4)V, exp(L3/4)

— exp(LY/4)WV, 05, exp(—L3/4 — L3/4)V, exp(L}/4) (2.71)
The streaming operator is substantially unchanged compared to Eq.
(2.58) (except for an additional contribution to the first rank interaction
potential). The collisional operator is defined in terms of an orientational

dependent friction matrix (or “collisional frequency” matrix in the pres-
ent dimensionless formulation) as

< o] wiz) _ [ wil- w1U12 _(wt“’z)anle (2.72)

< Cc
o o 72 11— 2
a1 0 (w,0,) "U,U, w5l — o,U;
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where w, , are defined with respect w, ,, Dy [see Egs. (1.19)-(1.21)].
Obviously, all the new collisional terms retain the characteristic tensorial
properties allowing the use of the same coupled basis set as in the
previous section.

2. Matrix Elements

The calculation of the matrix M and the starting vector v proceeds exactly
along the same lines discussed in the previous paragraph (since they
depend only on the structure of P,). The matrix element I' can be
conveniently evaluated by Eq. (2.71) in the form

" o~ N ~ .2 A
I=T+[81+87]: [(m‘, *3 w1> 1+ lel]

) <o | 2 A
+[S51+ 8] (w“ +3@ 2)1+w2G2]

[\

a(o a2 1/2 1/2 A
L0182 [ 2 (0,00 a1+ (0,076,

+ 8501+ 857] - %(w1 ®,) 0,1 + (o, wz)“z(‘;ﬂ] (2.73)
where
S0=1878 (2.74)
$#=8"®§; -$"1 (2.75)
$ = % S -§; (2.76)
$P=§; ®8§; -5 (2.77)

with i, j=1,2 (i # ). These are the zero and second rank irreducible
tensors built from S, the raising and lowering operators in L;

e 1 —

S; = 3 L,FV, (2.78)
The collisional operator is obtained by taking the product with the zero
and second rank irreducible tensors built from U,, that is,

2 2

Ui=-31- G, (2.79)

(2.80)
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The matrix element of the streaming operator f‘s is equal to the one
evaluated in Section E (cf. the terms in o] and w3 in Eq. (2.70)). The
contribution of the collisional part is given by

(Alf‘JA’) =5t 5,5, + 5, (2.81)

That is, it is a sum of matrix elements from the four terms that f‘c was
split into in Eq. (2.73). Here only s, and s,, are written, since s, and s,
are obtained by permuting indices 1 and 2 (note that J, = J;, My = M,
K,=K,; =0, K,=K,;=0).

e, 2 .
5= <“’1 + 3 “’1) (2n, +J)0pn

+ % w,(___)h+fz+11+12+J+J’+Jy{jjrjjrjljll]1/2 ({; 2 J;) ( (—)H_

X{] J ‘]T jl ] j2 Jl J ‘I2
g2\ I 2\ 2

X120, +1)8, ;8,00 ~ 30,0187 81,171 10)18,,;,8,,,.8 (2.82)

Jai3 “nany Ty J 3
5, = g(wlwz)llz(_)fi+i2+/+1'i+1|+1[]1]{"2]£]1i2 ]1 1 .]I ‘12 1 JI;
3 0 0 0 0 0 O

j j j ‘] J?_ " N Fa 1 .t - - 1 .t
X { g 1}{]2 Ji 1 ("mllsf ”n1]1)(n2]2”82 Hn2]2)6jj’511’

i» J
joJ
Jj2

1 .
— (w0 )1/2(_)1+J i T _
o (60 )0 o o)

x| 3(numoj, 1018 1 83 i 757°0)
IR ] ] ] S roer Q- 1.t
— (=) J{]z ]2; 1} (”1]1“S;r 17177144, 1S; Hn2]2)8jj’:l

x [3(]1JZJO|u10u20|J{J£J’O) - (_)jlﬂi[-”-’]-,{-]z];]“z

PR A ]

The reduced matrix elements are given by

. At Al 4 o1 i ; 1 " "o j'
<”1/10|510810‘”1]10>=2('“)] ! (‘8 0 ]0‘)<]01 0 01)

i

X (n ISy 1Ry IST Iniy)  (2.84)
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(11151, 018 85 mymy 1 '0) = (=) 1y
X (”1.’1”S;L”nllli)(nzlzngz_”nrzlé)
X (i rizi") (2.85)

(J I 0y, [ J1050°0) = (=Y " [J1'T =101 0,0,5]'"

X<J1 1 J;><Jz 1 J;)
00 0/\0 0 0

X (I J=2J0,J,0") (2.86)
s =33 o )0 o 5)
(Lo BB 0 ®) em
G. Results

In this section, we discuss the numerical results we have obtained for the
four different models discussed in the previous sections: the 2BSM
(two-body Smoluchowski model) and its generalization given by the
3BSM (three-body Smoluchowski model) describe diffusional systems;
whereas the 2BKM-SRLS (two-body Kramers model in the “slowly
relaxing local structure” version) and the 2BKM-FT (two-body Kramers
model in the “fluctuating torque” version) include the conjugate momen-
tum vectors.

In discussing a many-body stochastic model one needs an overview of
the time evolution behavior of the system over a significantly large range
of parameters, in order to explore physical regimes of interest. Thus, in
all cases, we have obtained results for both first and second rank
orientational correlation functions for the first body (the solute), while
varying the energetic and frictional parameters; for the inertial models,
momentum correlation functions have also been computed.

A common feature of all the stochastic models considered here is the
presence of several important decay times, usually at least as many as the
number of stochastic coordinates included in the system, but even more
are found under certain conditions. To display the multiexponential decay
of a process one can use different representations. First of all, such
evidence can be obtained by plotting the correlation function G(¢) versus
t. Also a representation in the frequency domain by spectral densities
J(w) versus w can be useful. Cole—Cole plots may also have a certain
usefulness, but they do not give much more information. We have chosen
to give only time domain representations here, largely for reasons of
space. A few spectral densities are shown in our initial reports. If a more
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detailed description is required, the best way to proceed seems to be the
analysis of the dominant kinetic constants (i.e., eigenvalues of the time
evolution operator), contributing significantly to the decay process (see
below). The correlation function G(¢) can be written in terms of the
eigenvalues A; of the time evolution operator according to the following
expansion:

G(t) = 2 w, exp(—A,t) (2.88)

where each eigenvalue A, has a weight w,. In all the table entries we show
the set of eigenvalues having weights larger than or equal to a cut-off
value €. A measure of the overall correlation time of the process (i.e., the
best approximation to a single exponential decay constant) is given,
calculated as the zero frequency value of the spectral density.

It is interesting to investigate the eigenvectors corresponding to the
dominant eigenvalues in a few cases. From the explicit expansion over the
basis functions used for the matrix representation of the operator, one
can obtain insight into the kind of motion represented by the ith mode
(e.g., one can decide if it is mainly the isolated motion of the first body or
if the solvent degrees of freedom are involved). Also, it is possible to gain
information on the truncation criteria with respect to the different
quantum numbers. This is particularly useful in dealing with models with
more than three relevant (i.e., nondiagonal) quantum numbers.

1. Computational Procedures

As pointed out above, the numerical algorithm with which we have
chosen to evaluate the eigenvalues and eigenvectors of the many-body
stochastic operators, and to compute the temporal decay of a given
correlation function G(¢), consists of: (1) determining a suitable set of
basis functions via standard angular momentum techniques; (2) obtaining
the matrix representation I' of the symmetrized operator, and the initial
vector v; (this vector is calculated as the product of the matrix representa-
tion M of the observable function and the vector v,, which represents
P;;z, cf. Eq. (2.26)); (3) applying a real symmetric implementation of the
Lanczos algorithm (for Hermitean operators) or a complex symmetric
one (for non-Hermitean cases) to transform I' into tridiagonal form T;
(4) obtaining from T, by straightforward diagonalization of the eigen-
value spectrum, and computing the temporal decay of G(¢) (alternatively
one can directly calculate the spectral density J(w) using a continued
fraction expansion [50, 42]); (5) determining the eigenvectors correspond-
ing to some eigenvalues (see below).

In this subsection, we wish to clarify some technical details concerning
the computational procedure. One of the most serious difficulties one has
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to deal with when considering a many-body operator is how to check the
internal consistency of the expressions. After all, when considering a
2BKM one has to solve a partial differential equation with 12 variables
(i.e., the dimension of the phase space), and this is by no means a
straightforward task. First of all, one requires a test of the algebraic
formulas that give I', v,, and v. Even though the procedures are clear,
and based on the systematic usage of the Wignert—Eckart theorem, the
large numbers of degrees of freedom involved, means possible algebraic
mistakes that may be hard to find. For this purpose, we have found it
very useful to check our algebraic manipulations made by hand, using
standard computer algebra software packages such as Reduce [55] and
Mathematica [56]. We did not write complete programs to perform all the
algebraic steps; rather we checked separate parts of the calculation.

Another very useful way of testing our results has been to use two
independent routes to numerically evaluate v,. The first route is reviewed
in Appendix C. It consists of the direct evaluation of the vector elements
in the coupled basis which largely involves numerical integration of the
function P./?. This direct approach is convenient for the case of rotation-
al invariance which is characteristic of the physical systems we have
studied. A second route has previously been recommended by Moro and
Freed [50] and Schneider and Freed [42]. They consider the following
expression

lim [sI+1'lv,=c¢ (2.89)

s—07"
where c is an arbitrary vector with a component along v,. Equation (2.89)
follows from the fact that P;’]z is the unique stationary solution of the
symmetrized operator T" (i.e., the eigenvector of zero eigenvalue). One
solves it for v,, by using some efficient algorithm for large linear systems
(e.g., the conjugate gradient method). Note that the calculation of v, by
Eq. (2.89) involves the direct use of I'. Since the formulation of I' is
algebraically the most challenging step, we regarded agreement of v,
obtained by both methods as largely a confirmation of a correctly
expressed I' (as well as a reliable v,). In all cases we succeeded with this
test to within appropriate numerical round-off error.

When one is reasonably sure of the algebraic formulas and programs,
it is still necessary to check the convergence of each calculation, both with
respect to the number of basis functions used (i.e., the dimension N of I')
and the number of Lanczos steps (i.e., the dimension n of T). Although
one can use sophisticated pruning procedures in order to minimize N [51],
we have used the simple criterion of repeating the calculation by increas-
ing both N and »n until there is a relative variation less than & in all the
dominant eigenvalues (i.e., all the eigenvalues having a relative weight
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larger than or equal to €). Usually 8 and e have both been chosen to
equal 107>,

Finally, we discuss the procedure adopted to evaluate the eigenvector
v, corresponding to a chosen eigenvalue A, since that is not normally
delivered by the Lanczos algorithm. We have followed the suggestion of
Cullum and Willoughby [57]. First, we evaluated the eigenvector v, of T
in the basis of Lanczos vectors. This is an n-dimensional vector, which
can be easily obtained by an expression similar to Eq. (2.89)

lim [(s + DI+ TV, =¢ (2.90)
s—0%

One can now evaluate the Ritz eigenvector v, (i.e., the eigenvector of T’
in terms of its components in the original basis set) by simply premultiply-
ing v, by the transformation matrix S

T=S"TS (2.91)

where S is the n X N matrix whose ith row is the ith Lanczos vector
(within round-off errors, $''S is the n X n unit matrix). This last proce-
dure is usually done by repeating the Lanczos tridiagonalization, so there
is no need to store the n Lanczos vectors.

2. Two-Body Smoluchowski Model

We start with the two-body Smoluchowski model (2BSM); the details of
the formulation (matrix and starting vector) are discussed in Section II1.C.
A stochastic system made of two spherical rotators in a diffusive
(Smoluchowski) regime has been used recently to interpret typical bifur-
cation phenomena of supercooled organic liquids [40]. In that work it was
shown that the presence of a slow body coupled to the solute causes
unusual decay behavior that is strongly dependent on the rank of the
interaction potential.

