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1. Introduction

In this paper we wish to present the theory for the very interesting phenom- '

enon of chemically induced dynamic spin polarization. We shall consider
both the NMR case of chemically induced dynamic nuclear (spin) polarization
(CIDNP) and the ESR case of chemically induced dynamic electron (spin)
polarization (CIDEP). This subject, which involves a combination of magnetic
resonance and spin-sclective reaction dynamics in liquid solution, now has
a large literature associated with it including reviews and books.'* We will
not try to summarize this literature here; the reader is referred instead to the
other sources especially for the extensive experimental results. We offer a
single coherent and unified treatment of the main theory. That is, we approac.h
the problem from a very general formulation, known as the sto‘chas.tlc
Liouville equation (SLE), in which both the spin dynamics and the diffusive
and reactive dynamics can be treated simultaneously and in great detail.*®
The many carlier simplified theoretical analyses of the radical-pair mechanism
(RPM) are in fact found to be based upon simplified submodels, which are
all naturally included in precisely their correct relative importance in the
general treatment, .

In our solution of the appropriate SLE, we have employed numerical
techniques extensively.>~® This approach allows virtually unlimited choice
in the selection of the features of the models; thus analyses may be made
without necessarily requiring specialized limiting conditions, and the gener-
ality of the results may be examined in the light of the different possib!e
descriptions. It turns out, furthermore, that an analysis of thcsci results is
often able to yield exact (as well as approximate) basic relationships for the
description of the CIDNP and CIDEP phenomena, which are ol.' considerable
utility. The dependence of these relationships (and the correctlon.s to thcr.n)
on the many details of the models can then be studied. From this ana_lysls,
a fairly clear picture of the basic nature and physical details of ?hemlca!ly
induced dynamic spin polarization by the RPM emerges, and this is also dis-
cussed. It is seen that the basic reencounter mechanism, wherein radical

YA, R, Lepley and Q. L. Closs, eds., “Chemically Induced Magnetic Polarization.” Wiley,

New York, 1973.
1A. L. Buchachenko, “Khimicheskaya Polyarizatziya Elektronov Ee Yader.” Moscow,
1974,
*R. G. Lawler, Prog. Nucl. Magn. Resonance Spectrosc. 9, Part 3, 143 (1973)
4J. H. Freed, Annu. Rev. Phys. Chem. 23, 265 (1972).
%J. B. Pedersen and J. H. Freed, J. Chem. Phys. 51, 1004 (1972).
*J. B. Pedersen and J. H. Freed, J. Chem. Phys. 88, 2146 (1973). (Hereafter referred 1o as 1)
?7J. B. Pedersen and J. H. Freed, J. Chem, Phys. 59, 2869 (1973). (Hereafter referred to as [1.)
* ). B. Pedersen and J. H. Freed, J. Chem. Phys. 61, 1517 (1974). (Herealter referred to as 111).
?J. B. Pedersen and J. H. Freed, J. Chem. Phys. 62, 1790 (1975).
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pairs initially in contact first separate and then reencounter, plays a central
(but not exclusive) role. The role of this reencounter mechanism was first - -
recognized by Adrian, and the reader is referred to his original papers for a
clear and simple introduction to it.!®'! This work is based heavily on the
original papers by the present authors, and the reader is referred to them3-%:12
for many of the éxtensive details omitted here.

We present in Section 11 a detailed exposition of the theoretical approach
based upon the SLE. The general properties of the solutions are also discussed,
A description of the basic results for the RPM, including the important
fundamental relationships and physical interpretations, is given in Section III.
Section 1V shows how one may introduce improved dynamics into the de-
scription and how this both affects the results and amplifies one’s under-

- standing. In particular, diffusion under interactive potentials, such as ionic

interactions, between radicals is considered. Also, the theoretically important
considerations are presented for a self-consistent model in which the spin-
dependent exchange interactions affect both the time evolution of the spin®
degrees of freedom and the reactive (spin-dependent) diffusion. It should be *
emphasized here that while the SLE approach is a very general one, the models
and interactions considered in detail, while chosen to be the more relevant
ones, are still limited for simplicity. In Section V we briefly discuss ways in
which they can be extended and improved. .
Recently, it has been realized that the RPM is not the only important CIDEP
mechanism. Wan and co-workers, in particular, have emphasized the likely
importance of initial triplet polarizations when radicals are produced photo-
chemically via intersystem crossing to an excited triplet state.!3 14 An analysis
of the orientation-dependent rotating triplet model! 16 jg presented in terms,;
of the appropriate SLE'® in Section VI. .
Finally, in Section VII, we discuss in detail the matter of the observed signal
intensities and their time evolution. This section is written in the spirit of
the *“two-time scale” approach, which is fundamental to much of the analysis
in this chapter. That is, the polarization generating process is considered to
occur very rapidly compared to other kinetic process (e.g., radical scavenging
and individual radical T,’s). Thus, one may solve for the long-time limiting
forms of the polarizations, and then incorporate them into more classical
type kinetic and magnetization expressions for the time evolution in the

19F. J. Adrian, J. Chem. Phys, 53, 3314 (1970); 54, 3912 (1971),

1F. J. Adrian, J. Chem. Phys. 54, 3918 (1971); 57, 5107 (1972)

'2). B. Pedersen, J. Chem. Phys. 59, 2656 (1973).

!35. K. Wong, D. A. Hutchinson, and J. K. S. Wan, J. Chem. Phys. 58, 985 (1973).

t4). K. S. Wan, S. K. Wong, and D. A. Hutchinson, Accounts Chem. Res. 7, 58 (1974).
3P . W. Atkinsand G. T. Evans, Chem. Phys. Lett, 25, 108 (1974);: Mol. Phys. 27,1633 (1974).
'¢J. B. Pedersen and J. H. Freed, J, Chem. Phys. 62, 1706 (1975),
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slower time scale directly amenable to experiment. The validity of the *two-
time scale” approach is discussed at the end of Section 111, where it is shown
to be usually, but not always, a good approximation.

H. Theoretical Approach

A. STOCHASTIC LiouvILLE EQUATION

The basic equation describing the spin dynamics of radicals under the
combined effects of spin interactions and diffusion in liqiud solution is the
stochastic Liouville equation (SLE) given in terms of the spin-density matrix

p(r1)*S:
BEt) @) p(ent) + DL D) + Hop(rur) D)

In this equation J#*(r)) is the Liouville operator associated with the spin
Hamiltonian J#(r,) (i.c., for any two operators A and B, A™ B =[4, B)).
We shall consider the interaction of a radical pair A-B, so we may write

H () = (1) + X @2

where #°(r,,r,) is that part of J#(r)) which is diagonal in a basis set of
coupled electron spins (i.c., singlet-triplet representation). (We use lower
case a and b to refer to radicals A and B. Later we specify a and b as particular
nuclear configurations of radicals A and B.) It is given by

> °(l'..l'...) = 4(9,+90) B h ™' Bo(Sys + Su.) + i({;,“;lﬁ;" Alll)(sn+sb)

—J(r,, 1) (3 +25,-Sy). 23
The off-diagonal part, #' of o (r) is independent of r and is given by

H' = 3(g,~go) B b Bo(Sy—Sur) + *(}I:.All]—;b"lll)(sn—sb)'
(24)

Equation (2.4) expresses the fact that #’ consists only of differences in
g-values and hyperfine energies between the two interacting radicals. J(r,,r})
in Eq. (2.3) is the exchange interaction between radicals A and B, which
depends explicitly on r,, r, (or, more precisely, on r the radial distance between
the radicals as well as their relative orientations). We have neglected in Eqs.
(2.2)«2.4) any intramolecular anisotropic g or A tensor contributions, which
tend to average out in liquids in times of the order of 10~ !°-10~'! sec. While
this is not rigorous, any effects from incomplete averaging should represent
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small corrections to the g,, gy, 4,, and 4, used in Eqs. (2.3) and (2.4). We also
neglect spin-rotational terms, since spin-rotational relaxation is even faster,
1, S 10712 sec. We have also neglected any polarization as well as relaxation
due to intermolecular electron—electron dipolar interactions which, like
J(r,,r,), are modulated by the relative translational diffusion of the radicals.
In neglecting dipolar interactions, we are guided somewhat by the fact that
for free radicals in normal liquids, the exchange mechanism usually pre-
dominates in the concentration-dependent spin relaxation. (These interactions
can, of course, be explicitly included, if desired, into the very general SLE
approach.) We further assume, for simplicity in most cases, that J(r,,r,) =
J(r), i.e., the exchange interaction is independent of the relative molecular
orientations and depends only upon radial distance r. Also in the analysis
of high-field experiments we need only consider the secular 4,1, S, -type
terms.

The operator DI, in Eq. (2.1) is the Markovian operator for the relative
diffusion between radicals A and B, i.e., the diffusion in the intermolecuylar
vector r. We first take this to be a normal Brownian diffusion process with
diffusion coefficient D = D, + D,, i.e., the sum of the individual diffusion
coefficients. This amounts to neglecting any spin-dependent effects on the

diffusive motion, which will be a good assumption when h|J(r)] <kT. In -

Section 1V, E we explicitly include their effects in order to obtain a self-

-

consistent SLE. The operator J is introduced as a generalized operator -
representing the reaction rate constants for the radical pair. It will, in general,

be spin dependent. We discuss its general features below.
The diffusion operator I, can be written in spherical polar coordinates in .

the form: .
L =T+ /0, 2.5)

where I, the radial part, is given by
I, = (1/r*)(@/or)r* (3/or),
while the angular part, I, is
I, = (1/sin6)(8/90) [sin 0(3/20)] + (1/sin0) (9%/09?). .7

Our above assumptions effectively allow us to write #(r,, r,) — J(r), so one
may integrate out the angular dependence (of 6 and ¢) in Eq. (2.1), leaving a
stochastic Liouville expression for

= iz
p(r,t) = (l/41r)‘[J do sinoj:) ddp(r,1) (2.8)

A

(2.6)

given by :
dp(r, )0t = —iA *(r)p(r,t) + DL, p(r, 1) + K, p(r, 1), 29

where we have also taken X, as orientationally independent for simplicity.
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The Laplace transform of Eq. (2.9) is
sP(r,s) = Po(r) = =i ™ (r) p(r,5) + D(@*[0r*) p(r, ) + X, p(r, ),
(2.10)

where
plr,s) = J'me""rp(r,t) dt = "‘Qe"'p(r,t) dt (2.11)
4 /]

and Py (r) = rp(r,0) gives the initial condition and d is the distance of closest
approach. Equation (2.10) is an equation in only the single spatial varjable r
as well as in the spins of the radical pair. One could solve Eq. (2.10) by
expanding p(r, s) in eigenfunctions of the diffusion operator (viz., a modified
spherical Bessel Function expansion; see Section V,A). However, we have
found it more convenient to employ a finite-difference techniquc. That is,
one writes

8*p(r,s)jor? = (1/Ar¥)[p(r—Ar,s) - 2ﬁ(r.s)+p(r+Ar,s)] 2.12)

where Ar is a small but finite increment in r. In principle, one must take Ar
small enough to properly represent the functions varying in r. In our case
J(r) is the most rapidly varying function of r, and this method allows one to
consider a wide range of functional dependences of J with r.

B. PROBABILITY FUNCTIONS AND POLARIZATIONS
The time-dependent total probability function is defined by

P(t) = Trp(1) (2.13a)
and the time-dependent polarization of radical a, or P,(¢), is given by
Pi(¢) = =2Tr{p(0)S,,) (2.13b)

(where the sign convention yields positive equilibrium polarizations P,,), and
where

p(1) = f‘ " rp(r,1) dr. (2.13¢)
The Laplace transforms of #(1) and P,(r) are then given by
A(s) = Tr[ f “rp(r,5) dr], (2.148)
4
P(s)=-2Tr [ f " rb(r.s) drS,,]. (2.14b)
d

The quantity P,(¢) is of fundamental importance for CIDEP, while we shall

see that the quantity .
F)=1-2(0)

is of fundamental importance for CIDNP, It is easy to see, by writing
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28,, = (S,;— Sp.) +(S,, + Sy;), that the expression Eq. (2.13b) is

il Py(t) = ~[psro()+Proes() + Lor_r. (1) ~pr,r, ()]  (2.152)
while A
Py(t) = +[psro()+Pros()] + [Pr_r.(D=pr, 7, ()]  (2.15b)

(1) = pss(t) + Prore(t) + Pr.v, () + pr_r_(2). (2.15¢)

In Eqgs. (2.15) S, Ty, and T} refer to the standard singlet and triplet states of
the radical pair, while p 4 refers to the ABth matrix element of p. One notes .
from Eqgs. (2.15) that the first bracketed terms yield opposite CIDEP polar-
izations for radicals a and b, while the second bracketed terms give identical
polarizations. In the high-field approximation the form of Eq. (2.4) means

that only S and T, states couple to give induced polarizations, while T*

states remain unchanged except when the initial triplet polarization is

operative (cf. Section VI). Thus for the high-field radical-pair mechanism

we can neglect the py, 1, (¢) in Egs. (2.15).

We note that while most of our analysis is given in the S, T, T, represen-
tation, it is often useful to interconvert between density-matrix elements in
that representation and those in the product representation of doublet pairs,
which we write 8s p,, _y; +0-b = Prazbi Pta, -t —a+ s €tC. The relationships
are casily obtained in the usual way for matrix transformations, and we give
the important ones here for convenience:

Also

Pri, T = Pat, bt
PTo. 10 = i(Pu,-b'*'P-.,ﬂ) + Rep gy -asb
Ps,s = *(Pu.—b"'l’--,ﬂ) - Rep,.,-.,,-.“,
Ps, 1o = ¥(Paa,~b—P-a,4v) +ilmp,, ¢ 0 44
Also:
Pia, 3o = i(Ps stPro,1e) RCPS.TQ

Pia,—bi-s,+b = ¥(Pro, 1o—Ps,s) + 1 Impg, 1.

One notes that the initial condition must be specified to solve Eq. (2.10). .
The precise initial condition one utilizes depends on the specific physical
model appropriate to the experiment. Thus, for example, one may have a
chemical reaction which produces radical pairs initially in pure singlet (or
pure triplet) states. Then the stochastic Liouville equation (2.9) or (2.10) is
solved subject to this initial condition, e.g., po(r)ss = 6(r—ry)/ro? where ryis
the initial separation. Alternatively, the polarization may be conceived of as
being generated whenever independently produced radicals approach one
another and have a finite probability of reacting. The initial conditions here
would then involve equal populations in the S and Ty, states, which is a direct
consequence of (1) having equal initial populations of states +a, —b and
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—a, +b and (2) having random initial phases, i.c., py, 34, 34:0(!=0) =0,
etc. Thus, the probability and polarization transforms 2 (s) and P, (s) may be
obtained from Egs. (2.10), (2.11), (2.14), and Laplace transform of Eqs. (2.15)
once the appropriate initial conditions are chosen. Then #(¢) and P,(¢) are
recovered by inverse transformation. However, we will find that we need just
the limiting values of #(¢) and P,(¢) as ¢ — o, which are

2 = lim 2(t) = limsP(s) (2.16a)
o -0
and
P,® = lim P,(1) = limsP,(s). (2.16b)

t~o 8~0
In the high-field approximation, when the T, states do not contribute to the
induced polarization, one has

P> =-2 li_l.l;SJ:mr Re[Psr,(r, )] dr (2.17a)
and we neglect the contribution's of the T, states in obtaining 2 as
= ll_r.n sJ:wr[pss (7, )+ Pryre(r,8)] dr. (2.17b)
We also have the quantl‘ty '
F=1-2 (2.17¢)

which is the total fraction of radicals that react.

C. StocHASTIC MATRIX AND BOUNDARY CONDITIONS

The application of the finite difference technique, expressed by Eq. (2.12),
is essentially equivalent to transforming thé continuous diffusion equation
(a Fokker-Planck equation) into a discrete Master equation involving a
transition-probability matrix W, coupling p(r,7) between discrete values
p(ro+jAr,1) where j=0,1,2,...,N. These discrete values form a column

vector p. Thus
D #*plor? - WP, (2.18)

If we let ry = d be the distance of closest approach, and if we do not allow
any net accumulation of radicals at this point, then this establishes a boundary
condition, which is formally equivalent to a reflecting wall. This condition is

0p(r,1)/0r)yaa = 0 2.19)
or, equivalently, '
0p(r,5)/0r), s — H(d,s)/d = 0. (2.19a)
In finite difference notation, Eq. (2.19a) becomes
{[A(d+Ar,s) — p(d—Ar,s))/2Ar) — [p(d,5)/d] = O (2.19b)

4
I
’,

’
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Then for r = d, Eq. (2.12) gives

D 3*p(r,5)[0r*), s = (DJAF?) {—2[1 +(Ar/d)] p(d, ) + 20(d+ Ar, 5))
(2.20)

where we have now climinated the p(d— Ar) term. ‘

In order to make the calculation tractable, one must limit the space toa
finite region, the outer limit of which is given by ry = ro + NAr. A choice of
the value of ry is guided by two considerations: (1) it must be large enough
that particles separated by ry exert no exchange interaction, i.e., J(ry) = 0;
(2) the probability ty, , must be small enough that particles separated by ry will
diffuse close enough (i.c., to rx) such that J(rx) & Q. One has #y x = rx/ry.!7
This second condition is needed to permit reencounters of the radical pair.
It is clear that a reflecting barrier at ry would induce physically unjustified
extra encounters (especlally as t— o), so an absorbing wall, or more pre-
cisely a collecting wall, is required. Thus, as ¢ - oo, the radical pair achleves
unit probability of being separated by ry > r,.

We now adopt the notation of writing A(ro+jAr,s) as p(j,s) and a
transition-probability matrix element of Win Eq. (2.18) suchas W, , 5, ., +4a
as W, ,. Then the collection condition at r = ry is

Wyn=Wy_yn=0, (2.21)

i.c., the radical pairs collect at ry and cannot diffuse back. The total W is then
given as a tridiagonal matrix:

=2[1+(Ar/d)] +2 W

| ~2 1
1o-2
D
Ar?
1 -2 1
1 -2 0
2 0

\

where the last row has been determined by the conservation of total probability -
requirement. (see below), which is slightly different from a reflecting wall
condition such as Eq. (2.20), but more desirable for convergence.

17J. M. Deutch, J. Chem. Phys. 56, 6076 (1972).

.22 -
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. ;
Note now that in the finite difference technique we approximate the integral
in Eqgs. (2.14) for #(s) and P, (s) as !

a N
J: rp(r,s)dr = ‘Z; V() pd,s), 2.23)

where V(i) is the radial weighting factor for the rth position. Specifically
one has
YV (0) = dAr/2,

V(i) = rAr,
V(N) = ryArf2,

Now the diffusion equation in the absence of spin-dependent phenomena is,
of course,

for 0<i<N. (2.29)

dp(r,1){dt = DI, p(r,t) - Wp(r,t) (2.25)

where p(r,t) = rp(r,t), and p(r,1) is the classical probability density. The
arrow in Eq. (2.25) just reflects the passage to a finite difference expression
[cf. Eq. (2.18)]. Then the consesvation of probability condition is'®

‘f:oV(i)Wu =0, for j=0,1,..N. (2.26)

That is, the weighted sum of elements of W for each column must be zero. The
W matrix given by Eq. (2.22) is seen to be in accordance with Eq. (2.26).

There is a convenient way of keeping ry large enough to satisfy the above
two conditions, while having Ar small enough to converge to the correct
solution, and yet keep N from getting too large. In the region where J(r) # 0
one has ro <r < ry with ry, € ry. In this region Ar must be chosen small
enough compared to the variation in J(r). However, for r,, < r < ry, where
J(r) =0, Ar can be taken much larger and still adequately describe just the
Brownian diffusion. We take the Ar in the latter region as f times larger than
that of the former region (where f ~ 10 to 100). Then Egs. (2.24) become

V(0) = dAr/2,
V() = r,Ar,

V(M) = ry(1+f) Ar[2,
V(i) = r, fAr, for M <i<N.

V(N) = ry fAr]2, (2.27)

The matrix elements of W are:again given as in Eq. (2.22) for r, < r,,. For

for 0 <i< M,

14 ). B. Pedersen, in “Electron-Spin Relaxation in Liquids” (L. T. Muus and P. W. Atkins,
eds.), Chapter Il1. Plenum, New York, 1972.

’
’
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r; > ry they can be obtained from the elements of Eq. (2.22) by dividing by 12,
The Mth row is determined by the conservation of probability [Eqgs. (2.26)]
with the ¥V ({)'s of Eq. (2.27). One finds

\ Wu,m-1 = [2/(1+)1(D/Ar?),
Wu,m = —(2/)(D/Ar?), K
Wy, ms1 = [2/(1+)S1(D/Ar?). (2.28)

D. THE MATRIX SOLUTION

One now needs the matrix elements of J#(r)*p. These are obtained,
utilizing Eqgs. (2.2)(2.4). One finds that

SS ST, TS T,T,
0 -0 0 0
-Q () 0 Qo
o 0 -2 -0
0 0 -0 0

for the subspace defined by the S and T levels. In the high-field approximation

this subspace does not couple to the remainder of the 16 x 16 dimensional

space needed for a complete representation of »#*. Furthermore, in this
approximation [J#*ply,r, =[#*plr.r. =0, so the T, states cannot

contribute to the polarization process. Note that in Eq. (2.29)

20 = (9,—9y) P.h™'By + (Zj:' AJ.MJ.";" AthMab) (2.30)

so 2Q is the difference in ESR resonant frequencies between radicals A and B
(when J = 0). Actually Eqs. (2.29) and (2.30) imply a particular configuration
of nuclear spin states in the two radicals labeled a and b, so this is sufliciently
general for considering the interaction of an arbitrary radical pair.

