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1. Introduction

We describe the design principles of electron spin resonance (ESR)
spectrometers operating at millimeter wave frequencies that use quasi-
optics to propagate the excitation radiation instead of conventional
waveguide techniques. The necessary background for understanding the
operation and limitations of the quasioptical components, which guide the
Gaussian beam, as well as a thorough discussion of the design criteria is
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presented. The quasioptical formalism developed here is used to evaluate
the performance of a novel reflection mode spectrometer.

Electron spin resonance (ESR) is a well-established experimental method
that has conventionally been limited to 35 GHz and lower in frequency.
During the course of the last decade, workers in a number of laboratories
(Grinberg er al., 1983; Haind] e al., 1985; Lynch, et al., 1988; Barra et al.,
1990; Wang et al., 1994) developed instruments that have pushed the
maximum observation frequency up to nearly 1 THz (1000 GHz). Pulse
methods at frequencies up to 604 GHz also have been developed (Weber
et al., 1989; Bresgunov et al., 1991; Prisner et al., 1992; Moll, 1994), as well
as Electron Nuclear Double Resonance (ENDOR) (Burghaus et al., 1988).

The motivation for this intense activity is the resolution enhancement
available from higher Larmor fields, which enables small g-tensor split-
tings to be readily observed (Earle er al., 1994). For systems with large zero
field splittings (Lynch er al., 1993), high-field spectra can be much simpler
to analyze than X-band spectra, which increases the reliability and eases
the interpretation of the data. In the study of fluid media (Earle et al.,
1993), the increased importance of the g-tensor contributions vis-a-vis the
hyperfine tensor contributions (e.g., for nitroxide spin labels) gives infor-
mation that is complementary to lower-field studies. These concepts are
discussed more fully elsewhere (Lebedev, 1990; Budil et al., 1989), and we
refer the reader to the references for a more complete discussion.

The number of laboratories that are exploring the possibilities of high-
field ESR is increasing. For spectrometers up to 150 GHz in frequency,
microwave techniques have been dominant and may, in fact, be the
optimum choice for those frequencies. In a conventional ESR spectrome-
ter, waveguide technology is used to connect the cavity, the source, and the
detector. At X-band, say, this is an excellent method, because the losses
due to the wave-guide are on the order to 0.1 dB/m for RG(51)/U. At
near-millimeter wavelengths (> 2 mm), however, waveguide losses are
much larger. In the WR-4 waveguide, for example, the losses are on the
order of 10 dB/m for frequency of 250 GHz. Clearly fundamental mode
propagation in the near-millimeter band is unattractive for low-loss appli-
cations. Nevertheless, Lebedev (1990) used fundamental mode techniques
up to 150 GHz, with estimated losses of 3 dB/m, which requires the use of
compact structures. We note that “near-millimeter” is shorthand for the
long-wavelength end of the far infrared regime, which we will define to be
the wavelength region from 1000-100 xm (or 1-0.1 mm).

One way out of this difficulty is to abandon conventional microwave
techniques for the near-millimeter band and, instead, to employ tech-
niques common to the far infrared regime. Just as microwave techniques
may be modeled as a high-frequency extension of transmission line tech-
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niques, the quasioptical techniques of the far infrared are a natural
extension downward in frequency from optical techniques. At higher
frequencies and for those systems that have broadband frequency sources,
quasioptical methods of radiation processing are an attractive alternative
to microwave techniques.

We shall develop the theory necessary to understand quasioptics, but
before that, it will be useful to consider factors that influence the choice of
spectrometer components such as the magnet, the source, and the detec-
tor. In Section II we will give a brief review of the performance and
characteristics of homodyne detectors. In our discussion of sources, we will
discuss vacuum oscillators, such as the reflex klystron .and backward wave
oscillator, and solid-state sources, such as the Gunn diode. We will also
discuss useful criteria for selecting a magnet.

The original far infrared (FIR) ESR spectrometer developed at Cornell
is shown in Fig. 1. In several respects it is like a conventional ESR
spectrometer in that it has a source, a resonator, and a detector, and it
relies on magnetic field modulation to code the ESR signal for subsequent
lock-in detection. Figure 2 shows a set of spectra collected over three
decades of the rotational diffusion rate. The system is the spin probe
cholestane (CSL) in the organic glass o-terphenyl (OTP). The range of
* diffusion rates corresponds to the motional narrowing region with R =
10° s~! at the top of the figure and the rigid limit with R = 10 s~} at
the bottom of the figure. Note the excellent signal-to-noise ratio. We will
present a detailed analysis of these data elsewhere (Earle et al., 1996a).
We will discuss the spectrometer sensitivity in detail in Section VIII. A
reflection mode spectrometer based on the broadband techniques dis-
cussed in Secs. IX-XI (see also Earle and Freed, 1995) has been built and
tested at 170 GHz (Earle ez al., 1996b). We find that the sensitivity of our
new broadband bridge is higher than the transmission spectrometer shown
in Fig. 1, which is consistent with the advantages of a reflection bridge as
discussed in this chapter. Our recently completed reflection mode spec-
trometer has been used to study exchange processes in polyaniline (Tipi-
kin, 1996). We show some illustrative spectra in Fig. 3. The signal to noise
ratio is approximately a factor of 3 higher (or 7.5 higher when corrected
for the frequency difference) for the reflection mode bridge compared to
the transmission mode spectrometer (Earle et al., 1996b).

The principal difference between this spectrometer and most conven-
tional spectrometers is the use of quasioptical methods for the resonator
and its coupling to the source and the detector. Our development of
quasioptical theory will enable us to understand the advantages and
limitations of quasioptics vis-a-vis microwave techniques. Fortunately, many
concepts that are useful for understanding microwave propagation are

256 KEITH A. EARLE, DAVID E. BUDIL AND JACK H. FREED
D K
[ H ] J
-
—
M
-~ 15
71 I S
r N q o] {
am—
LN, LN,
1
1 — . TT
Q
LHe pm—— L H
P
n K
e &
N ]
A R
- i
1L}
— F
-
c | B

Fic. 1. 249.9-GHz FIR-ESR spectrometer. A, 9-T magnet and sweep coils; B, phase-locked
250-GHz source; C, 100-MHz master oscillator; D, Schottky diode detector; E, resonator and
modulator coils; F, 250-GHz quasioptical wavegnide; G, power supply for main coil (100 A);
H, current ramp control for main magnet; I, power supply for sweep coil (50 A); J, OC
spectrometer controller; K, lock-in amp for signal; L, field modulator and lock-in reference;
M, Fabry—Pérot tuning screw; N, vapor-cooled leads for main solenoid; O, vapor-cooled lead;
for sweep coil; P, “He "bath level indicator; Q, ‘He transfer tube; R, bath temperature
thermometer; S, ‘He blow-off valves. (From Lynch et al. (1988), by permission of the AlP)
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Fic. 2. Complete motional range of the cholestane spin probe (CSL) in the organic glass
o-terphenyl (OTP). Note the excellent signal-to-noise ratio, The data were taken during an
ESR study of several spin probes in o-terphenyl. The results of those experiments are
discussed by Earle et al. (1996a).

useful in quasioptics as well, and we will exploit analogies where appropri-
ate. In our discussion of adjustable finesse Fabry—Pérot resonators, for
example, we will discuss the quasioptical equivalent of an induction mode,
resonator based on the X-band induction mode bridge of Teaney and
"Portis and coworkers (Teaney et al., 1961; Portis and Teaney, 1958).
An early version of a quasioptical spectrometer based on induction
mode detection is briefly described in Smith (1995). See also Earle and
Freed (1995). i
Quasioptics is a formalism that is appropriate when geometrical optics is
inadequate. Geometrical optics corresponds to a ray description of radia-
tion that ignores its wave-like properties. This description is generally
inappropriate if the radiation wavelength is not small. In the FIR, where
wavelengths are of the order of 1 mm and optical structures have a scale
size of a few centimeters, geometrical optics is invalid.
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F1G. 3. Demonstration of the performance of the reflection mode spectrometer compared
tc.) the trans.mission mode spectrometer. (a) EPR spectrum of polyanilane at 170 GHz. The
signal-to-noise ratio is 530:1. (b) EPR spectrum of polyaniline at 250 GHz. The signal to noise
ratio is 180:1. [From Earle et al. (1996b), by permission -of the AIP.]

We note that the term quasioptics implies that it is not sufficient to
borroYv familiar optical concepts, such as point focus, the lensmaker’s
equation, etc. without modification. In fact, diffraction plays a crucial role
in characterizing system behavior. Fortunately, the quasioptics formalism
allows us to avoid the time-consuming computation of diffraction integrals
that would otherwise be necessary for a complete system analysis. We will
concentrate instead on those aspects of quasioptics that are readily
amenable to calculation in the paraxial approximation (see subsequent
text). In particular, we will study the propagation of Gaussian beams.
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A Gaussian beam is a modified plane wave whose amplitude decreases,
not necessarily monotonically, as one moves radially away from the optical
axis. The simplest, or fundamental, Gaussian beam has an exp(— p?/w?)
radial dependence, where p is the radial distance from the optical axis and
w is the 1/e radius of the electromagnetic field. The phase of a Gaussian
beam also differs from that of a plane wave due to diffraction effects, as
we will show subsequently.

The paraxial approximation is essentially a Taylor series expansion of an
exact solution of the wave equation in powers of p/w, terminated at
(p/w)?, that allows us to exploit the rapid decay of a Gaussian beam away
from the optical axis. We will develop a more precise criterion in the
sequel. We will also show that the phase and amplitude modulation of the
underlying plane wave structure of the electromagnetic field is a slowly
varying function of distance from the point where the beam is launched.

Physically, the paraxial approximation limits attention to beams that are
not rapidly diverging. We will establish criteria for the validity of the
paraxial approximation while discussing typical applications and con-
straints: In this way, the reader will come to appreciate the advantages and
limitations of quasioptics vis-3-vis microwave technology.

The principal features of quasioptics have been well reviewed (Martin
and Bowen, 1993; Anan’ev, 1992). The collection of articles edited by
LeSurf (1993), as well as his book (LeSurf, 1990), treats in great depth
many of the topics that can only be touched on here, and we recommend
both publications to all who are interested in a deeper understanding of
the subject.

‘We will lay particular emphasis in this chapter on factors that influence
the design and evaluation of high performance EPR spectrometers. This
means that. we must take into account the vector properties of the
electromagnetic field, the effect of diffraction fringes, and the assumption
of paraxial beams. We will then discuss approximations to the complete
treatment that are specially useful in spectrometer design.

For the moment, we will content ourselves with the following qualitative
remarks. Gaussian beams may be generated in a number of modes
depending on the precise nature of the generator. Under the right circum-
stances, which we will quantify, it is possible to generate a beam whose E
and H fields have a Gaussian profile as one moves radially away from the
optical axis. We will call such a beam a fundamental Gaussian beam; it can
be derived from the potential of radiating dipole as we will show. The
modes of microwave waveguides, for example, may also be derived in such
a manner. If the radiation pattern has side lobes (to use microwave
parlance) or diffraction fringes (to use optical parlance), one may include
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higher order modes, that correspond to a multipole expansion of the
field source. }

The possibility of exciting higher order modes is well known to spectro-
scopists who use microwave techniques. There are also well-known tech-
niques for minimizing the likelihood of such excitations. The same is true
in the quasioptical case. We will show the conditions under which a given
Gaussian beam may be propagated through an optical system without
exciting higher order modes. We will endeavor to make clear at each step
where departures from ideal cases may occur and what measures may be
taken to ameliorate their effects.

[Added in proof: Since this chapter was originally completed in May
1995, many of the quasioptical ideas developed herein have now been
realized in the development of a wideband (100-300 GHz) quasioptical
reflection bridge by Earle et al. (1996b), and noted above. The original
version of this chapter has been modified in order to update it in view of
that work.]

II. Components

In this section we will discuss the considerations that influence the
choice of source, detector, and magnet. Developments in source and
detector technology, driven by applications in radar, communications, and
radioastronomy, have been extremely important in the implementation of
ESR spectroscopy at W-band (94 GHz) and higher frequency. The ready
commercial availability of magnets of suitable homogeneity for high-
resolution ESR work (=3 X 107%) for fields up to 9.5 T also has been
instrumental for exploiting the advances in source and detector technology
at frequencies above Q-band.

The choice of magnetic field is important because it constrains the
frequency of operation. Higher fields mean higher resolution, in general,
as in the NMR case, at least until the sources of inhomogeneous broaden-
ing such as g-strain broaden the line too severely. For systems that have g
values close to the free electron value, however, this is not a severe
limitation. Current magnet technology sets a limit of 9.5 T on the highest
field that can be achieved at 4 K relatively inexpensively. It is possible to
raise the maximum working field of such a magnet of 11.2 T by reducing
the magnet temperature to 1.2 K; however, this generally requires sophisti-
cated cryogen handling techniques. In such a system, a quench would be a
spectacular event.

If still higher fields are desired, it is possible to use well-known, though
expensive, super-conducting techniques up to 18 T, while maintaining high
homogeneity. Such fields represent the state of the art for high-resolution
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nuclear magnetic resonance (NMR). The homogeneity that is required for
such an NMR magnet is 0.1 Hz in 750 MHz, which corresponds to a
homogeneity of approximately 1 X 10~°. The constraints for ESR are not
as severe: homogeneities of 3 X 10~® are adequate for high-resolution
work, and the cost can be reduced by specifying a lower homogeneity than
is required for NMR. The problem is that shim fields are required to
achieve even 3 x 10~® homogeneity at 18 T, and the optimum value of the
shimming field depends on the value of the field in the main coil. Given
that field swept operation is still the most common mode of operation for
high-field spectrometers to date, the optimum magnet configuration in-
volves a trade-off between sweepability versus homogeneity above 9.5 T.

Based on all these considerations, we may take 9.5 T with a homogeneity
of 3 X 107% as an upper limit of simple and economical operation. A
magnetic field of 9.5 T corresponds to a frequency of approximately 270
GHz for a g =2 system. The techniques that we will develop in this
chapter may be extended up to 1 THz; we will limit our discussions and
explicit examples to frequencies less than 300 GHz, where the analogies to
conventional microwave techniques and components work best.

We will now consider the available options for generating and detecting
radiation in the range of 100~300 GHz. The review of Blaney (1980)
discusses in detail the general principles of detection methods in the
wavelength region 3-0.3 mm, or 100-1000 GHz. His presentation is
concerned mostly with the needs of radio astronomers, but he covers many
topics of general interest. LeSurf (1990) covers similar material, but
includes more recent developments than the Blaney review. LeSurf also
discusses the options for sources in greater detail than Blaney. We cannot
review sources and detectors extensively here. We will therefore limit our
remarks to the most important points and refer the reader to the refer-
ences for more in-depth discussion.

The sources of interest for CW radiation in the range 100-300 GHz are
either solid-state devices based on negative dynamic resistance, such as the
Gunn diode or IMPATT diode, or vacuum oscillators based on electron
beam bunching, such as the reflex klystron or backward wave oscillator
(BWO). The principal advantages of solid-state sources is that they are less
expensive, do not require bulky high-voltage supplies or focusing magnets,
and are very reliable. In'terms of reliability, Gunn diodes are less suscepti-
ble to breakdown than IMPATT diodes; IMPATT diodes do provide more
power than Gunn diodes, however. The drawback of solid-state devices, in
general, is that the output power drops from approximately 50 mW at 100
GHz to approximately 1 mW at 300 GHz. Vacuum oscillators deliver
higher powers than solid-state sources. A reflex klystron at 100 GHz will
give about 1 W at a beam voltage of approximately 2-3 kV. A BWO at 100
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GHz will give 10 W or more at a beam voltage of 4-8 kV. At higher
frequencies, the power falls off dramatically, and BWOs only produce
about 1 mW at 1 THz. The extended interaction oscillator (EIO) is a
device that has a CW power of approximately 1 W near 200 GHz and a
phase noise 120 dB below the carrier, or —120 dBc, at 100-kHz offset
(Wong, 1989). The gyrotron is an extremely powerful device with kilowatt
output powers. The noise performance of a gyrotron is not as good as an
EIO. Nevertheless, gyrotrons may be used for dynamic nuclear polariza-
tion experiments in the near millimeter region (Griffin, 1995), and they will
continue to be useful for those experiments that can exploit their intrinsi-
cally high powers. For ESR, a lower power BWO or EIO is probably
preferable to a gyrotron. :

At lower frequencies, vacuum oscillators have a broad electronic tuning
range. The otherwise admirable performance of the EIO as a source must
be balanced by the observation that its tuning range is limited to values as
low as 1% at 220 GHz. Generally speaking, vacuum oscillators are difficult
to obtain at frequencies above 220 GHz because commercial demand has
been limited, hitherto. There is also much work to be done to optimize the
performance of vacuum oscillators. One point in favor of high-frequency
vacuum oscillators is that the operational lifetime of a BWO is 10-100
times that of a klystron (LeSurf, 1990), which may be an important
consideration in building a spectrometer.