In all the 2BSM calculations presented here, the diffusion coefficient
D, equals 1, which defines the unit of frequency (inverse time); whereas
the diffusion coefficient for the solvent, D, varied from 10 (very fast
solvent relaxation) to 1, 0.1, 0.01 (very slow solvent relaxation). In the
D, =10 case, one finds that the reorientation of the solute is virtually
independent of the solvent; a projection procedure could easily be
adopted in this case to yield a one-body Smoluchowski equation for body
1 with perturbational corrections from body 2. The temporal decay of the
first and second rank correlation functions is then typically monoexponen-
tial. When the solvent is relaxing slowly (i.e., D, is in the range 1-0.01),
the effect of the large cage of the rapid motion of the probe becomes
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increasingly important. The decay of the correlation functions of both
ranks is already different from that of a single exponential for D, =1, and
for D, =0.1 the biexponential behavior is characterized by significantly
different decay rates, since the separation of timescales for the two bodies
is large.

An analysis of the different effects of a first rank versus a second rank
interaction is instructive. A second rank potential between the bodies
generates an apparent “strong collision” effect; that is, the motion of the
first body in the potential field of the slow solvent body is dominated by
the jump rate between the two equivalent minima. Only correlation
functions of odd parity are sensitive to this jump motion, so that if an
averaged unique correlation time is computed, this is significantly modi-
fied for the first rank case (i.e., 7,) with respect to the free diffusional
motion (i.e., no coupling) regime. Thus, for a fairly large range of
parameters, the ratio 7,/7, is lower than 3 (which is the typical value for a
purely diffusive description) and often very close to 1 (typical of a strong
collision description). When the potential is first rank, there is no
comparable “jump” motion, and the ratio 7,/7, is always equal to or
larger than 3. In other words, a second rank interaction potential (i.e.,
v, #0) causes the solute (usually the faster body) to reorient in the
instantaneous cage induced by the solvent (the slower body) or to jump
to the other potential minimum. In this way, a two-body small-step
diffusion model can exhibit features that are typical of a one-body-strong
collision description [58].

The numerical results are collected in Tables II and III (respectively,
for first rank and second rank correlation functions for a first rank
interaction potential) and Tables IV and V (second rank potential). Each
entry is defined for a value of the potential parameter (v, or v,) and a
value of the diffusion coefficient of the second body (D,). The column on
the left contains the zero-frequency spectral density or autocorrelation
time

Ti.2 Zfo atG, ,=J,,(0) (2.92)

(note again that the subscript 1, 2 refers to both 7, and 7,, etc.), whereas
the column on the right contains the dominant eigenvalue(s) of the
process: for each mode A; the corresponding weight w, is given in
parentheses.

Let us consider Table II in detail. When the solvent body is fast
(D, =10), the only effect on the rotational correlation time 7, for an
increasing tight interaction with the probe is a modest variation (going
from 0.5 for v, =0 to 0.53 for v, = 4). The solvent readjusts itself rapidly



"1 01 [enbs pue jueIsuod SI £,
“(sosoyiuaied ur) uoad st ySom sanear syl anfeauade jueuIwop
yoea 104 ‘Suydnod fenualod yuel isiy Suisesiour o) (9feds Aousnboyy ayy ssuyep Yoym) | ="' I0j palemd[es e AL,

€ v $00°0 v € $00°0
v € 2100 4 £ $00°0 4 € 100°0
z € L10°0 € 4 £50°0 € r4 910°0 € (4 800°0
€ 4 180°0 1 z LEOO I 4 9€0°0 1 ré 900°0
1 z 6210 4 1 SLT0 r4 I L£T0 z I 910
4 1 SHT0 0 1 o 0 I S0L0 0 1 LLO'O
0 1 TS0 1 0 870 1 0 €00°0 1 0 19L°0
K '’ || 7 ' || T 'r 47 o’ '’ A7l
pZ anjeauadrg oz anjeAuagdig qz anfeauadig By anfeauddrgy
p{9SE°0) OET ¥ (£v€°0) 691 (611°0)$9L°L
2{095°0) 610°0 YL'8T (219'0)981°0 08¢'¢ (0£8°0) 680°1 SI8°0 (966°0) £98°1 vES°0 o
(82¥0) 18T°€ (8v°0) STS'€ (9¢1°0) 628°S
(95t°0) 610°0 I1°€C (#0$°0) 881°0 8T (1€8°0) 6€1°1 LSLO (966°0) £88°1 6750 0¢
«L1LS70) €09°T (1£9°0) 52L°C (bLz0) STt
{T62°0) 610°0 L6Y1 (PE€°0) 161°0 086'1 (€92°0) 1ST'T $99°0 (966°0) 616°1 61570 0'¢
(29L°0) 091°C (698°0) 061°C (0v€'0) $98°C
(960°0) 610°0 o1y's (811°0) L61°0 666°0 (059°0) 005°1 §55°0 (L66°0) 0L6'T 905°0 01
(000°1) 000 00S°0 (000°1) 000°C 00S°0 (0600°1) 000°Z 00S°0 (000°1) 000°2 00S°0 00
100 10 01 001 ‘a
‘a

2y} jo swog pue (uwinjo) Y3ry) sonjeausdig jueunno( ‘(UWNo) 1197]) SSWI], UONE[ALI0)) Yuey ISIL] INSHZ

,S10103Aua31q Suipuodsaiio)

II 3719V.L

140



‘Z 01 [enba pue jueisuod st 1,
*(sasayjuared ur) uaaIg si
wySrom aane(a1 sy anjeauadio jueutwop yoes 104 Surdnoo [enusiod yues isiy Suiseasous 10§ | = (7 J0) pIIBINO(ED dIB ISIY,,

9 v 900 ¢ 4 (1X1]
r4 v v000 € € W00 S € 1000
S €  S€00 I € P00 € € W00 ¢ € S000 I €
1 € 8200 ¥ T 0600 ¢ T SH00 I € 8100 v T 4 T 1000
¥ T 0680 T T 100 T T 9200 ¥ T 100 T r4 z T ¥000
r4 T 6000 0O T 8800 0 6100 T zT  s9T0 0 T 0 T €000
0 T P6T0 ¢ 1 0620 ¢ 1 Y20 0 T 0£90 € 1 € 1 0£1°0
€ 1 6710 1 T 900 1 1 U0 ¢ I €000 I 1 1 I 600
I I 010 ¢ 0 1000 ¢ 0 1850 1 1 00 T o0 z 0 19L0
NN. { N_~ _ N\. _\. N__o_ .\. C. n.. _ N\. _\. N_~ N\. _\. n\. _\.
J¢ an[eauadig a¢ anjeauadig p¢ onjeauadrg J¢ anjeauadigy q¢ anjeausdrg e¢ on[eauagig
W(PET°0) 0SE'8 (£62°0) 868'8 (9€0°0) vE €1
5 (10£°0) 69T+ (e££°0) s08't (89z°0) L1°01
oe(S61°0) 650°0 e (++2°0) 65570 085°0 (099°0) 6¥Z°€ ¥€T0 (886°0) 165°S LLTO 0y
(852°0) ¥9¢°L (0LY'0) LY9°L (2L0'0) st01
(L£T0) 61€°€ (182°0)£18°¢ (61£°0) 66v'8
(101°0) 650°0 L0 (sv1°0) $95°0 $Ob°0 (zLs o) gsee LIT0 (686°0) 0§9° SLT'O o€
.:(00S°0) §79°9 (069°0) 8€L79 (TS1°0) ¥61°8
«(820°0) 168°C (sL10)SL6T (9L£°0) 091°L
«(6€0°0) 650°0 8€8°0 (950°0) SLS°0 6920 (Lzr'0)zese 9610 (066°0) 9SL'S 1L1°0 07
(S¥8°0) €91°9 (568°0) 98179 (LZ€0) €99
(290°0) 981°C (£90°0) YOv'Z (49¥°0) L6T°9
(¥00°0) 650°0 20 (900°0) 16570 L8T°0 (L61°0) S08°€ SLTO (¥66°0) 016° 891°0 0l
(000°1) 000°9 L9T°0 (000°1) 0009 L9T°0 (000°1) 000°9 L91°0 (000°1) 0009 L91°0 00
100 10 01 0°01 ‘a
‘a

,S10109Ausd1g Suipuodsario)
ay) Jo suwio§ pue (Uwmjo) 1YIry) sanfeaussig JurUIUO ‘(UWNJOD 1J9T) SSWILL, UCHEJILIO) YUY Puo0das :NSH?Z
I 471dV.L

141



"1 03 enba pue jueisuood si g,
‘(sasoyauaied ur) usaid st jySrom
JAnR[A1 2Y1 anjeausSio jurunwop Yoo 104 ‘Jundnoo [euusjod juel puodas Fulsesioul 10j | = '@ 10) pAIBMOjEd e ASAYJ,

N

9 S 9000 9 S 7100
14 S 600°0 4 S 010°0
¥ € L20°0 12 € o % € Z10°0 ¥ € ¥£0°0
z € S€0°0 Z € 980°0 r4 € S10°0 z € $20°0
4 1 01€0 r4 1 9150 4 1 1€€°0 z 1 029°0
0 1 019°0 0 1 £97°0 0 1 0v9°0 0 1 12€°0
o’ ’ 1l T’ ’ o T r || o’ ’ |
Pt anfeauadrg of an[eauadrg qp anjeauadig ey onfeAuddIg
o (EPT°0) STO'8 (zo1°0) £5L°8 (1£0°0) £9'91
»(108°0) L80"0 L9T°6 (1£8°0) 952°0 £92°¢ (Lv6°0) L60'1 698°0 (866°0) 6¥8'T 0rS°0 (137
BTT ) vLL'S (8s1°0) S0€°9 (1v0°0) 6£°21
(1€L°0)01T°0 ws'e (¥69°0) L8E 0 L20°T (Lg6'0) 92T'1 TULLO (866°0) LL8'T 1€5°0 0¢
o {LEE0) OVO'F (SL2°0) vy (sv0°0) 89¢°6
(L79°0) S6¥°0 €5¢°T (#69°0) €69°0 8901 (Sv6°0) L8P'T 1%9°0 (196°0) 926'T 81570 ()4
(16v°0) 118°C (9s€°0) 801°¢
(v6¥°0) ¥90°1 w90 (L£9°0) 1621 809°0 (£L6°0) 5€8°'T ¥€S°0 (666°0) 6L6'1 $0S°0 0’1
(000°1) 000°C 00$°0 (000'1) 000 00$°0 (000°1) 000°2 00S°0 (000°1) 000°C 00S°0 00
100 0 0’1 001 ‘a
‘a

2y} Jo awoS pue (uwn(o) 1y3ny) sanfeausdig 1ueunwoq ‘(UWINO)) 1J2) SOWIL], UONB[RIIO) YUBY ISIL (NSHZ

/1010940317 Butpuodsalio)