One easily finds, by transforming the matrix of Eq. (2.29) to a representation
of py = (2)""*(ps,stpr,,1,) instead of ps s, pr, 7, etc., that [#p], , =0,
which just expresses the conservation of spin in the reduced four-dimensional
subspace. In the absence of spin-selective chemical reactions which destroy
radicals, this can be used to convert the needed subspace to just three
dimensions. .

The complete solution given by Eq. (2.10) now becomes a matrix equation:

[s1-K' =W +iQ2]p(s) = p(0) (2.3])

such that the vector space in which p(s) is defined is the 4(N + 1)-dimensional
space formed from the direct product of the four-dimensional spin-space of

H(S,To) = 2.29)
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’

Eq. (2.29) and the (N + 1)-dimensional space of Eq. (2.22). The 2 in Eq. (2.31)
is block-diagonal, where each block is given by Eq. (2.29) for the particular
value of r. The W' in Eq. (2.31) is just the W matrix of Eq. (2.22) [as modified
according to Eq. (2.28) and the associated discussion], but with each element
replaced by the product of that element and a 4 x 4 unit matrix, since DI is
independent of spin. The K’ matrix is the appropriate form of the X', operator
as discussed below.

One solves the matrix Eq. (2.31) for the clements of p(s) or p(i, s) and then
the total final probability 2 is given from Eq. (2.17b):

N

P = "";S ‘ZOV(I')[ps.s(l--‘)"'ﬁroro(‘-s)] (2.32)
3~ =

since, as already noted, we normalize to unity only in terms of S and T, states,

neglecting the unimportant T, states. When K = 0, then there is conservation

of total probability

N
P(6) = L V) Ds.s(h)+ Prorali,)] = s (2.32a)
Similarly the polarization of radical a is given, from Eq. (2.17), by
P = -2lims 2 V(i) Re[Ps,(i,9)]. (2.33)
3~0 =0

- The vector p(0) in Eq. (2.31) consists of the initial conditions. One can
anticipate a variety of initial conditions, but since Eq. (2.21) is linear and
homogeneous in p(r, t), then one is free to superpose solutions for the simplest
forms of initial conditions to obtain solutlons for more complex initial
conditions.

E. GENERAL COMMENTS, X =0, CIDEP

If K’ =0 in Eq. (2.31), then initial conditions must be chosen to yield a
net excess of triplets or singlets. We show this by first rewriting Eq. (2.29)
in a coupled basis set as:

0o J 0 Ps, 1ot Pro.s
H(ST)p=(U12"Y]| J 0 -0 Ps,1o—Pros |- (2.34)
0 -0 0 Ps— Pt

The term in (ps+ py,) is uncoupled as already noted. 1t is clear then that the
initial condition p(0) in the same basis as Eq. (2.34) is, for pure triplets, thus
seen to be just minus that for pure singlets [note ps 1, (i, t=0) = 0] provided,
of course, the initial spatial distributions are the same. The superposition
property of the solution to Eq. (2.1) then means that P,(r) given by Eq.
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(2.15a) (recalling that T, states do not contribute) only changes in sign.
Any mixture of S and T, initial states then follows from the superposition.
Thus an initial random distribution of singlets and triplets cannot give any
polarization.

By similar arguments to that just given, one finds from the form of Egs.
(2.31) and (2.34) that the effect of letting @ — — @ is equivalent to changing
the sign of the polarization provided the initial condition is just some ad-
mixture of singlet and triplet states [with no initial polarization, i.c.,
ps,1(i,1=0) = 0]. [Similar conclusions may be obtained from Eqs. (2.15)
and (2.30) for the definition of Q.] The effect of changing J —+ —J is also seen,
from Eq. (2.34), to result in a reversal in sign of the polarization [provided

Ps,r(i,1=0)=0].

One can further show that, even for pure singlet initially, a uniform spatial - . .

distribution of radical pairs will not yield any polarization. In particular,
this means that there must be some initial preferential close separation of the
radical pair, as would naturally occur when the radical pair forms from the
cleavage of a parent molecule. We usually consider the case of pure singlet
(or pure triplet) at ro = d for which

Ps,s(1,t=0) = & o/V(0). (2.35)

Thus the CIDEP polarization process may be thought of as follows. Suppose o

a radical pair in the T, state initially formed from a cleavage. Then from
Eq. (2.34) one obtains Repy r,, required in Eq. (2.17), in two (quantum-
mechanically coherent) steps First there is a singlet-triplet mixing which we
shall refer to as “*Q-mixing,” i.e., -

Pre ‘__Q_‘____ Ps, 10 — Prto,s* (2.36a)

Then the process is completed by the effects of J(r) when the radicals are
close enough:

Ps, 1o = PTo,s L Ps, 1o + Pro.s: (2.36b)

As will be shown later, this is primarily due to reencc;unlers of the radical

pair. These polarization generating steps are the same as those originally
proposed by Adrian.'%!!

F. GeENERAL COMMENTS, X # 0

1. CIDEP |
One conclusion of Section 11, D was that no CIDEP polarization could be
created unless there was an excess of singlets or triplets. When two inde-
pendently produced radicals happen to collide, then there will be equal
probabilities of forming a singlet or each of the triplet states, and as a result

N
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no polarization. This situation however, is changed if the radicals can teact
via a selective chemical reaction, i.e., the probability for a reaction is higher
for singlets than for triplets (or vice versa). Such a selective reaction will have
the effect of eliminating some singlets at the first encounter leaving a net
triplet character. The situation is-now similar to what we have previously
considered. Therefore the polarization process may now begin. We will
follow the usual approach, by assuming that the probability for reaction is
proportional to the singlet character of the colliding radicals and also that the
radicals have to be within a certain distance to react, i.c., the “sphere of
influence.” Thus we define a “first-order chemical rate constant” k(r), which
gives the probability of the radical pair of singlet character reacting per unit
time as a function of the interradical separation r. It is necessary to introduce
this “‘rate constant” into a now nonzero K’ matrix to allow for the disappear-
ance of singlet (or triplet) at the first encounter as well as alf subsequent
radical-pair encounters. One may use a variety of forms for the functional
dependence of k(r) on r. We usually utilize the simple form:

k(r) = ké, q (237

80 the “sphere of influence” is just d to d+ Ar, with Ary = Ar.

We then may take as our initial condition the instant when the radical
pair first approaches the minimum separation d, since no polarization can
have been built up previously for random-initial singlet and triplet character.
Thus, our solutions based on Eq. (2.33) just give the total polarization
developed per radical-pair *“collision,” where by a single collision we include
the first encounter and al/ reencounters of the radical pair before it finally
diffuses away. This polarization also includes the effect of the chemical
reaction in depleting the total number of radicals.

2. CIDNP

In general, observable CIDNP effects require the existence of a spin-selective
chemical reaction for the radical pair. In particular, one observes the effect
of the @-mixing on the reactivity of the radical pair. Thus, suppose there is a
singlet reaction given by Eq. (2.37) and initially the radical pair is formed in
the T, state. Then, from Eq. (2.34) one notes that Pss» which can then react,
is generated in two (quantum mechanically coherent) steps via “Q-mixing”
or singlet-triplet mixing:

Q Q
Py ¥ Ps, 14 — Pr,s = pg — Pro- (2.38)

In general, we shall find that the Q-mixing is effective as the radical pair
separate, and a reaction will occur when the radicals reencounter.

The CIDNP phenomenon is best discussed in terms of the quantity & — #,,
where ¥, is the value of # calculated for Q =0, i.c,, it excludes any effects
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from singlet-triplet (S-T,) mixing. Thus & — %, specifically gives the extra
probability of reaction due to the S-T, mixing.

We calculate separate results for singlet (S) initial, triplet (7;) initial, and
random-initial (R.1.) precursors (equal amounts of S and T;). All other cases
are obtained as simple superpositions of these. (Of course, R.L. is a super-
position of S and T also.) We indicate results for #, etc., as #(S), #(T,),
etc., to indicate the particular initial condition utilized. :

One should note from our discussion given here, as well as the definition
of Eq. (2.17c), that & has the very important physical meaning of the prob-
ability that the radical pair reacts per collision, where by a collision we again -
mean the first encounter as well as all possible reencounters before the radicals

finally diffuse away. Also 2 is the probability that the radical pair will survive )

the collision without reacting.

Similarly, for CIDEP one may define a normalized polarization P |»
which gives the correct polarization for the radicals that survive the collision.
However, it will be shown in Section VII that the quantity most directly
related to experimental results is P,”/#.

G. ForMS oF X'(r) AND J(r)

There still remains a fundamental question as to the spin-dependent form
of the superoperator X", A sensible choice is

Hp = [-k()2LISH<S|p+p|S><SI] = [~k(n)/2]]S) <~‘>'l+p(2 )

which implies pss(d) decays with rate constant k(d) while Ps,1,(d) and

Pro,s(d) decay with rate k(d)/2. That is, the off-diagonal density matrix -

clements psy (d) and py,5(d) should also decay by a Heisenberg uncertainty
in lifetime effect given as the mean of the decay rate of S and T, states.

However, the self-consistent analysis, including spin dependence of the -

diffusion process (cf. Section IV, E), indicates that a more satisfactory rep-
resentation of X is given by

Hp = —k(r)|S)pss{S|, (2.40)

i.e., only the diagonal element pgs(d) decays. This matter will be discussed

further in Section 1V, and we shall favor the latter form, Eq. (2.40), in our

analysis. Also, this form leads to physically more easily interpretable results.
We usually employ an exponentially decaying exchange interaction

J(r) = Jye~ 29 (24))
with r.,, = 17! 5In 10 giving the range over which J(r) decays to 10~2 its

initial value. This form of J(r) is expected from valence calculations, and
one usually expects that r,, will be of the same order of magnitude as 4.

~t
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H. DIMENSIONLESS VARIABLES /

One may transform Eq. (2.9) into dimensionless form subject to the
reflecting wall boundary condition at r, = d by introducing

®(x,7) = (r/d) p(r,t) = (1 +X) p(r, 1) 242)

with dimensionless variables x = r/d—1 and © = Dt/d*. Then Eq. (2. 10)
becomes

o®(x,0) — Bo(x) = [—1(d*/D) 2 *(x)+(9*/dx*)+(d*|D) X;] D(x, 0)

2.43
where : @49
p(t) = L “dP(x+ 1) O(x, 1) dx Q.44)

and
- ®(xo)= f “d(x,1)e"" do L @45)

with ¢ = ds/D. The relevant independent dimensionless variables for P>,
#, and F then become: Jod*/D, Qu*|D, kd*|D, r,./d [or (Ad)~'], and
Ar,/d (also hJo/kT and Ar/d).

111. Basic Results for the Radical-Pair Mechanism

A. CIDNP

Our numerical results (where at ¢=0 the particles are in contact) may be
summarized by a series of relatively simple expressions.® First define

A = F,(S) 3.1
and
‘= 1"!: F (To) = lim [F (To) - Fo(T)]. (3.2)
- A1

Thus A is precisely the fractional probability of reaction (for Q =0) of singlets
for the whole “collision” including all reencounters, while #* measures the
conversion from triplets to singlets for the whole collision. Then one obtains
from the numerical solutions the exact relation:

 =[F(8)~F5(S)] = —~[F(S)-A] = +(1-A) F(Ty). (33

Equation (3.3) shows that the net decrease in reaction for pure singlets per
collision due to Q # 0 is juist the probability a singlet does not react for
Q=0 (i, 1-A) times the probability pure triplets do ultimately react
because of Q-mixing. The factor (1 —A) corrects for the fact that if singlets
react fast, then they are not available to be converted to triplets by Q-mixing.
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If one now uses the superposition principle to write

FR.L) = {[F(S)+F(Ty)), 3.4)

then Eq. (3.3) hay be rewritten as
[#F (R.L)-F(R1))/F(RL) = F(Tp). (35
The physically important parameter A is found® to obey the simple relation
A = k1, /(1 + k). 3.6)

For Eq. (2.37), where the “sphere of influence” of k(r) extends from d Eto

d+ Ar,, one obtains :
t, = dAr,/D, 3.7

where 1, is a characteristic lifetime of the interacting pair. One may rewrite
t; ! = 4nDdJAV where AV is the “reaction volume” in accordance with earliér -
theories for lifetimes of reacting pairs.'® These theories arbitrarily define AV
as the total volume swept by the interacting pair: (4/3) nd>, but our results
show that AV ~ 4nd?Ar,, the annular volume of the *‘contact region.” This
is precisely the annular volume in the finite difference approximation. By
letting k range over several increments in Ar, we have found that Eq. (3.6)
still holds, and a more appropriate definition for particles initially in contact is
= (Arn/Ar—-

kt, = D"J"“"rk(r)dr-.p-" ke 61
1= d i=0 ! )

where V({) = r,Ar for 1> 0 (and 4dAr for i=0); cf. Eq. (2.24). The arrow
in Eq. (3.7’) implies conversion to the finite difference form. This lifetime t,,
it is clear, is to be interpreted as the effective time for reaction for the whole
“collision’ and not just for the single encounter of a pair of particles initially
in contact. '
Actually, it is the dimensionless product kt, (or A) which represents a
fundamental observable. Thus, by comparison with typical treatments of
diffusive effects on reaction-rate constants,'® 2® one has that k;, the experi-
mentally observed rate constant including the effect of diffusion but assuming
steady state fluxes, is given by
ki = A2ky(d) (3.8)

where 2k,(d) = 4ndD is the rate of new bimolecular encounters. When
kt < |, then A =~ kt, and Eq. (3.8) assumes the form appropriate when the
relative diffusion is able to maintain equilibrium probability distributions in r,
since the reaction is very slow.!?:2°

1°E.8., 1. Amdur and G. G. Hammes, “Chemical Kinetics,” Chapter 2. McGraw-Hill,
New York, 1966.
R M. Noyes, Progr. React. Kinet. 1, 129 (1961).
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The role of the parameter #* is seen in the following relation: '

F(To) = AF* 1 + F*(1-A)]! (3.9a)
which, by Eq. (3.3), becomes )
—[F(S)=A) = A(I-NF*[1 + F*(1-AN)]"! (3.9b)
- and by superposition:

[#F (R1)-F(R1)] = IAF*[1 + F*(1-A)]" (3.9¢)

An approximate form of Eq. (3.9a), viz., #(T,) =~ #*A, which becomes
Eq. (3.9a) as A —+ 1, may be interpreted to mean that the probability of
reaction for initially triplet radical pairs equals the probability that triplets
are converted to singlets (#*) multiplied by the probability that the singlets
react (A).

The factor [I+F*(1—-A)]"! may be understood in terms of its infinite
series expansion Y2 o (=Y F* (1A, where, for example, the r = I term
F*(1-A) corrects for the fact that some initially triplet radical pairs, which
would first be converted to singlet by Q-mixing and then reencounter and
react with certainty if A =1, would, for A < 1, not react and be converted
back - to triplet for subsequent encounters. (Note that #* by dynamic
reversibility in quantum mechanics measures conversion from singlets to
triplets and vice versa for a “collision.”) The higher order corrections along
these lines appear as the other terms in the series.

When the initial separation r, > d, then we have found that Eqgs. (3.9) may
be modified as follows:

AF (RLr)AF(RL,d) = 4 (3.10)

"~ where A¥ (R.1.n)) = F(R.1)-F,(R.L.) with initial separation of r;, and ¢
is the transfer factor, which for a simple diffusive model is simply

te = djn, (3.10a)

and is just the reencounter probability (i.e., 1 — ¢ is the total probability that
two particles initially separated by r, will never encounter at r = d) discussed
originally by Noyes2® and obtained for continuous diffusion by Deutch.!’
Equation (3.10) is seen to be a simple consequence of the fact that for random
initial condition, the CIDNP process only starts upon initial encounter. The
result for triplet initial is

FT,n)|F(T,d) =1 -y G.11)

where y is usually a small quantity <0.1 (but it becomes more significant in
viscous media). It corrects for the fact that some of the triplets are converted
to singlets before the first encounter. We have found that, for r; ~ 2d, it may
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be approximated by

= 2=t FO + (=) F*)
with 1, = r*/r,farr, > r* (but if r, < r* then ¢, = 1 and there is no correction),
and r* is defined by J(r*) =~ Q/5 [where the dependence upon J(r) is a type
of excluded volume effect discussed below]. It follows from Egs. (3.10),
(3.11), and (3.5) that

AF (S,r)/AF (S,d) = [1—x~Ar/[1-A.
In the case where r, » d, then one may apply Eq. (3.10) independently of the
initial condition, since the Q-mixing will tend to equalize any initial unequal
S-T, distribution.

Given the above relations, then, it is only necessary to determine #* in
order to obtain the CIDNP polarizations for a given A and initial set of

conditions. We have found that over much of the range of the relevant
parameters, #* obeys ‘essentially a @'/ dependence, as first predicted by
Adrian.'® This is clearly a result of the reencounter phenomenon. However,
as Qd?/D becomes large, a weaker dependence upon Q than the 4 power is
observed. This reflects the reduced importance of reencounters, with the S-T,
mixing becoming optimal for all Q values. In the case of J,d/AD < |, the
results for #* are independent of J(r), and one then obtains for small

F* = [0d*/D]"*[2 +1(Qd*/D)""*]. (3.13)

T!\is result shows that (1) the relevant “diffusive length” is d when (a) the

TABLE 1°
DEPENDENCE OF $* UPON J(r)**

D=10"° D=10"° D=10-% D=10-* D=10"*
Jo ra=2A ro.=4A r,.=8A r,=8A r.=8A

1o* 1.0 1.0 1.0 1.0 1.0
10° 0.997 0.9%0 0.961 1.0 1.0
10'* 0872 0.782 0.691 0.957 1.0
10" 0.800 0.711 0.595 0.800 0977
10t 0.781 0.646 0.510 0.745 0910
1o'? 0.756 0.592 0.447 0.687 0.886
10'¢ 0733 0.546 0.391 0.636 0.859
10'3 0.712 0.508 0.328 0.589 0.833

*From Pedersen and Freed,® by permission.

SEFA Model. Results given as the ratio #*/F3., where F1.,
is the value obtained for Jo = 0.

“Parameters used. d=4 A, Ar=0.25 A, f=20, M=40, N=
208, ry =854 A, Q = 4x 10° scc™', k = 10" sec ~*,

G.lay,

(3.12)

~
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! reaction occurs at separation d and (b) this is the distance of closest approach "
and (2) it automatically includes all reencounters. The deviation of #* Trom
this simple expression for larger Qd?/D is shown in Fig. 1 for Jod/AD < 1. ",

The correction to F* for Jod/AD ~0.1Jodr,/D > 1 is summarized in",
Table I (on p. 19). It is seen that the effect of Jod/AD > | is to reduce the
value of #*. The results may be roughly expressed by

FroJF =1+ 80d)"" n[14(Jod?*/D)(Ad)" ') In[1 +(Qd*/D)"]
(3.13)

with 8’ ~ 5/3 and &” ~ 0.45. These results may be understood qualitatively in

adth terms of an “exchange volume,” i.c., a region extending beyond the contact

Y S TSN BN RS bt distance d wherein J(r) > Q, so that the possibility of Q-mixing is suppressed.

1610~ 6410 16407  €4x0 165107 641107 16 [ZAN As we have already noted, for small Qd?/D, the effects of reencounters after

(a) longer separations play a greater role; hence this excluded volume has less )

- an effect for small @d*/D than for larger values of Qd’/D. This excluded
volume or exchange volume effect will be seen (Section 1V) to have similar
functional dependences upon J, and A to the results for the effects of a finite '

»
| G‘_?joéoﬁ-t' range of J(r) upon spin depolarization by Heisenberg spin exchange. The im-
| portant difference with this latter effect is the nearly negligible Q-dependence in
wal that case.
’
|2. B. CIDEP: POLARIZATIONS IN THE ABSENCE OF CHEMICAL REACTIONS -
1 Typical results on polarizations for X" = 0 are shown in Fig. 2. These are
|o—§'
08
0§
a i 1 1 1 1 Pd'/D i o>
09 en 0" 62+10516707 64:10L16710" 6410 16 64

(b)

Fia. 1. (a) #* divided by $(Qd*/D)"/3f* as a function of Qd*/D (logarithmic scale).
Diffusion model includes the eflect of a repulsive lonic interaction with Debye-Huckel
potential. The values of xdare 1/4 for curve 1, 1/2 for curve 2, 1 for curve 3, and 2 for curve 4.
Curve § is calculated for normat diffusion without any ionic interaction. Values of f* are
0.0901, 0,167, 0.339, and 0.603 for curves ] to 4, respectively. Other parameters used in the
calculation of #* are d= 4 A, Ar = 0.25 A, M = 200, f= 100, N = 400, ry = 5054 A,/ =
10° sec-*, and | U(d)] = 5R, T/(1 + xd). (b) Same as (a), but for an attractive ionic interaction. . [ 9 100 It 12 3 14
Also the valuesof f® are 2.81,2.17, 1.66, and .32 for curves 1 to 4, respectively. [By permission - 109, ) o )
from Pedersen and Freed.*] .