It is possible to build pulsed versions of the vacuum oscillators that can
have variable pulsewidths and separations. The difficulty is in maintaining
phase coherence between pulses. Solid-state sources may be switched to
provide pulses, but the lower output powers limit the spectroscopist to
selective pulses in many cases. As techniques become more advanced,
pulse generation will become more and more common in near-millimeter
band spectrometers. For the purposes of this chapter, however, we will
limit our attention to CW sources.

The Cornell spectrometer is based on a phase-locked, CW, Gunn diode
that has an output power of 3 mW at 250 GHz. The phase-lock circuitry is
shown schematically in Lynch ef al. (1988) and we will not comment on it
further, except to note that the phase noise is ~90 dBc at an offset of 100
kHz. The source is rugged, reliable, and very easy to use in practice.

There are several detection methods in the near-millimeter *band in
common use. We will limit attention to rectification and bolometric
detection, because they are the most common methods for near-millimeter
spectrometers built to date. Both methods rely on the intrinsic device
properties to convert the signal information to a frequency range that can
be conveniently processed.

LeSurf (1990) discussed bolometric detection in detail. It is important to
note that the most common method of bolometric detection in the near-
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millimeter band is based on the use of the “hot-electron” bolometer,
which is usually a chip of InSb, biased with a small current. At 4 K, the
response time of the hot-electron bolometer is sufficiently fast that modu-
lation frequencies of up to 1 MHz may be used. This value should be
compared with a conventional bolometer, such as Ge or Si, which can only
be modulated at a few hertz without sacrificing sensitivity. The relatively
fast response time of a hot-electron bolometer means that it may also be
used as a mixer, albeit with an intermediate frequency (IF) of only 1 MHz.
When operated as a detector,.an InSb bolometer has a noise equivalent
power (LeSurf, 1990) NEP < 10~12 W/ yHz.

When cperated as a mixer, nonlinear devices detect signals at a fre-
quency v and mix them with a local oscillator at a frequency vio. In
general, the nonlinear element will generate sum and difference frequen-
cies. One method of detection is to choose Vs = v o. In this way, the
difference frequency »x = |vg — vl can be chosen to be a convenient
frequency, 1 GHz, say, and standard techniques may be used to amplify
the down-converted signal at vy. The amplifier that is used at vip will
have a bandwidth B, which is typically 10% of vie. In general, the
down-conversion process is sensitive to frequency components in the lower
side band from vy ~ vy ~ (Byp/2) to vy o — vip + (Byp/2) and in the
upper side band from v o + vy — (Bjp/2) to v g + vip + (Bp/2). In
the broadband radiometric experiments common to radioastronomy, one is
often interested in the signal content' in both side bands. For ESR
spectroscopy and astronomical spectroscopy, it is usually the case that only
one side band has signal information. The other side band will just
down-convert local oscillator noise to vie. The useful figure of merit for
spectroscopy is the single side-band noise temperature, which can be
approximated by doubling the quoted noise temperature of double side-
band receivers designed for broadband radiometry. Given that spectro-
scopic signals only appear in one side band but noise appears in both
channels, this is a fair comparison.

The double side-band receiver noise temperature has been measured for
a variety of receivers based on several mixing strategies. An InSb hot-
electron bolometer operated as a mixer was found to have a double
side-band receiver noise temperature Tp = 300 K at 220 GHz (Blaney,
1980). This corresponds to an NEP = 10~!2 W/VHz referred to a prede-
tection bandwidth of 100 GHz. The single frequency performance of
mixer-based receivers does not generally match this performance, however
(Boucher et al., 1993).

Whisker contact diodes have much faster response times than InSb
hot-electron bolometers and may be used as detectors or mixers. A good
discussion of the behavior of near-millimeter band “cat-whisker” diodes
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may be found in Schneider (1982). When used as a mixer, the IF may be as
high as several gigahertz, although conventional IFs are on the order of 1.8
GHz. The noise performance is not quite as good as an InSb mixer. LeSurf
(1990) quotes a receiver noise temperature Tz = 1000 K for a Schottky
diode mixer. When used as a detector, the noise is typically quoted under
conditions that are more appropriate for radioastronomy than ESR spec-
troscopy. The Cornell 250-GHz spectrometer uses a GaAs whisker contact
diode with a measured NEP = 10-13 W/VHz are a modulation frequency
of 100 kHz and a postdetection bandwidth of 1 Hz. This corresponds to
our operation in transmission wherein the carrier feed-through acts as a
homodyne bias, which significantly improves the observed NEP over what
would be observed as a direct detector. We find the measured performance
of an InSb hot electron bolometer has a signal-to-noise ratio that is
approximately 4 times higher, under otherwise identical conditions, than a
GaAs Schottky diode at 250 GHz. For routine use, we find it more
convenient to use the GaAs Schottky diode, which is a room-temperature
device, as opposed to-the InSb bolometer, which requires a regular
schedule of cryogen maintenance. We will show in Section VIII
what implications this has for the minimum observable number of
spins N, .

The techniques that we discuss in this chapter apply to spectrometers
that use mixers or detectors in the receiver. We will concentrate on
detector-based systems because they are simpler in construction and
concept. For a discussion of mixer-based receivers, we refer the reader to
Blaney (1980), Goldsmith, (1982), and LeSurf (1990).

Improvements in the single side-band performance of a mixer-based
receiver can be made by filtering the unwanted side band before it is
down-converted in the mixer. Such a scheme, which is described in detail
by Goldsmith (1982) is based on interferrometric techniques. We will not
discuss single side-band filtering any further, except to note that it is a
particularly apposite demonstration of the use of optical techniques to
process the radiation in the spectrometer. We will discuss the use of
interferometric techniques in Section IX as a means to realize a reflection
mode spectrometer. These few examples indicate the flexibility of applica-
tion of optical techniques to problems of instrument design in the FIR.

IIl. Mathematical Background

Quasioptics relies on free-space propagation of radiation, which is -
inherently low loss. Given that sources of FIR radiation are, generally
speaking, less powerful than their microwave frequency counterparts,
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quasioptics is extremely attractive for propagating FIR radiation between
the source, the resonator, and the detector. We will develop the mathemat-
ical background for describing Gaussian beams in this section with a view
toward designing flexible and useful spectrometers.

In free space, an electromagnetic field of frequency w is governed by the
homogeneous vector Helmholtz wave equation

VZF + k2F = 0 (1)

where F is a vector function such as the electric field E, the magnetic field
H, or the vector potential A. The quantity k = w/c is the wavenumber of
the free-space radiation.

It will prove useful in the sequel to use the hertz potentials (Born and
Wolf, 1980, pp. 76-84) to describe the electromagnetic field. The hertz
potentials also satisfy the homogeneous vector Helmholtz equation in free
space. The advantage of the hertz potentials is that they display much
higher symmetry than the conventional vector and scalar potentials.
Furthermore, they may be written in a form that displays the
paraxial approximation of quasioptics directly.

As we have stated, the E and H fields of a Gaussian beam have the same
amplitude profile. The fields that are observed far away from a radiating
dipole share this property without necessarily having a Gaussian profile.
Near a radiating dipole, however, it is easy to distinguish whether the field
has magnetic (electric) multipole or TE (TM) character. A linear super-
position of the fields of a magnetic and electric multipole at right angles to
one another will generate E and H fields with the desired symmetry. If the
multipoles are in phase and have the same magnitude, the radiation modes
are called hybrid or balanced EH modes. Monomode optical fibers, for
example, typically use EA modes to propagate the radiation. An EH
mode will have longitudinal E and H fields, because it is a superposition of
TE and TM fields. We will show the conditions under which the longitudi-
nal components may be considered negligible.

In order to make these qualitative statements more precise, we will
derive all the electromagnetic field components of a fundamental Gaussian
beam from two vector functions written in cylindrical coordinates as

I, = (pcos ¢ — $sin @)u( p,2) (2)
I, = (psin o+ $cos plu( p, 2) 3

where II, is the hertz potential of an electric dipole oriented along the
polar axis ¢ =0 and II, is the hertz potential of a magnetic dipole
oriented along the axis defined by ¢ = /2. Our choice of axes corre-
sponds, in Cartesian coordinates, to an electric dipole with hertz potential
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II, oriented along the x axis and a magnetic dipole with hertz potential

I1,, oriented along the y axis. The variables P ¢, and z are the standard

cylindrical coordinates. The scalar function u is related to the Debye

potentials (Debye, 1909; Bouwkamp and Casimir, 1954), which were first

used in Debye’s solution of the radiation pressure on a metallic sphere.
The choice

u =exp(ik\/p2 +zz)/\/p2+22 (4)

in an exact solution of the vector Helmholtz equation (Deschamp, 1971;
Bf)n} and Wolf, 1980, pp. 76-84) for the hertz potential of a dipole to
within a constant. The time dependence e~'“' is assumed here and

henceforth. In terms of the hertz potentials, the free-space electromag-
netic fields are

B=H=VXx(—ill,+VxII,) (5)
D =E =V X (+ill, + V X I1,) (6)

Following the prescription of Deschamp (1971), we may substitute
z = z — iz, which represents a complex origin shift for the beam. The
thice of a complex origin shift does not affect the validity of the solution;
1t 1s an analytic continuation of an exact solution of the Helmholtz’
equation for a complex source point. We will explore the significance of z,
later. For the moment, we will merely assume that it is a large parameter?
That assumption allows us to make a binomial expansion of u in powers of
(p/z — izy)*. The paraxial approximation consists of two parts. First, we
only retain terms to order ( p/z — izy)? in the exponent; second, we ignore
the p dependence of the pre-exponential function. Both criteria are
consistent with the assumption that zy is a large parameter.

In the paraxial approximation, therefore,

) o)

u a
z - izg 2z - iz,)’ @
which may be rewritten, to within a constant, as
_ zoexp(—(kp*/2)z,/(2? +2)) kp?  z
= e expli — ——
\/z + 25 2 z%+ 2}
x exp| —itan-1 = ikz

p an P exp(ikz) (8)

the pre-exponential factor shows that u decreases as z increases due to
spreading of the beam. The exponential factor tan~!(z/z,) is the phase
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slip of the Gaussian beam with respect to a plane wave. When z = zy the
phase slip is approximately = /4.
We may elucidate the meaning of z, by examining Eq. (8) at z = 0:

k p2 — p2
u(z =0) =exp —Z = exp e 9)
where wy is the 1 /e radius of the dipole field at z = 0. In terms of w,, we
may make the identification

Zy = %kwt% (10)

We have now found a physical meaning for the complex origin shift zy: it
characterizes the 1/e radius of the dipole radiation at z = 0. The Cornell
FIR spectrometer uses z, = 117 mm, which corresponds to w, = 6.7 mm.
Thus, even at z = 0, where z — iz, has its smallest magnitude, the quan-
tity (wo/zy)? = 3.28 x 10~ (which characterizes the paraxial approxima-
tion) is a small number. We may use the paraxial approximation with
confidence to derive the properties of the fundamental Gaussian beam.

It is common to call w, the beam-waist radius. In the literature one
often finds the phrase “at the beam waist,” which refers to that value of z
for which the function u has its minimum radial extent. For u defined by
(8), this occurs at z = 0. The distance z, is called the confocal distance.
When z <z, we say that the Gaussian beam is in the near field. When
z > zy, the Gaussian beam is in the far field. The majority of this chapter is
concerned with the behavior of u in the range 0 < z < z;, the near-field
region. The phase and amplitude of u is a complicated function of position
in the near field. When z > z; and p < z or when we are in the far field
and the paraxial approximation is valid, it is straightforward to show that
the asymptotic behavior of u approaches a diverging spherical wave from a
point source at z = (.

In the paraxial approximation, we may use Egs. (5), (6), (8), and (10) to
write expression for the transverse components of the electromagnetic
field in terms of the hertz potentials as

By =H; = (psin ¢+ cos 9)2k*u (11)
Dy =E; = (pcos ¢ — psin ¢)2k’u (12)
to within an unimportant constant. One of the advantageous of the current
approach, however, is that the vector Helmholtz theory gives us all
components of the electromagnetic field. As we discussed above, the fields
that we are studying should have longitudinal components, because they

are superpositions of TE and TM modes. The longitudinal components of
the electromagnetic field in the paraxial approximation using Egs. (5), (6),
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(8), and (10) are

B, =H, = —Zsi 2k 13
L L Zsm‘l’Z iz ( )
D, =E, = -% 2k 14
. 1 Zcos ¢ _Ou (14)

which is smaller than the transverse components by a scale factor (kzy =
615) for the Cornell spectrometer. The vector Helmholtz equations also
generate a small cross-polarized component in the paraxial approximation,
orthogonal to the transverse and longitudinal components, but small than
the transverse components by a scale factor (kz,)* = 3.79 X 10°,

The power radiated in the longitudinal portion of the electromagnetic
field is approximately 60 dB lower than that in the transverse components
assuming kz, = 615. The cross-polarized components are approximately
120 dB lower than the transverse components by the same assumption. It
is a very good approximation, therefore, to neglect the longitudinal and
cross-polarized components in our system. The importance of the vector
approach, however, is that we may evaluate whether we may neglect the
nontransverse portion of the electromagnetic field for a given W.

For a Gaussian beam, the fields of the radiating electric and magnetic
multipoles satisfy the same boundary conditions (vanishing faster than 1/p
as p — ) so that the fields in the plane(s) defined by the transverse E H)
field and the optical axis are symmetric. It is difficult to generate a
balanced hybrid mode in conventional smooth-walled metallic waveguide;
instead, one may use a component called a scalar horn.

The scalar horn is discussed in the coliection of papers edited by Love
(1976). Basically, a scalar horn is a grooved circular waveguide with a small
flare angle. The grooves act as radial shunt lines that insure the same
boundary conditions for the E and H fields. An example of a device that
uses radial shunt lines to modify waveguide properties is the A/4 choke,
which is a common feature of waveguide flanges at conventional mi-
crowave frequencies. For the narrow flare angles that are typically used,
the phase variation over the aperture is modest, and one may assume that
the beam-waist radius w, for a horn of given aperture diameter is 0.33
times the aperture diameter and is only. weakly frequency dependent
(Thomas, 1978).

We have used the much simpler conical horn on our detector and
Fabry~Pérot resonator. We may estimate the ratio of the beam waists for
a scalar and conical horn by calculating the ratio of their grains: w, /w, =
G,/ G.. For this purpose, we used the expressions for conical and scalar
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horn antennae given in Milligan (1985). For a conical hom, one should
note that the beam patterns are quite different in the E and H planes.
Using the parameters of the FIR-ESR horns, we find that the maximum
phase error A = 0.08. With Milligan’s (1985) expressions and calculating
the beam-waist ratio from the gains, we find that the beam radii of the two
horns differ by less than 5%, which does not seem to be significant in
practice.

We note that wall losses due to surface resistance in a smooth-walled
horn can be significant above 300 GHz. Such losses reduce the field
intensity near the walls of the horn and generate an aperture field that has
more fundamental Gaussian character than might otherwise be expected
(LeSurf, 1990, pp. 56-57).