Al HTdVL

142



'z 01 [enba pue jueisuod si I,
“(sasoyiuared ur) uoaid st JySom
2ANR[d1 Y3 dnfeAuadio jueuIIOp Yoed 104 "Fuijdnod [enusjod ues puodas Juiseamul 10§ | = '(7 10} PIIRMOED 4B 38D

el oy ! lwop y .| p ! 1 10§ d 10} paie| YL,

9 9 100°0
¥ 9 £70°0 v 9 100°0
9 ¥ LSOO 9 v ¥£0°0 9 t £00°0
¥ % 2000 12 14 JALY) 9 ¥ £10°0 14 4 200°0
z v 8£0°0 4 4 020°0 4 v 80070 z 4 2000
¥ 4 08r°0 ¥ r4 972°0 ¥ r4 0S5°0 4 z L60°0
r4 z $80°0 z r4 K€ro r4 rd $80°0 4 4 950°0
0 z STE0 0 r4 £60°0 0 r4 6£E°0 0 4 0v0°0
z 0 900°0 4 0 YLYO r4 0 200°0 r4 0 68L°0
m\. —\. n._ ~ m\. —\. m__.wa m\. ~\. L.u’ m\. _N _
ps anjeausdig o6 anjeAuadig qg anjeausdig B¢ anjeausdig
(8€T°0) v 11
n(867°0) 966°6 (912°0) 90°01
2 L15°0) 650°0 8+9°8 (195°0) £55°0 0S0°1 (9t8°0) 261 ¢ €LT°0 (566°0) 9¥S°S 6L1°0 0t
(ze£'0) 610°8 (0Z1°0) 0Lt 6
(1s1°0)861°L ($9€°0) 6v6°L (pLT0) £ €l
(69€°0) 650°0 £0€°9 (Z1%°0) £95°0 608°0 (26L°0) ¥1¥°€ 9T 0 (S66°0) 1€9°¢ 9L1°0 0¢
«(LSE0) 6L9°9 (£01°0) 001°8
(862°0) £¥0°9 ($95°0) 895°9 (892°0) 0°01
o(061°0) 6500 w0°¢ (0£2°0) LLS 0 905°0 {60L°0) 668°€ 602°0 (966°0) LLL'S Lo 0T
BLT0) TH0'9 (8¥1°0) LTEL
(£2€°0) $95°S (£59°0) 6£6°S (98¢€°0) L9S "L
(050°0) 650°0 186°0 (650°0) £65°0 820 (565°0)S8L'Y 8L1°0 (866°0) 9¢6°S 891°0 01
(000°1) 000°9 L91°0 (000°1) 0009 L91°0 (000°1) 0009 L91°0 (000°1) 000°9 L91°0 00
10°0 1o 01 001 “a
‘q

,S101094u331y 3uipuodsatio)
ay3 Jo awos§ pue (uwno) Jydry) sonjeauddig Jueuio(q ‘(Uwnjo) 3J]) SIWILL UONE[ILIO)) YUBY PuOdIS INSHT
A d19VL

143



144 ANTONINO POLIMENO AND JACK H. FREED

to the solute motion. For lower values of the diffusion coefficient of the
solvent body, the decay of the correlation function is controlled by two
dominant modes: one of them (the fast one) may be related to the
rotational diffusion of the first body relative to the instantaneous orienta-
tion of the solvent body, and the other one to the free rotational diffusion
of the solvent body. One can see that for increasing potentials the process
is more and more differentiated from the original free rotational diffusion
(FRD), that is, the rotational diffusive motion of a spherical body in the
absence of any coupling. The slow mode becomes more and more
effective when the potential strength is increased (i.e., the weight goes
from 0.096 for v, =1 to 0.560 for v, =4, for D, =0.01). This is the cause
of the dramatic increase of the autocorrelation time, since the solute
rotation is heavily damped by the large cage.

The composition of the eigenvectors corresponding to the dominant
modes is analyzed in two cases (D, =0.01 and v, =2, 4) in terms of the
basis sets used in the representation of the time evolution operator (see
Table 1I). The square moduli of the coefficients c’,, each of them
representing the contribution of the basis set function labeled by the
collective index A to the ith eigenvector, are shown together with the
index A itself. In the present case, only the quantum numbers J, and J,
are nondiagonal, while the total angular momentum quantum number J is
a constant, and it is equal to 1 (2) for first (second) rank correlation
functions. From the entry of Table II to the eigenvalue labeled 2a
(D, =0.01 and v, =2), one can see that the slow mode is largely a FRD
of the solvent body (|c}|* equal to 0.76 for J, =0, J,=1) with a small
component of “dynamic interaction” between the two bodies (|c’,|> equal
to 0.14 for J, =1, J, =2). From entry 2b it is seen that the fast mode is
mostly due to FRD of the solute body (|c}|* equal to 0.70 for J, =1,
J, = 0), again with a dynamic interaction contribution (|} |* equal to 0.23
for J, =1, J,=2). The dynamic interaction becomes more important for
the case of a tighter interaction (v, =4); cf. entries 2¢ and 2d.

Table 1II contains correlation times and dominant eigenvalues for a
second rank observable in a first rank potential. There are still roughly
two ranges of decay rates when the solvent body is slow (D, =1). The
slower range is mostly due to the FRD of the solvent body, while the
faster one is described by motions of the solute body and/or dynamic
interactions. This faster decay is hardly described by a single frequency,
unlike the case of a first rank correlation function. Rather, it is controlled
by a few eigenvalues of the same order of magnitude. Thus for D, =0.01
and v, =2 the slow mode, entry 3a in Table III, is largely described by a
J, =0, J, =2 term; the fast mode 3b is mostly due to dynamic interactions
(J,=1,J,=1and J, =1, J,=3 are the important terms); and the fast
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mode 3c is mainly due to FRD of the solute (J, =1, J, =0 is dominant).
Dynamic interaction terms are more important in the eigenvectors when
the potential is stronger (v, = 4): see entries 3d (similar to 3a), 3e (similar
to 3b) and 3f (similar to 3c), and note that mode 3e, which is dominated
by dynamic interactions, is now heavily weighted in the correlation
function.

When a second rank potential is considered, the previous description
must be modified, particularly when odd rank autocorrelation functions
are involved, as we have pointed out above. We present results here that
confirm our previous interpretation [40]. In Table IV we show correlation
times and eigenmodes for a first rank observable. As in Table II, two
dominant modes are present for D, = 1; the fast one is again a FRD of
the solute body, whereas the slow one is a thoroughly “mixed” nature
(i.e., dynamic interactions), and may be loosely related, for very slow
cages, to the jump motion of body 1 from one metastable orientation to
another (cf. the cases in Table IV for D, =0.01, v, =2 and v, =4).

Finally, results on second rank correlation functions for a second rank
potential are collected in Table V. The situation is now very similar to the
corresponding set of data for a first rank potential (Table III), since even
rank correlation functions are not sensitive, for symmetry reasons, to
jump motions. The slow mode is then again mostly due to the FRD of the
larger solvent body while the fast modes are mainly dominated by
motions of the first body (cf. the entries for D, =0.01, v,=2 and 4 in
Table V). Note that other faster eigenvalues are present, with smaller
weights, whose nature is mostly mixed, but are not listed in the table,
Their individual contribution to the overall decay of the correlation
function is small, but their cumulative weights may be around 0.1-0.3 or
even more.

In Figs. 2a—d, we show the time decay of the first rank correlation
function G (t) for a first rank potential. In Fig. 2a results for different
values of v, for D, = 10 are shown (they correspond to the first column in
Table II). Observe that even for large potentials the effect of the light
solvent body is negligible. For intermediate values of D, (cf. Figs. 2b and
2c) the contribution of the slow decay mode is more effective. A
complete separation of time scales is evident in Fig. 2d (D, =0.01).
Similar behavior is obtained in the case of a second rank potential (Figs.
4a—-d). Finally, the same features are observed in the case of second rank
correlation functions G,(¢) both for a first rank potential (Figs. 3a—d)
and a second rank one (Figs. 5a4—d), although the sensitivity of second
rank correlation functions to the size of the solvent body seems to be less
pronounced than for first rank correlation functions (compare for exam-
ple Fig. 2¢ with Fig. 3¢).
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t
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Figure 2. 2BSM First rank correlation functions for a first rank potential coupling:
LU, =0 == v, =1~ ==, 0, =2, 000 0, =3 - -, v, =4, (@) D, =105 (b)

D,=1; (¢} D,=0.01. The unit of time in Figs. 2-7 has been taken by setting D{'=1.

From the strictly computational point of view, we may note that all the
computations were made with truncation parameters J;, ,J, ranging
from 4 to 8; the number of Lanczos steps necessary to achieve conver-
gence (with respect to the correlation times and the dominant eigen-
values) was usually less than 50.
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Figure 3. Second rank correlation functions for a first rank potential coupling: ,

v, =0~ v, =1~ ——, v, =2+, 0, =3;—-——, v,=4.(a) D,=10; (b) D, =1,
(¢) D,=0.1; (d) D,=0.01.

3. Three-Body Smoluchowski Model

The next model that we have treated in order of complexity is a
three-body Smoluchowski model (3BSM). A field X has been included,
coupled exclusively through first rank (dipole—field) interactions to the
two spherical rotators. No direct coupling has been taken to exist
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(a)

G1(t)

Figure 4. 2BSM. First rank correlation functions for a second rank potential coupling:
LU, =0 ———— 0, = 15— == U, =25, 0, =3 -, 0,=4. (a) D,=10; (b)
D,=1; (c) D,=0.1; (d) D,=0.01.

between the probe and the solvent body in order to show the effect of the
field on the motion of the two bodies, and to examine its role in providing
an indirect coupling between them. According to Eq. (2.34) the only
parameters that now define the system energies are u, and u,. We have
kept u, = 10y, in all the computations. Then g, has been varied from 0.0
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Figure 5. 2BSM. Second rank correlation functions for a second rank potential

coupling:

D,=10; (b) D,=1; (c) D,=0.1; (d) D, =0.01.

LU, =0 e, Uy =1y e, 0, =20 e, Dy =3y e -, v,=4. (a)

to 0.5 in 0.1 steps. The diffusion coefficient D, for the first body has been
taken as the unit of frequency, while D,, the diffusion coefficient of the
solvent body, has been set at 0.1. That is, we are simulating the effect of
increasing coupling between two rotating spherical dipoles in a polar
medium, with the second dipole ten times slower than the first one. Three

10.0
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sets of results have been obtained: (1) a fast interacting field (Dy = 10);
(2) a field with a correlation time comparable to that of the lighter body
(Dx =1); (3) a slow field (D4 =0.1).

From our results, one can see that the departure from simple single-
exponential decay is even more evident than for the 2BSM case. The
correlation functions of both ranks are greatly affected by the motion of
the field, so that a third decay constant is almost always necessary to fit
the decay. Notice that the effect is most pronounced, as expected, for the
case Dy =0.1. In Table VI the correlation times and the most important
decay frequencies (eigenvalues) are collected for each set of values of u,
and Dy, for a first rank rotational observable. When the field is relaxing
rapidly (Dy = 10, first column), the system is always biexponential for a
significant coupling (&, = 0.2): that is, the fast third body just provides an
effective coupling between the two bodies. For slower fields (Dy =1 and
0.1) the decay is roughly triexponential, since now the timescale of the
field is interfering with the motional timescales of the rotators. The
dominant modes are described largely as pure motions of the first and the
second body, without any appreciable component of the field. This may
be seen from the composition of the corresponding eigenvectors in Table
VI. The eigenvector corresponding to the slow mode labeled 6a (for
wu, =0.2 and Dy = 1) is almost completely described as a FRD of body 2,
whereas the fastest one (6b) is a FRD of body 1. An increase in coupling
leads to dynamic interaction terms; for example, for u, = 0.5 the slowest
mode (6c) is more than half composed of a FRD of body 2, and the
fastest one (6d) of a FRD of body 1, but there are significant contribu-
tions to both from mixed terms. Note that in Table VI the field related
quantum numbers (i.e., n and j) are always less than 2. Terms with n
equal to 1 contribute almost negligibly to the dominant eigenmodes; i.e.,
relaxation of first rank observables seems to be largely independent of
fluctuations in the magnitude of the field, and more affected by fluctua-
tions in its orientation.

In Table VII, numerical results are shown for second rank correlation
functions. For low values of the potential coupling, the motions are
largely FRD. Some new features arise for large couplings. Let us look
more closely, for example, at the eigenvectors associated with eigenvalues
7b, 7c, 7d (the dominant modes for D, =1 and u, =0.5). One can see
that the slowest mode (7b) is mainly the FRD of the slow, large second
body (the largest coefficient being for the case of n =0, j=0,J, =0 and
J, =2; and J =2). The second mode has a dominant term with n =0 and
j=0,J,=1and J,=1, (i.e., a “mixed” motion involving only the two
rotators). Finally, the third and fastest one has as its most important basis
function (but with a weighting coefficient of only 0.380): n=1, j=0,
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J,=0 and J,=2, it is a mode in which the fluctuation of the field
magnitude, and not only its orientation in space, is important.