-|.c 'l A i '} [} 1 1

Fio. 2. P® as a function of Jo for initial singlet state. Solid curve: r., =2 A; dashed
curve: r, =4 A; dotted curve: r,, =8 A. Calculated for D = 10-? cm?/sec, Q =2x 10"
sec-?, d=4 A. This graph may be scaled by converting to proper dimensionless variables.
(By permission from Pedersen and Freed.®]




22 JACK H. FREED AND J, BOIDEN PEDERSEN ./
results for J(r) given by Eq. (2.41). One finds that for small Jo values these
results may be approximated by

P = (Qd*DY2yt,(d)  for 2yt < | (3.19)

where
t () = (d/DI)[1+(Ad)~ "] (3.15)

and g~ 4 for (Qd?/D) < 0.016, but e~ 0 as Qd?/D becomes larger. By
comparing Eq. (3.15) with Eq. (3.7) we can regard 7,(1) as the effective
lifetime of the “exchanging” radical pair. Equation (3.14) shows that for
small Jot, P,” increases linearly with J,. One sees, however, in Fig. 2 that
a maximum in P,® is achieved [the corresponding value of J, is referred to
as Jy(max)]. Then the polarization P, first decreases with Jo, but then levels
off to a value virtually independent of Jo, i.., P,”(asymp). One finds that this
asymptotic value is dependent on r,,: the larger the value of Iy the greater
is P,”(asymp).-This important feature has the consequence of permitting
significant polarizations to develop even while Jo may be very large. We have
found that this asymptotic region is reasonably well approximated by

P,>(asymp) ~ (Qd*|D) }/(Ad)"  for 2yt,(1) > | (3.16)

where &’ ~ 1 for Ad» 1 and (Qd?/D) < 0.016 but becomes smaller as these
inequalities are violated. Accurate values of P,” (asymp) appear in Fig. 3a,
while typical results for low J, illustrating deviations from Eq. (3.14) are
shown in Fig. 3b. Equations (3.14)(3.16) can be incorporated into the form:

P (g{f)' Yot @+ BRAY IR 0@ (o

D 1+ [2Jp1, (1))
which approximates the overall bchavio}, but is not exact. One notes from
Eq. (3.17) that

Jo(max) = [2¢,(1)] ! @3.17)

A special case of the exponential decay model, referred to as the contact

exchange model for which J(r)) = Jo 5,0, may be obtained by letting 4d -+ oo

in Eq. (3.17), while A~!  Ar, in Eq. (3.15) for t,. This yields
P,» = (Qd*ID) 2y, [[1 +(2J,1,)%] (3.18)

with '
f| = dAr,/D (3.'9)

where Eq. (3.19) is very similar to Eq. (3.7) except Ar, is the very small extent
of the exchange region. Note that this limiting model has lost the important *
feature of having any asymptotic polarizations P,”(asymp) for large J,,.

One notes that ¢ of Eq. (3.17) decreases from the simple value of 4 for
values of Qd?/D that are an order of magnitude smaller than those for which
the appropriate CIDNP expression, Eq. (3.13), shows similar departures.
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6xi0?  16x10?
109 Q(sec) 109

o'({'o’ 108 10’ 10°

(o}

01 1600 16x10°  16x102 016 Qd?D 16
oo 1 [ 1 I 1
10° 108 107 108 10° Q(sec) 10°

(b)

Fio. 3. (a) P2 (asymp) divided by 1(Ad)~*(Qd?/D)"'* as a function of Qd*/D. The
asymptotic polarizations are for 2/, ¢, 3 1. The different curves are for ra/d=1/2,1,and 2.
The abscissa is also labeled as Q for which D = 10-* cm?/sec and d =4 A should be used.
The signs of the polarization are determined as follows, (i) No chemical reaction: Sign{ P2} =
~[Sign QIISignJ1(Sign[pss(t = 0)— prr(t = 0)1}; (i) spin-selective chemical reaction (re-
action of S states): Sign[P=}= [Sign QI[SignJ]. (b) P divided by 2Jot,(Qd?/D)"'? as a
function of Qd?/D. These are the values appropriate for 2Jo 1, € 1. The different curves are
labeled as in (a) and the signs of the polarization are determined as in (8). Also 1, is defined
by Eq. (3.19).
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That is, the reencounter mechanism is more likely to be less importa’nt [in
the limits of Eq. (2.16)] for CIDEP than CIDNP. This follows from the
Q-mixing pathways given by Egs. (2.36a,b) and Eq. (2.38), which show that
CIDNP requires two distinct Q-mixing steps, while CIDEP requires only one.
Thus, for CIDEP, as Qd?/D becomes very small, the required S-T, mixing
becomes optimal more quickly for all Q values, so that the polarization
becomes almost independent of Q.

The fact that P, — P, (asymp) for Jo1;(4) » | may be rationalized in
terms of the fact that the effective region of polarization [which includes
the “desirable’ range in J(r), i.¢., J(r) ~ Jo(max)] merely moves out further
from ro, while the inner region [where J(r) > Jo(max)] is primarily effective

in quenching any polarization by a Heisenberg spin exchange mechanism

(sce below).

One may at this stage question the sensitivity of these asymptotic results
to the specific functional dependence of J(r) upon r. Thus different alternate
forms were considered, in particular modified exponentials: J(r) =
(d[r)*Joe= 29 (n=—1, 0, or 1) and also J(r) = (d/r)" (n = 6 or 12), Very
similar results are obtained for all three exponential forms including the
magnitude of P,® (asymp) for large Jo. The r~® form for J(r) behaves some-
what differently yielding generally higher values for P,* and it continues to
increase as J, gets larger. The results for r~'? are more similar to those for
the exponential forms, showing some leveling effects as J, gets larger. In
general, however, one expects exponential forms for (medium range)
exchange forces,

C. CIDEP: POLARIZATIONS IN THE PRESENCE OF CHEMICAL REACTIONS

When one introduces the X" of Eq. (2.40), then one is able to relate the
polarizations generated in the presence of a spin-selective chemical reaction
to those in its absence by a series of exact relations analogous to Egs. (3.3)-(3.5)
for CIDNP. First, the analog of Eq. (3.5) is

PERL)F(RL) = =Pl -o(S) = Pliao(To) (3.20)

where the subscript k =0 indicates no chemical reaction. The quantity
F(R.L) is often approximated as F,(R.1.) = §A and the small corrections

may be obtained from Egs. (3.3)«3.5) and the discussions on . By
application of Eq (3.3) and the superposition principle) Eq. (3.20) can be
rearranged to give

P.2(S) + P2(Ty) = Au +F T P2y o(To). @21y

Another exact relation one obtains is
Po(T) =[1+(1-A)F*] 'P2(To,A =) (3.22a)
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which is easily rearranged to
Po(T) = 1+ FY+ (- F*1Po(Ty).  (22b)

Equation (3.2%3) may be interpreted in a manner analogous to Eq. (3.9a). It
then follows from Egs. (2.16), (2.17), and (3.9a) that

P,=(8) = (A-1)P,>(To) (3:23)

which is the analog of CIDNP, Eq. (3.3).

These relations, Eqs. (3.20)-(3.23), show that even when the spin-selective
chemical reaction is present, the basic CIDEP polarizing mechanism is
unaltered and the P,® results for kK =0 may be utilized [with some small
corrections mvolvmg A and #* in Eq. (3.22b)]. In particular, Eq. (3.20) m.:v
be interpreted as follows. The chemical reaction merely acts to eliminate a*
fraction & of singlets. One may then calculate the polarization as though there -
were no chemical reaction, but with the initial condition [py,7,(0) — pss(0)] =
#. Since P,” is proportional to [py,r,(0)—pss(0)), we see that P,/#
becomes independent of k and equal to P2, _o(Ty).

These results are appropriate when the form of Eq. (2.40) is used for J'(r).
If the form of Eq. (2.39) were used, then there would necessarily be some
changes. The effect of the off-diagonal matrix elements in Eq. (2.39) is to
destroy polarization (with rate k/2) in the region d to d+ Ar,. If Jy > Jo(max),
then the polarization in this region is effectively quenched anyway by spin
exchange, so the results are unaffected. For J, < Jy(max), these matrix
clements do become important and one finds that P,*(R.1.)/% (R.1.) depends
on k. In particular, the maximum in P,*/% vs J, as shown in Fig. 2 has
virtually disappeared compared to P,”(asymp)/#,% which is unchanged as
noted.

D. CONVERGENCE FEATURES OF THE SOLUTIONS

The convergence of the finite-difference method employed here requires
that (1) Ar, the finite-difference interval, be small enough; (2) ry and ry,,
the locations respectively of the outer absorbing wall and the position where
J(r) is negligible, be large enough; and (3) the variable s be small enough
that the limit § — O has been achieved.

We have found® that satisfactorily convergent solutions are obtained when
Ar is chosen so that

J(r)J(r+Ar) = 55 (3.29)
and then M is taken so that
J(ry) € Q. 3.25
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!
The convergences in ry/d and in ¢ = sd*/D are somewhat interrelated and of
considerable importance in both understanding and applying the results of
Section I11. We first consider the convergence in o (or s). The convergence
with s is closely related to the convergence with ¢, and one may use the
approximate relation s~ ¢~ (or o~t"') in relating to a time scale. In
general, we find that the s needed for convergence (s,,,,) follows

y<Qd}D or s, xQ (3.26)

(provided ry is sufﬁcnenlly large), although for CIDNP it appears that
Scone & Q%% The actual approach to the s — 0 limiting values is asymptotic,
so that for convenience in the discussion of this subsection, we have taken
S.ony t0 be the value for which P® or # is within 10 of its limiting value,
In particular, for CIDEP one has convergence approximately for

i 55140 (3.27a)

while for CIDNP approximately for
s S (1/80)Q. (3.27b)

This large difference between CIDEP and CIDNP convergence may be under-
stood in terms of the basic reencounter mechanism and the schemes of Eqs.
(2.36) for CIDEP and Eq. (2.38) for CIDNP. It was noted that there are two
Q-mixing steps for CIDNP, and only one for CIDEP. Thus reencounters
after longer periods of separation (hence smaller values of s5) are needed for
CIDNP, i.c., the asymptotic #* needed for CIDNP are developed after much
longer times than the asymptotic P®.

This convergence with s (or ¢) is clearly important in the context of our
approach, in which we have separated the RPM polarization-producing

process as being fast compared to other processes, e.g., individual radical

T,’s and radical scavenging. In particular if we recognize that typical free
radical T,'s are of the order of magnitude of 10~ sec, then for a reasonable
Q ~ 10® sec™!, one has that P* is generated in about 3 x 10~ ® sec, while #*
takes about 0.8 x 10~¢ sec to develop. It is clear, then, that P* may be taken
as a fast process, although some doubt exists as to whether the development
of #* is not influenced by individual radical T, processes; i.c., in the latter
case the two-time scale approach is beginning to break down. One can, of
course, include the T, s, etc., into the SLE and solve the resulting equations
as before, since the method is quite general (see below), but this naturally
complicates the physical model and the solution.

In this context of the discussion of the s,,,, needed for Eqs. (2.16) and
(2.17), one may offer a simple physical interpretation of these expressions for
s # 0. It will be seen in Section VI that by letting s — k, one may interpret
Eqs. (2.16) and (2.17) as referring to the P and & * values obtained for those
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“radical pairs” that are scavenged by a (pseudo)-first-order rate process wnh '
rate constant k. That is, one solves for the lim,., sp(s). Thus‘as k - 0 Eqgs.
(2.16) and (2.17) refer to the ¢ - oo limiting values, as they should. However;
when k 2 s,,..., the polarization generating mechanism will be interfered with
by the rate process (which can also be a T, process).

This consideration can have important consequences. Thus, for k — s > 30,
one finds that instead of the typical dependences of P® and #* on (Qd?/D)
with e~ § one has instead that P® oc (Qd?/D) and F* oc (Qd?/D)*. This
reflects the fact that the polarization processes are quenched before the
reencounter mechanism can be effective, and it is only the effect of the initial-
encounter (typically small) which can be observed. For values of s < 3Q, but
larger than those of Eq. (3.26), the effects of reencounters are incompletely
included.

The convergence of the solutions with ry (for small enough s) has SImlldl'
features. If we use the diffusion expression

D = (ArY/61 = (2ry)/6t a.28)"
then we have )

rld = (31, DId})"? =~ (3/2)1Ya.,,, oc (DJQ)V2. (3.29)

Thus, as Q decreases (or D increases), reencounters after longer distances of
separation are needed to provide effective Q-mixing, and a larger ry is required.
It follows from Eqgs. (3.27) that substantially larger values of ry are required
for CIDNP than for CIDEP, as has been noted.® Furthermore, we note that
the effect of introducing some rate process with k > s.,,, will be to reduce
the value of ry needed for convergence. Alternatively, by reducing ry, the
reencounter process may be interfered with, !

Inclusion of Individual Radical T,’s

One can, when necessary, include the effect of spin-lattice relaxation of the
radicals during the reencounter processes. This is most conveniently done by
assuming that the individual radical T,’s may be introduced as though the
combined density matrix of the pair of radicals is simply the direct product of
the two single radical density matrices (this is a reasonable approximation
for a reencounter mechanism when the time the radicals are well separated’
is much longer than when they are close and interacting). For the single
radical density matrix elements, one has the following rate equations:

(d/d‘)p-¥.-t = "'Tz—-'P.:,.t (330")
(ddt)(pas —pu-) = =T, (Pys —py-— P3Y) (3.30b)

3% Note that the dependence of s..., on D reported in I, actually resulted in part from using
rx small enough to interfere with the reencounter process.
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with similar expressions for radical B. Here P9 is the equilibrium valde of
Pas+ —Pa-- By use of the transformation relations given after Eq. (2.15)
between doublet and triplet representations, one can obtain the rate equation
for the density matrix in the triplet representation. This rate equation will in
general show couplings between the different matrix elements of p, but if one
assumes for simplicity that T;, = Ty, = T, = T, = T and P! = P$9, then
the equations become uncoupled and one gets

Bsro = =271y ' ps1o (3.31a)
Bss = —2Ty '(Pss_" b, (3.31b)
Prote = —ZT,"(proro—*). 3.31¢c)

These equations show the expected effect of the spin-lattice relaxation:
i.., psro Which is the RPM polarization, will decay to zero, while the diagonal
clements will decay to §; i.e., T; randomizes the distribution of the triplet
states and the singlet state, thereby reducing any CIDNP polarization. As we
have already noted, the T, processes are more likely to affect the CIDNP
process.

When one includes Egs. (3.31) in the SLE, then the Laplace-transformed
equation is

(s+2T7 '+t (A +0) p(s,r) = pO,r) + (12) T 1 (1SH ST+ Tod (To;)
3.32)

in the absence of a chemical reaction. [In the presence of a chemical reaction
the last term on the right-hand side of Eq. (3.32) must be modified; cf.
Section VI.] In general, one must Laplace-invert Eq. (3.32) to obtain the
explicit time evolution, since as ¢ — co, all polarizations disappear. However,
for the case of CIDNP from recombination products, for example, one may
use the device of obtaining #* by collecting the reacting singlet particles in
an inner “box” at r < d with rate k as they are lost from ry = d. For the
diamagnetic products only, the electron spin T; and Q are set equal to zero.
Then the limiting forms like Eqgs. (2.16) and (2,17) [i.e., lim,.osp(s)] are
applicable. [Note that one is not taking the limit s — k that was discussed
above, although the interference of the T, process with the polarization
process will be very similar, i.c., the dependence of #* on (Qd?/D)* may be
characterized by e > 4.] A scavenging reaction that depletes the radicals before
the end of the polarization process may be introduced with a simple change
of s to s+k in Eq. (3.32), Again comments similar to those for T, decays
apply here.

In general, we note that the two-time scale approach should be a useful
one, and that, when necessary, various approximate schemes of decoupling
the T, and scavenging effects may be employed.
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IV. Models Including Radical-Pair Interactions In the Diffusive Dynamics

-

A. INTERACTION POTENTIALS

We will use the SLE equation (2.1) as we did in Section LI. However, as

distinct from Section 1, we want the diffusion operator DI to include effects
of attraction (or repulsion) between the radicals A and B.” This is formally
cquivalent to the well-known problem of the movement of a Brownian par-
ticle in a potential field, and the (Smoluchowski) diffusion operator for the
classical probability distribution p is given by

DY, p(r) = DV - [Vp+(1/kT) pVU(r)] .1

where D = D, + D, is again the diffusion coefficient for the relative motion

between radicals A and B and U(r) is the potential energy between them,

assumed to depend only on r. Furthermore, we shall allow U(r) to be spin-

dependent; hence DI, now becomes a spin- as well as r-dependent operator.
We now define a function F(r) by

F(r)e, = (1/kT)VU(r) = (1/kT)[2U(r)/or]e, 4.2

where F(r) is, however, an operator in spin-space and e, is the unit vector in -

the radial direction. Then we take advantage of the orientation independence
of X, (r) and F(r) to obtain the following equation for p(r,t) = rp(r, t):

0p(r,0)[0t = —id*(r) p(r,t) + DE, p(r; £) + X, p(r, 1) 4.3)
where

Lo 0) = [3p(r,0)/0r*1 + (1N @[ar) [F () p(r, )] 44

with £(r) = rF(r)and we have used the fact that [V -e, F(r)] = r~2(8/dr)r*F(r). ‘

In general, our use of X, will also differ from that of Section 1il.

We again seck to obtain a complete solution in the form of Eq. (2.31),
where W is the transition matrix obtained by applying the finite difference
technique to the diffusion operator f}. The £ matrix is identical to that used
in Section 11, but the W matrix is different due to (1) the inclusion of potential
forces and (2) the possible spin-dependence of f}. We first illustrate the
effects of the spin-dependence of [, by writing i»¥* —Df} in the four-
dimensional spin-space for states S and Ty, in which [} is naturally defined.
That is, -

AY ST, To S
-Df, 55 -iQ iQ 0
2~ ~Df = —iQ i2J(r)— Df; sr 0 iQ
r i0 0 =2U()-Df, +s —iQ
0 iQ —-iQ ~Df, rr
4.5)

-

\

\
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Here [, 5 and £, 1y are, respectively, the diffusion operators for singlet and
triplet states. By a simple generalization of our discussion of the inclusion
of spin-selective chemical reactions, we note that for the off-diagonal elements,
€.8. Psro the proper diffusion operators should be

rr,ST = rr T3 = f(rr,ss"‘rr. ) (4.6)

That is, physically, regarding [} from a finite-difference point of view, it gives
the jump rate between different values of r. As such, f,.,s and n rr yield
the lifetime-uncertainty-broadening of the S and T, states at a specific position
r due to jumps to other positions. Then Egq. (4.6) follows from the usual
uncertainty-in-lifetime effects for off-diagonal density-matrix elements. A
more fundamental justification of this matter is given elsewhere.?!*

The resulting W* matrix appropriate for each (N + 1)-dimensional subspace
corresponding to a = S, ST, T S, or T, T is given by the following series
of equations:

D7'W§ o = —(2/Ar®)(1 +Ar/d) + r, F,(1)/Ard, (4.7a)
D™'W§ | = 2/Ar® + F,(0)/Ar, : (4.7b)
D™'Ws,_, = Ar~? — F,(j)/24r, (4.8a)
D™'Wy, = —2/Ar* + QAN [F(j+ Dryrfry= Fo(j=1)r)_s/r),
(4.8b)
D™'W§,,\ = Ar~? + F,(j)]2Ar, (4.8¢)
where 0 < j < M and
D™'Wy -1 = 2/(1+/)Ar* = F(M)/Ar(14)), (4.92)
D 'Wp, 4 = —2/fAr® - F(M - Dry—y/rgAr(14+f),  (4.9b)
D7'Wh pay = 2f(1 +1)AF, (4.9c)
whilefor M <j< N: ‘
D'Wy,_ | = 1jf*Ar? ' (4.10a)
D™'Wyg, = -2/f*Ar? (4.10b)
D™'W§, ., = lifAr? (4.10c)
and
D'Wi_,xn=0 (4.11a)
CADTIWE yo o= 2/ *Ar? (4.11b)
D™ 'W§y=0 4.11¢)

3 L. P. Hwang and J. H. Freed, J. Chem. Phys. 63, 118 (1975).
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where the notation is essentially the same as before. Also the condilionf‘qr
conservation of total probability: .

N C
\ ‘ZOV(i)Pl’,j,=0 for j=0,1,..,N @12

has been used extensively to obtain Eqs. (4.7)(4.11) where the radial weighting
factors V(i) are given by Eq. (2.27). Note that M is now chosen so that
J(ry) 2 0and F (ry,) = F,(M) ~ 0. That is, for r < ry there is an r-dependent
exchange interaction and a potential field against which the diffusion takes
place, and small increments of Ar are required for a proper solution; while
for r > r,,, the Hamiltonian (r) is independent of r, and the difTusion.js
simple unhindered Brownian, so larger increments fAr with f ~ 10-100 may be
utilized to adequately represent the motion. We have already pointed out
that the present finite-difference technique corresponds to a description of ™
the diffusion by a discrete Master equation. Thus, when there are restoring
forces, one usually imposes the further condition on the size of Ar {beyond
those given in Section III) that it be small enough that the off-diagonal
elements of W are nonnegative, while the diagonal elements of W must be
nonpositive. It then follows from Eqs. (4.7)(4.11) that

Ar < [2/F () 4.13)

where, in our models, F,(0) is the largest of the F,(j)’s.

We again use a collecting wall at r = ry. In principle, however, our explicit
inclusion of valence forces removes the need for the boundary condition of a
reflecting wall at r = d, But we have found it useful nevertheless. (Such a
reflecting wall corresponds physically to a hard sphere potential with a distance
of closest approach equal to d; cf. Section 1V, C)

B. IoNic INTERACTIONS

We first consider a case where Eqs. (4.1)(4.4) and (4.7)(4.13) are spin
independent. That is, we consider interactions between charged radicals,
yielding spin-independent Coulombic forces. This case has been studied by
making use of the usual Debye formulas for charge-shielding effects due to
the ionic atmosphere in the solution. That is, one has

U(r) = (€*Z, Z,Jer)[e "~ 91 + xd)] (4.14)

where eZ, and eZ, are the charges on the radicals, and where x, the reciprocal
thickness of the ionic layer, obeys

k? = (4ne*ekT) Y. m, 22 4.15)
[}

where g is the dielectric constant and n, is the number density of the ith type
of particle of charge Z,. The results reported are for xd > 3, since the ionic
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atmosphere effects reduce the range of the interactions thus offering compu-
tational convenience [i.e., F(M) x 0; cf. discussion after Eqs. (4.9)-(4.11)],
and they are typical of aqueous ionic solutions on which HE studies have been
made, i.c., a value of U(d) = 5kT/(1 + xd) roughly corresponding to d ~ 6A,
Z =2, and ¢ = 80 and } S xd S 2 corresponding to ~0.01 M to greater than
0.25M in ionic (Z = 2) concentration were used, even though the quantitative
validity of Eq. (4.14) is uncertain for such high concentrations.