A scalar horn or conical horn will generate side lobes (or diffraction
fringes). In order to describe such features of a real beam, we need to
consider higher order modes than the fundamental. Higher order modes
are also important in discussing real resonators as we will show in
Section VI.

In order to proceed, we will accept that the transverse components of
the electromagnetic field are the only ones that are relevant in the
problem on the basis of the exact calculation that we have performed for
the fundamental Gaussian beam. Instead, we will use trial functions for u
that will lead to self-consistent expressions for the transverse components
of Gaussian beams of arbitrary order when substituted into the vector
Helmbholtz equation. The derivation is clearest for the fundamental. We
will redrive the transverse field components of the fundamental Gaussian
beam here. The deviation of higher order modes is outlined in the
Appendix. '

We write u = y(p, z)e'k* where we assume that (p, z) is a slowly
varying amplitude and phase function as discussed in preceding text. We
will model the (complex) phase modulation by a function e’#®*). The
amplitude modulation will depend on z and p in order to account for
beam growth. A suitable trial function is e’ #*/24(2) which is in the form of
a diverging beam in the paraxial approximation, where g(z) is a (complex)
position-dependent radius of curvature. Putting the pieces together, we
have ¥( p, z) = exp(i(P(2) + kp?/2g(z)).

Writing the vector Helmholtz equation in cylindrical coordinates, using
our trial function for u, and invoking the Ansatz that ¢ is a slowly varying
function of z in order to drop the term in %)/ Jz?, we obtain an equation
for P and g, namely,

2k(P i ) e -y =0 (15)
P _ q, -
q q°
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where the prime indicates aiﬁereﬁtiation with respect to z. In order to
satisy Eq. (15) for all values of p and z, each term.in parentheses must
vanish separately, which leads to the following equations for P and g:

P'=i/q

16
1 (16)
Upon minding our Ps and gs, we obtain
q=z—1iz (17)
z
—iP= ln(l + i——) (18)
2y
z 2 Z
=In|/1+ (-—) +itan"1(—) (19)
Zg Zy

where we have chosen the imaginary integration constant iz, guided by
our experience with the exact solution in the paraxial approximation. In
this way we see that g is a parameterization of the complex origin shift
introduced previously that allowed us to make the paraxial approximation
in the derivation of Eq. (8).

Setting z, = kw3 as before and using the definitions

w(z) = |1 + (zio)z (20)
R(z) =z(1 + (zio)z) (21

&(z) = tan“(i—) (22)

we may rewrite our trial function in terms of the Gaussian beam
fundamental

2 lkpz

Yo LA
w(z)2 2R(z)

u( p,z) = exp(i(kz - ®(2)) — (23)

w(z

which is in the same form as Eq. (8) allowing for notational changes.

At this point, we have quantified the domain of validity of the paraxial
approximation and established when we may neglect the nontransverse
components of the Gaussian beam. We still need to examine our solution
in more detail, because we have not yet addressed diffraction effects. This
analysis is necessary because the wavelength of FIR radiation is of the
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same order of magnitude as the source extent (characterized by the beam
waist).

We will test the consistency of our solution by evaluating the diffraction
field of a Gaussian beam from a reference plane defined by z = 0. We will
use the Huygens—Fresnel construction (Born and Wolf, 1980, pp. 370—386),
where we treat each point on the wavefront in the reference plane as the
source point for a secondary wavefront of the form exp(ik - r)/r and sum
over all source points. If the diffracted field has the same functional form
as the incident field, then we will have demonstrated that our solution is
useful even in the presence of diffraction.

We may write an integral expression for the Huygens—Fresnel construc-
tion that embodies these considerations as follows (Anan’ev, 1992):

exp(ik - (p — po))
lp — pol

ik ® 2w
u(p,@,z) = _ﬁfo Po dpofo doy u(py, #o,0)
(24)

where p is the vector that specifies the cylindrical coordinates of the field
point and p, is the vector that specifies the source point. The prefactor
—ik /2 is well known from diffraction theory (Born and Wolf, 1980,
pp. 370-386) and ensures that the result has the correct units.

We may extend our discussion of diffraction effects to all Gaussian
beam modes (not just the fundamental) by using the results of the
Appendix, particularly Eq. (130) for u( pg, ¢4, 0). The kernel of the inte-
grand in Eq. (24) may be rewritten in the paraxial approximation as

exp(ik -(p— Po))
Ip — pol

exp(ikz) . ik p* R ik p} B ikppy cos( @ — @) (25)
z 2z 2z z

Collecting all of the p, independent factors outside the integrand, we may
rewrite Eq. (24) as

u(p, @,z) = (—1)**P -29 exp(ikz)exp(ik p?/2z)exp(il p)

[ L (-8 (29

where we have used z, = kw3/2, x = ﬁpo/wo, y =wokp/ V2z, and
B = (1 - izy/z)/2. The ¢, integration was performed by using an integral

272 KEITH A. EARLE, DAVID E. BUDIL AND JACK H. FREED

representation of the Bessel function (Jackson, 1975):

1
In(¥) = o

In the integral over x, or equivalently p,, from 0 to ®, we have assumed
that the Gaussian function in the integrand has decayed sufficiently rapidly
so that there is negligible error in taking the limit of integration to x = oo,
where the paraxial approximation would otherwise be inapplicable. '

We have used scalar diffraction theory in this calculation, which is an
approximation in two parts. The first part consists of approximating the
electromagnetic field as a transverse field. We have derived the conditions
under which it is permissible to do so. In the Appendix, we discuss the
conditions under which it is possible to replace the vector Helmholtz
equation by the scalar Helmholtz equation for transverse fields. In a sense,
we have reduced the problem to a solution of the scalar Helmholtz
equation. The second part of the approximation consists of exploiting the
reduction of the vector Helmholtz equation to a scalar Helmholtz equa-
tion. Scalar diffraction theory is based on the scalar Helmholtz equation.
Hence, when it is permissible to neglect the longitudinal and cross-polarized
components of the Gaussian beam, we may use solutions of the scalar
Helmholtz equation for transverse fields and may take over the results of
scalar diffraction theory with confidence for this special case.

We may use Eq. (140) from the appendix with @« = 1, v =1, n = p, and
x, y, and B defined previously to evaluate the integral in Eq. (26):

(=)' ["x* exp(~ px?) Ll (x*) 1 (29) dx

_ [2i(p-1)] y,exp( y )L’,{ y? )

7 exp(ix cos ¢ — img) do 27)
0

T [2ip]e*RY ap)r4p(1 - B)

where we have included the phase factos (—i)'*! from Eq. (26) for future
convenience. -
The first factor on the right-hand side of Eq. (28) may be rewritten as

[2i(B-D]*? _ exp(—i(2p + I + 1)tan~'(z/z,)) 29)
[2iB ](p+l+1) (2 IB')'“

It is also possible to combine the Gaussian exp(—y*/48) with the pre-
factor exp(ikp2/2z) from Eq. (26) to obtain

ikp2 y2 B ikp2
P\2z " 4] T P\ 9Bz (30)
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Finally, the function ikp?/4Bz may be rewritten as —p?/w(z)® +
ik p? /2R(z), where w(z) and R(z) are define in Egs. (20) and (21).
In this way, Eq. (28) may be rewritten as

ik p? ~
(—i)”lexp( 2’: )[0 x'* 1 exp(—Bx*) L (x*) Ji(xy) dx
_ exp(—i(2p + 1+ 1)tan~!(z/z)) (_)’_)le (_'lz)L, y?
(218D {8l 48 | 7P 4B

(31)

Using our definitions of y and B, we may use Eq. (31) to simplify Eq.
(26) to its final form

Wy p 1 p2 p 2
o0 = 55 7 585 e ool - (55
, z kp?
X exp(i[kz +le—(2p+1+ l)tan‘l(z—) + ?I-Q—(—z—)_
. 0
(32)

which is in the form of Eq. (130), the expression for a general Gaussian
beam mode. Note that the term exp(—i(2p + [ + Dtan~'(z/z,)) means
that a beam that consists of the fundamental plus higher order modes will
be dispersive. For the standing wave case this is clearly demonstrated in
Fig. 4, where the various higher order modes appear as shoulders on the
main resonance corresponding to the fundamental mode. We will discuss
higher order modes more thoroughly in the sequel.

We have now shown that the functional form of all Gaussian beam
modes is preserved even in the presence of diffraction, subject only to the
validity of the paraxial approximation and the assumption of transverse
fields. All of our results are consistent, therefore, with the assumption that
a Gaussian beam is a modulated plane wave, where the modulation
function is a slowly varying function of position. It is also possible to
quantify the domain of validity of the paraxial approximation (Martin and
Bowen, 1993). In the far field (z > z,) it is possible to use the method of
steepest descent to evaluate the integral in Eq. (24). The result is that we
may neglect effects due to the breakdown of the paraxial assumption as
long as kw, > 6. When higher order modes are important, the appropriate
criterion is (Martin and Bowen, 1993) kw, > &(n/2)'/%, where n is the
mode number. The Cornell group uses a system beam waist wy = 6.7 mm,
which implies kw, = 35 for a wavelength of 1.2 mm.
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IV. Quasioptical Beam Guides

In. this section, we discuss general features of beam guide systems that
are important when the cross-sectional area of the beam must be kept to a
finite diameter. This is an important consideration in spectrometer design
EPR spectrometers in the FIR will typically require superconductin :
magnets with finite warm bore sizes to study g = 2 systems, for exam 15
(cf. Fig. 1). We will discuss the conditions that are necessary %or a bea.mpto
havc? free-space propagation characteristics in systems with finite cross-
sectional areas. .

The ?aussian beam of Eq. (8) has a radial amplitude dependence
exp(—p*/w*(2)), where w(z) is given by Eq. (20). The quantity w(z) is
called the beam radius; its minimum value-—the beam waist wy—occurs at
z=0. ponventionally, z =0 is referred to the beam waist; the context
makes' it clear whether wy or z = 0 is being discussed. As z increases
n.l(z) increases monotonically. It is easy to show from Eq. (20) tha;
hm,_,.,, w(z)/z = A/mww,, the asymptote of a hyperbola. We call the
quantity tan~'(A/w,) the asymptotic beam growth angle.



MILLIMETER WAVE ELECTRON SPIN RESONANCE 275

In order to limit the growth of the beam, we use lenses to refocus the
Gaussian beam. Generally speaking, an ideal lens or conic section reflector
introduces a phase delay that varies quadratically with distance from the
optical axis. Upon passage through a lens or reflection from a conic section
reflector, the quadratic phase delay changes the radius of curvature of the
exiting beam.

The focal length of a quadratic, phase transforming, optical element is
given by the formula

i Sl (33)

where R; is the radius of curvature of the incident beam, R, is the radius
of curvature of the exiting beam, and f is the focal length of the optical
element, which may be positive or negative. Conventionally, the radius of
curvature is taken as positive if the beam is diverging and negative if it is
converging.

We would like to make some general comments on lens design. First,
the optimum surface for lenses if not spherical, but hyperboloidal (Moore,
1988). The general design procedure is given, for example, Kraus (1950).
We note that the assumption of a point source in Kraus’ design procedure
is admirably suited to the far-field (z > z,) behavior of a Gaussian beam.
If the refractive surface is in the near field (z < z,) of the beam waist, one
may use the general procedure given in Risser (1949) to make the
appropriate phase corrections. Second, there will be a dielectric mismatch
at the refractive surface, which may be modeled as an impedance disconti-
nuity in a transmission line. For Teflon, which has an index of refraction of
n = 1.44 in the FIR (Degenford and Coleman, 1966), the reflection coef-
ficient p = (n — 1)/(n + 1), which implies that roughly 3% of incident
power is reflected from each air-dielectric interface: P, = p?P,, where P,
is the reflected power and P, is the incident power. For narrow-band
systems, it is possible to design lenses that have extremely low reflection
losses (Padman, 1979). As a concrete example, the insertion loss of the
lenses that are used in the Comell spectrometer, which includes losses in
the lens material as well as reflection losses, is 0.1 dB.

Our primary use of reflectors has been as elements in a Fabry-Pérot
resonator (cf. Section VI). If reflectors are used as focusing elements
instead of lenses, it is common to use nonnormal incidence to avoid
truncation losses. The choice of reflecting optics with nonnormal incidence
does introduce aberrations in the reflected field, the most serious of which
is coma (Murphy, 1987).
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' In an optical system with nonnegligible coma, a point object produces an
image that has a comet-like tail, whence the name coma. It is possible to
arrange pairs of reflectors, however, so that aberrations cancel or nearly
cancel (Murphy, 1987). Our recent work (Earle et al., 1996b) exploits the
properties of paired mirrors to maintain the mode purity of the Gaussian
beam. The reader is referred to that work for a more detailed discussion of
Fhe optical layout. Here we will not consider the effect of astigmatism, that
is, different focal lengths in the xz or yz planes, although it is possible to
account for such effects (Anan’ev, 1992; Murphy, 1987).

The expressions derived in the foregoing text for the behavior of a
Gaussian beam tacitly assumed that truncation effects could be ignored,;
that is, the expressions were derived for an infinite aperture system. An);
physi<.:a1 system, of course, consists of elements of finite extent. The
question to consider, then, is under what conditions those elements may be
approximated by ideal elements.

For any beam incident on an aperture of finite extent, we may define the
edgfa taper T as the ratio of power on-axis to the power level at a given
radlus‘off-axis. One may approximate the power density for a fundamental
Gaussian beam by u*u, where u is given by Eq. (23). For such a beam
Tz = 20log(exp(—( p/w)?)). Numerical evaluation of the diffraction inte:
gral for a circular aperture of radius p = g illuminated by a Gaussian
bearp (Campbell and DeShazer, 1969) of radius .w suggests that the
maximum discrepancy between the scattered near-field angular distribu-
tion a.nd the pure Gaussian beam is 4% when a /w = 2. The far-field
behavior seems to be less sensitive (Schell and Tyras, 1971) to truncation
effects, which appear mainly in low level side lobes (or diffraction fringes).
The principal effect seems to be on the width of the Gaussian envelope
(Goldsmith, 1982). Given a /w =2, the ratio of the truncated to non-
truncated beam radius is 1.03.

In- order to understand why this ratio is greater than unity, we must
consider that the truncated beam contains higher order modes than the
fundamental because of diffraction from the finite aperture. As the aper-
ture is stopped down (made smaller), the diffraction fringes become better
re§olved. For aperture diameters that are not too small, however, the
grmc.;ipal effec} og t:;ﬁt_neam is an apparent broadening of the beam r;dius

ue to unresolved diffraction fringes with signi i i
the o o ges wi s1@ﬁcmt intensity away from

Inserting a/w = 2 into the expression for the edge taper, yields 7, =
—35 dB. Goldsmith (1982) has compiled a table that shows the effeclfr of
reducing the edge taper on the full width at half maximum (FWHM)
asyr.nptotic beam growth angle. For an edge taper of —25 dB, the beam
radius is roughly 10% larger than the untruncated value, which seems to
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be the limit on the edge taper that one may use without having excessive
diffractive beam growth.

Finally, even if the aperture is sufficiently large that diffractive beam
growth is not a problem, small focal lengths can cause significant phase
and amplitude distortions (Goldsmith, 1982) if the ratio of the focal length
to the aperture diameter f/D < 0.6. The quantity f/D is conventionally
known as the f-number or f/# of an optical element. For reflectors,
cross-polarization can be significant for small f/# and large angles of
incidence as described by Chu and Turrin (1973). The state of the art in
the near-millimeter band seems to be polarization isolation at the 30-dB
level (Moore, 1988), which is a reasonable specification to strive for in the
reflection mode spectrometer to be discussed in Section IX.

The FIR-ESR spectrometer, in its transmission mode configuration, uses
conical horns and many lenses without seriously compromising perfor-
mance. In the future, however, as more elements are added, it will be
important to reevaluate the use of nonoptimal components.