Figures 6 and Fig. 7 contain respectively first rank autocorrelation
functions G,(t) and second rank autocorrelation functions G,(¢) versus
time for the three values of Dy considered. Note that for the time range

1.0

G1(t)

0.0 2.0 4.0 6.0 8.0 10.0

0.8

Gi(t)

Figure 6. 3BSM. First rank correlation functions: y =05 ———, u, =01,
----- =02 e =03 - -, =04y ——————, 1, =0.5. (a) Dy =10; (b)
Dy =1; (¢) Dy=0.1.
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Figure 7. 3BSM. Second rank correlation functions: sy =05 ————, u, =0.1;
ety =025 s =03; - -y =045 ————-—— u, =0.5. (a) Dy, =10; (b)
Dy=1;(c) D4,=0.1

considered (ten times the inverse of D,), first rank correlation functions
are much more affected by a large coupling via the fluctuating field than
are second rank functions. This is primarily due to the slow eigenvalues
which are strongly dependent on u,. This drastically changes the long-
time behavior of G,, such that 7, for the first rank processes is much
larger for large u,.
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The additional two parameters due to the presence of the field, n,,
and j_,, were both equal to 1 in the fast field case, 2 in the intermediate
case, and 5 in the slow field case, while J; and J, were fixed at 6; J,,
has been set equal to the maximum value given by the triangle rule, that
is from 14 to 17. Note that a careful analysis of the eigenvector tables
suggests that if one is interested only in evaluating the dominant modes of
the system (with a relative error, say, less than 20%), much smaller
matrices could be used. The number of Lanczos steps was always between
50 and 100.

4. Two-Body Fokker—Planck—Kramers Model: SRLS Case

In the previous two subsections the coupling between two bodies in a
completely diffusional regime was investigated. It was seen that, for the
two-body model with direct coupling at least two characteristic decay
times are always present (and their order of magnitude and physical
interpretation depend strongly on the rank of the interaction potential).
When a third, translational degree of freedom was added as a source of
indirect coupling, a third characteristic time was often observed.

In this subsection we include the conjugate momentum degrees of
freedom in the two-body model. Thus, we obtain a multidimensional
rotational Fokker—Planck—Kramers equation for the stochastic motion of
the two bodies. According to Section II.F, we have now to deal with a
phase space of dimension equal to 12, specified by the orientations of the
two bodies £, and €, and by their angular momentum vectors L, and L,.
The one-body Fokker—Planck-Kramers model for rotational motions has
been studied (in the absence of potentials) by many authors including
Fixman and Rider [4] and McClung [6]. Physically, inertial effects (i.e.,
the effects due to the explicit inclusion of momenta) will be negligible
when the collision frequency of the rotational body is much greater than
its streaming frequency. In this case the relaxation of the momentum
vector is much faster than the reorientation of the body. But inertial
effects are important for smaller collision frequencies. In a two-body
model one must also consider the collision frequency of the second body,
which can be in an inertial regime. Also, strong potential couplings will
yield inertial effects, especially for short times.

In all our 2BKM calculations, we had a physical picture in mind in
which the first body is in a diffusive or inertial regime, while the
surrounding, massive, solvent cage is always in a heavily damped regime.
Thus, by varying the frictional parameter (collision frequency) of the
solute body, we have studied its motion in the cage provided by the
second body, from the Smoluchowski regime to an almost inertial regime
in which librational modes become important. The only source of cou-
pling is assumed to be due to the interaction potential. No “third body”
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effects are included for simplicity, and the model can be regarded as a
generalization of the ‘“‘slowly relaxing local structure” (SRLS) models of
Freed and co-workers [33, 35].

Throughout this set of simulations, the unit of frequency has been
chosen as the streaming frequency of body 1, that is, w] = 1; the ratio
between the moments of inertia has been set equal to 10, that is,
L,/1, = 10, so that the streaming frequency of the second body is given by
w3 =1/V10. Finally, the collision frequency wj of body 2 has been
maintained at 100. The only parameters varied were the collision fre-
quency of body 1, w] (for values of 50 (damped case), 5 (intermediate
case), 0.5 (inertial case)). The computations were performed both for a
first rank potential (v, =0, 1,...,3) and for a second rank potential
(v, =0, 1,...,3). Orientational correlation functions of rank 1 and 2 for
body 1 have been computed; also, correlation functions for the reorienta-
tion of the conjugate momentum L, have been evaluated.

Table VIII contains the autocorrelation times and the dominant modes
for first rank correlation observables. Note that in this table, and in the
following tables for Kramers models, the eigenvalues and their weights
are complex numbers (but the real part of any eigenvalue is nonnegative).
In this and succeeding tables we write the real and imaginary parts for
each and we use the convention of placing a bar over the first figure of a
negative number. Since the correlation function must be real, each
complex eigenvalue is accompanied by its conjugate, which is not shown
in the table.

As was the case in the 2BSM, a slow eigenmode (equal to twice the
diffusion coefficient of the solvent body) is always present. It represents
the FRD of the large cage in the diffusive regime. The only exception is
for zero coupling (v, = 0) where the model reduces to a one-body case
(that is completely equivalent to the spherical rotational Kramers case
treated by McClung). The motion of the solute body is responsible for
the other fast modes whether in the diffusive regime (w|=50), the
intermediate regime (o] = 5) or the inertial regime (w] = 0.5). In the last
case there are eigenmodes with nonzero imaginary parts having a signifi-
cant weight. These motions are of a librational kind. But there are also
fast modes whose eigenvalues are purely real, and they correspond to
solute modes that are largely diffusional (i.e., the coupling to angular
momentum is not very significant). Thus the model seems to provide
three different types of decay process: namely, a pure rotation of the
solvent body (slow mode), a librational motion of the solute body
(complex mode), and a fast reorientation of larger amplitude, more or
less related to the FRD of the solute body.

Table IX gives the equivalent results for a second rank observable.
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ROTATIONAL MOTIONS IN LIQUIDS 159

Here the slow eigenvalue is equal to six times the diffusion coefficient of
the solvent body (since we are looking at a second rank property). For
nonzero values of the coupling parameter we find a larger number of fast
eigenmodes than in the first rank correlation case; but it is usually
possible to put them together as ‘““clusters” of similar magnitude. We can
again identify at least three processes.

In Fig. 8 corresponding to Table VIII, the first rank correlation
functions G, () have been plotted for the various values of v, and w].
The overdamped and intermediate cases (Figs. 8a and 8b) are close to
the 2BSM. As was expected, the situation is rather different for the
inertial case. Here the librational motion of the light first body, that is
only slightly damped by an effective friction, becomes important at least
for short times. The presence of librations is indicated by the damped
oscillations in the graph, which are more pronounced for an increased
potential (dotted line in Fig. 8¢). The effect of the first rank coupling
potential on the second rank correlation functions shown in Figs. 9a
(w]=50),9b (0] =5) and 9¢ (w; =0.5), is somewhat weaker, as was the
case for the two-body Smoluchowski model. The librational peaks in Fig.
9c are still present, but they are less pronounced.

Table X contains numerical data concerning the temporal decay of
momentum correlation functions (for body 1, i.e., L,). One realizes
immediately that in this case the influence of the cage body is much
weaker than it was for orientational observables. For @] = 50 the relaxa-
tion of the momentum of body 1 is almost totally decoupled from
reorientation of body 2, even for large potentials. For o] =5, a cluster of
eigenvalues close in value to the collision frequency is present. This is
also the case for w] = 0.5, but librational modes are beginning to play a
nonnegligible role.

These features are confirmed by an analysis of the correlation function
plots for the momentum, G,(¢), in Fig. 10. The coupling to a second body
is almost ineffective both in the Smoluchowski regime (Fig. 10a) and in
the intermediate regime (Fig. 10b). The departure from monoexponen-
tial decay, which is rigorously observed for the uncoupled case, is quite
small. On the other hand, a strong effect on the angular momentum
relaxation is observed in the inertial regime (Fig. 10¢). Note that the
potential coupling makes the decay of the momentum vector faster, and
the librational motion is more prominent.

When a second rank potential (v, # 0) is considered, there are signifi-
cant differences in behavior of both the reorientational correlation func-
tions (as in the 2BSM) and in the momentum correlation functions.
Tables XI and XII give the results for first and second rank correlation
functions, respectively. In both cases we have at least three decay modes.
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One of them is much slower than the others, and the fastest one becomes
librational (i.e., it acquires a detectable imaginary part) in the inertial
regime (@ =0.5). Note, however, that since the second rank potential
coupling provides two potential minima in which the solute can reorient
(with the possibility of “‘jump” motions), the nature of the slow mode in

50.0
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the case of first rank correlation functions is no longer simply the overall
relaxation of the solvent body. The situation is very close to the 2BSM for
a second rank potential for w; =50. The relaxation of the momentum
vector L, is so fast that we are virtually in a completely diffusive regime.

In the intermediate regime (@] =35) inertial effects become more



‘(sesoyiuazed ur) uoAId st jySram aanepal ay; anjeausdio
lurUIWOp Yoea 104 ‘Suydnod [enudod uel isiy Zuiseardur 10] 00T = i@ pue gL A/[ = i@ [ = lm 10} pajgmojes ase 3y,

(00070 ‘SO£°0) 000°0 ‘STH'1
(000°0 “2£0°0) 000°0 ‘8L6°0
(T%0°0 “920°0) ¥2€' T L0

(2v6°0°260°0) L29'0 '091'8
(0000 “218°0) 000°0 ‘ST6°S

0¢

01
00

(00070 ‘¥S0°0) 000°0 ‘0050 ¥59°0 (000°0 “v20°0) 000°0 ‘€2¥'p 181°0 (000°0 866°0) 000°0 ‘20°0§ 020°0
(€S1°0°026°0) ST0°0 ‘0EL'T (000°0 “20¥°0) 000°0 ‘€95°L
(000°0 ‘060°0) 000°0 ‘€€0°1 (00070 “L69°0) 000°0 ‘P6L°S
(S80°0 “660°0) 81670 "€E€L°0 (00070 ‘92Z°0) 000°0 “1ST'S
(00070 “Z¥1°0) 0000 ‘00S°0 $06°0 (00070 “¥60°0) 000°0 ‘959" 681°0 (00070 “666°0) 000°0 “20°0S 020°0
(00070 “060°0) 000°0 ‘0EH’T (000°0 ‘€20°0) 000°0 “960°L
(000°0 ‘¥O€°0) 000°0 ‘1ET'T (000°0 °€92°0) 000°0 ‘199°S
(29170 ‘0VZ°0) 1470 ‘¥89°0 (00070 “S5€°0) 000°0 ‘00Z°S
(00070 *L9Z°0) 000°0 ‘66¥°0 STH'1 (000°0 “€T¥°0) 000°0 ‘ZT88°¥ L6T'0 (000°0 ‘000°1) 000°0 ‘10°0S 0200
(000°0 ‘000°1) D000 *00S°0 0002 (000°0 ‘000°1) 00070 ‘00°S 00T°0 (000°0 ‘000°T) 000°0 ‘00°0S 020°0
S0 0's 008
m

‘a

Luwnio)) 13y ) son[eausfig jueutwo( pue (UWIN[OD) 1J27]) SAWI] UOHE[3110D) WNIUSWOW TS INTHZ

X d71dV.L

162



Gu(t)

0.6 0.8

0.4

0.2

0.0

ROTATIONAL MOTIONS IN LIQUIDS 163

O' T T T T
b
0 ] J
L 4 ]
w0
o o J )
L y S
2 ]
& o
p o \
N o J
© 0.0 0.5 1.0
1 o L
)
| N
0.0 1.0 2.0 3.0 4.0 5.0 0.0 1.0 2.0 3.0 4.0
t t
(@) (b)
Q
o [N ]
AR
a0
© |\ |
o e A
3 v\
< L oy N _
© N
\ N
\ N
~ ~
o [ e ~ ]
~ ~
~ ~
~ ~ -
o ! L \|‘.-..._\__\__‘
IS
0.0 1.0 2.0 3.0 4.0 5.0
t
(e)
Figure 10. 2BKM-SRLS. Momentum correlation functions for a first rank potential
coupling: , 0, =05 —=——, 0,=1; ===, 0, =2; <+++, v, =3. (@) ©]=50; (b)

w,=5; (¢c) w;=0.5.

important. The relaxation of the momentum L, is coupled to the slow
mode corresponding to the jump motion. The net result is a decreased
effective friction acting on this mode, so that the dominant frequency of
first rank correlation functions is increased. This effect is also present
when the collision frequency is further reduced (@] =0.5). Note however
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166 ANTONINO POLIMENO AND JACK H. FREED

that the rate of change of the eigenvalue with decreasing w] is stowed
down, and it is negligible when the potential is high; that is, for v, = 1 the
eigenvalue goes from 0.023 (w;=50), to 0.198 (w;=35) and 0.270
(w7 =0.5); for v, =2 it goes from 0.012 to 0.085 and 0.094; finally for
v, =3 it goes from 0.006 to 0.034 and 0.034, that is, it remains unchanged
when the collision frequency is reduced by a factor of ten. This may be
due to an incipient Kramers turnover effect. It is possible that for a larger
potential, the jump eigenmode would invert its dependence versus | by
starting to increase when the collision frequency is decreased.