When the ionic interactions are more long range, then the method of the
previous section may easily be modified to allow for accurate solutions. One
just includes the ionic interactions in Eqgs. (4.10) and (4.11) so they extend
out to ry which is appropriately chosen for convergence. Also, when needed,
the rate of new bimolecular encounters may easily be modified, as discussed
below, to correct for charge effects.

Furthermore, in this and the next two sections, the reaction operator X,
in Eq. (4.3) will retain its simple significance as given by Eq. (2.40).

1. CIDNP

One may summarize the results for ionic interactions with Debye-Hiickel
potentials by noting first that Eqgs. (3.1)-(3.5), (3.6) and (3.9) again apply.
However, Eq. (3.7) must be modified to

!l = t;:.l.f. exp[U(d)/kT] (4.16)
where

UM ' =d f " exp[U(r)/kT](drfr) @.17
d

with U(r) given by Eq. (4.14), and 1, , the value for uncharged radicals given
by Eq. (3.7). This Debye-type correction is thus identical to that found in
the usual analyses of chemical reaction kinetics.'®2° In particular, one has
the “rate constant” of new bimolecular collisions at r = d, which in our
notation (see below) is

2k,(d) = 4ndDf* (4.18)

where the quantity f* again appears.
The effects upon #* may be approximately represented (cf. Fig. 1) by

f‘ ~ ﬂtft(li»l) (4]9)

where #,* are the results obtained for uncharged radicals [e.g., Eq. (3.13)]
and é = } for attraction and 0 <& < § for repulsion with Q = 10® sec™!
(D = 107? cm?/sec), but more generally & is somewhat sensitive to Q and «d;
cf. Fig. 1, where values of § ~ 0.6 may be found. These results indicate the
complex way in which the long-range (shielded) Coulomb forces can affect the
reencounter dynamics so as to influence the Q-mixing. Note, however, that
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when the interaction is of short range (i.e., xd is large), then one would
expect that the only effect on #* would be to cause d to be replaced by an
effective interaction distance of f*d. For such cases, one would expect
F* > *F.*. The small 6#0 in Eq. (4.19) then reflects the longer-range
effect on the relative diffusive motion affecting the Q-mixing, which is an
effect different from that involved in the usual descriptions of liquid-state
reaction kinetics,

We have also found that Eq. (3.10) remains applicable [as well as Eqgs.
(3.11)] when, however, f, is appropriately modified. The values of # are
conveniently calculated, and we have found they obey the relation

te=1=s%"%" (4.20)
quite well, where
7™ = d [expLUkTI e’ (421a)
/]
80 that - ‘
S* = lim f*(r). (4.21b)
For r; such that U(r)/kT < 1, Eq. (4.20) simply yields )
te = f*dn,. (4.20")

It is interesting to note that such results are expected to follow from a simple
argument based upon an analysis of k¢, the experimentally observed rate
constant for the reaction including diffusion for steady state fluxes. Thus we
may write [cf. Eq. (3.8)]

ke = A2k, (d) = Atg(r)) 2k, (r) (4.22)

where 2k, (ry) is the rate of new bimolecular “encounters’ at separation r,.
Thus
t(r) = ka(d)/ky(r) (4.20")

which is seen to yield Eq. (4.20) by using Eq. (4.18) and the equivalent
expression for k, (ry).

2. CIDEP

The general effects of attractive and repulsive forces on P */% were found
to have typically opposite trends. Also the trends depend upon whether J,
is large or small. For small J, values (i.c., 2J, t, < 1) attractive forces enhance
P by factors of the order of 5-50 while repulsive forces diminish P* with
similar factors (cf. Fig. 4a). Thus, for small J, values, the effects of forces
upon P* are similar to the effccts on #*, and one might try to rationalize
this behavior in similar terms. We note that for 2J, 14 < | we may approximate
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Fia. 4. (a) PP divided by 2J, ¢, exp[— U(d)/kT)(Qd?/D)"'? as a function of Qd*ID.
These values are for 2Jot, < 1, and for attractive ionic interactions. The values of xd are
labeled on the graph. r.,/d = 1, and the signs of the polarization are determined as given in
Fig. 3(a). Also r, is defined by Eq. (3.15). (The labeling of the abscissa in units of Q requires
the use of D = 10-* cm?/sec and d = 4 A.) (b) Same as (a) but for repulsive ionic interactions,
2oty € 1. (c) PP (asymp) divided by §(Ad)~*(Qd?/D)"'* as a function of (Qd?/ D). These
values are for 2Jot, » 1, and for attractive ionic interactions. The values of xd are labeled
on the graph. Also r,,/d = 1, and the signs of the polarization are determined as in (a). (The
labeling of the abscissa in units of Q requires the use of D = 10-* cm?fsec and d=4 A)
(d) Same as (c) but for repulsive ionic interactions.

the polarization P*™ as proportional to 2J,t,(Qd?/D)"'* where, as already
. mentioned, the Q'/? dependence is not very accurate, and to first order the

effect of a force should be to let 7, have the /*~* exp[— U(d)/kT] dependence
and replace the distance of closest approach d by the effective contact distance
S*d in the Q-term. As a result of this simple analysis one predicts that the
effect of the force upon P is given by the simple relation

P=[P,® = exp[ - U(d)/kT], (4.23)

CHEMICALLY INDUCED DYNAMIC SPIN POLARIZATION 35

o et s e 0j6 ad¥/D s

108 108 107 ” 108 10% Q(sec-) 10°
C

o 1600% 1600 1602 o ad%/b 16
10’ 10° w0’ 0° 10° Q(sec) 10°

(d)

l.e., the effect depends only upon the potential energy at the distance of closest
approach and not on the explicit r-dependence of the potential. The observed
trends are in accord with this simple analysis, but the relation Eq. (4.23)
overestimates the actual effect probably due to the deviation of the Q-
dependence from the 4 power. This is different from CIDNP where the effects
were found to be underestimated by the corresponding relation,

For high Jy-values (cf. Fig. 4c,d) one finds that the effect of the Coulomb
force is much smaller and that repulsive forces generally give an enhancement

. {less than 50%;) of P™ while attractive forces give a reduction by factorsupto 3.

One can get a physical understanding of the Coulomb force effect on the
polarization by noting that for small J,-values the polarization is generated
in the region r = d and this is the region to which the radicals are attracted
(or repulsed). For higher Jy-values the region of effective polarization moves

\
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out to r > d (while the region r = d is very effective for spin depolarization),
thus giving a much smaller effect. '

A more detailed presentation of the effect of Coulomb forces upon P js
given in Figs. 4a and 4b and we conclude that this effect is rather large, and in
general it cannot be neglected. -

We might comment at this point on the charge repulsion and jonic strength
effects in Fessenden’s experiments.?? Thus by a radiolytic production of
CH,CO," from CH,CO," he observes a significantly lower polarization for
0.01 M concentrations than for 0.1 M. Also CH(CO, ™), was found to have
smaller polarization than CH,CO,~. The disappearance of radicals and the
polarization production were found to be due to the spin selective dis-
proportionation of the radicals, i.e., for both radicals we have a repulsive
Coulomb force (recombination of identical charged radicals). The observed
trends can now be explained if the nonspherical (cf. Section V1, E) radicals
are dominated by J, values for which 2J, 1, < 1 such that repulsion decreases
P*[# and this decrease is more pronounced for smaller xd (i.e., lower ionic
strength).

C. PAIR-CORRELATION FUNCTIONS

The example of ionic interactions discussed in the previous section is a case
where the mean potential between interacting particles affects the dynamics,
In such cases, the driving force may be thought of as one which restores the
proper Boltzmann distribution as ¢ » co. More generally, one may introduce
the equilibrium pair-correlation function g(r) for the radical pair in its solvent.
In particular, one notes that it may be associated with an effective mean
potential of interaction U(r) by

Ing(r) = —U(r)/kT 4.24)
so that one has from Eq. (4.2)
F(r) = —(d/or)[Ing(r)]. 4.25)

The Debye-Hiickel formula of Eq. (4.14) which includes charge-shielding by
the solvent is clearly only one example of this. One is able to introduce
improved pair-correlation functions g(r), and they may readily be included in
the formalism given [i.c., Eqgs. (4.1)(4.2)] even if they are only known
numerically. As we have seen from our discussion of Eq. (4.14), the
CIDEP/CIDNP results will definitely. be sensitive to such pair-correlation
effects. et

Probably the simplest g(r) is for two like molecules (in a solvent of like

31 R. W. Fessenden, J. Chem. Phys. 54, 2489 (1973),
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molecules) interacting with hard sphere potentials. In this case:
U(r) = r<d
\ U(r) =0 r>d (4.26)

for all pair interactions. Then to first order in the molecular number density »
one has??

g(r) = 0, r<d
g(r) = | + (43) nnd*[1 =3/ (r/d)+(1/16)(r*/d®)], d<r<2d
g(r) = 1. r>2d (4.27)

This pair correlation function automatically includes the reflecting }Null |
boundary condition at r = d, and has the simplest liquid-like cor‘relatm.n-
function properties. These matters have been more fully explored in a dis-
cussion of spin-relaxation by dipole-dipole interaction modulated by
translational diffusion.?*

D. Space-DEPENDENT DiFFUSION COEFFICIENTS (OSEEN'S TENSOR)

The effect of the pair-correlation function g(r) on the dynamics is, as we
have already noted, a result of mean interactions which lead to the appropnﬂalc
static Boltzmann distribution. However, better models will include ““dynamical
interactions” which affect the motions but do not affect g(r). A particu}ar
class of such interactions may be represented by a space-dependent diffusion
coefficient D(r) for the relative diffusion of the radical pair.

We illustrate this class of interactions with a hydrodynamic effect, rigorou'sly
appropriate in the Brownian motion limit. This hydrodynamic inleract‘mn
between Brownian particles in a liquid results from the fact that each pafucle
creates a systematic flow pattern which affects the flow of the. other p?rtlcles.
It is approximately taken into account for spherical Brownian particles by

using a modified diffusion operator??®: 2326
I, =V.[D1-2«kT)T()]: {(V+(KT)" ' [VU)]} (4.28)
where 1 is the unit tensor and 7(r) is Oseen’s tensor given by

T() = Bagr) " [1 4w (r~?)] 4.29)

13 ), de Boer, Rep. Progr. Phys. 12, 305 (1949).

34 L. P. Hwang and J. H. Freed, J. Chem. Phys. 63, 4017 (1975).

18 J. M. Deutch and B. U. Felderhof, J. Chem. Phys. 59, 1669 (1973).
132§ M. Deutch, J. Chem. Phys. 59, 2762 (1973).

18R, W. Zwanzig, Advan. Chem. Phys. 15, 325 (1969).
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[

with n the solvent viscosity, D again the diffusion coefficient for the relative
motion between the two radicals, and U(r) is again the interaction potential
between them. If T(r) is set equal to zero, then one has the usual Smoluchowski
form of the diffusion operator Eq. (4.1). The effect of 7'(r) in Eq. (4.28) is to
lead to diffusion with an apparent space-dependent diffusion coefficient,

.The added correction to the diffusion equation, given by Oseen’s tensor,
is clearly an approximation, Oseen’s tensor is a good approximation when the
sizes and separation of the radical pair are significantly larger than the size
of the solvent molecules. However, this correction is in the same spirit as
any Brownian diffusion treatment of molecular diffusion and diffusion con-
trolled molecular reaction kinetics. Thus one may hope to obtain useful
insights into general trends for a space-dependent diffusion coefficient.

On considering radicals of equal radii, which should exhibit the largest
hydrodynamic_eﬂ'ect, then Eq. (4.28) becomes for spherical symmetry:

L = r2@/or)(r*) [D-(kT12enr)) [(9/0r) + (KT)™ ' QU(r)for). (4.30)

By introducing the transformation p(r) - rp(r)=p(r)and, - rLr-' =1
one finds that the eflective diffusion operator which appears in Eq. (2.10)
(where U = 0) for Oseen’s tensor is now D(r)3*/0r* where D(r) = D(1-3d/4r).
Similar changes are obtained for the other terms in I, when U(r) # 0, and this
justifies our remarks that the use of Oseen’s tensor corresponds to an example
of an apparent space-dependent diffusion constant, which acts to retard the
relative diffusion as the radicals approach. The modified W-matrix is given
elsewhere.®

I. CIDNP

In the presence of Oseen’s tensor the quantities A and #* are again found
to remain fundamental. Also the “exact” interrelations between #(S),
#(To), and #(R.1.) (where R.. refers to a random mixture of S and Ty),
given by Eqgs. (3.3)-(3.5) of Section 11, are still obeyed.

Furthermore we can again define A by Eq. (3.6). In all the cases examined,
we find that 1, may be exactly represented by [cf. Eqs. (3.7) and (4.16))]

ty ! = (D/dAr,) J* exp [U(d)/kT]. 4.3

Now, however, /* obeys

9 ' =d j " expLUGYKTI[r(r - 3d/4)] " dr (4.32)
Ve '

which replaces the quantity /* given by Eq. (4.17) that is appropriate in the
absence of Oseen's tensor. One finds that Oseen’s tensor effects increase 1, by
the order of factors of 2, the effects being more pronounced in the presence of
repulsive forces and less pronounced for attractive forces.® This increase is
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expected for a mechanism that effectively slows the diffusion as the radicals

approach each other.?”
prn this context, it should be noted that Deutch and Felderhof?* have found

that the mean rate of bimolecular encounters, in the case of Oseen’s tenso;.(
is given b
# ’ 2k,(d) = 4ndDf* 4.33)
where f* replaces f*. The fact that the same correction' appears in 2k,(d2
and t; ' may be understood quite simply. That is, the eqml.nbn_um constant K
between (nonreacting) radical pairs and separated radicals is given by

K = 2k, (d)/t7! (4.34)

and it js of course independent of the molecular dynamics. Oseen’s tensor
only causes the diffusion to be space-dependent. It does not clrarfge U(r).. )
Thus K must be independent of whether or not Oseen’s .tensor is u!cludefl.
The fact that f* should appear in Eq. (4.31) is easily obtamed.analytlcally in
the standard manner!? from the steady-state flux expressions given by Deutch
nd Felderhof.?3 ‘
: ;i’ur:hdeermore we have found that ¢ [cf. Eqgs. (3.10a) and (4.20)] is well
represented by the expression

'f =].d/’| (4‘35)

where r, » d, by analogy with our previous result Eq. .(3.19') involving f*
instead of f*. More generally, one expects from our previous resuits that

te=1=J*1*r) (4.36)
where )
Joeyt =d f ' expLU(YKT] [dr/r(r—3d)] 4.37)
d .
wch that J* = lim f*(n). (4.37a)

We now turn to an analysis of #*. Again Egs. (3.9) which relflle .:F (T“)’
F(S), and F(R.1.) to F* and A are found to apply exactly. We give in F’I[.'S.
Sa and 5b the corrections to #* due to Oseen’s tensor for attractive and

37Q0scen’s tensor may be replaced by Stokes’ tensor in the analysis."’-“' T!us l'o;;n(\":s
perhaps more accurate for considering short-range hyd.rody‘nami:: mlcmc:ons. o is.
however, that Eq. (4.32) follows from Eq. (4.17) by replecmgf by r3[1—(3d/ r(:l wThcm
equivalent to the transformation of D — D(r) [cf. the dlSCl:SSIOI‘l alter Eq. (4.13 I)]. on
fore, one might expect that the use of Stokes’ tensor, w'here D(f)= :1[11— .(4 4
(1 —d?/12r%)) D for equal size spherical molecules, would result in replacing r llld ([')e Ii.mc
by r*[1—-(3d/ar)(1 —d*/12r?)]). Such a replacement suggests that there wou
effect in the use of Stokes' tensor instead of Oseen’s tensor,
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repulsfve (shieldefi) Coulomb forces and no forces. As was the case for t,
repulsive forces yield greater effects than no forces and attractive forces yield'
smaller effects. In general, the greater effects are obtained for small values of

2 . . o
Qd’|D. In fact, the ratios F5/#,* (cf. Fig. 5) appear to be approaching those .

of t,/t,(Os) as 0d?/D -+ V. But for large values of Qd?/D, the ratios F2/F.*
appear to approach unity, an effect most pronounced for attractive ?(')rce';
The rt;sult for small values is easily interpreted by recognizing in this rcgior;
that, in the absence of potentials and Oseen’s tensor effects (for small J,),

CHEMICALLY INDUCED DYNAMIC SPIN POLARIZATION 41

Eq. (3.13) holds for #* and one should, to a first approximation, replace d by
f*d (or J*d), i.c., this is the region where reencounters after large separations
are important, so the dominant effect of the shorter-range interactions is to
introduce an éffective contact distance into the dynamics. For larger Qd?*D,
Eq. (3.13) is no longer appropriate, the effects of the initial encounter become
more important, and one has #* oc (Qd*/D)* with & < 1, so the dependence.
on f* decreases. One should note that Figs. 5 are calculated for a very small
value of the exchange interaction J, = 10° sec™ !, which serves to exclude any
effect of a finite exchange region. Some of our numerical results for more
realistic values of J, are given in ref. 9. In general the effect of larger Jo-values
(that increases with increasing Jo and r/d) is to decrease Fo/F*. For
Q=10 sec™!, d=r,=4A, and D=10"* cm’/sec, this reduction is
negligible but for D = 10~% cm?/sec there is a reduction of approximately

'20%. These dependences may be understood by arguments similar to those

already used. The trajectories in the exchange region become more important
when J, (and r,,/d) increases and D decreases (i.e., the diffusion slows down)."
In the exchange region the Q-mixing is suppressed and consequently & *is s
decreased. Since the Oseen’s correction to the diffusion equation corresponds
to a slowing down of the diffusion when the particles are close together, one
would expect F, to decrease more than F,* as is indeed observed from the
numerical results.

2. CIDEP

We give in Figs. 6a and b the corrections to P®/# due to Oseen’s tensor
for attractive and repulsive (shiclded Coulomb forces) and no forces. The
results may be rationalized in terms of trends similar to those found for
CIDNP. That is, for small Jo, [P*/F 1o,/[P*/#] shows trends predicted
by the product of 7,,,/t, and FLF*, as expected from Eq. (3.14). For
0d?|D < 0.016 we have ¢ =} in Eq. (3.14), i.c, F* = (Qd**D)'"? and
consequently [P®/F1o,/[P=|F] = 1. For larger Qd*/D values, -0 and
we get [P/ F 1o,J[P=|F ] -/ *]*. These effects are such as to increase P®|F
by a factor of the order of 1.1-3. The results for high Jo-typically show only
a small effect from Oseen’s tensor, since the region of r ~ d, for which Oseen’s
tensor corrections are a maximum, has become relatively unimportant in the
polarization process. A more quantitative discussion of the behavior for large
J, does not seem possible at present because we only have a qualitative under-
standing of Eq. (3.16) even in the absence of forces. For intermediate values
of J, the qualitative behavior is given by Eq. (3.17). One should note that
J e i given by 2J,.,, 7, (A) = L and since 740, and r, are diflerent, the maximum
occurs for different values of Jo and consequently [P®/# Jou/[P2/F] can
show an oscillation for intermediate J, values.®
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E. SELF-CoNsISTENT [OR EXCHANGE FORCES PRESENT (EFP)] MobEL

We now turn our attention to the problem of including spin-dependent

diffusion in the manner indicated by Eqs. (4.5) and (4.6). In particular, we

wish to include spin-dependent valence forces in the diffusive trajectories. .’
1. Potential Surfaces

We show in Fig. 7 the representation of U,(r) which has been employcd
to include valence interactions. This has been chosen by analogy to the well-
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Fia. 7. Spin-dependent potentials U.(r) as a function of r, the interradical separation.
The solid curves labeled S and T represent the exchange potentials utilized for singlet and
triplet states, respectively, with a reflecting wall at r = d. The dashed lines represent the usual
continuation of the potentials in the absence of a reflecting wall. [By permission from Pedersen
and Freed.”}

studied, hydrogen-atom-pair potential surfaces as well as for computational
convenience. That is, we write Uss(r) = (Ho+ H,)/[(1+5) and Upyp(r) =
(Ho—H)/(1+S), where H, is the “Coulomb integral,” H, the exchange
integral which we shall write as —hJ(r), and S is the overlap integral. The
usual S and T energy surfaces are shown by the solid curves for r > d and the
dashed curves for r < d. We take d to be the interradical distance character-
istic of the stable bond. We introduce a reflecting wall at r=d [ie,
Uss(r) = Ury(d) = for r <d] as a convenient approximation to the

repulsive terms which dominate both the S and T curves at short internuclear
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;illslance's. Then f?r r > d we note that usually H, is several times larger than

o and is the main source of the attractive forces, while S tends to be small
Thus for convenience we let w

It follows from Eq. (4.2) that

Fss(’) = —F, (’) = (‘-hJo/kT) -4 —~d
and from Eq. (4.6) that i Lmdle=a (@3
Fsro(r) = Fros(r) = 1[Fss(r)+ Frp(n)] = o0, (4.39b)

That is, while the singlet terms in p diffuse under an attractive potential and

to favor Eq. (2 40) rather than E i

. 4. (2.39).] Note that in the present
whc?re va.lepce forces can explicitly lead to “bonding” in which rpze;egr (l::ls‘le’
periods, it is often useful to consider :

P.®(N) = =2 Re :iTﬂsr.(N.S) (4.40)

'which repres?ts. just the polarization of the separated particles at ¢ — oo
::stcad of .If, given Py Eq. (2.33), which includes all particles. Similarly
A e probablhty.of survival per collision & js given by Eq. (2.32), where (since’
att (sit;:t:s zz:rre be;;lg neglecled)?(t:O) = l,i.e., the density matrix js normalized
o, . . .
;" time owever, the fraction of particles which have Separated at
2(N) =1i
») .lillg V(N) [ﬂ(N.S)ss+ﬂ(N-S)r.,n]- (4.41)

For the probability of reaction during a collision one has
F=1-22 o F(N) = 1 — 2(N). (4.42)

In Section 11, where the spin-selective chemical reaction was repres
(t::ca: ;(rjrt;rirslble ::nhemical rate (X" # 0) which merely “destroys”’ thl: ra(ei?c'ael?
o :;f-- =P,°(N), P = ?(_N), fmd F = F(N). In the present case we

. =0. Then an attractive singlet potential wil| trap singlet radical
pairs at r &~ 4. But they are not lost to the system, so that P@)=1Tforall¢
anq propcrl'y one should look at the P,”(N), 2(N), etc., for the separated.
rt'ldlczfls, which contribute to the ESR spectrum, Howcvc;, we note that the
diffusion Eq, 4.1 automatically includes detailed balance, so that as long as
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U(r) remains finite, there will still be a finite probability that a “bound"
pair of radicals can separate even though U(r = d) is very large. But, because
the absorbing wall at r = r, is kinetically irreversible (representing, in a sense,
infinite space for the relative diffusion of a single radical pair), as 1 = oo even
the “tightly bound” pairs must separate to ry. This feature can be overcome
by either (1) considering finite but long times and by studying P,(N, 1), etc.,
or by (2) introducing an irreversible kinetic process which permanently re-
moves the strongly bound radical pairs as they form by valence attractions
and by studying P, = P,®(N), # = #(N). We have used method (2) pri-
marily because of its computational convenience, but we have made some
effort” at a comparison of results for the two methods.