V. Design Criteria for Beam Guides

In this section, we will discuss design criteria for beam guides from a
slightly generalized point of view. A common problem in quasioptics is
calculating the focal length of a phase-transforming lens or reflector to
transform an input beam with a given beam waist into an output beam
with a different beam waist. Coupling into and out of resonators is an
example of such a process. Matching to a detector input is also a common
example. With care, it is possible to achieve coupling losses as low as
0.15 dB (Wylde, 1984) or better. For those situations where signal power is
at a premium, attention to details such as good coupling will yield impor-
tant benefits.

It is possible to include phase transformers in scalar diffraction theory.
The calculations are lengthy, however, and we refer the reader to Anan’ev
(1992) and Martin and Bowen (1993) for details. An alternative approach
exists that is equivalent to the transfer matrix method of geometrical
optics, although the results are justifiable in terms of diffraction theory
(Anan’ev, 1992; Martin and Bowen, 1993). The formalism is discussed, for
example, in Hecht and Zajac (1979, pp- 171-175) and we will briefly
outline the necessary results. .

In a ray descriptions of optics, one can predict the performance of an
optical system by tracing the path of rays through the system. Given a ray
whose vertex is displaced from the optical axis by y, and whose slope is
given by ay,, it is possible to find the output displacement y,,, and slope
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a,,, after passage through the system by computing
(y out | _ (A B Yin
Doyt C D Xjp (34)

.-
where the matrix {4 2] j
atrix c plis called the system transfer matrix . The

%e;gents of 5" are known for various optical elements (Hecht and Zajac
> pp. 171-175) such as lenses or free-space propagation, and J for a’
system of such elements may be found by matrix multiplication:

(A B) _ A, B, A, By (4, B, |
¢ o)~ \c, p,)7\c, p)lc b, (35)
where the ray encounters elements 1, 2,...,n in order and the transfer

matrix for optical element i is given by '2’ j - We will give a specific

example of th i i i
e 1en£ e formalism applied to a Gaussian beam transformed by
Within the paraxial approximation for Gaussi
aussian beams, Kogelnik

f;s{ sfgovtrﬁ that the analog of the transfer matrix formalism i§ th; /(lggsD)

r the parameter q =z — izy [cf. Eq. (17)]; that is

. . ] H at Ag,

B)/(Cq,, + D), where the ABCD coefficients may be tgl‘c)etn fr(or:llmtl;;
corresponding optical system transfer matrix in the form

F= (g g) (36)

A common problem in quasioptics is transforming the beam waist at th
output of t'he source to a more convenient value for propagation ;
extended dls_tances-. The beam waist at the output of a scalgar ho Ove;
aperture radius a is (Wylde, 1984) w, = 0.6435a. Scalar horns are urn l?
made shgrt for ease of fabrication so that wy is small howeversu';l’hy
ifﬁ:g{;toigsob::n; g:slwth ;mtghle talljn“()t /ww,) for a scalar ilom is apbroxi?

e of thumb in the near-milli i
transforms the beam waist to a larger value, thxem:ilslynrlne;f;ticr:eggn\\:t;f 01-lle
decreases and one may space focusing lenses farther apart (as we will arﬁg .
§ubsequently), which reduces the insertion loss of quasioptics. Tran fs -
ing the t.)eam waist from 2.0 to 6.7 mm, for example will. redu(s:eort;:n-
asymptotic beam growth angle to 3.3°, which allows ti1e lenses of :
gz:sntogt;ctz)ﬂ Isfy:}t)en; to be spaced every 235 mm at 250 GHz (see subc:clr

nt text). e beam waist is 2.0 mm, the lenses .
21 mm, which leads to insertion losses an order of I;Jl:lsgtnti)tijgal;?i o
addition to the problems caused by small f/#s. ghek in
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Let us now calculate the distances and focal length required to trans-
form the beam waist from one value to another. At each beam waist, g is
pure imaginary: g, = —imwiA and g, = —imw}/A.

The ABCD matrix may be found from a knowledge of the transfer
matrices (Hecht and Zajac, 1979, pp. 171-175) for translation through a
distance d and passage through a lens of focal length f, namely,

T(d) = ((1) ‘f) (37)

rn =iy ) (38)

For this case, the system transfer matrix 5 = T(d)R(f)T(d,). Applying
the ABCD law yields

_ (1-dy/fa + (d, +4d, - dd,/f) (39)
%2 —q/f + (L= dy/f)

where d, and d, are the distances to the input and output beam waists;
hence d, and d, are the quasioptical equivalents of the geometrical optics
image and object distances. Equating the real and imaginary parts of
Eg. (39) leads to two equations for d; and d,. Solving for 4, and d,
separately, and introducing the parameter f, = Tww,/A allows us to

write .
d=15 NPT (40)
dy=f+ -2 -f2 (41)

Note that the parameter f, is equal to the geometric mean of the two
beam parameters z, and z,. If we take the point of view that a Gaussian
beam of beam waist w, is a transmission line of charactieristic impedance
z, then a device that matches a transmission line of impedance 2, to a line
of impedance z, will require a quarter wavelength section of impedance
yz12z;. Note that if the focal length of the mode-matching lens is f,,
then d, = d, and we may think of the length of the matching segment as
2fo = 2y/z,z,. The analogy is more complicated if the focal length is
different from f,. In fact, a lens of any focal length greater than f, will do,
subject to the caveats outlined previously. The conceptual simplicity of the
transmission line model is very useful, however.

If we imagine a series of N lenses of focal length f, = z, separated by
2f, such that the beam waist occurs midway between any pair of lenses,
then we may model the optical system as a transmission line of length 2Nz
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apd characteristic impedance z. It is conventional to work with a dimen-
31onles§ impedance in transmission line work; therefore one may define a
normalized impedance ¢ = z/A, although any convention would suffice, as
long as it was used consistently. : ’

. A very useful and succinct discussion of optimizing lenses for transmis-
sion over relatively long distances is given by Goldsmith (1992). The basic
result is that the maximum possible distance between two focusing ele-
ments for a Gaussian beam is twice the confocal distance, d = 2z,, where
z = kw3/2 and w, is the beam waist. In Section IV, we discussed the
minimum aperture possible for propagating undistorted Gaussian beams
and found the condition a/w > 2, where a is the lens aperture radius and
w is the beam radius at the lens aperture. If we set z = z; in Eq. (20), we
find w(zy) = V2w, at the lens aperture. The distance d is there%ore
determined by.quasioptical constraints to be d < ka?/8. In terts of the
aperature diameter D = 2a and the wavelength k = 2ar/A, we find

wD?
= 62 (42)

The Cormnell FIR-ESR transmission spectometer uses D = 37.9 mm, w, =
6.7 mm, A =12 mm, and z, =kw2/2 = 117.5 mm, which results0 in
d = 235 mm. The necessary focal lengths for the optics may be found from
Egs. (40) and (41); we find f = z,. The geometrical optics result for a point
source at position z, away from the lens imaged to a point z, on the other
side of the lens is f = 2z, as one may verify from Eq. (33).

In_ this case, properly accounting for diffraction effects reduces the
required focal length by a factor of 2. The distance z, is called
the confocal distance, which we introduced in Section III. It separated the
near-field (z < z;) and farfield (z > z,) regions, or equivalentl
the Fresnel and Fraunhofer diffraction regions. o

d

VI. Fabry-Pérot Resonators

We have chosen to develop the quasioptical theory needed for under-
standing the spectrometer by considering first the properties of lenses and
reflectors. In the analysis of resonators, a very fruitful approach is to
“}m.fold” the multiple reflections of the resonator into a series of lenses in
circular apertures spaced by the mirror separation for a confocal resonator
(Kogelnik and Li, 1966). The semiconfocal resonator is a special case of
th'e confocal resonator. We use a flat mirror, which images the curved
mirror at minus the mirror separation. In such a resonator, it is impossible
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FiG. 5. FIR-ESR semiconfocal resonator showing horn coupling. The beam-waist radius
in the resonator is 2.2 mm. [From Lynch et al. (1988), by permission of the AIP]

to have an antinode of the E field at the beam waist. The FIR-ESR
resonator is shown in Fig. 5.

In microwave work, one specifies the performance of a cavity by its
quality factor, which is typically defined as Q = w, /A w, where o, is the
central frequency of the resonance and A w is the power FWHM. In order
to develop an expression for the Q of a semiconfocal Fabry-Pérot res-
onator, we must examine the behavior of the Gaussian beam given by
Eq. (130) between two mirrors. One may readily derive an eigenvalue
equation for the resonator by considering that the field in the resonator
consists of the superposition of a traveling wave in the +z and —z
directions and forcing the resultant standing wave E field to vanish on
both mirrors. Note that a traveling wave solution in the +z direction,
(E,H), has a complementary solution in the —z direction, (E*, —H*). If
one sets E, = u, then a standing wave that vanishes at z = 0 may be

constructed from E,,, = E, = (u — u*)/2i. Following the convention given.

above, H,, = H, = (u + u*)/2. The extra factor of —i in the defining

relation for E indicates that H leads E by a quarter period: the field
energy shuttles back and forth between the electric and magnetic energy
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densities, as it should for an energy-storing element. In order to determine
the beam waist in the resonator, we choose the local radius of curvature,
R(d) = R,, where R, is the radius of curvature of the spherical mirror and
d is the mirror separation. Using Eq. (21) and solving for the beam waist,

we find
A .
wg = p ‘/d(R0 —d) (43)

In the Cornell spectrometer, R, = 2d = 25.4 mm is possible mode of
operation, although it is not ideal as we will show subsequently. For that
case, w, = 2.2 mm. We choose such a small beam waist in order to
concentrate the available power near the optical axis and enhance the B,
field for samples on the optical axis. We will show in the following text that
B, a 1/w,.

For fixed frequency, only a discrete set of d values causes the resonator
to resonate. Recall that the resonance condition obtains when the phase
shift between the mirrors is an integral multiple of , say g, where g is
an integer. The phase of an arbitrary Gaussian beam mode is given by the
argument of u from Eg. (130) in the Appendix. We may write the
resonance condition as

kd — (2p + ! + tan"'(d/z,) = g7 (44)

where q is the longitudinal mode number equal to the number of anti-
nodes of the standing wave pattern, ! is the azimuthal mode number, and
p is the radial mode number (cf. the Appendix). The fundamental Gauss-
ian mode corresponds to ! = p = 0. Note that the separation between
longitudinal resonances measured as a frequency is vy = c¢/2d. Using
w/k = ¢ and o = 27v we may solve for the resonance frequency of the
resonator, namely,

> ! 2 I+ 1)cos™H|1 2d

o q+ 277( p+ 1+ 1)cos ( Ro) (45)
where we have used the identity (Chantry, 1984, Vol. 1, p. 70)
2tan"'y/a/(2b — a) = cos™'(1 — a/b). The second term on the right-
hand side of Eq. (45) causes the mode pattern of the resonator to be
dispersive, that is, modes p or [ +# 0 are resonant at a different mirror
separation than the fundamental. This is clearly demonstrated in Fig. 4. In
addition, the modes are degenerate at the confocal separation, d = R, /2.
When d = R,/2, Eq. (45) becomes v/vy=q + Ql+p + 1)/4. M 2] +p
increases (decreases) by 4, it is degenerate with the longitudinal mode
g — 1 (g + 1). Even though the smallest beam waist occurs for the
confocal separation, it is not common to operate a resonator at that mirror
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separation, because the mode degeneracy leads to easy mode conversion
and higher losses.

Having found an expression for the eigenfrequencies of the resonator, it
now remains to find expressions for the diffraction losses and electrical
losses in order to calculate the Q. Slepian (1964) developed asymptotic
expansions for the phase shifts and diffraction losses of various mirror
shapes, which may be parameterized by Fresnel zone number, N =
a,a,/dA, where a; (i = 1,2) is a mirror radius, d is the mirror separation,
and A is the wavelength. If we take g, as an aperture radius and A as the
wavelength, the boundaries of the Fresnel diffraction zones occur at the
angles tan"'(NA/a,), where N = 1,2... . If we set a screen at a distance
d from the aperture, the Nth Fresnel diffraction zone occurs at the angle
tan~'(a,/d). Comparing arguments of the tan™! functions, we arrive at
the condition

a,a,

N = d (46)
The argument is unaffected by interchanging a4, and a,. We may use
Babinet’s principle (Born and Wolf, 1980, pp. 370-386) to replace the
apertures with mirrors of radii 4, and @,. The case N = 1 corresponds to
both mirrors being illuminated by the first Fresnel diffraction zone. Reduc-
ing N by decreasing the radii @, and a, is a convenient way to filter the
higher order radial p and azimuthal ! modes. Basically, the higher order
modes are truncated by the finite mirror radii. Knowing the Fresnel zone
number for a particular set of mirrors and the mode numbers, we may
calculate the diffraction loss parameter (Slepian, 1964)

27 (8mN) P gmdnN e of 2 ) -
* Pl(p + 1+ 1) (ZWN (47)

The total energy stored in the resonator is proportional to the geometrical
phase shift of the cavity, kd, where d is the mirror separation, whence we
may derive a diffraction Q, Q, = 2wd/Aa. In general, one must also
consider electrical losses (which contribute to the unloaded Q), sample
absorption and scattering (which contribute to the sample Q, Qx), and
resonator coupling (which contributes to the radiation Q, Q). Q,, the
loaded @, of the cavity, may therefore be written as a sum of terms

1
— =t =+ — + — (48)

Q,- the sample Q, contains an EPR resonant contribution Qppr and a
nonresonant contribution Q,,, Which is determined by the optical
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properties of the sample: its thickness and index of refraction n. A slab of
dielectric may be thought of as a Fabry—Pérot resonator (hence Qoptical)-
We discuss in Section X how to treat a compound Fabry—Pérot resonator,
that is, a resonator with more than one section. On the basis of that
discussion, we may simply lump Qopticar the nonresonant part of Q, with
Qu, the unloaded Q of the resonator and set Q, = Qgpr- The quantity
Qgpr Is the source of the EPR signal. Off of EPR resonance, Qgpr is
infinite because there is no absorption of the FIR field. On EPR reso-
nance, Qgp is finite due to FIR absorption. An expression for Q, that
incorporates these effects is

1 ( 1 . 1 ) + ( 1 + 1 ) 1
_ = | — —_— — 4 —
QU Qoptical QRl QRz QX (49)

where Qp and Qr, model the coupling into and out of the resonator. We
may write 1/Q, = nx" in Eq. (49), where 7 is the filling factor of the
resonator (subsequently derived) and x” is the absorptive part of FIR
susceptibility.

Q,, the loaded Q, is one of the parameters accessible to experimental
measurement if the longitudinal mode number is known. Figure 3 shows a
fixed frequency, variable mirror spacing scan. From the ratio of the spacing
of the resonances to the width, we may define the resonator finesse
& =L/AL, where L is the longitudinal mode spacing, which is approxi-
mately equal to A/2, and AL is the mirror travel that corresponds to the
power FWHM, which is approximately equal to qAA/2, where q is the
longitudinal mode number (Earle, 1991; Goy, 1983). The field intensity in
the resonator is proportional to the finesse, so that increasing the finesse
for a given mirror spacing leads to a larger B;. From knowledge of ¢ and
¥, we may conclude the loaded Q as Q, = g% Our resonator has a
Q. = 200. In a conventional TE,,, microwave cavity, q = 1 so that the Q
of a conventional microwave cavity is equal to its finesse.

For an arbitrary Gaussian beam mode [cf. Eq. (130)] the Poynting vector
S = E X H*/8r at the beam waist (z = 0) may be used to calculate the
B, field for a given beam waist w; as follows:

P=c/;_S-dE

CBl2 27 £ ! ! Y
8—71'/; j; d(ppdpx[Lp(x)] e™*

It
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cw? B?
16
ewlB? (1 + p)!