Nothing of this sort is observed for second rank correlation functions,
since the dominant slow mode is simply a FRD of the solvent body. In
both first and second rank correlation functions one notes that librational
modes are slightly more important when the potential coupling is second
rank than they were for a first rank potential coupling. This may be due
to the increased curvature of the potential near the minima.

The complex nature of the slow mode responsible for the long-time
behavior of first rank correlation functions for a first rank interaction
potential is illustrated by the composition of the eigenvector correspond-
ing to the slow mode 11a in Table XI, for v, =3 and w{ =0.5. Note that
n,, ny, j,, j, describe the magnitudes and the orientations of the momen-
tum vectors L, and L,; j is referred to the orientation of L, + L,, J, and J,
are related to the orientations of the two bodies, and the total orienta-
tional angular operator defines the quantum number J; finally J,., which is
not included in this table, is the total angular momentum quantum
number, and it is always equal to 1 for first rank orientational and
momentum correlation functions, and to 2 for second rank correlation
functions. In Fig. 11 we show the first rank correlation functions for
different collision frequencies of body 1. The second rank correlation
function decays are plotted in Fig. 12. The librational motions in the wells
are more important than they were in the first rank potential case (since
there is now a more accentuated curvature of the potential wells).

In Table XIII we show momentum correlation functions. One finds
that there are increased librational effects from the second rank potential.
Compare for instance the case of v, =3 and w| =5 with the correspond-
ing entry in Table X (v;=3 and w]=35). In the present case the
librational mode is dominant and the simple decay mode has a weight
only half that of the case in Table X, for which most of the decay is by a
nonlibrational mode. The interpretation of the dominant modes is com-
plicated when the potential is large and the regime of motion of the solute
body is inertial. In Table XIII some of the eigenvectors corresponding to
the dominant eigenvalues for v, =3 and o} =0.5 are shown. It is not
possible to isolate a single component having a coefficient larger than 0.5
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w;=5; (c) o;=0.5.

in the three eigenvectors given. However, the angular momentum quan-
tum numbers for the solvent body, n, and j,, are always zero, given the

large viscosity imposed on it.

Figure 13 shows G,(¢) for a second rank potential coupling. The effect

of the second body is still negligible in the overdamped case (Fig. 13a),
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Figure 12. 2BKM-SRLS. Second rank correlation functions for a second rank potential

coupling: y 0, =0 e, 0, =1 ——em, 0, =25 e, 1, =30 (a) 0] =505 (b)
wi=5; () w{=05.

since the momentum relaxation is so fast that it is not affected by the
details of the solvent. But even for the intermediate case shown in Fig.
13b, the librational motions in the cage have a large enough amplitude to
make the momentum reorient in the opposite direction with respect to
the starting orientation. This is reflected in the negative part of G,(¢).
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Figure 13. 2BKM-SRLS. Momentum correlation functions for a second rank potential
coupling: , 0,=0; ————, v,=1; — ==, U, =2; +--, v,=3. (a) w]=50; (b)

w=5; (c) S =0.5.

When the first body is in an underdamped regime of motion (Fig. 13¢)
and the potential is high (dotted line), the momentum vector actually
fluctuates back and forth for a while before decaying toward zero.

For all the computations, J; =J, =5and n, =j, =1 (since
body 2 is always in an overdamped regime); n;  and j,  have been

5.0
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both set equal to 1 for w] =50, to 2 for w] =5 and to 5 for w{ =0.5 and
the number of Lanczos steps was between 100 and 500. Note that the
largest matrices treated (for o] = 0.5 and v, = 3) had dimensions of order
10°!

5. Two-Body Fokker—Planck—Kramers Model: FT Case

The last model considered in this work is a variation on the previous
inertial two-body approach. Instead of allowing a direct source of cou-
pling between the two bodies via a simple interaction potential, we now
introduce a frictional coupling between them. This is the residual effect
after the elimination as fast variables, of a stochastic field vector and its
conjugate linear momentum (see Section I1.G). The model is an inertial
counterpart of the 3BSM described above, provided the “‘third body” is
relaxing fast enough that only its averaged effect on the torques acting on
the two principal bodies is left. This case is equivalent to similar models
with “fluctuating torques” (FT) features (cf. Stillman and Freed [33]).

Both the SRLS and the FT inertial models were discussed in the
context of the Hubbard—Einstein relation, that is, the relation between
the momentum correlation time 7, and the rotational correlation time
(second rank) 7, for a stochastic Brownian rotator [39]. It was shown that
both models can cause a substantial departure from the simple expression
predicted by a one-body Fokker—Planck—-Kramers equation:

1

6T (2.93)

T, T, =

In the FT case, it was found that the additional friction due to the fast
field has a different effect on the rotational versus momentum relaxation,
such that, whereas 7, still behaves in a “normal” fashion (i.e., it is
roughly proportional to the total friction, from both the solvent terms and
the field terms), 7, is not much influenced by the friction generated by the
fast field. These comments apply to the case in which the sources of
friction are large, so that the system is always in a diffusional regime.

These matters are described in more detail in the last set of calcula-
tions included in the present work. We have considered a fixed “core”
friction (from the unspecified fast solvent modes) and fixed dimensions
for the second body: w’, =1/V10, w5 = 100, with w] = 1 for the first body
(so it is ten times smaller than body 2). We have investigated two cases:
w; =50 and w]=35. The additional source of coupling, according to
Section IL.F, is specified by the frictional parameters w,, w,. To further
simplify the analysis we have kept w, = 10w,, and we have varied w, from
0 to 400.
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In Tables XIV and XV we show the dominant eigenvalues and
correlation times for a first rank and for a second rank orientational
observable, respectively. Only the real parts of the eigenvalues have been
written, since we have just explored a range of parameters for which all
imaginary parts are negligible. (The same is also true for the relative
weights.) The existence of slow modes is due to the large values of the
frictional parameters, both for the solvent and the solute body. In all
cases at least four important decay frequencies are reported. Note the
great difference in magnitude between the first and second rank au-
tocorrelation times, due to the presence of a slow mode in the first rank
case that is absent in the second rank case. The effect of the core
frictional parameter w1 is less relevant than in the SRLS model, since for
the range of parameters used, most of the friction comes from the fast
relaxing stochastic field. Let us look at the case of w, =200 and ] = 50.
In Tables XIV and XV the eigenvectors corresponding to the most
important eigenvalues for each case are shown. The very slow mode
(entry 14a) in the first rank decay is dominated by a FRD of the solvent
cage. The next eigenvalue corresponds to a dynamic interaction mode
(entry 14b), with an important component of FRD of body 1. Finally the
eigenvalue labelled 14c, which is the one with the highest weight, is
mostly described as the relaxation frequency of body 1, with a component
of mixed dynamics. For second rank correlation functions, the decay
process for the same set of parameters is governed by a set of frequencies
which are difficult to relate to simple motions of the two isolated bodies.
That is, for all entries in Table XV one sees that the eigenvectors always
have a mixed character. Not surprisingly, the momentum quantum
numbers do not appear to influence the rotational properties (i.e., there
are no eigenvectors with a significant projection on basis set functions
with nonzero values of n,, n,, j,, j, or j).

Table XVI contains numerical data for the momentum correlation
functions. As previously shown, one finds that by increasing the coupling
parameter o, the correlation time tends to reach a constant value that
appears to be only a function of the core frictions ] and w;. Analysis of
the eigenvectors suggests a strong dynamic interaction between the two
bodies. In Table XVI we show the eigenvectors for the same set of
parameters given above. In all cases, components depending on basis
functions with quantum numbers j, and/or j, equal to 1 are present, while
n, and n, are almost always equal to 0. That is, the motions correspond-
ing to the eigenvalues of Table XVI are coupled modes of the vectors L,
and L, involving their (mutual) orientations, but unaffected by fluctua-
tions in their magnitudes.

In Fig. 14 we show first rank correlation functions, G ,(t), for w] =50
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Figure 14. 2BKM-FT. First rank correlation functions: , @y =05 ————, w, = 100;
————— » 0, =200; -+, @0, =300; -~ =, 0, =400. (a) 0] =50; (b) w]=5.

and @] =35, in Fig. 15 second rank correlation functions, G,(t), and in
Fig. 16 momentum correlation functions, G,(¢). Slower modes appear to
be more important than in the SRLS model (but this may be due to the
range of frictional parameters utilized). Note the significant difference
between the zero coupling (one-body) case and the other ones, especially
when the core friction is small. Neither negative tails are present in the
momentum correlation functions, nor librational oscillations in the orien-
tational ones. Since the potential coupling is set equal to zero, no “cages”
are present in which the light probe can librate.

All the computational parameters were chosen in this set of calcula-
tions exactly as they were in the SRLS case; andn, ,n, ,j, andj,
were always equal to 2. e i

H. Discussion and Summary

In the final section of this paper we discuss some of our results in
comparison with the studies of other authors. We also consider available
experimental data and MD results.

1. Asymptotic Forms for Spectral Densities

We start by considering the works of Freed and co-workers [10, 59}. ESR
relaxation studies of small deuterated nitroxide probes have been per-
formed in their laboratory, showing the sensitivity of this spectroscopic
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technique to molecular reorientational dynamics in liquids. Hwang,
Mason, Hwang and Freed conducted an analysis of line shapes for the
nitroxide radical PD-Tempone in deuterated solvents, and they discussed
simple asymptotic formulas for fitting the observed reorientational spec-
tral densities, based on the theoretical analysis of Hwang and Freed [35].
Zager and Freed [59] have conducted ESR relaxation studies to rational-
ize (i) the solvent and pressure dependence of non-Debye spectral
densities and (ii) the relation between rotational and momentum correla-
tion times (compared with the existing simple one-body prediction, i.e.,
the Hubbard-Einstein relation; see below).

They have shown that a simple SRLS model predicts, in the limit of
very slow relaxation of the solvent body, the following form for spectral
densities of rank L [59]:

1- 82 s?
"L(w)~ TL( 2 15) + L

1+ w'ry 1+ 0’12

(2.94)

where 7, is the correlation time for the isolated solute, while 7, is the
correlation time (of the same rank) for the isolated solvent body; S, is the
order parameter (i.e., the equilibrium average of the Lth Legendre
polynomial in Q, assuming the second body is fixed). That is, in the limit
of a very large solvent cage, the motion is expected to be a linear
combination of the fast FRD of the isolated solute and the slow FRD of
the isolated cage. One may expect this limiting expression to be adequate
when compared to actual computations based on our 2BS and 2BK-SRLS
models when D, is much larger than D,.

In Fig. 17 we show how computed spectral densities compare, in a few
cases, with Eq. (2.94) for second rank correlation functions. Figure 17a
corresponds to the 2BSM case for D, = 0.1 and for a first rank potential
coupling v, =4 (cf. Table III), whereas Fig. 17b refers to the equivalent
2BSM case with a second rank potential coupling v, =4. One observes
some deviation both for J(0) and the frequency dependence of J(w). Note
that the asymptotic formula underestimates the spectral densities in the
low frequency region, while it overestimates it in the high frequency
region.