We thus define a ““first-order chemical rate constant” k(r) which gives the
rate at which a singlet radical pair, tightly bound by the attractive valence
forces between singlets [i.c., Fss(r= d)], is irreversibly removed from the
system, so that it can never again dissociate even as ¢ — 0. We again use the
simple form of Eq. (2.37) so that only the singlet radical pairs in the contact
range d to d+ Ar are affected. This is indicated in Fig. 7. In this application,
the use of & is thus largely that of a computational artifact. A large value of k
guarantees that the singlet radical pair remains bound, while a small value of k
does not fully prevent them from separating as ¢ — c0. One may, in a sense,
think of this k as a crude means of adjusting for momentum relaxation.

2. Initial Conditions v

In Section II the initial condition of py(r) = Pod(r—ro)/ry? (where py is
the initial r-independent spin-density matrix) was utilized throughout, since
for the models considered there, either (1) @-mixing (or polarizations) started
upon initial formation of the radical pair or (2) equal amounts of S and T,
radical pairs formed from random encounters had to reach ro =d to react
by the spin-selective chemical reaction before the polarization could begin.
For the current model being considered, the actual diffusion rates, as well as
relative equilibrium probability distributions, differ for the S and T, spins
50 that case (2) (R.1. initial) can only be rigorously considered by starting the
radical pair initially at po(r) = p, 8(r—r)/n? where J(r,) ~ 0; i.c., the inter-
radical separation is large enough that their various interactions are neg-
ligible. We discuss these matters primarily from the viewpoint of CIDEP.
We can use the standard Brownian motion result for the *“rate constant” of
new bimolecular collisions which involve either S or T, states only:

ky(r) = 2rr, D. (4.43)

There is no f* correction since r, has been chosen so that J(r) = 0. The
appropriate CIDEP intensity M,* contribution is (cf. Section VI I):

dM,*di ]y, = ka(n)n,()ny (1) [P, (r)—AP(r)2 Re ps 1, ()] (4.44)
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where the explicit dependence on initial r, Is indicated, and » @) alnd ny(1)
are the number densities of radicals A and B, AP(r) is defined as.the fractic;nal
change in the polarization from that which exists at the onset of the collision
and is discussed in the next section. Now, if the effect of valence forces on'
the diffusive motion were neglected as in Section 11, then the first term in
Eq. (4.44) could equally well be written in the form

ka(d)n,(¢)ny (1) P, (d)

since, as already noted above, the polarization effects do not begin until
r=d, gnd the time evolution of our expressions with initial condition r = r,
would just involve simple diffusion until the value r = d is reached. That isl
one would have '

ky(d) P, (d) = k 1(r) P> (r)). (4.45)

To get around the arbitrariness of initial condition r,, we usuvally employ a
transferred polarization P,*(d) given by

F>@) = [ky(ryfhy ()] P (ry
finlte

= (n/d) P,*(r) 47 - U =diry P ()
(4.46)

where the arrow points to the expression corrected for an absorbing wall at
r=ry (cf. 1). Note that when the effects of valence forces on the diffusion
are .mcluded, then P,(d)) is no longer the true polarization developed with
initial condition r = d, but thjs definition allows us to compare results of
P,*(d) for different initial values of r without having to correct for the

gi’;ﬂ'(edrt;nccs in ky(r). In a similar manner we can introduce a transferred
).

3. Polarization Quenching

As we havg already noted, the quenching of initial polarization due to
Helscnb?rg $pin exchange (HE) upon a random collision is also an important
process.m analyzing CIDEP, if the overall kinetics of the problem is to be
dealt with adequately, such as by Eq. (4.44). This polarization quenching
can take place even when the bimolecular collision does not induce any spin-
selective chemical reaction,

The polarization querching is readily obtained by our methods described
above. One has only to select as the initial condition 2 Reps , = | [cf.
Eq. (4.44)] or, more precisely, "

2Re ps, 1, (r) = 5(r—rjn,? (4.47)
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(while the other initial values are Pss = prr = Im ps 5, = 0). The calculation
based on Egs. (4.3) and (2.16) then leads to .

L —AP() = P, (s, 1, (1) % 0) — |

where P,®(r, ps, y,(¢) # 0) is the polarization which remains at the end of the
collision, after having started with the initial condition given by Eq. (4.47).
The quantity AP(r,) appears in Eq. (4.44), and the validity of Eq. (4.45)
rests on recognizing that the SLE is linear and homogeneous in p(r, t), so one
may superpose solutions obtained for simple initial conditions to obtain
solutions for the more complex initial conditions. We can again define a
transferred AP(d) in exactly the same manner as Eq. (4.46) for P,~(d).
Note, however, that AP(d) is not equal to AP(d) for finite values of Jo and
Fexs Since the spin depolarization by HE will start for r,> d as long as
[J(r)] > 0. Note, also, that by Eq. (4.39b) the diffusion of Pst, is unaflected
by the valence forces illustrated in Fig. 7, and also that the depolarization,
even for random collisions, begins well before radicals approach near to d
(i.c., the region where valence forces may significantly affect the motions).

(4.48) °

4. CIDNP Results (EFP)

When one analyzes the results for the EFP model, one notes that the im-
portant relation, Eq. (3.6), for the “reactivity” A as a function of k and 1,
again applies when 1, is corrected for the exchange force attraction (i.e., the
singlets see an attractive potential). The t ) correction is identical to that used
for the Coulombic potential, Eq. (4.16), but with U(r) replaced by #J(r).
When hJo/kT » | the radical trapping effect due to the potential becomes so
large as to overwhelm any effects of k for smaller k values (k <108 sec™).
This point indicates, of course, that a more detailed description of the reaction
dynamics will yield a somewhat different approach to expressing A than that
which we have found in this work and which relates simply and directly to
the familiar theories of reaction kinetics in solution. The radical trapping
effect is further discussed below.

We next wish to point out that the relations for & (A)— %5 (A) do apply
provided A > 1073, The reason that these relations do not applyfor A <102
will be discussed below, but it should be pointed out that the CIDNP ecflect
(i.e., F-) is usually too small to be experimentally observable when
A <107 When these relations apply, one may concentrate on the #*
dependence, and it was found that Egq. (4.19) applies with 6 = 0 (i.e., d is
replaced simply by df*) as expected for very short-range interactions,

Also, we wish to note some points which emerge within the context of
the EFP model. (1) Since substantial CIDNP polarizations require non-
negligible values of A, which is a function of the magnitude of J,, then values -
of hJo/kT > | are needed, and this implies the importance of corrections for

\
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the finite range and magnitude of J(r). (2) When J(r,,v)) is not spherically
symmetric, then one expects that the primary effect on the analysis is to cause
a reduction in the magnitude of A over that for a spherically symmetric J(r),
i.e., only that fraction of reencounters for which hJ(r,,r))/kT > 1 is important
and their description involves a correction for the finite magnitude of J, The
role played by nonspherical symmetric J(r;, 1)) will be seen to be different
in CIDNP than for CIDEP.

5. CIDEP Results (EFP)

The effects of an exchange force upon the CIDNP parameters may be
summarized as a very pronounced enhancement of the collision time 1, for
hJo/kT S | but a rather small effect on #* (i.c., on the diffusive motjon
outside the exchange region) due to the short-ranged nature of the force.
We remind the reader that the presence of an exchange force is by itself
identical to a spin-selective reaction, and therefore the device of including
the kinetically irreversible reaction at r = d [i.e., the X -term in Eq (2.40)]
could seem to be unnecessary. But, however strong the exchange force may be,
there is still a finite probability that the particles bound by this potential will
separate; and as ¢ — co all particles will have separated.

The results given in 11 included the kinetically irreversible “reaction” at
r = d to guarantee sensible behavior in the limit ¢ — o0. We tested the results
for the EFP model without the presence of this device, by examining results
for finite times. This was done simply by using the well-known Fourier (and
Laplace) inversion result that the behavior at time ¢ is dominated by values
of s ~ t~'. We have compared the time it takes for radical pairs initially at
r=dtocollectatry =22A,a separation where exchange forces are negligible.
The results for EFA are, of course, independent of Jy; and for D =10"3
cm?/sec 3% of the radicals have not reached ry by s=' = 2.5x 10~® sec.
However, for EFP and hJo/kT = 10 about 7% of the radicals have not reached
ry by 2.5x 1077 sec, while for hJo/kT = 25 all but 5% have reached r, by
s~' = 2.5 sec. The results for hJo/kT = 25 show a plateau where nearly all
the triplets have been collected by s~ = 2.5 x 1072 sec, but the singlets do
not begin to be collected until s~ = 2.5 % 10~ 2 sec.

The CIDEP results using the EFP model showed that for R.L. the quantity
P*/# was independent of k when A > 10~ although both P and & (as
already discussed for CIDNP) were significantly altered. That is, Eq. (3.20)
for EFA still applied provided A > 1073, [We will refer to the model of
Section II and Eq. (2.40), where the exchange forces do not affect the diffusive
trajectories, as the exchange' forces absent (EFA) model.] This important
result demonstrates that, to a large extent, the polarizations are independent
of the details of the spin-selective chemical reaction, and they are just linearly
dependent on #. This, of course, means that in our models, where hJo/kT > 1

/
’
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and the radical trapping (and reacting) regionis around r ~ d, the region w!nen:e
polarization is developed lics where r > d such that hJ(r)/kT» 1. This is
precisely the feature which is included in a simple manner in the EFA model.
But the actual values‘of # and P® are very model sensitive.

However, for the smaller values of Jo and k (A < 1073), the EFP and.EF.A
results for P®/# do not agree. In fact P*/# and P* for EFP change.SIgn in
some of the cases. This must be due to a new mechanism generating the
polarization which no longer depends upon &. When # is neg!igible: then
the small differences in Boltzmann factors for singlets versus triplets in the
polarization region (i.e., the time spent in a8 givcn‘ region is. different for
singlets than for triplets) can have the effect of leadn]g to a sl!ght excess of
singlets generating polarizations (this we call a relative d.lﬂ'usnop model or
RDM), which are negative in sign to the effects ol: the reaction which depletes
singlets. But for our model, the RDM polarizall?ns are much smaller than
normal polarizations which arise from substant.lal values of #, al!hot'lgh
P>|# may be of the same order but of opposite sign. Tlfe RDM polarization
becomes more important for faster diffusion and may yu:ldl ;lery lalrge valucas
of P2|F (P=|# =—0.465 for D = 10~* cm?[sec, Jp = 10'? sec™!, 0 = 10
sec™!, and r,, = d =4 A). That the relations for the A dependence of the
CIDNP quantities & — %, do not apply when A <10™* may be similarly
understood as being due to the RDM. .

We have examined the time-evolved results for P(N) where ry = 212‘A in
Pedersen and Freed.® For EFA we have of course P(N) =0 at all times,
while for EFP large polarizations are built up for shqrt times (while the
singlets are still effectively trapped), but eventually the singlets reacl.m r,.,.and
neutralize the large polarizations except for the small RDM polarizations.
1t is interesting to note that for hJ, = 25kT, the _plateau value of P(N) =
10.3x 1073 is precisely the result which was obtained for k #p anfi t— o
(for hJ, = 10kT, there is no clean plateau region, so the comparison is n'ot as
clear). This kind of agreement supports our use of the device of the k.metlcally
irreversible reaction at r = d to maintain the radical trapping, and it further
shows that the o -operator should only affect the diagonal singlet eleme.nts
and not the off-diagonal elements. We note, however, that the Ien{;ths.ol‘ time
the singlets are trapped for EFP are surprisingly short considering 'the
strengths of the trapping potential, which should lead to stable bonfl formation.
This is undoubtedly due in part to the assumption of overdamp.mg whereby

momentum relaxation effectively occurs instantaneously (cf. Section 1V, A).

6. Nonspherical Radicals

All the calculations have been performed for sphericall.y-syfn.metric': exchange
interactions and spherical radicals for reasons of simplicity. Since most
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Fia. 8. Nqnsp!\erical l:adicals. (a) Suggested contours of constant J-value about a non-
spherical radical fnlemclmg with a spherical radical. Spin-selective chemical reaction may
o:cm: only at reg:ion 1. (b) Typical variation of P=(F with Jod*/D for spherical radicals
showing suggested equivalent points corresponding to regions 1-4 § issi
from Pedersen and Freed.”] ® s " @) (B permission

inl?racting radicals will display anisotropic features in thejr exchange inter-
actions and their ability to react, some comments on expected effects from
nonspherical features are appropriate. -

Suppose, for simplicity, we consider the interaction of a spherical radical
.(c.g.: an H atom) with a highly nonspherical radical, with the latter represented
in Fig, 8a. The solid curve represents the outer extent of the radical, while
each .Of the dotted curves represents a contour of constant J value (eg.,
J varies by a factor of 10 between adjacent curves). Suppose now a spin-
selective chemcial reaction must first take place to initiate the spin-polarization
process. This requires a region where h|Jol/kT > 1, and this region should
have a large enough extension that vibrational relaxation to the bound state
may occur. In Fig. 8a, only the region | is assumed to satisfy this condition.
Thus lh.e radicals must approach region |, where a reaction may take place
genzeratmg a net triplet character (symbolized by #). If now we have D ~ 10~
cm /sec:, so the polarization process is due to reencounters after moderate
Separations, then these reencounters may occur at different regions in Fig. 8a
(e.g.,'regions labeled 1-4), each with its own characteristic range of values of J.
In Fig. 8b we show the typical dependence of P=|# on J, obtained for
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spherical radicals with the results for regions 1-4 (as though they each rep-
resented the behavior of a different spherical molecule). (Also we are
neglecting any eflects from the orientation dependence of d and r.. upon
Qd?*/D and r.)/d in our discussion.)

The main points to note now are: (1) P°/# is independent of & for )
spherical radicals; (2) for a nonspherical radical, # may be greatly reduced
by a geometric factor, but the resulting polarization P*/# should siill be
essentially independent of & ; one only requires that the series of encounters,
subsequent to each reactive encounter (c.g., at region 1 in Fig. 8a), be
characterized by a very similar distribution in J values, as expected for our

. model of Fig. 8a. The resulting P=/# will then be no greater than, but usually

smaller than, P*(max)/# depending on the typical distribution of J values for
the subsequent encounters, If the radical is nearly spherical, then a value close
to P (asympt)/# will result, and, if regions like 2 and 3 dominate, then a
value closer to P*(max)/# will result.

7. Quenching of Initial Polarization

Typical results have been obtained for the effects of quenching of initial
polarization.” EFA was utilized since (1) the off-diagonal elements p; ,,
which are the important terms here are unaffected by the exchange forces
and (2) the depolarization should occur in regions of J, ~ D/d? < kT/h.
The results for a contact exchange model, where J(r) =Jo,,,,, may be
summarized by

AP(d) = {(2Jot,) /L1 + 4(Jo* + Q) 1,1} [| — H(Qd?|D, Jo d*|D)]
(4.49)

where 1, is given by Eq. (3.19).

When H(Qd?/D,Jd*|D) = 0, then Eq. (4.49) gives just the probability of
Heisenberg spin-exchange per (S-T,) encounter that has been determined
from relatively simple analytical solutions. 2® One finds that

H(Qd*|D,Jod’|D) = h(Qd*/D)/[| + 4(Jo* + QY 1,%] (4.50)

such that H is typically small compared to unity, but it may be approximated
by h~ (Qd*|D)"" ¢" ~ } for Qd*/D < 0.16. This extra term represents the
effect of successive reencounters which tend to generate new polarizations,
an effect which was not included in these earlier models.

Typical results for finite range of the exchange are given in ref. 9. The most
significant difference from a contact exchange model is that for J, > Jo(max);
it is possible to have AP(d,) > | representing the fact that the depolarization
is completed at radical separations >d. For these large J, values, the results

3% ). H. Freed, J. Chem. Phys. 45, 3452 (1966); M. P. Eastman, R. G. Kooser, M. R. Das,
and J. H. Freed, ibid. 51, 2690 (1969); C. S. Johnson, Mol. Phys. 12, 25 (1967).
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indicate that AP(d) varies approximately as

AP(d) >~ 1 + (Ad)~! In[I +(Jod*ID)(Ad)~ 1] 4.51)
For small J, < J,(max), one has a result very similar to Eq. (4.49)
AP(d) = (2Jo1,)*[1 - H(QdY/D, J,d 1)) 4.52)

where 1, is given by Eq. (3.15) and H’ is very similar to H.

V. Further Models and Methods

A. EIGENFUNCTION EXPANSION METHODS

As an alternative to the finite difference methods employed extensively
here, one may employ eigenfunction expansion methods in terms of modified
l?essel functions as earlier noted. (The types of procedures involved are then
similar to those used in Section VI for the initial triplet mechanism, but in
that case orientational space is considered.) The appropriate modified Bessel
functions are those which have the required reflecting wall at ro =d. These
are known?? and may be written for sphericqlly symmetric problems as

Jolur) = ~(r—d)(ur)™' [1 +(ud) =21~ 172 (uy, [r—d)u] - d~ s [(r—d)u])

where 6D
and Jo[2] = sinz/z (5.2a)
Yol[z] = —cosz/z (5.2b)

are the spherical Bessel functions of the first and second kind with ¢ = 0,
Note.lhat for d =0, fy(ur)— Jo(ur). More generally, the well-known Bessel
function expansion in eigenfunctions

Gem(0,1) = (2/) j,(ur) Y,(Q), (5.3)
where ¥,™(0) are the spherical harmonics, is to be replaced by

2
Conl,) = = fr) ¥, (@) (5:4)

wilh .

Se(ur) = [Ic(llf)_{’.«'(ud)--}’.o(ur)J'.«'(ud)]/[].«’(ud)2 +y/ud)’)'?  (5.5). -

where the primes imply derivatives (with respect to ur).2°

*H. 8. Carslaw and J. C. Jacger, “Conduction of Heat in Solids.” Oxford Univ, Press
London and New York, 1959, '
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Eigenfunction expansion methods for the solution of the SLE are illustrated
in Section VI for a model involving rotational reorientation. The main difficult y
with its use in the present'case is the lack of reasonable “selection rules' for
the “matrix elements” of (1) exchange interactions of the form Eq. (2.4})
and (2) potentials U(r) in Eq. (4.2) [as well as some problems with X(r)l.
However, perturbation approaches analogous to the one in Section VI, and
valid for Jot; <1 and U(r) =0, may be reasonably carried out by these

methods.?4-3°
We illustrate their utility in another context in the next section.

B. FiNiTE JuMP DIFFUSION

One may develop an analysis of jump diffusion by writing the master
equation for the probability distribution p(r, r) as .

ap(r, 1)/ = (1/3) f d’RA(e~R) p(r,2) — (1/7) p(r, 1) (5.6)

where A(r—R) is the probability that a molecule jumps to position r from
position R in a single step. Thus

fA(r—R)d’R = 1. (5.7)

Also 7 is the mean time between successive jumps. Let us introduce, by.
analogy to Eq. (2.8), g

p(r,t) = (1/4n) ffp(r, ¢) sin@ d0 do, (5.8)
and introduce A4 [p] as the Fourier transform of A(r):
Ap) = fA(r)e""d’r. (5.9)

This is the model used by Torrey,®! for which the solution is

p,1) = (1/22)° f exp{—irp-()[1-A@)) . (5.0

3°G. T. Evans, P. D. Flemming, and R. G. Lawler [ Chem. Phys. 58, 207 ( 1973)} have
studied a stochastic Liouville solution for a simplified model in terms of the simple Bessel
function expansion, Eq. (5.3) for ¢ = 0; i.c., they neglect to consider the boundary
condition at r = d. They also employ delta function representations of J(r) and ¥ (r),
but such a model fails even to reproduce many of the important qualitative features of the
results for CIDEP given in Section Il1. Their results for CIDNP are more useful in the
limit of small J(r), but their treatment would be improved by the use of Eq. (5.1) instead
of Eq. (5.3), i.e., with a proper boundary condition.