16 p!
using Eq. (139) of the Appendix, where x = 2p?/w}. For the fundamental

mode, I = p = 0 and the ratio of factorials is unity. If we take P = 3 mW
and w, = 6.7 mm, then

°°J:’[Lﬂl;(x)]ze"‘dx
0

(50)

4 P
B, = —W_o “C“ (51)
= 6 mG (52)

We see that reducing the beam waist increases B;. We note that B, is
more weakly dependent on P. We will derive an expression for he B, field
at the sample in a Fabry-Pérot resonator in Section VIII after we have
developed the appropriate lumped equivalent circuit for a transmission
mode spectrometer. )

In the presence of a sample, the fields and the O, of the resonator will
change. It is possible to account for this effect by calculating the filling
factor of the sample-loded resonator. We will defer explicit calculation of
the filling factor until we have addressed the role played by the sample
dimensions.

The dimensions of the sample are important in determining the perfor-
mance of the spectrometer because the sample can extend over several
wavelengths in several dimensions, at least in principle, which enhances
interferometric effects within the sample. Neglecting losses in the sample
for the moment, we note that if the sample is an integral number of
half-wavelengths thick, it functions like a Fabry—Pérot. In order to under-
stand this, we will sketch a derivation that takes into account the index of
refraction of the dielectric material and reflection from the sample-air
interfaces. First, note that the optical phase difference across the sample is
nkt, where n is the index of refraction and ¢ is the thickness. The
resonance condition for such a slab is given by Eq. (44) with kt replaced by
nkt, namely,

nkt — (2p + 1 + Dtan™(8/2,) = g7 (53)

If ¢ < z,, which is a case of practical interest, we may approximate the
resonance condition as nkr = gr. The minimum reflected power is zero on
resonance, regardless of the surface reflectivity, and all of the power is
transmitted. This is an example of what optical engineers call an absentee
layer. There is also a transmission line analogy to the present case. A
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half-wavelength section of characteristic impedance Z, in a transmission
line with characteristic impedance Z, has a reflection coefficient of zero.

Due to the finite beam growth of a Gaussian beam, there will be a phase
error that causes the surface reflectivities to be slightly different for the
two surfaces. The response of a Fabry—Pérot resonator with surfaces of
different reflectivities is given in Section X, where we show that the
minimum reflected power differs slightly from zero for surfaces with
slightly different reflectivities.

In any practical system, there will be at least three layers arranged as
follows: sample holder, sample, sample holder. If the sample and sample
holder layers are an integral number of half-wavelengths thick, we may
think of the ensemble as a set of three absentee layers in series and the
calcultion carries through as before. These qualitative arguments are put
on a firmer footing in Section X, where we calculate the transmission and
reflection coefficients for a compound Fabry—Pérot resonator with more
than two reflecting surfaces.

Until now we have confined our attention to samples with low losses. In
a resonator Of high fenesse, the presence of absorption not only broadens
the resonator response, it also reduces the transmitted power. The opti-
mum solution for studying lossy samples is to place them in regions of low
E field in the resonator. We know that the mirrors of the resonator are
nodes of the E field because the tangential E field must vanish at the
surface of a good conductor. For aqueous samples, one can use a modifi-
cation of the method used previously. If the thickness of the sample and
sample holder is less than A/4, then multiple beam interference effects
are negligible and we may regard the lossy medium simply as a thin film on
the mirror. Hence, one should construct as aqueous sample holder as
follows: thin film, sample, thin film, where the thickness of each layer is
A/10 or less. We have successfully implemented these concepts for aque-
ous and other lossy samples, and they are discussed further elsewhere
(Barnes and Freed. 1996).

It is intuitively obvious that thin samples will reduce the filling factor of
the resonator. We will show subsequently how to calculate the filling factor
in simple cases. If more spins are needed to see a signal, we can use two
thin layer samples separated by a low-loss dielectric spacer an integral
number of half-wavelengths thick. This arrangement is equivalent to a
Fabry—Pérot resonator that consists of a dielectric with highly reflective
surfaces, which is discussed in Section X (the layout of such a scheme is
shown in Fig. 9). We choose the position of such a sample such that the
high-loss medium is always in a region of low E field. This “sandwich”
approach relies on knowledge of the index of refraction of the spacer
material. If the spacer thickness is chosen carefully, the absentee layer
argument that we previously outlined should go through unmodified.
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Until now we have only addressed the thickness of the sample. By
proper choice of the sample dimensions, it is only the thickness of the
sample along the optical axis that matters in calculating the resonator
filling factor. The beam waist in the resonator is usually chosen to be small
in order to enhance the B, field at the sample. The Cornell 250-GHz
transmission spectrometer uses a beam waist of 2.2 mm in the resonator.
From the criteria we have derived so far, this would imply that a sample of
radial extent greater than 8.8 mm will not distort the fields of the
resonator. There is no advantage to increasing the radial extent of the
sample over this value because the B, field is exponentially decreasing
away from the optical axis. The only way to increase the number of spins
that are excited by the fields in the resonator is to increase the sample
thickness. For low-loss samples, rather large filling factors approaching
unity can be obtained.

The most straightforward way to calculate the filling factor is to calcu-
late the ratio of electromagnetic energy stored in the sample to the
electromagnetic energy stored in the resonantor. Then we may use the
result that the total energy in the resonator, which represents the sum of
the dielectric and air regions, is

Ep = (1/8) Egwi (1A + d) (54)

where E, is the field strength in the resonator and A is a quasioptical
correction to the thickness given by (Yu and Cullen, 1982) ‘

A = n2/[n? cos?(nkt — &) + sin®(nkt — @) (55)

where @ is a small phase correction that is 2 orders of magnitude smaller
than nkt for thin or very thick (¢ = d) samples (Yu and Cullen, 1982),
which are the two cases of greatest experimental interest. We will neglect
@, in the sequel.

The filling factor may be written now by inspection,

7 =tA/(tA + d) (56)

For those samples that have a radius greater than twice the beam radius
over the entire sample, the sample radius does not enter the filling factor
calculation because it has no effect on the fields.

VII. Transmission Mode Resonator

The #&sonator problems that we have discussed are of limited interest
until we couple to a source and load in order to examine the response of
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Ry Re R,

C LC

FiG. 6. Lumped equivalent circuit for a transmission mode spectrometer néar a reso-
pance. ¥y is the output voltage of the millimeter wave source, R; is the source resistance, L¢
and C, are the equivalent inductance and capacitance of the resonator, R is the resonator
resistance, and R, is the load resistance of the detector. The mutual inductances M; and M,
model the coupling into and out of the resonator.

the resonator. In Section V, we found it helpful to model a quasioptical
system as a transmission line, where the beam waist plays the role of the
characteristic impedance, in order to understand the results of the beam-
waist transformation calculation. Here, we will model the spectrometer by
an equivalent circuit in order to gain insight into the factors that influence
spectrometer performance when we vary the coupling into and out of
the resonator.

We may subsume all of the complexity of the full electromagnetic wave
description of the Gaussian beam and its coupling to various elements of
the resonator into two phenomenological constants: the mutual induc-
tances M, and M, of Fig. 6. This procedure is equivalent to that used to
model variable iris coupling into a waveguide cavity, for example.

Once we have an equivalent circuit, we may manipulate the circuit
equations to explore the effect on spectrometer performance of changing
the values of circuit elements. It would be useful to have a variable
coupling scheme in order to tune the spectrometer for optimum perfor-
mance, just as in the microwave spectrometer case. Such a scheme is
described in Section X.

We may write a lumped equivalent circuit for the resonator and coupled
transmission lines following the prescription in RLS-8 (Montgomery et al.,
1948) as shown in Fig. 6. At resonance, the power P, into the load
resistance R, is found from

___4BiBPy
(1+8,+8)

L

(57)

where P, = V?/4R;. The quantities B, and B, are the coupling parame-
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ters to the resonator, and they take the values
w*M?

B RgR.

_ Y

" Or,
M}

B R.R:

Qv

Ox,

where it is assumed that R and R; have been matched to a transmission
line of characteristic impedance Z,. The Bs give the radiation Qs directly
if the unloaded Q is unknown. We may define a transmission loss function
T(wq) = P, /P,, which gives, for the optimal coupling case, B, = B, = 1/2,
Top(wy) = 1/4, or —6 dB. The optimal coupling case also corresponds to
an unloaded Q, O, = 2Q,, as one may see from the formula for Q, :

1 1 1 1 (60)

O, Qv Qg Qg

Qy = QL(1 + Byt .Bz) (61)

If we measure the power incident on the detector, therefore, we can
estimate B from the expression for the transmission loss assuming that the
couplings are the same. Using the estimate of 8, we can then calculate the
unloaded Q from a measurement of the loaded Q.

The quantity Q;; may be written in terms of the circuit parameters of
Fig. 5 as Oy = wL/R,. The inductance of the cavity may be found by
calculating the flux passing through a strip normal to the E field and the
optical axis in the resonator of width A/2, multiplying by the mode
number g, and dividing by the current flowing in the cavity i, =
(Vs/Rs)W(By) /A + By + B,). Crudely speaking, the magnetic energy
stored in the resonator may be found from the energy stored per mode
(w¢B}/16X\/2) times the mode number g. The peak power stored in the
resonator is then

B

(58)

B,

]

(39)

cW2B?
Pstored = 16 q (62)

where B, is the average peak FIR magnetic field in the resonator and w2
is the average waist radius in the resonator. We may calculate w2 from
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Eq. (20) as :

W = wg(%)fod/’“[l (2] de
=w3[1+ %(iﬂ
Zﬂ/

w; (63)

u
W

for d approximately equal to the confocal separation. In terms of the
observed finesse, we may write

Qu=97(1+ B+ B,) (64)

Our spectrometer has a measured T{w,) = —23 dB, from which one
may infer a 8 = 0.038 and Q;, = Q,. (See Earle et al. (1996b) for a more
complete discussion.) Such a high value of transmission loss also has been
measured for other millimeter band waveguide-coupled resonators (Goy,
1983). In Section XI, we discuss methods for lowering the transmission loss
by dispensing completely with waveguide coupling. The loaded Q is ap-
proximately 200, which implies that the unloaded Q of the resonator in the
presence of a large sample is also approximately 200, that is, 70, = Qy-
The measurement does not correct for the perturbing effect of the
chopper on the fields within the quasioptics, however, We must therefore
regard the B values as suggestive, not definitive. The principal advantage
of such low coupling parameters is that Q, is not particularly sensitive to
cavity drift. In fact, we are able to collect spectra over a broad temperature
range without retuning the resonator. Working at low temperatures does
require more frequent tuning, however. Nevertheless, it is still possible
to collect low-temperature spectra for approximately a half hour
without retuning.

Variable coupling, as discussed in Section X, would allow us to optimize
the coupling for each sample. We will examine the effect of variable
coupling on the sensitivity and the B; at the sample in Sections VIII
and XI.

VIIL Spectrometer Sensitivity

The expression for the resonator Q in the presence of a sample may be
found by defining the sample quality factor as the ratio of energy stored in
the cavity to energy dissipated in the sample due to EPR absorption, which
may be related to the filling factor 5 and the rf susceptibility y”, namely,
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Q, = 1/7mx". Recall that we have combined the nonresonant contribution
to the sample Q with Q. The expression for the loaded Q then may be
modified as
1 1 1 1 1 (65)
— =t —  — + —
QL QU QR1 QR;, QX

Dielectric losses also may be combined with Q. We will show in the
sequel that the spectrometer sensitivity depends on the fractional change
in the loaded Q as the sample goes into and out of resonance, whence one
may readily write

AQ, _ (@) x"m
o L+(Q)x"n
The change in rf voltage at the detector due to a change in the loaded Q
may be calculated easily from the equivalent lumped circuit for the

resonator, where the resonance absorption may be modeled as a small
series resistance 8R. The detector voltage is

Vv, 2P (oM)(0®M,)/RsR, o
VR, @M/Rg+Rc+ SR+ o’M,/R, (67)

(66)

where P, is the available power of the FIR source (V/4R,). We may
now easily derive the change in the detector voltage (for small SR):
AV, /V, = AQ, /Q, . Inserting the expression for the change in Q due to
resonance absorption, we find

N ) e
_‘/R—T—'_}:—(QL)X 7 (68)

using Eq. (66), where we assume ny" < 1.

The sensitivity limit corresponds to a signal-to-noise ratio of 1: 1, which
may be modeled by assuming a Johnson noise source at T, of resistance
R, , where T; may be calculated from the noise equivalent power of the
detector, assuming that 7, has a 1/f,.,s modulation frequency depen-
dence. For a modulation frequency of 100 kHz, we measure T, =~ 10’ K.
This should be compared to X-band detectors, which typically (Abragam
and Bleaney, 1970, pp. 125-132) have a noise temperature =~ 10° K. FIR
homodyne detectors are intrinsically noisier than their microwave fre-

quency counterparts. Equating the Nyquist expression for the Johnson

nogse in a bandwidth Af to the change in voltage at the detector due
to the resonance absorption leads to the following expression for the
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minimum observable rf susceptibility:

1 (1+8,+8,) (kﬁTD Af)l/2
nQ; \/31 B, Py

where it is assumed that the detector is the dominant noise source in the
spectrometer. If we choose optimal coupling B, = 8, = 1/2, then the
expression for x.;. becomes

min TIQL PG
For lines that are not too broad (Abragam and Bleaney, 1970, p. 126),
we may approximate x” = yo(w/Aw), where x, is the static susceptibil-

ity, w is the Larmor frequency, and Aw is the linewidth. In this regime,
therefore, we may write

Ao 1 (148 +By) (kBTD Af)l/2
Xo = ——

0 w nQ \[B1 B, Py

If, in addition to the foregoing assumptions, we may use the Curie
expression for the static susceptibility, then we may calculate the minimum
observable number of spins '

N L WeksTs Ae 1 (1+5+5y)
" gBIS(S + 1) o 70, \/Bl B,
where Vs is the sample volume and T is the sample temperature.

One may include the effect of the modulation amplitude on the mini-
mum detectable number of spins, for modulation amplitudes less than the
linewidth, by multiplying the expression for N,;, by a factor (Poole, 1967)
AHPp/ Hmod

Finally, we may normalize by the multiplicity of the hyperfine lines in

nitroxides by multiplying N;, by 25 + 1. Putting all the pieces together,
we have an expression that may be compared to experiment, namely,

o Wekals(3S +1) AH, AH,
me gBES(S+1)  H, H,,
1 (14 B+ By) [ kgTy A2
x (73)
nQ, \/ﬂl B, Py .

Assuming a g =2 system with a 1-G linewidth at 89 T using a
0.5-mM sample near room temperature, a large filling factor 7 = 1,

"o
Xmin =

(69)

(70)

(71)

KTy A7\ V2
- )(m
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a sample volume approximately 0.5 cm?, Q, = 200, a modulation
amplitude = AH /10, coupling factors B = B, = B, = 0.04, a noise tem-
perature T, = 10% K for A Schottky detector, a postdetection bandwidth of
1 Hz, and an FIR power of 3 mW leads to N, = 10", This value
corresponds to a motionally narrowed nitroxide spin probe in a low-loss
solvent. The experimentally observed N = 10", Given the uncertain-
ties in the various parameters as well as the neglect of the noise figure
contribution from the postdetection chain, the agreement is satisfactory.
Using optimum coupling will reduce N,;, by a factor 4y/B8, B, /(1 + B, +
B,). If we take B, = B, = B = 0.04, then NSV = 2 X 10°. Increasing the
Q. by a factor of 10 will reduce N{ = 2 X 10%, which compares with
the expression for the optimum sensitivity of a Fabry—Pérot resonator in
the FIR (Lebedev, 1990). If we assume that the same scaling obtains for
the observed N,;,, N{%%, then for an optimally coupled resonator with
Q. = 2000, we predict N = 2 X 10°, with all other parameters fixed,
which is comparable to N at 150 GHz for a Fabry-Pérot resonator
(Lebedev, 1990): N5 (150 GHz) = 2 X 10°. In our experience, use of an
InSb bolometer detector will reduce these values of N, by about a factor
of 4.