Spectral densities are less sensitive to inertial effects than correlation
functions. We show the spectral density for the 2BK-SRLS case wj =0.5
and v, =2.0 (cf. Table IX) in Fig. 17¢, at v, =2 in Fig. 17d. The
asymptotic formula (2.94) provides a good fit, especially for a second
rank coupling potential. This is due to the large difference between the
correlation times for the isolated FRD of the two bodies (i.e., 0.08 for
body 1 and close to 167 for body 2).
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Note that Eq. (2.94) fails completely when one attempts to reproduce
first rank spectral densities calculated in a second rank potential coupling
(see Fig. 17¢), since it is based on a model in which the solute is a FRD
when the solvent body is frozen. One could probably use Eq. (2.94) for
L =1 when the potential contains different minima by redefining 7, as the
inverse of the jump rate in the fixed potential provided by an infinitely
damped cage.

Zager and Freed have also compared their experimental data against
line shapes predicted by perturbational treatments of simple FT' models
[35]. To lowest order, such models predict (cf. also Hwang et al. [10])
that the original Lorentzian shape of a pure FRD for the isolated first
body should be replaced by a modified function

J{w)

1

0 5 10
w
(a)

Figure 17. Comparison between exact spectral densities ( ) and asymptotic
spectral densities given by Eq. (94) (----- ). (a) Second rank, 2BSM, D, =0.1 and v, = 4;
(b) second rank, 2BSM, D, =0.1 and v, = 4; (¢) second rank, 2BKM ~ SRLS, o] = 0.5 and
v, =2; (d) second rank, 2BKM-SRLS, v’ = 0.5 and v, = 2; (e) first rank, 2BSM, D, =0.01
and v, = 3 (note that J(0) = 3.5 whereas J,_ . (0) = 18.6). For (a) and (b) unit of frequency
is relative to D, = 1; for (c)—(e) it is relative to @] =1.
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Figure 17. (Continued).
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Figure 17. (Continued).
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1
TL

J(w) = . (2.95)

1+ e w
where € =1 and it should be a constant.

Note that Eq. (2.95) is valid only for smaller values of w and relatively
rapidly fluctuating torques. Also, 7, need not be the correlation time for
the Lth rank FRD of the isolated solute, but depends on the relaxation
time of the process providing the FT effect. We except Eq. (2.95) to be
acceptable in reproducing the low frequency region of the 3BS spectral
densities when the diffusion coefficient of the field is large; 2BK-FT
spectral densities are likely to obey Eq. (2.95) if w is not too large. Note
however that in both cases we can expect to apply Eq. (2.95) only for
small values of the coupling between the solute and the solvent cage.
Equation (2.95) is an adequate approximation for spectral densities (in a
limited range of frequencies) only when SRLS effects are absent or
negligible; and when the sources of the fluctuating torques are fast
relaxing and weakly coupled to the solute.
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Figure 18. Plots of [J(w)/J(0)—1]/[w?J(0)’] versus w. (a) Second rank, 3BSM,
#, =02 and D, =1; (b) second rank, 2BKM-FT, o, =100, w}{=50; (c) second rank,
2BKM-FT, w, =300, w| = 50. For () unit of frequency is relative to D, = 1; for () and (c)
it is relative to ] = 1.
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We show in Fig. 18 plots of the function e(w)=[J(w)/J(0)—1/
[w?](0)°] versus w. If Eq. (2.95) were valid we should have a horizontal
line corresponding to the value of e. In practice one obtains a slowly
decreasing plot at low frequencies, which eventually goes asymptotically
to one. In fact the actual spectral densities are sums of a finite number of
Lorentzian functions, each of them corresponding to a dominant eigen-
value, and for larger frequencies only the Lorentzian corresponding to
the largest eigenvalue is nonnegligible. In Fig. 18a we show what we get
for a second rank spectral rank spectral density obtained by a 3BS
calculation (u, =0.2 and D, =1). One may note that the validity of Eq.
(2.95) is limited to short frequencies; a rough evaluation of € is in the
range 1.1-1.2. In Figs. 18b and 18¢ we show similar plots for the 2BK-FT
model; Fig. 18b is for w, = 100 and Fig. 18¢ is for w, = 300 (@] has been
taken equal to 50). In the weak coupling case (Fig. 17b the e-fitting is
much better than in the strong coupling one (Fig. 17¢); in this last case
one can approximately use a value of € close to 3. The departure from
Eq. (2.95) is then much more evident at lower frequencies when the
coupling is increased.

2. The Hubbard-FEinstein Relation

The next application we discuss is the interpretation of the anomalous
behavior of the product 7,7, observed by Freed and co-workers [10] in
isotropic and ordered liquid phases. In the absence of mean field effects,
a simple one-body Fokker—Planck treatment predicts that the product of
the second rank correlation time and the momentum correlation time for
a spherical rotator obeys the Hubbard-Einstein relation Eq. (2.93). It is
correct in a diffusive (high friction) regime only, where 7, is linearly
dependent on the viscosity 5. Since 7, is proportional to 1/x, then in
order to satisfy Eq. (2.93) for large » 7, must be short, that is 7, < r,.
According to Hwang et al., ESR studies give 7,>10""'s for PD-
Tempone in several solvents, corresponding to 7, <5 X 10~ ' that is, of
the same order as molecular vibrational periods. A careful analysis of the
experimental data suggests that for decreasing temperatures (i.e., increas-
ing viscosities) the left hand side of Eq. (2.93) tends to be larger than the
right hand side. One may expect that this is due to a 7, which has a
weaker than linear dependence on 1/7.

Since one-body models fail to reproduce such behavior, even if large
mean field potentials are included, one must turn to a many-body
description. One would expect that the solute body should be described
as coupled to a collective solvent body in such a way that the potential
energy of the system is not affected, in order to maintain the normal
diffusive behavior of 7, (i.e., proportionality to 7). We may then intro-
duce a friction tensor affecting the motion of the molecule and the first
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solvation sphere, such that the variation of 7, is “damped” when the
friction is large.

We choose to describe our coupled system by using the 2BK-FT
model, without any torque contribution (zero potential). The collisional
matrix is provided by Eq. (2.72). The diagonal terms w{ and o} are kept
constant, whereas the coupling terms w, and w, are changed, for a fixed
ratio of the moments of inertia of the two bodies. In this way one expects
to model the effect of a fast fluctuating torque (directly related, in our
approximation, to the fast relaxing reaction field) which provides the
largest friction, and which rapidly varies with temperature and/or pres-
sure. The rest of the solvent provides merely a constant damping that is
supposed to be less affected by a change in temperature and pressure, at
least in the range of parameters considered in the few experiments that
are available.

An analysis of this kind has been made in our recent paper [39], for a
solvent cage ten times larger than the solute, a streaming frequency for
the solute equal to 10'° and an overall friction, parametrized by w,
ranging from 10> to 10'°s™', using the same numerical techniques
described in this chapter. In that study, it has been confirmed that for
such pure FT models, the correlation time 7, behaves approximately in a
“diffusive” way, that is, it increases with the increase of the total friction
acting on the solute (proportional to o, + ().

An entirely different behavior is observed for the angular momentum
correlation time. The coupling terms in the collisional matrix, causing the
mutual friction between body 1 and body 2 are much more important.
The momentum correlation function is largely dominated by the eigen-
values of the collisional matrix. This means that for large coupling
(w, > w]) the dominant eigenmode for the momentum tends to be
proportional to the smallest eigenvalue of the collisional matrix, which is
practically equal to o], the “core” friction. Thus the particular structure
of the friction tensor of a 2BKM-FT provides a way of interpreting the
slow change with temperature of 7,. Our present, more extensive study
confirms this analysis (cf. Table XVI).

The 2BKM-SRLS model can also cause a substantial departure from
the Hubbard-Einstein relation [39]. This is because 7, = (1 — §2)+
7,55 [cf. Eq. (2.94)], so 7, increases with increased potential coupling and
with increase in size of the solvent cage. However, momentum relaxation
is dominated by eigenmodes that are primarily the FRD of the isolated
solute (cf. Tables X and XIII).

3. Molecular Dynamics Simulations

Molecular dynamics (MD) simulations are an important way of providing
insight into motions in liquid phases. In recent years, such simulations
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have been extensively employed to study the properties of model fluids
consisting of interacting molecules and to obtain reorientational and
angular velocity correlation functions. Stochastic models can be thought
of as complementary theoretical tools to MD, since they may provide (i)
general models to interpret results from MD observations, which may be
regarded as ideal experiments, and (ii) information at long-times, where
for computational reasons MD simulations are not feasible.

The complex rotational behavior of interacting molecules in the liquid
state has been studied by a number of authors using MD methods. In
particular we consider here the work of Lynden—Bell and co-workers
[60-62] on the reorientational relaxation of tetrahedral molecules [60]
and cylindrical top molecules {61]. In [60], both rotational and angular
velocity correlation functions were computed for a system of 32 molecules
of CX, (i.e., tetrahedral objects resembling substituted methanes, like
CBr, or C(CH,),) subjected to periodic boundary conditions and inter-
acting via a simple Lennard-Jones potential, at different temperatures.
They observe substantial departures of both G, ,(f) and G,(f) from
predictions based on simple theoretical models, such as small-step diffu-
sion or J-diffusion [58]. Although we have not attempted to quantitatively
reproduce their results with our mesoscopic models, we have found a
close resemblance to our 2BK-SRLS calculations. Compare for instance
our Fig. 13 with their Fig. 1 in [60].

In particular they consider a set of simulations for a system of CX,
molecules at three different temperatures (“hot”, “intermediate” and
““‘cool’”) which bears a close resemblance to our computations made in the
presence of a second rank interaction potential. Their “hot” case corre-
sponds to our low potential coupling cases, whereas their ““cool” simula-
tion is related to our high potential results: that is, a decrease in
temperature corresponds in our rescaled coordinates to an increase in the
potential coupling. One may note that the presence of a negative tail,
assigned by Lynden-Bell to librational motion of the observed molecule
in an instantaneous cage, causes the momentum correlation functions to
behave differently in the “cool” state with respect to the purely diffusive
decay observed for the “hot” state. This behavior is very similar to our
2BKM-SRLS case for w{ =5 and v, =3 (cf. Fig. 13b).

4. Impulsive Stimulated Scattering Experiments

In the last few years Nelson and co-workers [63—65] have presented a new
approach to light scattering spectroscopy, named impulsive stimulated
light scattering (ISS), which seems to be able to detect one particle
rotational correlation functions. In ISS, one induces coherent vibrational
motion by irradiating the sample with two femtosecond laser pulses, and
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then observes a light scattering intensity signal decaying in time. The ISS
spectrum is resolved in the time domain and can be directly related to
second rank rotational correlation function G,(¢) [65]. Thus ISS is one of
the few spectroscopic techniques which appears to give, at least in some
cases, direct information on single-molecule rotational dynamics, together
with nuclear magnetic resonance (NMR), electron spin resonance (ESR)
and neutron scattering.

In particular, Nelson and co-workers have collected a set of ex-
perimental data concerning the reorientational dynamic of CS, both in
temperature-dependent [64] and pressure-dependent [65] ISS experi-
ments. In both cases they observed ‘“weakly oscillatory responses” in the
signal either for low temperature regimes or for high pressure regimes.
These have been identified as librational motions of the probe molecule
in the transient local potential minima inside the instantaneous cages
formed by its neighbors.

Comparable behavior has been observed by Fayer et al. in a series of
subpicosecond transient grating optical Kerr effect measurements on the
reorientation of byphenyl molecules in neat biphenyl and n-heptane
solutions [66,67]. They have shown that on the ultrafast timescale
(t <2 ps) the dynamics of the probe is controlled by librational motions
having an inertial character, although diffusive reorientational relaxation
of the whole molecule and internal torsional motions can also have a role.

The analysis of local librations in terms of the few existing tractable
theoretical models (e.g., IOM) have shown that although a qualitative
agreement can be reached with experiments, the interpretation of the
short time dynamic behavior remains an open problem. We think that our
methodology could help to clarify some aspects of the experimental
observations.