3 H. C. Torrey, Phys. Rev. 92, 962 (1953).
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We now rewrite the first term on the right-hand side of Eq. (5.6) as’
fd’RA r—R)p(R,r)

= (I/Z’t)ﬁfdJRJ'_dJPfdJkelp-(r-l)A(p)ellbl—(llt)[l-A(l)]l_
- (GA))

For simplicity, one now assumes isotropic diffusion so that 4(p) depends only
on the magnitude of p,ie.,

Ap) = A(p). (5.12)

Then one may use the usual spherical Besse| function expansion of e'*’r, ag
well as the addition formuyla forthe Legendre polynomials and the orthonormal
properties of the latter, to obtain

@/n) L "RdR f “PdoA(D) 1o (0R) jo(pr) p(R, 1)/ .13)

for the first term on the right-hand side of Eq. (5.6). Now one may let

- A(p) = 1/(1+ Drp?) (5.14a)
which corresponds to a model in which
A(r) = [4nDer] ! exp[—r/(D1)!'?] (5.14b)

and Dt = (r?)/6, where <r*)is the mean square jump distance. For the current
application in relatjve difTusion, D = D,+ D, and r is the separation. When
this form of A(p) is used and the integrations of Eq. (5.8) are employed in
Eq. (5.6), one obtains -

ap(r,0)/at = (1)) L NOSRETE

X Hexp[~|R-r|/(Dr)"2] - expl—|R+r|/(Dr)!'2))
x p(R,t) dR = (/1) p(r,1). (5.15)
This expression can then be employed for the finite-difference approach to
obtain a W-matrix for Jjumps of finite size,
Now Eq. (5.15) is the appropriate expression when r may vary from 0

to oo; thus Eq. (5.15) conserves total probability in this space. For real
situations, one must restrict the range of r from d to co. In this restricted

@/n) L “Rdr L "B dpA(9) £y 0R) fo o) pUR, 1)n, (5.13)
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One then obtains, instead of Eq. (5.15),
op(r, 1)t = (l/t)f dR[d*— Dt]~'(R/r)
: d

x H{[d* (D7)~ "2 — (D1)**] exp[ — | R~ r|/(Dx)"'?]
+ [d(D1)~ 14— (D1)!/41? exp[~(R+ r—2d)/(Dr)"'3))
X p(R, 1) ~ (1/5) p(r,1). (5.15')

Equation (5.15’) may be shown to satisfy the conservation of total Probabilily
in the space from d to co. Thus it implicitly includes the reflecting wall at
ro=d>? ' '

oThe problem of the introduction of potential functions into the jump
diffusion is a complex one. We note that, in general, one may replace
(1/5) A(r—R) in Eq. (5.6) by B(r—R) such that »

B(r—R) = t"'A(r—R)e"""""/X(r, R) (5.16)

where X(r, R) is a symmetric function in r and R [i.e., X(r,R) = X(R,1)], but
is otherwise dependent upon the microscopic details of the mode!. !\Jole'lhal
B(r—R), the jump rate from R to r, obeys detailed balancF, a{ld it is wru'ten
in a manner which recognizes that, in general, t has lost its snmpl.e physical
meaning (i.e., a mean jump time is now a function of r a.nd lf). A. surl}ple first
guess would be to let X(r,R) =1 even though its physical implications arc

not at all clear.

C. INErTIAL EFFECTS

One of the most serious weaknesses of the self-consistent or E.FP. Mc;:lhod
of Section 1V, E from the point of view of reactive dynamic.s in liquids is the
fact that the use of the Smoluchowski equation implies mstm?taneous. re-
laxation of the momentum; i.e., if 8 is the friction coefficient, one is essentially
letting f— o0 while D = kT/pp where u is an appropriate rc;:duced- mass;
(this is actually a coarse-graining in time assumption). Also, one is _constderlnlg
the valence forces F to be overdamped; i.e., one is assummgildlv F.I <;.:/i .
One can, of course, formulate the SLE in the co.mbined conhgu.rallon. an'(:
momentum phase space of the two particlcs.(n.e., a t\.vel.ve-dlmensu.olr:'-ll
diffusion problem). However, if the two particles are Slmlli.ll', suc.h tha
B, = B; = P, and the forces between them depend only on thelr' rela.llve'co‘i
ordinates, then it is possible to separate out the center mass difTusion an
relative diffusion, where py = my myf(m, +m,). One then has for the relative

2 We wish to thank Dr. L. P, Hwang for oblaining these results.
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diffusion in place of Eq. (4.1)*%:

ru.-P(l'.“) =-u-V,p+ "—l [vr U(I')] *Vup+ ﬁvn < (u-p) + qvuzp
.17

where ¢ = BkT/u and r and u are the relative coordinates and velocities (i.e.,
a six-dimensional problem). (Of course, if m, » m, one can treat the motion
of particle 2 relative to the fixed particle 1.) Also in Eq. (5.17) we have
neglected cross-damping coefficients f; ; for simplicity, but they can easily
be included.?!*

If now the relative force F(r) = F(r), i.e., a central force, and isotropic space
is assumed, then the appropriate symmetry considerations allow one to reduce
the problem to just three dimensions: |r|=r, |u]=u, and essentially
cos 0 = r-u. The solution of the resulting SLE is in many ways similar to that
already discussed for “inertial effects” in orientational relaxation,* and it
would be too lengthy to claborate here. However, we note that the most
effective method of solution in the present case is expected to be a combination
of the finite-difference method in the variable r, with eigenfunction expansion
techniques applied to u as well as the relevant anglesin a coupled representation.

One should note that the inclusion of “‘inertial effects” will also allow one to
specify initial conditions of the radical pair just after cleavage such that
u # 0, so that initial separations may be achieved quite naturally. Also, the
variation of J(r) in ) by means of the refative diffusion may show substantial
inertial effects, because of the rapid variation of J(r) with r.

D. GeNErRALIZED FOKKER-PLANCK THEORY

It is not necessary to be satisfied with Brownian motion models of the
liquid state reactive dynamics. One may, under very general conditions,
replace Eq. (5.17) by a generalized (time-dependent) Fokker-Planck operator
for the relative diffusion, including spin, which is a rigorous many-body
solution to this semiclassical problem.?'* One then obtains a time-dependent
friction coefficient §(f), for which a variety of memory-function approxi-
mations may be employed,?!* in an effort to better approximate the motion,

E. ORIENTATION-DEPENDENT REACTION KINETICS

When cither X°(r,,r,) or U(r,,r;) in Egs. (2.1) or (4.1) depend upon the
orientations of the two part_iplgs, the rotational diffusion of these particles
becomes important. One may then generalize Eqgs. (2.1) or (2.4) to deal with
this feature by a composite of techniques used here for the r variable and

33§ Chandrasekhar [Rev. Mod. Phys. 15, 1 (1943)] gives the single particle expressions.
34G. V. Bruno and J. H. Freed, J. Phys. Chem. 78, 935 (1974).
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eigenfunction expansion approaches similar to that used by Stockmayer
et al.®® for classical diffusion. We have already indicated, in a qualitative
way, the kinds of e\ﬂ'ects one might expect for CIDNP and CIDEP due to
rotations of nonspherical molecules.

VI. The Triplet Mechanism for CIDEP

A. GENERAL CONSIDERATIONS

Wong et al.!® have presented a theory for CIDEP polarization for some
photochemical processes in liquid solution. The model adopted by Wong et al.
is based upon polarizations generated by the intersystem crossing of a photo-
excited singlet state to a triplet state such that one (or more) of the molecular
frame triplet states T,., 7)., or T, is initally populated preferentially. This,
in itself, is a commonly observed phenomenon in the solid state. They showed.
that this preferential population, coupled with the effect of the zero-field
splitting term in modifying the high-field triplet states, cun lead to a rotation-
ally invariant term causing a net initial polarization of the radical pair which
emanates from the reaction (or decomposition) of the triplet molecule. The
crucial requirement then appears to be that the triplet lifetime be short com-
pared to the triplet spin-lattice relaxation time Ty, 80 that this initial polariz-
ation is not relaxed before the radical pair forms.

This mechanism has now been invoked in several experimental CIDEP
studies of photolytically generated radicals to explain pure emission spectra
as well as cases where both radicals are observed in emission.’®*? An im-
portant feature of this mechanism is that it is essentially independent of the
hyperfine terms and that it gives identical polarization for the two radicals,
unlike the RPM. The likelihood of having both the triplet polarization
mechanism of Wong ef al. and the radical-pair mechanism contributing to the
CIDEP polarization in such cases has been suggested by these workers.3¢3% |

The theoretical treatment of Wong ef al.'® clearly demonstrates the
potential importance of this photolytic triplet mechanism, for systems where
the rate of triplet decomposition into a radical pair is rapid. However, they
did not explicitly consider the dynamics of the problem, i.e., the dynamical
competition between the rotational reorientation, the various triplet decay
processes, and the T, process. In particular, the T, process is itseil expected
to be generated by the rotational modulation of the zero-field splitting. This’

33K _Sole and W. H. Stockmayer, J. Chem. Phys. 54, 2981 (1971).

36§ K. Wong and J. K. S. Wan, J. Amer. Chem. Soc. 94, 7197 (1972); S. K. Wong, D. A,
Hutchinson, and J. K. S. Wan, ibid. 95, 622 (1973); Can. J. Chem. 52, 251 (1974).
37 p._ w. Atkins, A. ). Dobbs, G. T. Evans, K. A. McLaughlan, and P. W. Percival, Mol.

Phys. 27, 769 (1974).
31 ) B. Pedersen, C. E. M. Hansen, H. Parbo,and L.T. Muus,J. Chem. Phys. 63,2398 (1975).
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is, in fact, a well-known mechanism. However, when the zero-field splitting
becomes comparable to or larger than the tumbling rate, then, in general,
the usual motional narrowing predictions break down, since one is in the
“slow-motional” region. In this region there need no longer be a simple T
behavior. Instead the nonequilibrium polarizations will decay with several
decay constants representing a more complex solution of the coupling of the
spin-degrees of freedom to the reorientational process.* Despite the com-
plexity of the problem, a thorough analysis may be given in terms of the SLE,

The analysis may be developed in terms of the excited triplet spin distri-
bution represented by the spin-density matrix p(€,¢). First one must make
the fundamental assumption, essentially equivalent to that of Wong er al.,
that a radical pair formed at time ¢ either from the decomposition of an
excited triplet molecule or from a reaction [e.g., abstraction of an electron
(or an H atom) from a solvent molecule] will still be characterized by the same
triplet spin-density distribution p(¢), although the orbital electronic distri-
bution has been altered. This appears reasonable for a decomposition process.
For an abstraction process, e.g., of a hydrogen atom, the electron spin (h,) of
the H atom must pair up with one of the original electrons (e,) forming the
triplet, so the other electron (h,) of the pair bond of the H atom in its original
solvent molecule will have the same spin character as e;. Once we adopt this
point of view, then we note that the polarization of each radical product is
given by [cf. Eq. (2.15)]

P = pT-T- _pT¢T¢ (6'1)

where we have set pg,, = 0, since we have assumed that the excited state from
which the reaction takes place is a simple triplet state. Actually, one needs
the polarization achieved alter the process is completed, by which the initially
excited triplet molecules have formed a radical pair, or relaxed to a stable
ground state, or else decomposed to yield other products. The polarization

of the radical products in this limit is given by*®*
PP = lim P(t) = I ler_r ) — pr,v, () Ky dt (6.2)
t=w ]

or, alternatively,
PP” = IEI [pr.r.s= 0)“[’1.1.(-‘ =0)] (6.3)

where k, is the pscudo-first-order ratc constant for formation of the radical
pair from the triplet states. We again usc the £ — co limit on the assumption

39 The cqualions in this scction thus differ slightly from the equivalent expressions in
Ref. 16. To bring the results in Ref. 16 into correspondence with the notation used here,
one should replace P® in that refercnce by #P=, where # = k,/k, but:P.q is unchanged.
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-that the polarization generating process is much faster than any subsequent

rate processes of the separated radical pair, e.g., their spin relaxation and their
further reactivity, and the expressions are delined so P* is the normalized
polarization of only those triplets which form the radical pair.?%*

For this problem the SLE is

Oplot ="—iH*p —T(p—p) — (ki +k))p (6.4).

where &, is a quasi-first-order rate constant for all other processes which
deplete the triplets, and I is the Markovian operator for the classical molecular
tumbling process. Also, p,, is the equilibrium density matrix given by

Peq = 0 exp(—hH[ky T)[Tr exp( —_h.)?/k,, T) = (a/3)(} =hst’[kyT)
) (6.5)

where the approximate equality is the usual high temperature approximation

and g is discussed below. The inclusion of p,, in Eq. (6.4) guarantees that the

spins relax to thermal equilibrium. (It was not necessary for the RPM,

because S and T, states have the same Zeeman energy, and the effects of the’
exchange energy were included as given in Section 1V.) As a result of the

dissociation and decay processes (assumed spin-independent), p,, obeys the

simple rate equation

0peqfdt = —(ky+ky) peq- (6.6)

" It is convenient, at this stage, to introduce the variable y which is the deviation

of p from its equilibrium value:

4 =P = Peq- (6.7)
It then follows from Eqgs. (6.4) and (6.6), that x obeys
xjot = —[i ™ +T+kly (6.8)
where we have let
k=k +k,. (6.8a)

Equations (6.6)-(6.8) are seen to yield the formal solution
p(t) = e M [e” X Dy (1=0)+p  (1=0)]. 69

We now normalize p(=0) = p(0) and p,,(1=0) = p.,(0), so that

Trp(0)= Trp,(0) =1 (6.10a)
and, more generally,
Trp(t) = Trp(t) = o(1) (6.10b)
and
Try(t) =0 (6.10c)
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where o(1) obeys the same rate equation as p, in Eq. (6.6), i.e., it measures
the fraction of excited triplet molecules which remain at time ¢.
The Laplace transforms of Egs. (6.6) and (6.8) are

[s+k]peq(s) = peq(0) (6.11a)
and
[s+K) 4 is™ + T x(s) = x(0) (6.11b)
and we have
P(8) = x(8) + peg (5). (6.12)
Then in the limit s — 0 required for Eq. (6.3), we have
fl_r‘l: p(s) = !'Ts X(s") + peg (O)/k (6.13)

where 5’ = s+ k. Thus we may solve for x(s') and add to it the second term
of Eq. (6.13).

In the present problem #°(f) is the orientation-dependent triplet spin-
Hamiltonian3°®:

H =y S, + ), (6712DD] (D) +(E[)[D} w (VD +D2,, . (D]} 4™

(6.149)
where
A2.0 = 6”2(S,2—§S2), (6.'58)
AV = F(Sy S, +5,Sy), (6.15b)
AZ,:I:Z = S:I:z'

Here D and E are the standard zero-field splitting parameters, w, is the
Larmor frequency for the triplet, Q represents the Euler angles for the trans-
formation between molecular axes x', y',z’ and space-fixed axes (x, y,z),
D (Q) are the gencralized spherical harmonics, and I, is the Markovian
operator for the rotational reorientation process. For isotropic reorientation,
the eigenlunctions of I, are the 9},,(Q) with eigenvalues

EL,K,M = RBLL(L+I) (6.'6)

where R is the isotropic rotational diffusion coefficient and B, is a “‘model
parameter,” which is unity for Brownian reorientation, and at the other limit
of strong jumps (lcading to randomization of onentatlon with each molecular
collision) onc has B, = R/E; x \ for L#0. A whole range of jump models

3%t ). H. Freed, G. V. Bruno, and C. F. Polnaszek, J. Chem. Phys. 55, 5270 (1971). The
Z5x(SY) utilized are in the nolation of J. H. Freed and G. K. Fraenkel [J. Chem. Phys.
39, 326 (1963)).
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between these two cases may be treated in terms of the proper B, as discussed
elsewhere,**° and anisotropic motion may also be treated in the standard
manner.*4°

B. SOLUTION AND RESULTS

The method of solutioﬁ of Eq. (6.11b) is to expand x(s’) in the complete '
orthogonal set 2, (Q) as

1) = =i ¥ Cu(s) Dy (D). (6.17)
» LKM

[

Also, one can expand the initial condition (see below) as
x(t=0) = —i ¥ dby Dr (D). (6.18)
LKM

One can rewrite Eq. (6.11b) as a matrix cquation®® using Eqs. (6.17) and
(6.18), and by taking spin-matrix elements of C;, and dj,, as described |
One has

HAC =d (0.19)

where C is an n-dimensional column vector consisting of the expunsion
coefficients Cf,, (i), while d is the n-dimensional column vector of dy,(i)’s
(see below) and & is an n x n-dimensional complex matrix, obtained from
evaluating the operator coefficient of x(s) in Eq. (6.11b) in the standard
manner.*%® B

At this stage we note that for the 5 (Q) of Eq. (6.10) and I, with eigenvalues -
of Eq. (6.16), o is formally identical to the matrix required to solve triplet
slow-tumbling spectra when rf and dc fields are parallel, and this has already
been given by Freed et al.3*® (one only requires iw — 5°).

Next we note that for isotropic liquids one wants the average j(s’) gnvcn by

(1/8n%) J’ dQp(s’)

—iC2 o(s") + $(1 — heoy S, fky T)/s’ (6.20)

where the second equality follows from Egs. (6.12), (6.18), (6.11a), (6.5),
and (6.14).

p(s’)

405, A. Goldman, G. V. Bruno, C. F. Polnaszek, and 3. H. Freed, J. Chem. Phys. 56, 7116
(1972). The jump diffusion model used here is based on lvanov’s modet [E. N. lvanov,
Sov. Phys.—JETP 18, 1041 (1964); also K. A. Valiev and E. N. Ivanov, Sov. Phys.—Usp.
16, 1 (1973)], where one recognizes that the conditional probability function of Ivanov
is the standard expansion in eigenfunctions of the appropriate I'y for jump diftusion.
This matter is discussed in more detail by R. I, Cukierand K. Lakatos-Lindenberg [J. Chem.
Phys. 57, 3427 (1972)).
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Also we note that the L, K, Mth element of d is given by

i [ 20 )2 * @D = s ©21)
Note that C{ ,,(s") is still a spin-operator, as is dgy (/). Thus one must solve for
—i[C1CLo@1) = (~1CEo@|-1DI + Pofk  (6.22)

with
Paq = §hwo/k37-'. . (6.23)

It is easy to show from the general properties of the expansion coefficients
(cf. Freed et al.>®®) that the diagonal elements of Cg, , are pure imaginary.
Thus one obtains

po—p, =k lim Im[{—1]C ()| — 1) = (+ 1| CL o(®) |+ 1)].
’ (6.24)

In Eqs. (6.22) and (6.24) we have employed conventional bra-ket notation
for the diagonal matrix elements for Ty, in the laboratory frame.

1. Initial Conditions
We now consider the n-dimensional vector d with elements given by Eq.

(6.21). We note that just after a preferential intersystem crossing, p(0) is most
conveniently described in the molecular frame. In general, one may write

p0) = wy [X'Y X'+ wy [PY Y|+ w1252 (6.25)

where |X'), | Y’ ), and |Z Y are the zero-field kets for the triplet in the mol-
ecular frame (i.e., T,., T}, and T,) and w,., w,., w,. are the preferential prob-
abilities of populating these states by the intersystem crossing, such that

We + Wy + wp = L. (6.26)

[Equation (6.25) neglects any coherence between the relative probabilities of
populating the three triplet states; otherwise p(0) would have off-diagonal
elements in the |X'), |Y'), |Z’) representation.] If we let |m), where
m=+1,0, or —1, represent the high-field kets in the molecular frame, then
we have '

[£1) = (FI2)[X">+i|Y")] (6.27)

and these kets are the irreducible tensor components.>®® The high-field kets
in the molecular frame are transformed into the high-field kets in the laboratory
frame |k) according to

I = 316> 21 (@) (6.28)

with the gencralized spherical harmonics already discussed. Thus
I Gl = 3 k> <K D@D e @ (=D (629)
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and one may transform Eq. (6.25) for p(0) in the |X*), |Y'), |Z") basis set
into the |k) basis set. The matrix elements dg (i), according to the definitions
analogous to Eq. (6.22), appear in Pedersen and Freed® for an axially sym-
metric molecule (i.e., £=0). In general one only has L =0, or spherically
symmetric, and L = 2 contributions, and only the L = 2 contributions will -
yield an effective CIDEP polarization mechanism. It is seen that the initial °
conditions corresponding to |X') or |Y') give identical results, since for
E = 0, the choice of these molecular axes is arbitrary. Also they yield values
for d},,(i) which are (—3) those for the initial condition of |Z"). Thus, it is
sufficient to solve for the initial case of p(0)=|Z'){(Z’| and multiply the
result by r = [w,.—4(w,-+w,)] to obtain the correct P for an arbitrary
initial condition. :

2. Perturbation Theory

One can solve Eq. (6.19), subject to the initial conditions, by a perturbation ,
method valid for small enough D. However, in zero-order, {1|Cg o|1) and ‘*

—1]C8 0| —1) in Eq. (6.24) are “degenerate” with (0] Cg 4 |0), so degenerate
perlurbauon theory is called for with a van-Vleck-type transformation being
appropriate.’

We summarize the procedure by introducing three transformations U, T,
and P such that Eq. (6.19) becomes

PTULU'T™'P~')(PTUC) = (PTUJ) (6.30)
or
A"C" = 4", .