From Eq. (73) it is clear that there are other ways to reduce N; . One
can work at higher powers, at least until saturation occurs, or use a
detector with lower noise temperature or both. Before purchasing a higher
power source, one should check carefuily to ensure that the detector
petformance is not limited by higher power levels. Schneider (1982)
discusses the performance of millimeter wave diodes in detail.

A large background power, which is an ineluctable consequence of the
transmission mode, can dramatically reduce the sensitivity of diodes oper-
ated as detectors. The signal current [ that flows in the detector is given
by (Schneider, 1982)

I = BP, (74)
e R f -1
ﬂ= anBT(l'*'k-;){l'f' (f—.c‘)} (75) R
Ry = —2al ' (76)
B e(ly + L)
R, =Ry + Ry (77)

where P, is the power incident on the detector, B is the current responsiv-
ity of the diode, which is typically 1 uA/uW, e is the elementary charge of
the electron, n is the ideality factor of the diode, which is close to unity in
a good design, k; is Boltzmann’s constant, T is the temperature of the
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diode, R; is the spreading resistance of the diode, which is typically 5 Q,
Ry is the base-band dynamic resistance, which is typically 5000 Q for
incident powers up to a few microwatts, f is the frequency of the incident
power, fc is the cutoff frequency of the diode, which is approximately 1
THz for near-millimeter diodes, and I, is the dc bias current, which is
typically on the order of a few microamperes. _

The figure of merit for a millimeter diode operated as a detector is the
video resistance R, which in turn depends on Rj, which has a significant
power dependence for high incident powers through its dependence on I.
The current responsivity B is only weakly dependent on the incident
power, and we will take it be 1 uwA/uW for this analysis. For an incident
power of 1 mW, Eq. (74) implies Iy = 1 mA, and we may use Eq. (76) to
show R = 25 (). For an incident power of a few microwatts or lower, Eq.
(76) shows that Ry is essentially independent of input power and equal to
5000 €). Hence, high incident powers reduce the video resistance.

The minimum detectable signal for a detector is given by (Schneider,
1982)

(78)

, 1 (4kBTAf)V2
f, min B RV

where Af is the receiver bandwidth at the signal band, which is approxi-
mately 100 GHz for the WR-4 waveguide used in the fore-optics before
the detector diode. Equation (78) may be rewritten to estimate the ratio of
minimum detectable powers for high and low background powers at the
same receiver bandwidth PPl = P, ..(25 Q/ 5000 Q)/2, which trans-
lates into a reduction of P, ., by a factor of 16 if we optimize the
incident power on the detector.

We choose our cavity coupling 8 = 0.04 to limit the incident power on
the detector and thereby maintain its sensitivity. The price we pay is
reduced B, at the sample as we subsequently will show. The most practical
way to maintain high sensitivity without sacrificing source power is to work
in reflection mode. A well matched resonator will have a reflected power
of —30 dBc or lower, which corresponds to power levels of 1 uW or lower
for a source power of 0 dBm (1 mW).

We discuss in Section IX techniques for constructing a reflection mode
spectrometer based on quasioptical techniques that will have a receiver
input bandwidth Af = 25 GHz. The quasioptical component that accom-
plishes this function is a Polarization Transforming Reflector (PTR) dis-
cussed in Howard et al. (1986) We use the PTR as a wave plate that rejects
noise_components outside of a narrow band. We discuss this point further
in Section IX. Based on Eq. (78), this should allow a further reduction in
P min by a factor of 2 compared to the current spectrometer. We may
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summarize the discussion as follows. A reflection mode spectrometer has
an intrinsically lower background and noise input bandwidth than an
optimally coupled transmission mode spectrometer. Based on the discus-
sion after Eq. (78), the low background of a reflection mode translates into
a factor of 16 reduction in N,;, vis-3-vis an optimally coupled transmission
mode spectrometer. Furthermore, reducing the bandwidth of the receiver
from 100 to 25 GHz will reduce N,;, by a factor {100 GHz/25 GHz = 2
[cf. Eq. (78)]. The total reduction in N, will be a factor of 30 by
combining the two effects, or NI =6 X 10% spins. This leads to a

mi

predicted observable NS° of about 6 X 107 spins if we use the same
scaling arguments as in the preceding text. (Again, use of an InSb bolome-
ter should reduce these values of N_;, by about a factor of 4.)

Let us now calculate the B, that we can achieve at the sample. We may
use the equivalent lumped parameter circuit in Fig. 6 for this purpose. The
power dissipated in the resonator may be written in terms of measurable

quantities as

4Py B,
(1+ B, + By)°

We have already calculated the power stored in the resonator in Eq. (62).
If we define the unloaded Q as the ratio of power stored in the resonator
to the power dissipated in the resonator, then we may express B, using
Egs. (62), (64), and (79) as follows:

Pstored = QUPdiss

(79)

diss

—2n2
cwy By B
— — =4P, F—————
16 " 1+ B, + B,
b= 8\/ e 1+B+ B, (80)

Some typical numbers are Py = 3 mW, & = 10, W = (4/3) X (2.2 mm)?,
and B, = 0.04, from which we may derive B, = 19.4 mG. For the optimal
coupling case B, = B3, = 0.5, the optimum B; = 52 mG for fixed finesse,
beam waist, and power.

In order to see if such a value of B, would cause spectral saturation, we
may estimate the corotating component of the rf magnetization from the
Bloch equations (Abragam and Bleaney, 1970, pp. 115-119), whence

"B vB,T.
XA = 21 22 (81)
M, 1+ y*BiT\T,

which is maximized when y2B?T,T, = 1. Under this condition, we may
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write an expression for the generator power required to maximize x” for a
given T}, namely,

{1+ B+ B,) i 1 (82)
0 64v°F BT, T, _

If Py =3 mW and we assume a linewidth of 1 G, then x" is a maximum
for T, =4 X 107* s. Since T,s are usually shorter than this, spectral
saturation should not be a problem. In the optimum coupling case 8, =
B, = 0.5, there will be no saturation for Pg =3 mW if 7; <5 X 107 s.

IX. Reflection Mode Spectrometer

In this and the following sections, we will discuss a novel approach that
will allow the spectrometer to be operated in the reflection mode, shown in
Fig. 7. In Section VIII, we already calculated the expected gain in sensitiv-
ity from changing to the reflection mode. In this and the following
sections, we will discuss the quasioptical components available to perform
the required signal processing. Finally, we will present a design specifica-
tion that allows us to demonstrate the advantages of quasioptical design
techniques in a practical application. A broadband spectrometer based on
these principles has been built and tested at 170 GHz. See Earle ez al.
(1996b) for more details.

In a reflection mode spectrometer of high finesse ¥ or quality factor Q,
the reflected power when matched on resonance is many decibels below
the incident power, which reduces the noise floor by many decibels with
respect to a transmission mode resonator. When the ESR sample is
resonant, the residual resonator mismatch changes, which causes the
reflected power to change, and a small signal on a low background is
presented to the detector. In order for the signal to be detected, however,
it must be discriminated from the radiation incident on the resonator, just
as in a conventional reflection mode ESKR spectrometer.

In optical terms, we need some means of transmit—receive duplexing,
This is especially important for millimeter wave diodes, which may be
burned out (Chester, 1988) if the incident power is above 0 dBm (1 mW)
and for millimeter wave vacuum oscillators, which may be damaged by
back-reflected power (Griffin, 1995). At conventional microwave frequen-
cies, we may use ferrite circulators or a “magic” T in order to perform the
duplexing. We present a new approach to the duplexing needs of ESR
spectroscopists in the FIR by using polarization coding to perform the
duplexing function. In order to code the radiation incident on and re--
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FiG. 7. Simplified optical layout for a reflection mode spectrometer with polarization
coded duplexing. Polarizer P passes radiation linearly polarized at 45° (L,s.) with respect to
the normal to the plane of the page. The polarization-transforming reflector PTR converts
linearly polarized light to left-hand circularly (LHC) polarized light. Upon reflection from the
Fabry~Pérot interferometer (FPI), the radiation is right-hand circularly (RHC) polarized.
After the second pass through the PTR, the polarization vector is rotated by 90° with respect
to the incident radiation L _,s. This polarization state is reflected by polarizer P into the
detector D. The diverging lines in the FPI indicate the presence of diffractive beam growth
that is controlled by the curved mirror M,. The reflectivity of M, may be varied to adjust the
coupling into and out of the FPI as discussed in the text. A working implementation of this
concept is described in detail by Earle et al. (1996b).

flected from the resonator, the polarization of the reflected power must be
different from the incident power. If we use linearly polarized radiation at
the resonator, polarization coding is impossible with passive, linear ele-
ments. In such a situation, we might use a power division interferometer,
such as a Michelson interferometer, which uses a dielectric beam splitter
as the millimeter wave equivalent of a “magic” T in order to separate the
reflected power from the incident power. A simple amplitude division
beam divisor does have a significant disadvantage, however, as we discuss
further in the sequel.

Although all laboratories that perform high-field ESR have experi-
mented with Fabry—Pérot resonators instead of fundamental mode
microwave cavities, few laboratories have as yet explored quasioptical
implementations of common microwave devices such as a “magic” T or
circulator in an FIR-ESR spectrometer (see Earle and Freed, 1995;
Earle et al. 1996b; Smith, 1995). Part of the problem is the unfamiliar
appearance of optical circuits to spectroscopists who are only familiar with
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microwave circuits. One of the goals of this chapter is to acquaint
the reader with the quasioptical synonyms of conventional microwave
components. ‘

At first sight, it may seem surprising that a Michelson interferometer
may be thought of as a “magic” T. However, any microwave component
fabricated from a waveguide has a quasioptical counterpart, as discussed in
Martin and LeSurf (1978). For the purposes of duplexing,-however, a
Michelson interferometer may not be the best choice. A conventionally
configured Michelson interferometer returns half of the signal and half of
the power to the source. Loss of signal reduces the sensitivity of the device,
and reflected power can reduce the lifetime of the source, unless one uses
an isolator, which typically has a nonnegligible insertion loss.

The layout for a novel scheme that overcomes the limitations of a
Michelson duplexer is shown in Figure 7. The most important element of
the spectrometer in Fig. 7 is the polarization-transforming reflector (PTR),
which functions as a quarter-wave plate in this configuration. We will defer
a detailed discussion of PTRs for the moment and focus instead on its
functionality. To that end, consider Fig. 8a, where we have “unfolded” the
optical layout between the PTR and the Fabry—Pérot interferometer (FPI)
in order to see the evolution of the electric field polarization more clearly.

The FPI and the PTR both are devices that operate in reflection as we
have configured them, so we must pause a moment and consider the effect
of reflection on an arbitrary polarization vector. At the surface of an ideal
conductor, which is a good approximation for the near-millimeter band,
the tangential electric field must vanish. We will use a coordinate system in
which the z-axis is always in the plane of incidence of the radiation. The
plane of incidence is defined as the plane that contains the direction of
propagation of the radiation and the normal to the reflecting surface.
Figure 8a shows how this convention works in practice. The z axis is always
along the direction of propagation. We choose the y axis to be normal to
the plane of incidence and always in the same half-space, regardless of the
direction of propagation. Finally, the orientation of the x axis is chosen to
be normal to the local y and z axes, such that the triad of vectors xyz
always forms a right-handed system. This convention is consistent with that
of LeSurf (1990), which is optimized for discussing polarization processing
elements that operate in reflection. The notation of Earle (1994) and
Hecht and Zajac (1979, pp. 268-270) is best suited for discussing polariza-
tion processing elements that operate in transmission, although any con-
vention will do, as long as it is applied consistently.

Let us now trace the polarization evolution of a Gaussian beam as it
traverses the optical system shown in Fig. 7. Polarizer P passes radiation
linearly polarized at 45° (L,s) with respect to the normal to the plane of
the page. The polarization-transforming reflector (PTR) converts linearly
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FiG. 8. (a) The polarization evolution of a Gaussian beam as it traverses a polarization-
transforming reflector (PTR) and Fabry-Pérot interferometer (FPI) operating in reflection
mode. Initially, the beam is linearly polarized at +45°. The exit beam is linearly polarized at
—45°. The dotted lines indicate a polarization component that is retarded by a quarter period
with respect to the polarization components indicated by a solid line. The optical layout
shown here is an “unfolded” version of the polarization coding duplexer discussed in section
IX. We have unfolded the layout in order to indicate more clearly how the polarization
develops. In the physical realization of this device, the FPI reflects the Gaussian beam back
toward the PTR, the optical path retraces itself, and the exit beam propagates antiparallel to
the initial beam with a final linear polarization rotated by —~90° with respect to the initial
linear polarization. (b) The optical path difference and the beam separation between
the reflected and transmitted portions of a Gaussian beam incident on a polarization-
transforming reflector (PTR). The optical path difference 4.5 = 4B + BC — AN is 2t cos &,
where 4 is the angle between the wave vector of the incident radiation and the normal to the
plane of the PTR and ¢ is the separation between the grid polarizer P and the mirror M. The
geometrical phase difference 4 = k A= 4wt cos#/A. We ignore contributions to ¢ from
terms = A%/z, <« 1, where z, is the confocal distance. The beam separation d = 2t sin 3.
The dashed line indicates radiation linearly polarized at an angle of 45° with respect to the
page surface. The thin solid line indicates radiation linearly polarized in the plane of the page
and the thick solid line indicates radiation linearly polarized normal to the page. [From Earle
et al. (1996b), by permission of the AIP.]
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polarized light to left-hand circularly (LHC) polarized light. Upon refiec-
tion from the Fabry-Pérot interferometer (FPI), defined by mirrors M,
and M,, the radiation is right-hand circularly (RHC) polarized. The
diverging lines in the FPI indicate the presence of diffractive beam growth
that is controlled by the curved mirror M,. After the second pass through
the PTR, the polarization vector is rotated by 90° with respect to the
incident radiation L _,s. This polarization state is reflected by polarizer P
into the detector D. The reflectivity of M; may be varied to adjust the
coupling into and out of the FPI as discussed in subsequent text. From a
“black box” point of view, we have passed linearly polarized light twice
through a quarter wave plate, which has the same effect as a single passage
through a half-wave plate, in order to rotate the linear polarization of the
exit beam by 7/2. The circularly polarized beam at the resonator is the
most efficient way to exploit the available power from the mm wave source.
The B, field at the sample is enhanced by a factor of 2!/% compared to a
linearly polarized beam. In the FIR, where source power is limited, this is
an important consideration.

In this configuration, the duplexer also isolates the source from the
deleterious effects of back-reflected power. Such a form of protection is
crucial for high powered sources such as extended interaction oscillators
(Wong, 1989) or backward wave oscillators. We see, then, that our polar-
ization-coding techniques have a number of advantages over conventional
methods of duplexing.

Another advantage of quasioptical duplexing over ferrite or waveguide
technology is that polarizers and other processing optics can be made with
very low losses and high power handling capability. For example, wire grid
polarizers transmit cross-polarized radiation at levels of roughly —30 dB
or lower (Goldsmith, 1982, p. 333) and have an insertion loss of 0.1 dB for
the transmitted polarization. We see that polarization duplexing is very
attractive in the near-millimeter band. Furthermore, ferrite- or
waveguide-based components are not- readily available above about
100 GHz.

Now that we have motivated the use of wave plates for duplexing via
polarization coding, we may focus on a practical means of constructing a
PTR. Figure 8b shows the optical layout of a practical, tunable PTR
operating as a wave plate in the FIR. Such a PTR is described in detail in
Howard et al. (1986). The phase shift between orthogonal linear polariza-
tion components at the output of the device is achieved by reflecting
x-polarized light with polarizer P in Fig. 8 and allowing y-polarized light to
acquire an optical path difference A% Note that this leads to a beam
separation d between the x and y components at the output of the device.
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We will discuss the effect of a finite d on the performance of a PTR and
discuss the conditions under which the beam separation may be neglected.