5. Summary

A careful analysis has been performed on several stochastic models for
rotational relaxation of rigid molecules in complex liquids. These include
two-body rotational diffusion in the overdamped (Smoluchowski) regime
(2BSM), as well as a related three-body model (3BSM). Inertial effects
have been considered in two other models which are two-body Fokker—
Planck—Kramers models in the full phase space of rotational coordinates
and momenta (2BKM). In one, the two bodies interact via an orienta-
tion-dependent interaction potential, and this leads to a “slowly relaxing
local structure” (SRLS) description. In the other there is an orientation-
dependent frictional coupling, derivable from other faster solvent modes,
which leads to a “fluctuating torque” (FT) description. The computation-
al challenge of solving multidimensional Fokker-Planck equations has
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been dealt with by (i) constructing efficient sets of basis functions utilizing
angular momentum coupling techniques; (ii) utilizing the complex sym-
metric Lanczos algorithm to obtain the orientational and angular momen-
tum correlation functions. These correlation functions have been ana-
lyzed in terms of the dominant “normal modes” with their associated
decay constants.

For the 2BSM, the effect of a large solvent cage yields biexponential
behavior with significantly different decay rates. While this behavior may
be approximated by modes related to the original free rotational diffusion
(FRD) of each body in the absence of coupling, these modes become
more influence by “dynamic interactions’ for increased interaction poten-
tial and/or more nearly equal rotational diffusion coefficients of the two
bodies. It has been shown that first rank versus second rank potentials
lead to significantly different behaviors, especially for first rank correla-
tion functions (i.e., G,(¢)). In this case, a second rank potential leads to
an apparent ‘“‘strong collision effect”, that is, a two-body small-step
diffusion which exhibits features typical of a one-body strong collision
model. Previous simpler SRLS models are inconsistent with this effect.
Also, one finds that second rank correlation functions [G,(f)] have
somewhat complex behavior with several decay modes, and with in-
creased importance of dynamic interactions. The 3BSM leads to more
pronounced departure from single exponential decay. When inertial
effects are included via the 2BKM-SRLS case, there are still fast modes
for orientational relaxation with purely real decay constants (correspond-
ing to solute modes that are largely diffusional), but now there are solute
modes with complex decay constants corresponding to librational motion.
For G,(tr) with second rank potentials, the coupling of the angular
momentum to the jump motion leads to unusual behavior that may be an
incipient Kramers turnover effect. Angular momentum correlation func-
tions [ G, (f)] have been found to be much less influenced by the solvent
cage than are orientational observables, except for the importance of
librational motion in nearly inertial regimes with such motion being
enhanced by second rank potentials. These librational modes have been
found to have a complex character. In the 2BKM-FT case there are no
librational motions. Instead one observes that the FT has little effect on
the solute angular momentum correlation time despite the fact that it
leads to strong dynamic coupling of the two angular momenta. However,
the FT makes an important frictional contribution to the orientational
relaxation, such that there is a significant breakdown of the Hubbard-
Einstein relation.

These results have been compared with previous studies to show: (i) a
simple SRLS model used in ESR is reasonable in the asymptotic limit of a
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very slow solvent cage except when a *“‘strong collision effect” (cf. above)
is important; (ii) the e correction to a Debye spectral density, used in
ESR to account for FT, only has a limited validity for low frequencies and
relatively rapid but weak torques; (iii) the G, (t) with a second rank
potential resembles molecular dynamics simulations on spherical tops in
showing librational motion in an instantaneous cage; (iv) new light
scattering results for G,(¢) appear to have features accountable with the
present models.

APPENDIX A: CUMULANT PROJECTION PROCEDURE

In this appendix we review briefly the TTOC (total time ordered cumul-
ant) procedure applied to a general linear time evolution operator. The
same technique was used by Stillman and Freed [33]; for other details see
Yoon et al. [28] and Hwang and Freed [35], and references quoted
therein. Also we show how to apply the TTOC procedure for projecting
out a subset of fast momenta, from a phase space of coordinates and
momenta.

1. General Algorithm

We start by considering a system described by the set of generalized
coordinates (and momenta) (q,,q,)

dP(q,,9q;, 1)

o - e, 9)P@,q, 1) (A1)

The time evolution operator is supposed to be given by
=T.(a)+ )+ T, q) (A2)

We now introduce a biorthonormal complete set of functions defined in
the q subspace

(n|n’) =8(m—n") (A.3)

where n is a collective index for the set of quantum numbers labeling
these functions. Note that (1) In) and (n| could be the set of eigenfunc-
tions of I'; and its adjoint, respectively, or at this stage, of any other
operator acting on the phase space spanned by q; (2) in general we do
not suppose here that n is a collection of integers, that is, we can consider
a continuum of quantum numbers. The function |0) is supposed to be
unique and to fulfill the following properties:
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I,j0y=0 (A.4)
(O,=0 (A.5)

that is, |0) is the unique eigenfunction of zero eigenvalue of ff (while this
may be not necessarily true for n# 0, according to the previous remark).
Note that here we are always dealings with symmetrized operators: for
example, if the subsystem defined by q, tends to the equilibrium dis-

tribution P,,(q,) for t— +o then |0) = P.;? = (0]. Although not neces-
sary from a mathematical point of view, in all the physical applications we

have considered, the following equation holds:
(O[T, J0) =0 (A-6)
Following [33] closely, we now take the time evolution equation for the

reduced probability density in just q, as the average over q, obtained by
computing the “expectation value” with respect to |0); that is

aP(q,, 1)

e = ~(OlP(a,,q,, 0l0) . (A7)

After Laplace transformation we easily recover the following exact
multidimensional equivalent of the result shown in [33]:

P(q,, s) = (0|(s + ) '|0) P(q,, 0) (A.8)

where the resolvent (0|(s + I')7*|0) can be evaluated according to [28, 35]
as

Ojs+D) o) =(s+T, - G)" (A.9)
and G is defined as

G = Z (_)k+1<0|fint[(s + fs + i—\‘]’)_1(1 - |0><0|)f‘1m]k|0> .
k=0 (A.10)

If we may assume that the |n) are the eigenfunctions of r 7> then
f//n) = E,|n) (A.11)

(n[f}=(n|E} (A.12)
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Then G can be further expanded in
¢ = 2_: ZI nl ct Hnj<0|fint|nl><n1|(s + fs + Enl)ilf‘intln2> v
(njl(s + T, + E,)"'T,,.[0) (A.13)

where X n, is a restricted sum (or integral) over all possible n, # 0. If we
consider the first order correction only (in the approximation | > T,
and we restrict our analysis to low frequencies (s ~0) we obtam

G~ ZIn = <0IF.mln><n|F.m| (A.14)

as the first perturbation correction to .

2. Elimination of Some Momenta from a MFPKE

We apply the technique reviewed in the previous section to a MFPKE
defined for a set of general coordinates (x;,X,) and their conjugate
momenta (p,, p,). The system is divided into two subsystems interacting
via a general potential function V and a friction matrix o°

(o @
o= . (A.15)
w

C
®,

®° is a symmetric definite positive (N, + N,) X (N, + N,) dimensional
matrix, and it depends on x,, x,. We want to obtain a reduced equation
after eliminating all momenta p,. That is, according to the previous
section we are considering q, = (x, p;, X,) and q, = p,. The initial MFPK
operator is written as the sum of

ﬁ:S*w‘ﬁ ~R/w'8] +8] 0§, (A.16)
I=§; 038; (A17)
[, =8 0R, ~R; S, +§/0"S; +$; o8] (A.18)

where the vector operators R, and S, are defined as

a1

), =5 P, * . (A.19)
0z -1 () =(-2)

(R), = 2\ax /i " \ex /i (A.20)
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For instance, this is the compact form for the symmetrized time evolution
MFPK operator for two Brownian particles (or rotators; see below)
coupled via a potential V and a frictional (collisional) matrix w‘. Al-
though both the terms acting on the momentum space and the positional
space are written, for the sake of simplicity, as formal raising and
lowering operators, actually only the properties of the S operators will
be used in the following. Note that we have not specxﬁed the nature of
the gradient operators in x,, so they could be a set of rotational
coordinates (in this case we should include a precession-like term in ' ;
but we shall see in the next section that the presence of the precession
operator is irrelevant). We define |n) as the direct product of the
eigenfunctions of S‘; S y

|n>=|n1>|n2>“'|nN2> (A.21)
$585 |n;) = niln,) (A.22)

Then n is a collection of integers and the set of functions is orthonormal
[52] (i.e., we can neglect the integral symbol in Eq. (A.9)); $; are the
raising and lowering operators with respect to the ith momentum in P
|0) is the Boltzmann distribution on the momenta p,. However, we
cannot apply Eq. (A.13) directly, because w; is not diagonal. We then
utilize Eq. (A.9) under the assumption that T, ~ |w2| is the dominant
term (i.e., p, relaxes very fast relative to the remaining coordinates).
Then for low frequencies

G~ (0|, [T, [0) (A.23)

where we have used Eq. (A.6) twice. Given that |n) is a complete set of
basis functions in the subspace p,, we then rewrite Eq. (A.23) in the form

G =2 (O[T, [m) (n|7 " 0’} (|, [0) . (A.24)

When I, acts on |0), it generates only single excited states, for example,

int

|0...1...0). If we call |1;) the singly excited function in the jth position,
it is easy to rewrite the previous expression for G in the form

G =2 (OIF,.,[1,) (1,107 1) (1, [Finil0) (A.25)

the summation indexes run from 1 to N,. From the equations
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N, N
(O, l1) = -2 Ry 0} +2 8w, (A.26)
i=1 i=1
N, N,
SHIIEDY R, @ + 2 Sl o, (A.27)
i=1 i=1

it follows that the final reduced operator is given by

N ~

=8/ 0R; —R;wS; +8/wS; + SR, — Ry f"S; + R; DR,

(A.28)
where
0, = 0] - 0o (A.29)
f= oo (A.30)
D) = 06w, (A.31)
The new matrix o is defined as
@) = (LT[, (A.32)

It is now relatively simple to see that & is exactly equal to w;"'. Let us
consider the matrix representation of I} on |n): by inspection, one soon
realizes that I'; mixes |n) and |n') if and only if £ n, = ¥ n;; that is, only
states equally excited are mixed. The matrix is then partitioned in
diagonal blocks; the first block is 1 X 1 (fundamental state); the second
one is N, X N,, mixes only the states L n, =1, that is the |1,) functions,
and it is given by ;.

3. Precessional Operator

For a rotational system one has to include the precessional operator in
the rotational FPK operator, in case a nonspherical top is considered. In
terms of the raising and lowering operators S* defined in the last section
(systematically suppressing the subscript 2 since it is understood here that
we are dealing entirely only with the subspace p,), we can write the
precessional operator as

Po'V=4,(57 - 8)(8; +37)(85 +57)
+A,(87 + 885 - $5)(85 +37)
+ 8,87 + 8185 + 85585 - 387) (A.33)
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where A,, A,, A, are functions of the streaming frequency matrix
elements. Note that

A +A,+A,=0 (A.34)

The crucial point in the TTOC expansion delineated in the last section is
that the interaction operator I',, acting on |0) generates only single

excited states. In this rotational case, we may include the precessional
term in I, and it is easy to see that

i’
Pa’'v|0,0,0) = —(A, + A, +A,)[0,0,0) (A.35)

In fact all the factors containing a lowering operator go to zero; and one
obtains zero because of Eq. (A.34). This means that it is not necessary to
consider the precessional effects in projecting out to lowest order the role
of angular momentum.

APPENDIX B: ELIMINATION OF HARMONIC DEGREES
OF FREEDOM

Here we show how to implement the TTOC procedure for eliminating in
a single step a set of harmonic degrees of freedom together with their
conjugate momenta from an initial MFPKE. This technique is applied in
Section I.C to project out the fast field X and its momentum P from the
initial three body Fokker—Planck—Kramers equation.