Here U is the orthogonal transformation which transforms the diagonal
matrix elements of C§ o(i) into their “normal modes™ of relaxation. T is a
symmetrizing transformation,’® and P is the van-Vleck-type matrix which
diagonalizes o#” = TUs#/U ™! T~ to lowest order in D. Once this approximate
diagonalization is achieved, then one solves for

(2" [K=1CFol=1> =< C3 o[ 1]
The final result of the perturbation analysis (for £ = 0) yields

_fz _4D we k k+2tz "k
r 15 ool + 1R | k+T7 T wo? + (k413 ")?

4(1)0 E (E + 21.; l) ’2
+4w01+z;1[);+7'l—| 4w0 +(E+TRI)2:I} (63')
where 14 = (6R) ™!,
r = [W.'—%(Wx'-i-W,v)—(D/Zwo) Peq]’ (6.32)

s W +172  Quwe): +152

—1 -1
;! 202[ A L ] (6.33)
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and
P® = P'® 4 [T (k4T )] Py (6.3%)

(We will generally use P’® to represent that part of the polarization which is
independent of P, terms.) Also the presumed validity of the analysis requires

D? € (wo2+153). (6.35)

Note that the T, of Eq. (6.33) is the well-known result for triplets, but its
validity in the present derivation requires only that Eq. (6.35) be fulfilled.
Atkins and Evans'® have obtained a very similar result from a different
approximate analysis. In the limits

wo > 13! R k> Ti! = (4/15)(D*fwo?) 11! (6.36)
one has the simple result
P'®[r = (8D[15w,) (6.37)

which is seen to be equivalent to the perturbation result of Wong et al. (for
k, » k,) wherein the dynamical features are unimportant.'? It immediately
indicates that substantial polarizations can be generated in that limit. The
positive (negative) sign in Eq. (6.34) or (6.31) indicates absorptive (emissive)
polarization. .

The dependence of P’ upon k, given in Eq. (6.31) is an interesting one.
It is seen that P’™ goes to zero both for very small and very large values of
k,. That it goes to zero for small k, follows because any initial polarization
is quenched by the T; process before the triplet reacts to give a radical pair.
That it goes to zero for large k, represents the fact that the initial population
difference (pr_r.—Pr.7,) immediately after a preferential intersystem
crossing is zero since only the isotropic contributions to p(0) are important
[cf. Eq. (6.20)]. The polarization is generated only in times of the order of tg,
as the rotational averaging effectively mixes in the anisotropic contributions
from p(0) into the polarization (which is an isotropic average over all
orientations). ‘

The contribution of P, in Eq. (6.34) represents the competition between
the triplet decomposition process and the T, process, going to zero for
k> T;'and Py for Ty ' > k.

We have compared Eq. (6.31) with the complete computer solutions, and
we have found as a practical guide that it gives an adequate representation
(to within 10% or better) provided

D? < 4[we?+131). (6.38)

We illustrate the cases for large D = 3000 G for both large and small wg
in Figs. 9 and 10 for Brownian motion (B, = 1). The results for wy = 3000 G

ts2x108s

=005

T

triptet lifelime =k lisec)
L

1 1 1 ] e
1210 120105 12100 12x107 12000 120107 12410 12007

Fi6. 9. Graph of P™ vs triplet lifetime = k-1 for different values of tx the rotational ver
relation time. The zero-field splitting D = 3000 G, while wo = 3000G. It is assumed that
f=k,: for k # 1 these results should be multiplicd by £ ,/k and the ordinate yields #P~.
The initial condition p(0) = |Z><Z] is assumed, so in general the results should be multiplied
by r defined by Eq. (6.32). The results given do not include any contributions from P, fi.c..
they are rigorously the P’ values, ¢.g., Eq. (6.34)]. [By permission from Pedersen and

Freed.'®]
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FiG. 10. Same as Fig. 9 but withwe = 000 G. [By permission from: Pedersen and Freed.'®}
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are generally in good agreement with Eq. (6.31), but for we = 1000 G it is
found that Eq. (6.31) breaks down. (These results may be scaled with the
dimensionless parameters: wo/D, tz'/D, and k/D.) It is clearly seen from
Figs. 9 and 10 that limiting values of P'® as high as 450 x 103 can be pre-
dicted for a range of k/D values and slow tumbling (while P, ~1073), More
rapid tumbling acts to decrease P'®. When the tumbling is slow, substantial
deviations are found between the exact solution and Eq. (6.31) for wy/D < 1.
Equation (6.31) tends to overestimate P’® in this case. In the slow-tumbling
limit, one does not necessarily recover results for P’® that are insensitive to
the dynamics, since there is still competition between k, and T,-type pro-
cesses, the latter being dependent on the rate of rotational reorientation.
Of course, such conclusions will be altered if other types of processes begin
to be important in 7.

It should be noted that once the radical pair is formed with initial polar-
ization given by Eq. (6.24), then the RPM of Sections 1I-1V can become
eflective, so that the total final polarization P®, when the radical pair
separates never to reencounter, is given for radical A by the complete equation
(2.15a).

C. ErfrecT OF POLARIZED LIGHT

Adrian*' has recently suggested that the initial triplet polarization can be
sensitive to the direction of the polarized light relative to the applied dc field.
This may be incorporated into the present approach by rewriting Eq. (6.4) as

p=—i"p—T(p-py) — (ki +k)p + k3 (Q)p,(r) (6.39)
where the excited singlet distribution function p,(, 1) obeys
ps = —kyp,—Ip,. (6.40a)
Also
a(1) = kyp(s) — (k,+ky)o. (6.40b)
Here ‘
k(@) = Ky [vg [ X KX wy [V QY 4w |23 C2°]0; (6.41)

cf. the right-hand side of Eq. (6.25). Thus ﬁ, = Trk,(Q2) and we let
f Q1= 0)dQ = | (6.42)

where p (€, 1 = 0) gives the initial polarization of the excited singlets due to
the polarized light. One then finds that the right-hand sides of Eqs. (6.11)
become p., (0)ks/[s+k3] and [k;(Q)=k; peg (0)] p,(Q,0)/[s+T +Kk,], re-
spectively. It is easy to see that for an isotropic initial distribution, i.e.,
ps(Q,0) = 1/8r2, in the limit s — O the results using Eq. (6.25) are recovered.

“1 F. ). Adrian, J. Chem. Phys. 61, 4875 (1974).
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However, in general, the final solution will depend on the orientational
distribution of p,(2Q,0). The solution may be obtained by the methods already
described.

Adrian gives a perturbation-type analysis and finds that the CIDEP
polarizations can vary by as much as 20% by changing the axis of light
polarization.*! Recently such effects appear to have been seen.*? '

VII. Signal Intensities and Time-Resolved Experiments

In this section we relate the polarizations, as discussed in the earlier sections,
to the ESR and NMR intensities which are observed in an experiment.

A. CIDEP INTENSITIES AND ENHANCEMENTS

The ESR intensity depends on the difference in populations of the S, = §
and S, = —4 levels which is the electron polarization [cf. Eq. (2.13b)]. For
an equilibrium system the polarization P, is determined by the Boltzman
distribution (P, >~ 1.4x 1072 for a X-band experiment), and it is almost
independent of the hyperfine state. The polarization of a radical created
during a collision with another radical or at the formation stage of the radical .
will decay to the equilibrium value P, due to a T, process. Also the ESR
signal depends upon the concentration of the radicals carrying the polarization,
and these radicals may be destroyed due to chemical processes, and new
radicals may form. Therefore a complete description of the kinetics of the
system is necessary in order to interpret a time-dependent ESR signal.

. General Treatment
For ease in the presentation we shall use kinetic equations of the type

dn,()dt = kg, — kg, n,(t) = Y k3 Fopn (1) ny(1), (7.1a)
b
dny(0)fdt = ko, — ky,p1p(1) = Y ky F,yn () n, (1), (7.1b)

although the method is applicable to any kinetic model. Here n,(t) and ng(t)
represent the number density (or concentration) of radicals A and B in specific
nuclear states. The zero-order (ky) terms represent the formation of the
radicals by a radical source, e.g., a light source or an electron beam. We assume
that the radicals are created by a zero-order recaction only, which is probably .
a good approximation when the radicals are produced by phoiohyie o
radiolytic dissociation of a precursor molecule which is present in bt
concentration. If there is a production of radicals A by a reaction involviug

42 B, B. Adeleke, K. Y. Choo, and J. K. S. Wan, J. Chem. Phys. 62, 3822 (1975).
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other radicals then this production term may be included as well. The first-
order reaction may be due to reactive collision with other radicals or molecules
where for convenience it is assumed that the concentration of the latter is
sufficiently large so that this concentration hardly changes. Also we assume
that this first-order process does not produce any observable polarization.
The second-order reaction is the spin-selective reaction, i.e., only radical
pairs in singlet states can react. The rate constant is most conveniently
written as k; %,,, where k,n,(t)n,(t) gives the frequency of collision of A
and B in the specified nuclear states and #,, gives the probability of reaction
per collision (cf. Section 111). k, depends only on the diffusion constant and
the distance of closest approach [cf. Eq. (3.8)].

Although it is the spin-selective reaction that causes the RPM electron
spin polarization, it is generally not possible to directly observe the reactivity
of the radicals as a function of the radical nuclear states (actually the Q-values
of the radical pairs) in ESR. Any anomalous population of the radical nuclear
states arising from the spin-selective reaction will decay by nuclear spin-lattice
relaxation to the equilibrium population, which in most ESR experiments
may be taken to be equal populations. For a rigorous description of n,(¢)
and n,(¢) one should then include the nuclear spin relaxation in Eqs. (7.1)
(cf. Pedersen'2). As the ESR intensity is proportional to n, (1) while an NMR
signal is proportional to the diflerence n,(1)—n,{r) the different reactivity of
the different nuclear states show up much more directly in NMR. The maximum
enhancement found in NMR is of the order of 10* which corresponds to
[n ()= n,{1)]/n. (1) = 1072, Tt is therefore a good approximation in ESR to
assume that n,(¢) for all nuclear states are identical and equal to n(r) where
ns3(¢) is the average value of n(f).

n2 (1) = 1/xp 0, (0) (1.2

and x, is the number of different nuclear levels of radical A. .

If one neglects the nuclear spin relaxation, one can obtain rate equations
for n,(t) = x,n53(t) and ny(r) = xgn'(¢t) (the total number of radicals A
and B) summing Egs. (7.1a) and (7.1b) over a and b, respectively (i.e., over
all nuclear levels of radical A and B). The resulting rate equations are similar
to normal rate cquations:

dnp()]dt = ko A1) — ki, analt) — ka Fna()ng(t) (7.3a)
dng(0)dt = ko (1) — k¢ anu(t) — k, Fn,()ng(1) (7.3b)
where
ko = Y ko, (7.4a)
and )
F = Zg'—.b/(x/\xn) (7.4b)

ab
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but they explicitly include the effect of the spin selective reaction through
#. We have included a time-dependent k,, for generality. Note thatk, , = k; 4
since we have assumed that the first-order process is not spin selective. In
deriving rate equations for the intensity, we shall use a Bloch equation

approach. The z-component of the magnetization of radical A in nuclear

state a is then given by
M (1) = n(D) Pu(1) s

where P,(r) is the electron polarization of radical A in nuclear state a. The '
rate of change of M,*(f) due to the kinetics may be expressed in terms of the
different, independent processes as

AMpdt = dM2dt Y, + dM2dr Y, + M2 dr),,. (1.6)
The first term in Eq. (7.6) may be explicitly written as
dM 2dt],, . = P.° () (dndt), , = P> (ko (1.72)

where P,2(I) is the polarization at the formative stage of the radical. This
polarization may be generated by the radical pair mechanism (cf. Scctions 111
and 1V) and/or the triplet mechanism (cf. Section VI). No distinction between
these two mechanisms can be made purely on the ground that the polarization
is an initial polarization. Instead it must be made on the different dependences
of P,® upon the parameters D, Q, etc. If the initial polarization is generated
by the RPM, and the radicals initially form a triplet state, then

P = xg' ;P.‘?,(T) (7.76)

where the summation extends over all hyperfine levels of the other radical B.
Note that if the radical A is formed by a reaction of another radical with a
molecule, then any polarization (e.g., equilibrium polarization) of the latier
radical may be transferred to radical A and this polarization would then be
the initial polarization of A [P, (/)]. The k term can immediately be writlen
as

dM2ldt = P(t) dnfdt},, = —k M (1) (1.70)

The k, term, which invloves collision between two independently produced
radicals a and b under the eflect of an exchange interaction, is the most
difficult to treat because it involves both polarization production (by spin-
selective reaction of the radicals and RPM) and a polarization quenching of
existing polarization (by Heisenberg spin exchange). The rate of collisions
of A and B is simply given by k, ns(£) ng(¢) when the combined spin state of A
and B is unspecified. The polarization produced during a reactive collision
between two randomly distributed radicals is P3 and the fraction that reacts
is #,, (note that P/ F,, is independent of the reactivity; cf. Sections 1H and
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1V). However, if the two radicals have polarization P,(¢) and P,(¢t) when
they first encounter, then we must examine the density matrix at that time.

A first encounter at time ¢ between two radicals with polarizations P,(t)
and P,(r) will lead to the diagonal matrix elements (in the doublet
representation)

Pas,o- = F[1=P()][1+ Py(1)] (7.8a)
Pa-,b+ = F[1+P.(1]L1 - Py(r)] - (1.8b)

and the off-diagonal elements, €.g., P+ p—;u-,b+» €qual to zero, ie., no
initial phase coherence between the states. The density matrix elements in
the doublet representation may be converted to the S, T,, T, representation
by the equations given after Eqs. (2.15) and we get

Ps.5(1) = pro,1,(t) = [1 =P, (1) P (1)], (7.8¢c)
Ps.1o(t) = $[Pu(1) - P,(1)]. (7.8d)

Equation (7.8c) shows that a random collision always yields equal S and T,
character. Now usually |P,(¢)], |Po(¢)| are very small compared to unity
(<0.1) so to a good approximation

pS.S(l) = pTo. To(l) = *: (7.8C)

and k, simply refers to half the total number of collisions (the other half
being the T, or T_ collisions which have no effect on the system). Equation
(7.8d) shows that there is an initial nonzero pg, 1,(¢) that is real. This polar-
ization quantity is altered during the collision as described in Section 1V, and
the change is cqual to —AP-ps r(¢). We can now summarize the k, con-
tributions to dM*/dt as

dM dt],, = zb:kz n (D (O[PS — AP(P,(1)— Py(1))]). (7.8f)

By adding the different contributions to the rate equation of M,*(r), and
neglecting the small hyperfine dependence of n,(r), one then obtains (cf.
Pedersen.'?)

AMA 0/t = ~ky & [ng(1) M0 = (1) M,2(0)]

+ P (N ko alt) + ky F P ng () ng(t) — ky A M (1),
(7.9a)
where P,* is defined as

P*=P>F = (}: P x,;')/sr. (7.9b)

The dependence of £,, (R.1.) on the nuclear states is much weaker than that
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of P}, so to a good approximation

Pl‘ = ;(P:ob/'f;b)/xn = x;l zb:P::,(T)kso- (790)

Note that the reactivity of the system is only reflected through & [i.e., n,(1)]
since P,* is constant, This analysis shows that for a R.1. condition P*/F is
the important quantity. The Bloch equations appropriate for this system’
may be written as

dM2()ldt = —T7 ' M2 (1) + AoM, (1), (7.10a)
dM 2 ()]dt = —AoM2(0) — T3 "M, (1) — o M, (1), (7.10b)
AM2(0)/dt = o, M (1) — T "M (1) 4+ np ()T ' P + dM 2 (D)]dt |eq. (1.99)-

(7.10¢)

The magnetization of radical A,M* is coupled to the magnetization of

radical B, M®, by the AP term in Eq. (7.9b). However, in most experimental

conditions one has T, § < | (" is the radical half-lifetime) and this assures

a neglect of the AP term. In the original work'? a special case with AT, > |

and the AP term included was treated, but here we neglect this term. '
Without the AP term in Eq. (7.8) one can write Eqs. (7.10) as

M(t) = LM(s) + F(1) 101
where the time-independent matrix L is given by
' -T;! Aw 0

L={-d0 -T7' o, |. (1.12)
0 (Ul "'T(;-‘
T, ' is given by C
Ty = Tt + k. )
F(¢) is given by
0
F(t) = 0 (7.14a)
L)

and
£.(0) = P2(D ko alt) + Py Ty 'na(0) + ky F P, (Dng(r). (71.14b)
By Laplace transformation of Eq. (7.11), we obtain

L(s)M(s) = M(0) + F(s) (7.15)
where
L(s) = —L + sl (7.16)
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and M(0) is the initial magnetlzauon The solution for M(s) can formally be
written

M(s) = L(s)" ' [M(0) + F(s)]. 717

The solution is simply written for Aw = 0, i.e., one is observing the intensity
at the center of the line.

M,(t) = mo - g,(6) + S(1)*g,(t) + yo - 9,'(r) (7.18)
M, () = mo - g.(6) + f(1)*9.(t) — yo - g,(1) (7.19)
where mg and y, are the initial values of M, and M,, respectively, and
9,(t) = —[@/(rs —r_)][exp(r, t)—exp(r- 1)), - (7.209)
9:(8) = [U(ri —r )1[ry exp(ry t)—r_ exp(r_1)]
) +[T7 ' (re +r-)1lexp(ry ) —exp(r_ 1)1, (7.20b)
" ry = =3(To '+ T )+ (T ' =T 1) — 0,212, (7.21)

g.'(r) is obtained by replacing T;"! by Ty' in Eq. (7.20b). f(¢)*g(¢) means
the convolution of f(r) with g(¢). ’

For the case T, = Ty = T,, which is assumed in the following examples,
one finds (cf. ref. 12) that g,(¢), g,(r), and g,'(¢) are given by

g,(1) = e "Msinw, 1, (1.22)
g9:(1) =g,/ (1) = e "M cosw, ¢. (7.23)
2. Slow Radical Decay

We now assume that the lifetime of the radicals is much longer than the
electron spin-lattice relaxation time T,. We then have Ty ! = T, ! and we also
make the simplifying assumption that T, = T, for simplicity of illustration.

The general form of the time-dependent intensity, i.e., M, ,(t), may be
obtained from Egs. (7.18), (7.22), and (7.23) as

M, (1) = my-e "M sinw 1+ po - e T sinw, ¢

+ f'e"/r' sin(w, 1) f(t—~1) dr. (7.29)
(1]

One sees from Eq. (7.14b) that /(1) varies essentially as n(r) which, according
to the assumption, is much slower than ¢ %" and Eq. (7.24) may therefore
be approximated by

M,(t) = mg-e "M sinw, t + yo- e cosw, ¢

+(1) - e "M [wye'T —w, cosw, (—T,; " sinw, (J(T7 +0,2).
(1.25)
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One observes that any initial value of M, or M, is damped out during a time

period of the order of T,. One also observes that Af,(r) changes from its

initial value y, to approximately f(0) [neglecting the constant [actor

w, T */(1 + T, 2w, )] during a time period of the order of T, after which the-
time dependence follows f(¢). The effect of the sine and cosine terms is to give
rise to wiggles damping out in time. Note that these wiggles are only significant

for t < T, and may therefore not be observed. For weak observing power,
ie, ;T <1 one observes no wiggles at all since sin(w,r) ~ w,t and

cos(w )~ 1. The effect of increasing the power, i.e., increasing w,, is

therefore for ¢ > T, ‘just to change the intensity as given by the factor
@, T2(1 +T,20w,* " in Eq. (7.25).

There are essentially two types of time-resolved experiments: (1) the steady
state experiment where, e.g., a constant light source is applied in a time
period sufficiently long that a steady state is reached. The light is then turned
off (as fast as possible) and is not turned on again before all radicals have
disappeared. The intensity is recorded both in the light period and in the dark
period. (2) In a pulse experiment the light is applied for a short time (usually
shorter than T; sec, e.g., by using a pulsed laser) and the intensity is recorded
from the moment the light pulse starts. We divide the following discussion to
distinguish between these two types of experiments. :

a. Steady State Experiments. In a steady state experiment onc has m, =
Yo = 0 in the light period, and one can easily prove that mgy = ygfew, T,*® in
the dark period when it is assumed that w, T, < |. It is now useful {o rewrite
Eq. (7.25) in the form

M, (e) =~ M°(1 +4/T)) exp(=t/T) + SO [ = (1 +4/T,) exp(—¢/T))]
(7.26)
where we have omitted common constant factors and we have used w, T, < I.
M,° is equal to zero and the steady state value in the light and dark periods,
respectively. The light and dark periods are treated separately and =0

corresponds to the time when the light either goes on or off. It is also useful
to rewrite f(¢) [Eq. (7.14b)] in the form

J(0) = V1) + [n(e)/ne] [1 +Vn(t)/ng] (1.2

where we have omitted the constant factor ng P, T, ' and where n,, is cqual to
the steady state value of n(r). Also for simplicity we have assumed n, (1) =
ng(1) = n(r).'? The enhancement ¥ due to the spin-selective recombination
process is given by

= P®T\k; FnolP,,. (7.28)
The enhancement ¥ (/, 1) due to initial polarization is given by

VL, t) = PP(I) T ko(t) Peyno. {
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In the following we make the simplilying assumption that k() can be
represented by a series of square waves, i.e., the light goes from completely
off to completely on and vice versa during a time shorter than T;.

To obtain the time dependence of the intensity for a specific case one just
nceds to solve the kinetic equations (7.3). We illustrate this by a few examples.