Figure 8b shows the optical path difference and the beam separation
between the optical axes of the reflected and transmitted portions of a
Gaussian beam. The optical path difference is

A =AB + BC — AN
= 2t cos & (83)

where 4 is the angle between the wave vector of the incident radiation
and the normal to the plane of the PTR and ¢ is the separation between
the grid polarizer P and the mirror M. The geometrical phase difference is

p=kAY
=4mtcos /A (84)

We ignore contributions to ¢ from terms = A.%/z, < 1, where z, is the
confocal distance. The beam separation is

d = 2tsind (85)

In order to proceed beyond a qualitative description of how a PTR
operates, it is convenient to use a mathematical description of coherent
polarization states, which are a good approximation to the output of
solid-state near-millimeter sources. The Jones vector formalism is well
known (Hecht and Zajac, 1979, pp. 268-270; LeSurf, 1990) and well suited
to the present purpose. Any transverse polarization vector can be repre-
sented by an equation of the form E = (E,, H + E,V), where H and ¥ are
the basis vectors of horizontal and vertical polarization, respectively. Note
that Ey and E, may be complex, which is useful for describing circular
polarization. In particular, E , = E,(H + iV), where the plus (+) indicates
positive helicity and the minus (—) indicates negative helicity.

A Jones vector is a matrix representation of E, namely,

Ey
EH] (86)
The Jones vectors of a horizontally polarized Gaussian beam E; and a

vertically polarized Gaussian beam E, of field strength E; at the beam
waist may be represented as

EV=ED[(1)]cxp(— ::2) (87)

T2
0
2

p
wo

EH=E0[(1)]exp(———) (88)
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where w, is the beam-waist radius. In terms of the previously used
coordinate system, [E, | = E, and [E| = E,.

In Section V we used the system transfer matrix to study the effect of an
optical system on the parameters of a Gaussian beam. A similar formalism
exists for studying the polarization evolution of a Jones vector as a beam
traverses a polarization-transforming system. In this case the system trans-
fer matrix is called a Jones matrix. The simplest Jones matrix is the matrix
that describes the polarization vector reflected from an ideal mirror. In
order to satisfy the boundary conditions of vanishing tangential E, we need

- -E
a matnx with the property #E = E ” |- The following Jones matrix has
H

the desired behavior:

= [‘01 ‘1)] (89)

A grid polarizer is the next object we need to consider. First we will
define the Jones vectors for linear polarization at +45° with respect to the

y axis. These cases correspond to the situation shown in Fig. 8a. The
required Jones vectors are

Ey (-1
ey
A grid' polarizer with the grid lines at a given angle ¢ with respect to the y
axis will reflect radiation that is linearly polarized along the grid lines. If

the gp'd lines make a +45° angle with respect to the y axis, we need Jones
matrices with the following behavior:

?(45)E45 =—-E_4
Z(45)E_4;5=0
Z(—45)E; =0
F(=45)E_4s= —E,q
A Jones matrix that has this behavior is
=172 F1/2
+1/2 172

We.will' not derive the form of & for an arbitrary inclination angle of
the grid wires. We may verify that Eq. (90) is a special case of the following

g(145) = ( (90)



MILLIMETER WAVE ELECTRON SPIN RESONANCE 303

general relation (LeSurf, 1990) for arbitrary grid orientation angle 3J:

—cos?® —cosdsind

Z(9) =
(#) cos ¥ sin & sin? &

(%1)

It is important to note that the preferred orientation of the grid for
nonnormal incidence is with the grid in the plane of incidence of the
Gaussian beam (Erickson, 1987). This corresponds to & = 90°. For this
orientation of the grid, nonidealities due to cross-polarized components
are minimized. The field transmitted by the polarizer is described by the
complement of the Jones matrix of the polarizer, namely, £7(3), which
has the functional form (LeSurf, 1990)

sin® @ —cos ¥ sin ¢
—cos 9 sin & cos? 9

#,(9) = (

The PTR shown in Fig. 8 can be analyzed along the lines indicated in
Howard et al. (1986). In our notation, we may use the Jones matrices of a
polarizer &, its complement £, and a mirror .4 to express E,, the output
beam of a PTR at the grid surface (where we may choose the beam radius
w = wy), namely,

E, = [#(8)exp(~p?/i)

+#Z; (0 )exp(—ig)exp( —(p - d)z/WS)]Ez (93)

where ¢$¢ is a factor due to the phase shift of the transmitted portion of
the incident beam, E; is the Jones vector of the incident radiation, ¢ is
given by Eq. (84), and d is the displacement vector of the transmitted beam
along the x axis of the reflected beam whose magnitude is given by Eq.
(85). We explicitly include the exponential factors exp(—p”/wg) and
exp(—(p — d)?/w?) in order to discuss the effects of beam displacement
on the performance of the PTR.

The ideal response of the PTR, (4, ¢), in the absence of beam
displacement effects, that is, wy — ®, may be written in Jones matrix
form as

(92)

P(0, ) = (V) + MG (F)e™® (94)

The deviation of the practical device from the ideal response depends on
the ratio d/w,. We will perform an analysis of Eq. (93) that will allow us
to estimate the bandwidth of the PTR. In particular, we will investigate the
influence of phase and amplitude errors on the achievable level of perfor-
mance. A high Q resonator will probably be the bandwidth-limiting
component in a practical resonator. Nevertheless, it is an important
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exercise to verify that the bandwidth of the resonator falls within the
bandwidth of the PTR. :

The second term on the right-hand side of Eq. (93) may be expanded in
terms of the Gaussian beam modes discussed in the Appendix. The vector
d in Eq. (93) represents a displacement of a fundamental Gaussian beam
along the ¢ = 0 or x axis. The beam radius w [cf. Eq. (20)] and radius of
curvature R [cf. Eq. (21)] at the output of the PTR are nearly identical for
the two components of the output beam because the path difference
AY < z,, where z; is the confocal length. Near the beam waist, R & ®
and so we neglect a phase correction in Eq. (93) that is proportional to
ik/2R. We include the phase correction in the subsequent analysis for
completeness, although its effect is small.

The phase and amplitude of a fundamental Gaussian beam shifted along
the ¢ = 0 axis by a displacement d at the beam waist may be written by
replacing p® with (p — d)? in Eq. (130) and setting p = I = 0. We may
approximate the phase and amplitude errors at the beam waist of such a

beam as
J 1 ik
P =P~ {57+ 3R
s o 1 ik
=\~ ING

2pdcos ¢ kw?
X 1+——————w2 1+l—ﬁ + - (95)

This is an expansion in powers of d/w. We have stopped at the linear term
because we expect the higher order terms to be small. Using the beam
modes described by Eq. (130), we may write a mode decomposition of
Eq. (95) as

1 ik
eXP(”(P—d)Z(;i + ﬁ))
= exp(—--:%){uoo + —:T ﬁun - ——‘ls—i—unl} (96)

where the function u,, is a Gaussian beam mode with radial mode number
p and azimuthal mode number / given by Eq. (130).

With an angle of incidence of 30° and a beam waist w.= 64, it is
possible to achieve d/w = 0.02 for a quarter-wave plate, which we will
take as a practical specification. The portion of the phase-shifted beam in
the fundamental mode of Eq. (96) may be used to calculate the polariza-

fow?
1+i—
12R)92’
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tion purity of the PTR output beam. We therefore approximate
p
- 4 _4.
E, uoo(x zexp( — )y)

= up(P (% + ) + P_(% - ¥)) (97)
where P, is the fraction of E, that has positive helicity, P_ is the fraction
of E, that has negative helicity, and

d2
Ea o0
which gives 20log,(P_/P,) = —70 dB for d/w = 0.02. The error terms
in u,; and u,, are essentially a power loss term and may be approximated
Pyss = 20log,o(d/w) = — 34 dB. This calculation shows that it is practical
to build a PTR that has an extremely pure polarization response and very
low losses to higher order modes.

In order to calculate the bandwidth of the PTR, we need to calculate the
phase error introduced in the phase-shifted portion of the output beam as
A varies. For a PTR operated as a quarter-wave plate, we write

e*s =~ i(l —i-A—)t

Ao (99)

which’ states that for small phase errors, there is a portion of the output
beam that is in quadrature with the desired phase shift. As AA - 0, the
phase error vanishes and the output beam is purely circularly polarized in
the absence of amplitude errors. '

‘We may study the cffect of phase errors on the polarization purity of the
fundamental by writing

um(f + i(l —i%i)y‘) =up[®, (£ +H) + D_(£~-H)] (100)
0
where ®,=1—~iAA/2), is the amplitude of output radiation that has
positive helicity and ®_= i AX/2 A, is the amplitude of output radiation
that has negative helicity. For AA/A, = 0.05, which corresponds to a
bandwidth of A, + 0.05A;, the power ratio of negative ‘helicity to positive
helicity is 10log,q |®,/®,1* = —32 dB at the band edge. At 250 GHz,
this corresponds to a bandwidth of 25 GHz, which is quite impressive for a
tuned device. .

We bave shown now that the PTR is a device with excellent polarization
purity over a broad frequency range and a low mode conversion loss. The
measured performance of a PTR in the near-millimeter band when used
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as a half-wave plate is discussed by Howard et al. (1986). Our initial results
(Earle et al., 1996b; Tipikin et al., 1996) are consistent with Howard’s
(1986) results. Nevertheless, we are working on improving the performance
of our PTR further. The ultimate performance of the PTR depends on the
ratio d /w, which may be optimized by using an angle of incidence as small
as practical and a beam waist as large as possible. It is also important to
ensure that the grid polarizer and flat mirror are parallel for optimum
performance.

X. An Adjustable Finesse Fabry-Pérot Resonator

In order to optimize the performance of the resonator as samples of
various sizes and loss tanagents are studied, it is useful to have a means to
vary the loaded Q of the resonator. As we discussed in Section VIII, a
poorly coupled resonator reduces the highest achievable signal-to-noise
ratio. ‘

One simple method for varying the coupling is to construct the res-
onator from two polarizers. We can show (Tudisco, 1988) that the finesse &
of such a resonator is proportional to cos?®, where 9 is the relative
orientation of the two polarizers. This device is the quasioptical analog of
the cavity coupling scheme of Lebedev (1990). There are several limita-
tions to this scheme as pointed out by the author, namely, the radiation
must be linearly polarized, which complicates transmit-receive duplexing
in a reflection mode spectrometer; on resonance, the power minimum
occurs in transmission, which precludes using the device in a reflection
mode spectrometer if we wish to work with low background levels.

What we need is an optical device that has greater flexibility than a grid
polarizer. One approach is to use multiple mesh resonators, which are
discussed in the set of papers by Pradhan and co-workers (Saksena e al.,
1969; Pradhan, 1971; Pradhan and Garg, 1976, 1977; Garg and Pradhan,
1978). The advantage of using meshes instead of polarizers is that meshes
have polarization-independent response at normal incidence. As we dis-
cussed in Section IX, it is desirable to use circular polarization to code the

- incident and reflected power. Furthermore, meshes allow the Fabry—Pérot

resonator to have a reflection minimum on-resonance. Thus, meshes are
the optical elements of choice to build a reflection mode spectrometer
with polarization coding. An interesting alternative implementation of
polarization-coding techniques is afforded by induction mode spec-
troscopy. Here, the sample is excited in one linear polarization state and
the ESR sample causes a response in the orthogonal polarization state.
The signal in the orthogonal arm may be easily separated from the
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incident radiation by means of a grid polarizer. Portis and Teaney (1958)
and Teaney, Portis, and Klein (1961) have implemented an induction mode
bridge with a cylindrically symmetric TE;; cavity at X-band. The quasi-
optical analog is a cylindrically symmetric Fabry-Pérot resonator with a
symmetrical, flat mesh for coupling. A quasioptical induction mode
spectrometer is discussed briefly by Smith et al. (1995). See also Earle
et al. 1996¢).

Treatments of wire meshes can be found in the books of Chantry (1984)
and in Goldsmith (1982, Chap. 5) and Holah (1982). These treatments are
based mainly on the original work of Ulrich and co-workers (Ulrich et al.,
1963; Ulrich, 1968, 1979), who derived an equivalent circuit analysis for
wire meshes that works quite well in practice.

The power transmissivity of a wire mesh 7; is given by

RI+ %7}
"W R) + 02 (101

where Z, is a characteristic impedance determined by the mesh thickness
and spacing,

Ta

-1
Zy= {1 — 1
0 [ncsc( 22 )] (102)
R, is a dimensionless correction for obmic resistance in the mesh material
and Q is the “generalized frequency”

wwy
OQ=— 5 (103)

0"~ wj

The quantity R, should not be confused with the reflectivity of the surface,
which is given by R; = 1 — 7;, where 1; is defined by egs. (101)-(105). The
wire mesh geometry is shown in Fig. 9a. In Eq. (103), w = g/A and o, is a
dimensionless correction factor near unity, which has been empirically
found to be (Ulrich et al., 1963; Ulrich, 1968, 1979) :

wg=1- 0.27(%) (104)

The correction for ohmic resistance can be estimated from the bulk
resistivity p of the metal as

dmecp\ m
= ( )‘ )—2' (105)
where 7 is a geometric factor equal to g/2a for inductive mesh and e is

the substrate permittivity. The correction is negligible for metals of practi-

z
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cal importance in the near-millimeter band. Figure 8b plots the reflectivity
as a function of mesh spacing and wire width for Ni mesh at 250 GHz
(A =12 mm).

We will now investigate a method for adjusting the coupling of the
resonator to the input optical waveguide. The reflectivities of the mirrors
that define the resonator determine the degree of coupling to the incident
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R, . R

FiG. 10. Planar Fabry-Pérot interferometer with mirrors of different reflectivity R, and
R,. The approximate condition for resonance is nkd = g, where q is an integer.

d

radiation, as we will show. The optical layout of a planar Fabry-Pérot
interferometer is shown in Fig. 10, where we assume that a dielectric of
thickness d and index of refraction n has identical reflective coatings,
which give rise to surface reflectivities R, and R, assumed equal.

The classical response of such a Fabry—Pérot interferometer is shown in
Fig. 11. Transmission maxima correspond to reflection minima and vice
versa. If the reflectivities of the two mirrors are unequal, then the reflected
power has a minimum that is different from zero. This case is illustrated by
Fig. 12a, where one mirror has a variable reflectivity 0.7 < R; < 0.9 and
the other mirror has a fixed reflectivity R, = 0.8.

We will now derive explicit mathematical expressions from which the
curves in Figs. 11 and 12 are derived. We consider first a two mirror system
where the amplitudes of reflection and transmission are given by r; and ¢,,
respectively, where the subscript i indicates mirror 1 or mirror 2. For
mirrors of high reflectivity, there will be many reflections within the
interferometer that will cause the apparent beam radius to grow. This
effect is shown in Fig. 12b, which demonstrates how the beam radius grows
with each round trip in the interferometer. We will account for this effect
quantitatively in the sequel.