1. Elimination of One Harmonic Degree of Freedom

We start by considering a one-dimensional example given by the rescaled
symmetrized MK evolution operator in the coordinates (x,,x,) and
conjugate momenta (p,, p,),

~ ) 0 avV o . d d

r: s ( IR ___)_ C 2 - _ 2 -
Wi\ P ax, ax, op, w; exp(p;/4) ap, exp(—pi/2) P,
Xexp(pf/4)

(pr =)t ety et
+‘”2(p2 ax, 9%, 9p, w3 exp( p3/4) P, exp(—p3/2) ap,

X exp(p3/4) (B.1)
where the potential V is defined as

1
V=Vo(a) = plx)x, + Ex§ (B.2)
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We introduce the shifted coordinates X, = x, — . This canonical trans-
formation enables us to obtain a more suitable form for the operator, in
which V is decoupled. Neglecting the tilde symbol in the following, we
identify q, with (x,, p,) and q; with (x,, p,)

L a3 v 9
=0t (P gy~ 5y 5 )~ ot exp(pl4) 7o expl=p112) 5

dx, 0x, dp,
X exp(pi/4) (B.3)
ffzw; (pz-a——x2 0 ) wzexp(p,/4)—~exp( p2/2)——
dax, op,
X exp( p3/4) (B.4)
I, = -] aﬁf—l (pl 6?{2 =X, a—f;) (B.5)

and the potential V is now
(B.6)

1t is useful now to recall the general properties of the harmonic Kramers
operator. We utilize the summary provided by Risken [43]. The raising
and lowering operators for the momentum p, and the position x, are
given by

)
S —2p+ap (B.7)
. 1 _ 9
R =5 XF o (B.8)

where in Egs. (B7) and (B8) and below in this subsection we suppress the
subscript 2 for convemg:nce The quantities A, ,, solutions of the secular
equation A’ — A+ w” =0, are calculated. We also define a parameter @

A ICEXD) (B.9)
a=(0" — )2 =) -2, (B.10)
The following operators are then defined:

1 . .
¢, == (0,287 —0,"R7) (B.11)

T w
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¢, == (Al/zS_ I/ZR )

1
62 = ]/2( AI/ZS +/\1/2R )

¢ = —in ()‘}IZS‘” + ’\élzé_)
The following identity is deduced:
P=0¢6_+Mé, 6,

and eigenfunctions and eigenvalues are easily obtained as

Iny, ny) = (ny!n,1) %8, )™, )]0, 0)

Enl,n2 =Mn, + A0,
where
1
IO’ O) - Pl/z(x p) ( 7T)1/2 exp( p /4 X /4)
and

61+|”17 "2> = (”1 + l)llzlnl +1, n2>
61,{”1’ n,) = (”1)“21”1 -1, n2>
62+|”1’ ny) =(ny+ 1)”2|n1, n,+1)

1712

éz_lnl’ n,)= (”2) ’”1’ n,— 1)

For the adjoint operator similar equations hold:
INEDWAE D Wl
(ny, ny|=(0,0(n,!n,) 28] )" (&5 )™
where
|0,0) = (0, 0]
and

1/2

<n17n2|é:+:(nl) <n1’n2|

(B.12)
(B.13)

(B.14)

(B.15)

(B.16)
(B.17)

(B.18)

(B.19)
(B.20)
(B.21)
(B.22)

(B.23)
(B.24)

(B.25)

(B.26)
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<”1’”2|él,:(”1 +1)U2<”1’n2l (B.27)
(n, nzlé;+ = (”2)]/2<n1’ n,| (B.28)
<n1’nzlé;;:(nzﬂi—l)l/z(nl’nzl (B29)

We have so defined a biorthonormal set of functions

(ny, nylny, ny) = 8,1.niOny s (B.30)

We may now use the method of Appendix A for the case of a biorthonor-
mal discrete set of eigenfunctions. We then have that

n 1 ~ N
G= 2 (0, 0T, |n1, 1y (my, my|T,,10,0)  (B.31)

(ny,n5)7#(00) Enl,nz

From the identities

) X, ]
21 i)
X = A (2 p,t+ o7, |0, 1> (B.32)
. 198 1 9
Fim‘Oal):‘“ f!)1}2 £ [ )‘;/2 (5 1"““) [090>+"'
w x] apl
(B.33)
> __“’_515_“[ 1/2(1 __"_> ]
Fint\1’0> RSP ax, Ay 3 P ap, \0’0> + (B.34)

one obtains easily the reduced operator

sf_osf 9 9V j’.) _ 24y 0
F_wl(pl ax,  ax, ap, w; exp(pi/4) P
d
X exp(—pf/2) é—p— exp(pf/4) (B.35)
1

where the effective collisional frequency is defined as

wiwd o\’
¢ _ ¢ 2%

W) Tyt 5 <5x—1) (B.36)

Note that both reversible effects (correction to the potential function) and

irreversible ones (correction to the initial friction) are obtained.
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2. Elimination of N, Harmonic Degrees of Freedom

We now generalize this result to a multidimensional case. The initial
rescaled and symmetrized operator is split into three parts:

[ =8/R; ~R|wS; +§ w8 (B.37)
=8, R, -R;038; +§,0S; (B.38)
o= pioi () (50 ) + () i (52)

L — _ —_ ]+ — .
L p,w,; <6x1 3%, ap, o] 9% X (B.39)

where the averaged potential, on which R; and R, are defined, is a
quadratic function of the vector dipole p,

(B.40)
and R;, S; are the vector equivalents of the previous similar one-
dimensional operators. For the sake of simplicity we choose @] , and ® ,
as diagonal and constant. We generalize the previous definitions intro-
ducing the matrices @, A, , and the vector operator é, , ¢, and their
adjoints. The eigenfunctions of F are the direct product of the eigenfunc-
tions of the one-dimensional harmomc Kramers operators. We label each
member of the set with the obvious symbol |n,,n,). The zero eigenvalue
function is

1)N,2 exp(— p,/4 X /4) (B.41)
7T

and we call [1,,0) the first excited state with respect to n,, etcetera it is
easy to show that

10,0) = (0,0] =

s 4 1/2

al 1,42,
1n||0 0> - zl lzls ( ) (1_)”2’ ,1,’0>
‘ i
s 3172
a_ [ Op wl,’\lj
+ Sl, <(—")X—1>ij _(WT ‘0, 1,-) (B.42)
i
s 4172
) @ity
F.0,1,) = (5;)[]. —12 [0,0) (B.43)
1 3
s /\:/2

Wi Ap
Bolty, 0) = -8, (2] Th jo,0) (B.44)
174 w/-
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G is now given by

Ny
n 1 ~ N
G =2 — (0,0',[1,,0)(1,, 0", |0, 0)

k=1 )‘1,(
1 - -

+ 5 (0,0[F%, ]0,1,) (0, 1|, 10, 0) (B.45)
2

and the final reduced operator has the form

~ ~ ~ -~ S
+

=SSR, ~R,0}S; +§/ ]S, (B.46)
where the frictional (collisional) matrix is

c’ < s dl‘« sTho¢ 571 a“‘ s
] =wl+wl<a—x—l)w2 0w, (5{—1) o) (B.47)

APPENDIX C: THE REDUCED MATRIX ELEMENTS

We evaluate in this appendix the reduced matrix elements employed in
the WE calculations throughout the main text.
1. Reduced Matrix Element of the Torque
To evaluate the reduced matrix element of the torque T, we first rewrite
Eq. (2.17) as
T= _i[(jlv)op - (le)op] (C'l)

where for (), what is contained within acts as an operator. From the
WE theorem (weak form for noncommuting operators)

- r oyt gy o+ 0 1 1
JIJZJH(JIV)op”jl‘IZJ ) = [1]”2(—)j+1 I !"125]” {] Jrl ]}
1
X (J; szlli,IIJ;’JQJ")(J'{J;J"IIVHJ;J;J(')
C.2)

The 6f symbol is readily reduced

0 1 1 - -
{5 5 pf=ornns, (€3)

The reduced matrix element of J, is given by Eq. (2.31), while the
reduced matrix element of the potential V is
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"ogn - " g , J” J
(JIJZJHHVHJIJZ‘I’):ZVR(—‘)j1+J| J[J ]1/2{13 J
R 2

1 J, [.’IIIRJ;]]/Z
R (87T2)1/2
<J'{ R J{) [/3RI5]" (J R 1;) (C.4)
0 0 0/ 8x)"* \0 0 0 )

where the reduced matrix element in the £, subspace only was used
(m=1,2)

—b2

J J/Jn 172 ' "
Ul = (e Beclolml (G o )

(8772)”2 6” 0 O (CS)

Finally, one obtains
WLIA Vo1 7307 = —vR(=) 210,01 1,051
X [N+ DI+ 1]
><<Jl R J,')(J2 R J;)
0 0 0/\0 0 0
Jo I L4 LT C.6
X{J' J, 1}{1; J. R (€.6)

where the definition v, = [R]V,/87" was used. An

18 analogous formula
holds for the reduced matrix element of (VJ,),,

("1'/2-1”(Uj1)0p|“;'1£"') = _UR(_)JIHé”ﬁ’[-,j"’;-]zj;]l/z

X [J(J; +1D)J, + 1D)?

X(J, R J;>(12 R J;>
00 0/\o 0 0

VAR R SR N O A A £
{3, ot 7k €7
so that, finally
Pt . N J, R J\{J, R J.
U100 = ioglars, 15730 (56 00 (G & %)

X [(—)’1'“2[1,(11 +1)(2J, + 1)]1/2{11 J ]2}

VA
I, ]’}

X 1 ’

{‘IZ Jl R

= ()L + DRI F D)

VA ATFANA J}
X{J’ J 1}{1; Ji R (C.8)
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2. Vector representation of P”2

Since Piéz is a zero rank tensor, we can simply write Eq. (2.26) as
(Vola = <A‘P”2> «(J, JOOIP”2>5}05M0 (C.9)

since we have already found J =0 and M = 0. By inspection, one can see
that |J,J,00) (coupled basis set function) is proportional to D3 (2, —

Q,)8,,,, (just write explicitly the coupled basis set function in terms of the
uncoupled basis set functions). Then, by making the (canonical) change
of variables (£}, 2,)— (2, - Q,, 2, + Q,), and integrating over €, +
), after a few algebraic manipulations the following expression is found:

<A|P”2> = J"SJJ [f dx exp( EPR(X))]AUZ%%]T/;

Xf_l dxP, (x) exp(—%Pr(x)/Z) (C.10)

where the factor ¥ is simply 6,,5,,,. Note that the original 4-variable
integral is thereby reduced to a simple integral in the dummy variable x.

3. Reduced Matrix Elements in the |nj) Subspace

-~

The reduced matrix elements of S™ are suitably evaluated as linear
combinations of the reduced matrix elements of X and Vy

IS 'er 1 . rery — . IxT)
(IS [ln'j") = 5 (willX|n'j") F (]| Vx[ln'j") (C.11)

The explicit evaluation of these reduced matrix elements is simple, taking
into account the properties of Laguerre poltynomials {cf. [52]); the only
NONZzero cases are

wilxlni - D= -0 (] o 7Y

1 1/2
x[(j+n+§> 5n,,,—(n+1)”25m,,1]
(C.12)

@ilXllnj+ 1= uu () o 1 @

1/2
X |:<.’ +n+ %) 6",,' - (n)l/zsrm'—l] (C'13)
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()i
i1 j—1 . . 2
@ () o 1o )@i- @i+

(nj[|Vxlln'j 1) =

x|lj+n+3) 8, +(n+1)"7,,
(o o
RV 1
(nj[Vxlin’j +1) = ——7— j(+)1(]+ : 0
@ (] o o) @i+ D@+

1/2
X[(j+n+ 5) 6nn’+(n)1/25nn’—l:l (C15)

Finally, the reduced matrix elements of § are evaluated using the weak
form of the WE theorem

(ilI8lln'j") = (illI8* ®871P||nj") =21 3(-)"”

L2 1 1 " nen||Q— 1oy
<32 U st w8 )
n"j"

(C.16)
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