Example 1. Initial Polarization Only. First-Order Reaction. By solving the
appropriate kinetic equations and substituting the result into Eq. (7.27) we
immediately get

V() + [l —exp(—k,1)] light period (7.30a)
 lexp(=k,1) dark period (7.30b)
V(I) = Po(I)T k[P, (1.31)

and M,? = 1 +V(I) for the dark period. By substituting f(¢) into Eq. (7.26)

I 1 i 1 I ] i i

1
[+ 1000 2000 3000 4000
Microseconds

Fia. 11. Intensity versus time for initial polarization case (steady state experiment). The
radical producing source, e.g., a light source, is assumed to have a constant power and to be
turned on instantly at time zero and off instantly at 2000 gsec. Each curve corresponds to a
dilTerent value of the enhancement ¥ as indicated on the figure. Other parameters used are
T, = 2 psec, and ki ' = 120 usec for all curves. [By permission from Pedersen.'?)
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one then obtains the complete time dependence. One observes that the intensity
in the light period goes from zero to V(1) during a time period of oo .
and then decays with rate constant &, to the steady state value 1 4V (/), wincn
of course is also proportional to the signal for the spectral line recorded during
continuous light illumination. For the line to appear in emission, one requires
V(1) < —1. In the dark period the intensity goes from | +V(/) to | during a
time period of order T, and decays with the rate constant k, to zero. Figure |1
displays the full time dependence for several values of ¥(7). In principle, one
should be able to obtain ¥ (1), k,, and T, from such an experiment and P> (/)
could then be calculated, but the T, is usually difficult to obtain due to the
time resolution of the spectrometer (see below).

Example 2. Only Recombination Polarization. Second-Order Reaction. With
the appropriate solutions of the kinetic equation one obtains

tanh(p)[ 1 +V tanh(fir)] light period (7.320)
- A+ "[1 4+ V(1 +p)"']  dark period (7.32b)
where the second-order decay constant # equals
B =k, Fng (7.33)
and the enhancement V then becomes
V=P°T P, (71.34)

The complete time dependence is then given by Egs. (7.32) and Eq. (7.26)
and is displayed in Fig. 12.

One observes a marked difference in the time dependence between these
two examples which enables onc to distinguish between thesc two cases. Other
kinetic systems may be trcated similarly, e.g., one could have both initial and
recombination polarization, which, as seen from Eq. (7.27), can be obtained
as a superposition of a pure initial polarization case and a pure recombinition
polarization case with the same kinetics (cf. Pedersen e/ al3%).

b. Pulse Experiments. If the duration of the pulse is much longer than 7,
then Eq.(7.26) with M, = 0and Eq.(7.27) are again applicable. If the duration
of the pulse is much shorter than T, then one just gets

M, (1) = (1[T,) exp(—t/Ty) P=(1)[Peq + n(0)n [} — (1 + /T exp(— /T, )]
x [V +Vn(t)/ne] (7.35)

where V is again given by Eqs. (7.28) and (7.29), but where n, is now the
initial value of n(r) just after the end of the pulse. For a second-order
decay V is given by Eq. (7.34).

c. Spectrometer Response. A word of caution should be given in applying

-
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v=-20

J\__C__.w

0
m
[l A | '\ L I I\ i 1
[0] 1000 2000 3000 4000

Microseconds

Fic. 12. Intensity versus time for recombination polarization case (steady state experi-
ment). The radical producing source, €.8., a light source, is assumed to have a constant power
and to be turned on instantly at time zero and off instantly at 2000 usec. Each curve corre-
sponds to a different value of the enhancement ¥ as indicated on the figure. Other parameters
used are T, = 2 pusec and f= 120 usec for ali curves. [By permission from Pedersen.'?]

the above equation to an experiment. In the above discussion nothing has been
said about the spectrometer response. If one defines a response function ¢ ()
as the spectromeler's response to a & pulse (in time) then a general spectrometer
input M,(r) will result in a spectrometer output O(¢) given by

o) =J“ G(t—t) M, (1) dr. (1.36)

If one characterizes the response function by a response time 1y, then this
is normally of the order of 30-150 gsec using 100 kHz modulation, but it can
be decreased by using 2 MHz modulation to about 2-3 psec. More details
about response functions and how this influences the above equations for
M (1) may be found in Pedersen er al.>® A review of the experimental methods
has been given by Atkins and McLauchlan.*?

43p_ W. Atkins and K. A. McLauchlan, Lepley and Closs.!

s
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3. Fast Chemical Decay

When the half-life of the radicals becomes comparable to or smaller than
T,, then Eq. (7.25) and the above equations for a slow radical decay no
longer apply. If one can neglect Heisenberg spin exchange, i.c., the AP term
in Eq. (7.9a), then Eq. (7.24) is applicable. But, if the AP must be included,
then one must solve coupled equations. Also eflects due to T, # T, ficld
inhomogeneity, and the application of high observing power become important
when the radical lifetime is comparable to T, and observations for ¢ < T are
needed. This is discussed in detail in Pedersen.'?

B. CIDNP INTENSITIES AND ENHANCEMENTS

We now relate the #’s calculated in Sections 111 and IV with the intensitics
as observed in a CIDNP experiment. We wish to point out that within the
usual assumption of negligible cross-relaxation, one can easily obtain exact
relations for the time-dependent intensities. Such relations are important
both for obtaining rate constants as well as determining the #’s by a Cl DNP
experiment. The approach is similar to that already discussed. Here we assume
for simplicity that the intensity is described by the z-component of the
magnetization, as is indeed the case for ¢ > T,. The proper modifications
needed if one is interested in times smaller than or of the order of T, are
very similar to those discussed for CIDEP.

The following simple reaction scheme is considered for illustration.

S — R® + R% = R,,
N
R + R}.

The precursor S decomposes into a radical pair Ry + Ry where the bar indicates
that the radicals are initially close together. This initialization process is
assumed to be a first-order or pseudo-first-order reaction with reaction
constant ko'. R means radical A in a specilic nuclear state a. The two radicals,
initially together, may diffuse apart into R? + R}, never to mect again, in
which case the radicals end up in scavenging products or they may, after a
diffusive excursion, recombine to give a recombination product R,,. In the
following S(¢) and R(r) are the total concentration at time ¢, respectively, of -
the precursor and of the recombination products, irrespective of the nuctear
states, while R,,(¢) is the concentration at time ¢ of a recombination product
in a specific nuclear state specilicd by the subscript. _

If we assume that the recombination product R is different from precursor S,
then the rate equation for S yields

S(t) = S(0) exp(—ko't). (7.37)
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The rate of formation of a specific radical pair R34+ R is ko' X' S(1), where
it is assumed that all nuclear states of the precursor are equally populated.
X, is the nuclear degeneracy of S. The fraction of radical pairs RJ+ R} that
recombine to give recombination product R, is #,, (where the subscripts
serve to definc the Q-value when the g-values and hyperfine splittings are
known). The rate equation for R,,(¢) is therefore

dfdt Ry(1) = ko'X['F,, SU) = T [R(1) - R3(N]  (7.38a)

where the last term gives the spin-lattice relaxation. A single averaged
relaxation time T, is assumed and cross-relaxation between different nuclear
states is neglected. This may be a rather crude approximation and is assumed
here for ease in the presentation, R(¢) is defined as

R3(1) = pR R(1) (7.38b)

where pgi is the Boltzmann population of product state ab. The rate equation
for R(¢) is obtained by summing Eq. (7.38a) over all states a and b

dR(t)/dt = ko' X' FS(1) (7.39a)
where
F =), (7.39b)
ab
Equations (7.39a) and (7.37) give
R(t) = X7 'FSO0)(1 —e~*). (7.39¢)

[Note that when S(f) ~ S(0) over the interval of the experiment, we have
ko,. of Eq. (7.1) equal to ko’ X ;7 '.5(0) for this case. Also note that X,=X,X3.]
Equation (7.38a) may be solved, using Egs. (7.37), (7.38b), and (7.39c), to give

Rop(1) = p X' FS©O0)(1 —e~1T)
+ XIS 0) F (ko Fool F T, ' pE)(T ' — ko) ™! (674 —e~11T1)

for Ty' # ko' (7.403)
and
Ryu(t) = pRa X ' FSO)(1—e™Ty)
FXTISO) F ko FulF~T Pt for Tyt = kg,
(7.40b)

Equations (7.40) give the exact time dependence of R,,(¢) without any
simplifying assumption of steady state and/or constant precursor con-
centrations.
Use of these equations permits a clearer interpretation of the experimental
results. However, we shall only consider as a specific example a slow reaction.
Slow reaction: i.c., T ' » k¢ then (T ' —kg')™! ~ T, and Eq. (7.40a) is
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approximated by

Ru(t) = SO X, ' Fpia(1 —e ™) + SQO) X, ' Fop ko T (e~ — &™),
(141

Consider an NMR transition ab — a+ 1b, then the intensity of this line is
proportional to :

llb.l+|b(’) = th(’) - Rn+ lh(’)
= SO X, ' F(1—- e (p—pt 1)
+SO) X, kg Ty (e =™ T1) (Fop— For 10)

which has exactly the same form as Eq. (7.41).
If one had used the complete Eqgs. (7.40) a very similar result would have
been obtained with the obvious changes in it of

T2 Fo— Fr1 = (Fo—Fo) — (Fiv 16— %)

(7.42)

(7.43a)
Pis = PR — P% pe- (7.43b)
Equation (7.42) can be rewritten as

Loat1v = SOV X, (Fo = Fos 1) ko' Ty (1—€79T)

PR—Piw ¥
y;b_'?-rf ib kOITI

l](l —e k")
(7.49)

+50) X, (Foo—Zas 10) ko' T, [

The maximum intensity 1, , 4 y,(max) is seen to occur for ¢ 2 T, and is equal to
Lip,a+ io(max) = SO) X, (Fo—Fo1 1) ko T (7.45a)

Thus Eq. (7.44) may be written as

lab.l+ lh(’) = Ilb,l+ “,(max)

_ PP F
X4(l—e~"T +[ 5 -
{( Y Fu= P kol

I:I(l —e"‘«'r‘)} .
(7.45b)

The intensity goes to a maximum value during a time of the order of T, and

then decays exponentially with time constant k' to alimiting value 7,y , 4 15(0).

This behavior is commonly seen,** but does not appear to have been given a
proper expression such as that of Eq. (7.45b). Also

Ly, a4 16(0) = S(O)X,_'(p:ﬂ—p:‘i 1) F (7.46)

44 ). Bargon, H. Fischer, and U. Johnson, Z. Naturforsch. A 22, 1551 (1967).
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which is scen to be just the equilibrium intensity of the product when the
reaction has gone to completion.

The intensity enhancement, i.e., the actual intensity at time 7 as given by
Eq. (7.45b) divided by the intensity the product at time 7 would have had if
the nuclear state population was given by a Boltzmann distribution, is easily
calculated by Eq. (7.45b). However, such a quantity is not always experi-
mentally convenient to obtain. Instead in cases where one can measure /(o0)
of Eq. (7.46) (c.g., when the product disappears at a slower rate than it is
formed, as assumed in the above example), one may define a usefu) experi-
mental enhancement V** as

Vibras 1o = Lp,a+ w(max)/L,, .4 p(00)

(7.47a)
which, by use of Egs. (7.45a) and (7.46), becomes
V:;.".Hb = (-?;b‘f.nb)ko'Tl/(P:g‘ i) F . (7.47b)

The maximum real enhancement Vabra+ 1o that occurs for r ~ T, is easily seen
from Eq. (7.44) to be

abatis = | +(-¢.u"£+1»)/~¢(1’:§" T

where the | is usually negligible.

If the nuclcar states ab and a+ Ib consist of independent ‘states a and b
then the intensity and the enhancement of the line a — a+ | is obtained in the
usual manner by summing Eqs. (7.45), (7.46), and (7.47) over states b.

The experimental enhancement (or the real enhancement) for a specific
precursor (S, T, or R.1.) may be obtained from Eq. (7.47b) and the earlier
expressions for %, The result for a triplet precursor shows a very weak
dependence on A, i.e., of the reactivity of the radicals. For a singlet we have
that the enhancement [which has a sign opposite to that for the triplet (and
R.1.) casc] goes to zero for A — | (high reactivity of the radicals). But note
that this need not be true if the radicals are created with a large kinetic energy
so that rg # d (cf. Section Il1), in which case however the enhancement will
be small. The enhancement is maximum for A =0, but then all radicals end
up in scavenging products and no signal due to a recombination product is
observed. The optimal experimental condition will then be for A ~ 1.

For a R.I. (or F) precursor (note that the initialization step, i.e., the first
encounter, is assumcd to be described by a pseudo-first-order reaction) the
enhancement is maximum for A = | and goes to zero as A goes to zero.

Results similar to those given here may be obtained in a similar manner for
other reaction schemes, e.g., for scavenging products, or for identical precursor
and recombination products. Modifications needed for t < T, may also be
incorporated as noted. Inclusion of cross-relaxation would, however, require
the solution of more complex matrix equations,

(7.47¢c)
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Appendix: Glossary of Symbols

(We include, in brackets, the cquation in the text in which the symbeol first appears.)

a,b
A{x-R)

AR.-
¥4

Bo

By,

C

d= ro

d

D

D= D.+ Dy
Dr,, O, DI,
Drn()

eZ;

E

Selur)

AN A (AW
Fyr=F(r)

F,F(N)
Fo
f‘

flb

Gas G
g(r)
9()
H,h
X ()

llb.l + Ib(')

L

Je(ur)

J(ra, 1), J(r)
Jo=J(r=d)
Jo{max)

X .

"o.nko.b. kO.Av ko.-

ko’

refer to radicals A and B of radical pair

probability that a molecule jumps to position r from position R in n
single step [5.6)

8pin operators for zero-field splitting term (6.14]

the complex matrix defined by Eqgs. (6.19) and (6.11b)

the dc magnetic field intensity [2.3]

the rotational diffusion model parameter [6.16)

vector of expansion cocflicients of x(s) [6.19]

distance of closest approach of the radical pair (i.e., contact distance)
{2.19)

vector of expansion cocflicients of x(f = 0) [6.19]

zero-field splitting parameter [6.14)

diffusion cocficient for relative motion of radical pair [2.1)

diffusion operator for relative diffusion of radical pair 2.1, 4.3)

generalized spherical harmonics (Wigner rotation matrices) [6.14]

charge on ith molecule [4.14)

zero-field splitting parameter [6.14]

modified spherical Bessel function including reflecting wall boundary
condition [5.1, 5.5)

Debye-Hiickel corrections to bimolecular rate constant [4.16,4.21,4.32}

dimensionless magnitude of force of interaction between radical pair
which can be spin-dependent [4.2, 4.4)

probability of reaclion for the radical pair per collision [2.17¢c, 4.42)

the value of # calculated for Q = 0[3.1]

probability of reaction of triplets per collision for unit reactivity of
singlets [3.2)

the value of # with a and b labeling the specific nuclear states of radicals
Aand B[7.1)

g-factors of radicals A and B[2.3]

equilibrium pair-correlation function [4.24)

spectrometer response function [7.36})

functional forms for AP(d,) [4.49, 4.50)

Liouvillc operator for the radical pair, associated with the spin Hamil-
tonian J°(r,) [2.1-2.4)

intensity factor for NMR transition between states a,band a+1,b

{7.42)

nuclear spin operator of jth nucleus [2.3)

spherical Bessel function of first kind [5.2a, 5.3)

exchange interaction between radical pair [2.3)

the value of J, that gives the maximum value of P/ (3.17]

first-order rate constant for irreversible disappearance of singlet radical
pairs when in contact [2.37)

zero-order rate of production of radicals (e.g., due (0 a light beam)
7.1,1.3

(p:eudo-) ]ﬁrsl-order rate constant for initial formation of radical pair
from precursor [7.37]
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kll,klbvklAple
ka(r), ka(d)

ke
klvklok
k!vk!

K
x
Mo,y Yo

M, M MM

"l(’)' "b(’)v ”l(’)
No

o)

3]

P

Pu(0), PP (or P™)
P2(n), PP (r)

Pr(N)

P} =P |F
P,

AP(ry), AP(r))

PN)=1-F1)

P=1-F; #(N)

Q

ro=d
Fex=A"15In10

n

™

'n

Ar, fAr

AI’_,

Ar,

R

R(1), Raw (1), RE5(1)

S(r)
Sll Sb

I
To
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(pseudo-) first-order ratc constant for decay of radical pair [7.1, 7.3]

onc-half the second-order rate constant for new bimolecular collisions
at separation ry or d [4.18, 4.22)

experimentally observed bimolecular rate constant [3.8)

(pseudo)-first-order rate constants for decay of initial triplets: k,—
into radical pairs, k;—into other products, k£ = &, + &, [6.3, 6.4, 6.8)

first-order rate constant for formation of triplet from excited singlet
{6.39, 6.40)

equilibrium constant between radical pairs and separated radicals [4.34]

spin-dependent operator for reaction rate constants [2.1)

initial values of M, (1), M, (1) [7.19)

the components of magnetization for the a radicals expressed in the
laboratory frame, and the magnetization vector [7.5, 7.10, 7.11]

number density of radicals A and B and of ith type of particle [4.15, 4.44]

the steady-state value of n(s) [7.27)

spectrometer output [7.36}

classical distribution function for relative motion of the radical pair[4.1}

Boltzmann factor for diamagnetic product state ab [7.38b})

polarization of radical A at time 7 and at infinity [2.13b, 2.16b)

P2 gencrated from an initial separation for the radical pair of r, [4.44),
or transferrcd according to £q. (4.46)

the polarization of radical A for separated particles at £~ oo [4.40}

[7.9]

equilibrium polarization for ESR [7.10)

the fractional change in the polarization from that which exists at the
onsct of the collision [4.44, 4.49)]

probability a radical pair has not reacted by time 7 [2.13a]

probability a radical pair does not react per collision [2.16a, 4.41)

half the difference in ESR resonant frequencies of the two interacting
radicals [2.30]

distance of closest approach of the radical pair [2.19]

[2.41]

scparation of radical pair at the initiation of a collision [3.10]

scparation distance such thatJ(r > ry) and U(r > ry) are zero [2.27)

position of outer absorbing wall [2.21] '

radial increments for finite differences {2.12, 2.27)

range of J(r) for contact exchange [3.19)

range of rate constant & [2.37]

isotropic rotational difTusion coeflicient [6.16)

the time-dependent concentration of recombination products, in-
dependent of nuclear spin states [R(1)] and for the ab-th nuclear spin
state with Rsi (1) the cquilibrium value of the latter [7.38, 7.39)

Laplace transform independent variable (inverse time) [2.10)

singlet state [2.15]

time-dependent concentration of (diamagnetic) precursor to radical
pair [7.37]

electron-spin operators for radicals A and B{2.3)

time [2.1]

reencounter probability for two particles initially separated by r, [3.10]

triplet, M = 0 state [2.15]
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T
T
T
T(r)
u
v

V(i)
V(1)

Vidhae

Wy y Wy y Wye
W, W
x=rld-1
XayXn

X,

ye(ur)

Y Q)

B = (ko Fk)'?
p.

Ji]
é

€
£,¢&,87

Sae;a S

n

p(rh’)vp(’u’)
p(r,0) = rp(n,1)
po(r) = p(r,0)

Pey

p(1)

o = sd*/D
a(r)
t=tD/d*
T

Ty, T (4)
ta=(6R)""
®(x,1)

X

X

e

o =y B,

Aw = w—wp

triplet, M = + | states [6.1)
longitudinal spin-relaxation time [3.30, 3.31)
transverse spin-rclaxation time [3.30)
Oscen’s tensor [4.28)
relative velocity between radicals A and B [5.17]
potential energy of interaction between the radical pair, which can be
spin-dependent [e.g., Uss(r) is potential for singlet radical pairs)
[4.1)
radial weighting factor for r,th position for finite differences (2.23)
the ESR enhancement due to the spin-selective recombination process
[7.27).
the experimental enhancement for the NMR transition between states
aband a+ 1b[7.47]
prefcrential probabilities of populating the 7., 7,., T, stales [6.25]
finite difference transition matrix for dilfusion with elements W, , [2.18)
dimensionless radial distance [2.42)
the number of different nuclear levels of radicals A and B [7.2)
nuclear degencracy of the diamagnetic precursor [7.38a]
spherical Bessel function of second kind [5.2b, 5.5)
spherical harmonic [5.3] .
experimentally observed second-order decay conslant [7.33]
Bohr magncton [2.3]
friction coeflicient [5.17)
an exponential correction factor [4.19]
diclectric constant of solvent [4.15]
exponentials on Qd?/ D [3.14]) and Ad [3.16]
solvent viscosity [4.29]
Debye’s reciprocal thickness of the ionic layer [4.15]
finite differcnce matrix of the clements of X', [2.31]
exponential decay constant in r for J(r) [2.41]
fractional probability of rcaction (for @ = 0) of singlets for the whole
reaction. The “reactivity” {3.1)
reduced mass of radical pair
spin-density matrix for radical pair [2.1]
[2.11)
[2.10)
cquilibrium spin-density matrix [6.4]
spacc-average of p(r, 1) [2.13c]
dimensionless Laplace transform independent variable [2.43]
the trace of p(r) for initial triplets [6.5]
dimensionless timc variable {2.42]
mean time between molecular jumps [5.6]
lifetime for the encounter pair [3.6, 3.15]
[6.31]
dimensionless form of p(r,r) [2.42]
a correction factor, cf. Eq. (3.11)
the deviation of p from pq [6.7]
Larmour frequency [6.14]
the microwave field strength [7.10]
with o the applied microwave frequency [7.10]
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finite-difference matrix of the elements of #°*(r;) [2.31]

model with exchange forces absent in the diffusion equation

model with exchange forces present in the diffusion equation

relative diffusion model, an EFP model for which radical pairs are not
permanently bound

random initial case [3.4]

radical pair mechanism

stochastic Liouville equation [2.1, 6.4}
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