At each mirror, the reflected or transmitted wave is multiplied by a
factor of r; or ¢; respectively. If the resonator has a large finesse, there will
be many reflections and transmissions. A simple case where r, =r, =r
and ¢, =t, =t is shown in Fig. 12b. Each reflected wave picks up an
amplitude coefficient r and each transmitted wave picks up a coefficient .
The individual waves are called partial waves. It is the sum of all of the
partial waves shown in Fig. 12b that gives the resonator its characteristic
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FiG. 11, Reflectivity and transmissivity of a planar Fabry~Pérot R = 0.8. The transmissiv-
ity is indicated by the dash-dot line; the refiectivity is indicated by the dashed line.

response. Before we can perform the partial wave sum we must include a
phase factor e’ to allow for a relative phase shift between partial waves
that have made a round trip in the resonator. Returning to the case where
the reflectivities of the two mirrors differ, we have, for the transmission
response,

E, = tity[1 + rirye®® + r2r2e 4 ... 1E;

1

L L S
E,
T2 = E
13
_ b .
1—rre? (107)

where we used the identity X7 _, z# = 1/(1 — z) when |z] < 1.
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Fig. 12. Fabry-Pérot resonator with one mirror of variable reflectivity r; and one mirror
of variable reflectivity r,. (a) Dashed line r;-= 0.9; solid line r; = 0.8; dot-dash line r| = 0.7
and r, = 0.8. (b) Planar Fabry-Pérot interferometer that shows the effect of beam growth
between the mirrors. The transmitted beam is a superposition of all the partial waves to the

right of m,.
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The amplitude of reflection may be found by following a similar proce-
dure. Up to an unimportant phase factor, we may write

E = (r1 - rztlze“‘[l +rret? + rirZe?® 4 ... ]]E

13

rl - rzeia
T 1-rre? & (108)
—nn
E,
P2 = E,
is
rl - r2e
T 1= r,rpe’® (109)

The reflectivity and transmissivity of-the resonator may be found
by calculating the squared modulus of the amplitude of reflection and
transmission. We find

X = l P12|2
- (110)
1T
2 (111)

" 1+ RR, - 2yR,R, cos 8

If we set R, = R, = R, we recover the standard result for identical mirrors
(Born and Wolf, 1980, p. 325). )

We define an effective mirror reflectivity for the two mirror resonator as
R = y/RyR,. Using this definition and the well-known half-angle iden-
tity sin®(8/2) = (1 — cos §)/2, we rewrite the resonance denominator in
the standard form, namely, (1 — Roz)* + 4R, sin%(8/2). If, in addition,
we define the coefficient of finesse F,iz = 4R /(1 — R_4)?, the transmis-
sivity becomes

T\T,/(1 — Ry)’

= 1+ Fsin’(8/2) (112)
1
T 1+ Fysin®(8/2) (113)

if Ry = R,. In this case, the transmission maxima are spaced by 27 in &
and the half-power points occur at 8 = 2mm + (8, ,,/2). If the coefficient
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of finesse is sufficiently large, the ratio of the fringe separation to the
width is -
& 27
eff — 61/2

Ty Fogt
2

where &, is the effective resonator finesse. If we could vary R,, say, then
the finesse of the resonator would be adjustable.

Suppose that the first mirror is actually constructed from two mirrors
with variable phase factor 8,. The reflectivity and transmissivity of such a
mirror are given by the foregoing formulae; the overall reflectivity and
transmissivity of the composite mirror/single mirror will be written by
substituting the expressions for the amplitude of reflection and transmis-
sion for the composite mirror into the expressions for the amplitudes of
transmission and reflection of the equivalent two mirror system, described
by a phase factor 8,. This is essentially an iterative calculation, and the
results (Garg and Pradhan, 1978) are

Iy = (T1T2T3)/[1 + R\R; + RyRy + RyR; — 2/R\R, (1 + R;)cos 8,
—2/R,R; (1 + Ry)cos 8, + 2R, /R3R, cos( 8, ~ ;)
+2y/R;R; cos(8; + 6,)] (115)
#y = 7/ (T T,T5) ] Ry + R, + Ry + Ry Ry Ry = 2/R R, (1 +R;)cos,
~2y/R,R; (1 + Ry)cos 5; + 2R,\/R3R; cos( 8, — &)

(114)

+2y/R,R; cos(8; + 8,)] (116)
where
41
8, = T (61 + ¢2)
41
8, = Tsz —(¢1+ ¢,)
s, = the separation between mirrors 1 and 2

§, = the separation between mirrors 2 and 3

and ¢, and ¢, are additional phase shifts suffered (or enjoyed) by the
partial waves upon reflection from the grids. The additional phase shifts
may be calculated for a particular mesh from the expressions of Saksena
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et al. (1969). For normal incidence, small grid spacing-to-wavelength ratio,
and mirror separations on the order of half a wavelength or larger, the

correction terms ¢, and ¢, are on the order of 1% or less (Saksena
et al., 1969),

XI. Optimization of Resonators

Using the tools developed in Section X, we will now address considera-
tions for choosing the optimum dimensions and parameters of a coupled
Fabry-Pérot interferometer (CFPI) shown in Fig, 13.

The design beam waist in the cavity and the design reflectivity of the
CFPI meshes are very closely related. The choice of these parameters for
optimal spectrometer sensitivity is largely governed by two competing
effects. First, Eq. (73) tells us that the minimum detectable number of
spins N, is inversely proportional to the loaded Q. The loaded Q in turn
is proportional to the cavity finesse, which increases with mesh reflectivity.
Therefore, meshes of higher reflectivity lead to smaller Npin- On the other
hand, higher mesh reflectivities require larger beam waists as shown in
Eq. (118). A larger beam waist will result in a smaller B, field for the
millimeter waves at the sample [cf. Eq. (80)]. Using Egs. (73) and (80), we
see that a smaller B, will reduce the sensitivity for nonsaturated lines.
Clearly, a careful consideration of the balance between these opposing
effects is required to arrive at sensible design parameters.

A given mesh reflectivity imposes a lower bound for the beam-waist
radius, below which appreciable coupling losses can occur. The basic
problem is that a Gaussian beam will continue to diverge upon repeated
reflection within a planar interferometer as shown in Fig. 12b. If the
spherical mirror of the cavity is designed to match the original (input)
beam waist, beam divergence will cause a mismatch at the output, which

R=20 -~ T~

separation 3\/2

FIG. 13. Schematic of a variable-coupling semiconfocal Fabry-Pérot sample cavity, Vary-
ing the separation of the two wire meshes changes the apparent reflectivity, The curved
mirror refocuses the radiation.
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essentially appears as radiative losses of the cavity. Amaud et al. (1974)
studied this effect extensively. For mirrors of reflectivity R,, and spacing
d, the coupling efficiency of an input beam with wavelength A and confocal
length 2z, to an output beam with the same parameters is given by

Ny = |C0|2, where

= Ry exp(imdmd /)
=(1-Ry)
Co=(1-Ry) L 1 - imd/z,

m=0

(117)

Armnaud et al. gave an expression that leads to the following criterion for
restricting the coupling loss to 1 dB or less:

02]/ dmda (118)
W, 2 U, ————
0 (1 "RM)

Optimization of R,, must take into account the sample cavity finesse,
which may be expressed in terms of R, and R, where R is the
reflectivity of the spherical mirror shown in Fig. 13, using Eq. (110) with
R = yRcpp Rs, and Ry is taken to be the maximal reflectivity of the
coupling FPI for a given R,:

4R,

B (1+Ry) (119)

RCFPI

the simple initial approach of optimizing the ratio (R, ) /w,(R,,), as
calculated from Egs. (119), (118), and (110). Figure 14 shows this ratio
plotted versus R,, for a range of spherical mirror reflectivities R;. We

also show the V& /w, ratio for the current transmission mode resonator.
From Fig. 14 we can see that an optimum R,, value does exist, which
depends on the reflectivity of the spherical mirror. For a transmission
mode resonator, a conservative design with modest Ry values near 0.90
would place Ry, in the range of 0.78-0.82. In a reflection mode design, in
which Rg = 1, significantly higher mesh reflectivities may be possible,
which also will require larger beam waists. In that case, it will be necessary
to take extra precautions to ensure that the sample is sufficiently large so
that the filling factor is not reduced. In Section VIII, we discussed the
reasons for using nonoptimum B, and & in the current transmission mode
spectrometer. In the future, however, we plan to exploit the higher B;s
that will be available from the quasioptical coupling design.

Equation (80) tells us that B, & V% /w, at the sample, and we can take
v )
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Fic. 14. Relative B; intensity in the coupling Fabry~Pérot interferometer (CFPI) as a
function of R,,. For a given Ry, the proper choice of mesh reflectivity of the flat mirror can

“enhance B, at the sample significantly.

X1I. Summary

We have presented a complete analysis of the Cornell mm-wave
spectrometer using quasioptical techniques. We also have developed
a quasioptical formalism with sufficient flexibility to predict the perfor-
mance of a novel reflection mode spectrometer with variable input cou-
pling and transmit-receive duplexing based on polarization coding and we
present a practical realization of these design concepts in Earle e al.
(1996b). At every stage we have chosen parameters that correspond to
practical performance values and measured response.

The treatment given here is self-contained, but the references contain
many useful extensions of our results and alternative treatments that may
deepen the reader’s understanding. We have tried, where possible, to take
advantage of EPR spectroscopists’ knowledge of microwave circuits and
analysis. As high-field ESR becomes more common, we predict that
analogies from other fields will continue to be a useful method for
extending the generality and utility of the method. Implementing the
advanced techniques discussed in Sections IX-XI will give significant
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improvements in signal-to-noise ratio as we have demonstrated elsewhere
(Earle et al., 1996b). :

Appendix: Higher Order Gaussian Beam Modes

In this Appendix, we will develop the mathematical background neces-
sary to study higher order Gaussian beam modes. We also will outline how
certain integrals that arise in beam mode analysis may be evaluated.
Because this material is a compilation from several sources, the original
works should be consulted for further details.

The vector Helmholtz equation may be rewritten in a form suitable for
evaluation in curvilinear coordinates as follows, using well-known vector
identities:

V(V-F) —VXVXF+k?F =0 (120

where F is a vector function of position. Equation (120) is a set of coupled

equations in a general curvilinear coordinate system. In cylindrical coordi-
nates, the p and ¢ components decouple from the Z component when F is
written in the form

P [;,{ws’"“’} +3f ;ji“mm¢¢}]fm-1<p,z) (121)

sin me

where m is a positive integer. We call such a function a transverse vector
function. The Hertz potentials for the dipole or fundamental Gaussian
beam discussed in Section III are a special case of transverse vector
function with m = 1. In that case, f, is the fundamental Gaussian beam
mode. Superpositions of transverse vector functions that satisfy the vector
Helmholtz equation are also solutions of the vector Helmholtz equation
because it is a linear vector equation. We can construct circularly polarized
transverse electromagnetic fields in this way, for example.

It is possible to show that the vector Helmholtz equation for a trans-
verse vector function reduces to the following equation for the scalar
function f,,_,(p, z) in cylindrical coordinates:

L 1o (o)) 2 e 0 (122
S P L A =
0 p ap 0’ 922 fu-1(p,2) (122)

We now see that our choice of index ¢n f,,_, is more than a convenient .

label: it characterizes the radial and longitudinal dependence of the scalar
part of transverse solutions of the vector Helmholtz equation.
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The scalar Helmholtz equation in cylindrical coordinates has the form

32 1 4 1 9% 52

—St-—+t = — + — 2|0 _
0 T o et T2 TK|s(pez)=0 (123)

We may rewrite Eq. (123) so that it is identical with Eq. (122) by the
following choice for the scalar function g( p, ¢, z):

g(p,0,2) =f,,(p,z)e'? (124)

where we have set / =m — 1 and p is an additional mode number that
characterizes higher order radial modes, as we will show in the sequel.

We may now derive the electromagnetic field of higher order transverse
Gaussian beam modes. In order to do so, we will use a technique
developed for Cartesian coordinates described in Marcuse (1975), but
adapted to cylindrical symmetry. For a system with cylindrical symmetry,
we may take a trial solution of the form

2

k
p =ﬁp(;(’#z)-)exp(i(z>(z) + 5557) +ip+ (I)(z))) (125)

where @ is an additional phase correction to the fundamental that will be
shown to depend upon the radial and azimuthal mode numbers p and [
respectively, where ¢ is the azimuthal angle. The function g corresponds,
to the scalar function  in Section ITI. This is a more general trial
function than the one we chose for the fundamental Gaussian beam mode
in Section IIL. The dipole field discussed in Section III is a special case of
Eq. (125), where [ = 0, ®(z) = 0, and fp=1

Upon writing the scalar Helmholtz equation in cylindrical coordinates
and dropping the 9%g/dz> term as discussed in Section II1, we find the
following equation for f; :

2

1 I ,
fip(§) = 26£i,(£) + e~ 71 ~()®f, =0 (126)

where £ = y2(p/w(z)) primes indicate differentiation with respect to £
the overdot indicates differentiation with respect to z, and Eq. (15) has:
been used to simplify Eq. (126). Note that the use of Eq. (126) implies that
the quantities derived from it, that is, R(z), the radius of curvature of the
Gaussian beam, and w(z) the beam radius, are the same for the funda-
mental and all higher modes of the Gaussian beam.
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In order to find an explicit form for f;,, we may use the trial function
fi, = €'L\(£?). After a tedious but straightforward calculation, we find

'L dL, L2 g
4x—F + 41+ 1-x)— 5 = 2L — W (2)dL, = 0 (127)

where x = £2. If we make the substitution 4p + 2/ + kw?(z)d = 0, then
Eq. (127) becomes Laguerre’s differential equation

2 dL}, ,
x—s +(l+1——x);— +pL, =0 (128)

Solving for ®, we obtain
z
=-Q2p+ l)tan‘l(;;) (129)

Putting all the pieces together, we obtain for the cylindrical Gaussian
beam modes

= sl s et ool - (5

' z kp?
+log—(2p+1+ Dtan™'| —] +
fevte = @1 a2+

(130)

X exp(i

We have now successfully reduced the vector Helmholtz equation to the
scalar Helmholtz equation for transverse fields. Under the conditions
derived in Section III, transverse fields are often an accurate description of
a Gaussian beam. In order to study the effects of diffraction on transverse
fields, we note that scalar diffraction theory is based on the scalar
Helmholtz theory (Born and Wolf, 1980, pp. 370~386). Thus, we may use
scalar diffraction theory with the function u to elucidate the effects
of diffraction on Gaussian beams that are well approximated by
transverse fields.

At this point, it will be useful to recall some of the properties of the
Laguerre polynomials. The Laguerre polynomials are a set of orthogonal
polynomials that satisfy the differential equation (Gradshteyn and Ryzhik,
1980, pp. 1037-1039)

d’u

du
xa?z—+(a—-x+l)a+nu=0 (131)
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A general form for the Laguerre polynomials is given by

1 g
L= - ex “dx"(e“‘x"“) (132)
- Y (=) nt )
L (-1 (n_m)m! (133)

where (":f;) is a binomial coefficient, n is the radial mode number, and

a is the azimuthal mode number. Explicit expressions for the lowest order
modes are

Ly(x) =1 (134)
Li(x) =a+1-x ' (135)
Li(x) =3(1 - a)(2+ a) = (2 + a)x - ix? (136)

We will be interested in the properties of so-called Laguerre functions
(van Nie, 1964) as well. They have the functional form

R3(x?) = x® exp( - 1x?) L2(x?) (137)
and are orthogonal in the sense that

|| REGH Ra(x d)

= [(Frep(-) L)L) d(x)  (139)
m + n)!
= 5" —(—;—)— (139)

where the final equality follows from Gradshteyn and Ryzhik (1980, pp.
843-848) and &, is the Kronecker symbol. The previous integral is also
useful for calculating the mode purity of a beam launched from a scalar
feed (Wylde, 1984).

The following integral from Gradshteyn and Ryzhik (1980, pp. 843-848)
is useful in the evaluation of the Fourier transform of a Laguerre function
as well as its convolution with a complex-valued Gaussian (Martin and
Bowen, 1993):

f:x"” exp(—Bx?)L:(ax?)J,(xy) dx

ay?

= 2 g a>"Y’°"p(_ZyE)L;[m] (o)
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Interferometer design often requires evaluation of the coupling between
Gaussian beams within the interferometer (LeSurf, 1987). Because the
integrand can always be reduced to a polynomial times a Gaussian in such
calculations presents no analytical challenges. However, we can simplify
even further; the orthogonality of the Laguerre functions upon integration
over the azimuth ensures that the polynomial is in powers of x2. The
following well-known integral is useful in such calculations on the assump-
tion that truncation effects may be neglected:

® n+1 2 _
fot exp(~at) dt =

If truncation effects may not be neglected, the integral may be written as
fo xPe”* dx, which may be evaluated by integration by parts.

The results collected here allow evaluation of the effect of higher order
modes in the design of quasioptical systems. It is important to note,
however, that the optimum performance conditions usually obtain when
the only significant mode is the fundamental L} mode.

(141)
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