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1. INTRODUCTION

In the first volume of Spin Labeling: Theory and Applications a chapter was wrilten
by one of us {J.H.F.) in which a detailed theory for the interpretation of ESR spectra
of spin labels in the slow motional sregime (Freed, 1976) was presented. The specific
emphasis of that review was on the interpretation of nitroxide spin label spectra and
coatained many such examples. In the ensuing 13 years, there have been a number of
important developments. First and foremost has been the development and implementa-

tion of powerful computational algorithms that have been specifically tailored for the -

solution of these types of problems (Moro and Freed, 1981; Vasavada et al., 1987).
The use of these algorithms often leads to more than an order-of-magnitude reduction
in computer time for the calculation of any given spectrum as well as & dramatic
reduction in computer memory requirements. Concomitant with these improvements
in computational methodology has been the revolution in the power and availability
of computer hardware. Taken together, these improvements in hardware and software
have made it possible to quickly and conveniently perform spectral calculations on
small laboratory computers which formerly required the resources of a large mainframe
computer. The increase in the available computing power has also made it feasible to
incorporate more sophisticated models of molecular structure and dynamics into the
line-shape calculation programs. ‘

In this chapter, we wish to make the results of the above-mentioned developments
conveniently available to a wider audience. To this end, a diskette containing a set of
programs for ESR line-shape programs has been included with this book (see inside
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back cover). These programs incorporate those features of ihe general theory that have
been found to be most useful for the calculation of conventional cw ESR spectra of
nitroxide spin lubels in isotropic liquids, liquid crystals, and covalently labeled poly-
mers. Qur desire to supply a st ol" programs that are refativefy compuct and simple
1o us¢ has necessarily involved' some comproniises in versatility ahd generality,
Nevertheless, we feel that the compromises are not severe and that the programs
supplied here will likely satisly the needs of most of the readers. We will clearly state
below the range of validity and limitations of the programs presented here. More
general programs are, of course, available from the authors. :

Unfortunately, time and space do not permit us to cover all of the applications
of these programs/(-hat already exist in the literature, but a brief survey is provided in
Section 5.2, along with appropriate references. The programs provided here should
enable the reader (o redo many of these calculations in order 1o gain familiarity with
their use and to actually begin io compare the output with experimental specira.

Once one begins to compare experimental and computed spectra in earncst, anothes
basic problem emerges: the procedure of varying input parameters in a trial-and-error
fashion to obtain a good fit to experimental data can. be quite tedious and time-
consunting for complicated systems, even with more efficient programs and faster
computers. The manual fitting of specira in this manner is as much an art as a science.
However, since spectra can now be so quickly and reliably computed, it is no longer
unreasonable to attempt the analysis of experimental spectra in a completely automated
fashion using a general nonlinear least-squares fitting procedure to oplimize the pa-
rameters characterizing the system (Crepeau ef al.,, 1987). Significant progress toward
this goal has recently been made in our laboratory. Such a computation frequently
requires the calculation of more than 100 spectra as the nonlinear least-squares pro-
cedure is iterated toward an-optimal parameter set. Not many years ago this herculean
task would have beer unthinkable for complex slow motional spectra. In addition,
much progress has recently been ‘made toward the solution of the géneral problem of
an automated determination of optimal basis sets (Vasavada et al,, 1987). It is important.
to realize that these developmentshave been made possible, in large part, by the more
efficient algorithms on which the programs supplied with this book are based.

The set of programs described in this guide are designed for the efficient and
accurate calculation of cw ESR spectra of doublet radicals (S = {), possibly coupled
to one nuclear spin (e.g., typical nitroxide spin labels), in the limit of high static
magnetic fields, slow molecular motions, and weak microwave fields. In its present
form, it can also be used on a variety of NMR problems in the analogous case of an -
I = { nucleus coupled to one other nuclear spin (Campbell er al, 1979) and, for an
I = 1 nucleus, by a simple modification {Meirovitch and Freed, 1979). However, these
programs should not be used for the calculation of spectra in the low field or very fast
motional limits, since the nonsecular terms that are omitted from the spin Hamiltonian
in these programs give rise to significant eflects in cither of these cases. In particular,
these programs should not be used for accurate calculations of X-band spectra of
transition metal jons such as Cu?* and VO?*. Fast motional spectra can easily be
calculated using a mational narrowing theory and a far simpler program, while low
field spectra can be calculated by methods similar to those in these programs (Moo,
1980a; Meirovitch et al,, 1982; Gorcester, 1985).

These programs are an outgrowth of a set of programs written by G. Moro in 1980
(Moro, 1980a, 1980b; Moro and Freed, 1981; Meirovitch er al, 1982). The oider
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programs were quite complicated as they were written in FORTRAN IV and highly
optimized for use on a small computer with a very fimited amount of physical memory.
The present set of programs are writlen in a more modular, easily portable fashion in
FORTRAN 77. As supplicd, these programs should compile and run without error on
IBM PCs' or compatibles under MS-DOS? (ver. 2.11 or higher) and Microsoft® Fortran
{ver. 3.0 or higher). Because of the wide availability of this type of hatdware and
software, users ol these programs can use the results of small calculations with the PC
version as a reference point in porting these programs to a more powerful machine to
be used for routine calculations. In addition, the faster PCs equipped with floating
point coprocessors can themselves be used for many calculations.

Since this chapter is devoted primarily to a description of the programs and their
implementation and use, it will be assumed that the reader is already familiar with the
basic aspects of the theory as presented in the chapters by Nordio (1976) and Freed
(1976) irr the first volume of this series. References to equations in the article by Freed,
denoted here as 1, will be given whenever appropriate.

The body of this work is broken up into four main sections. First, in Section 2 a
qualitative overview of the theory behind these programs, along with the necessary
definitions and a summary of the types of terms which are included in the calculations,
are presented, Next, Section 3 is devoted to a description of the algorithms used in
the spectral calculations and related topics such as the continued fraction representation
of the spectral line shape function. The implementation of the programs is discussed
in Section 4, as well as suggestions on modifying them to run on other machines.
Finally, in Section 5 a general strategy for fitting experimental data to these programs
is presented as well as several model calculations and a survey of published results.

This organization was adopted so that the work could be utilized in two very
different ways, depending on the interests and inclinations of the reader. One approach
would be to simply find a. PC, insert the diskette, and use Sections 4.3, 4.5, and § as
a user's manual for the programs, referring to the definitions in Section 2 only when
necessary. This pragmatic approach has the distinct advantage of quickly acquainting
the user with the art of fitting theoretical models to experimental data. A second, more
cautious, approach would be to begin by carefully studying the material in Section 2
before attempting to use thé programs. The reader who adopts this approach will
probably make fewer serious errors in choosing appropriate parameters and interpreting
the results. Regardless of the initial approach, there is no substitute for experience in
using the programs and developing a feel for the effects of varying different input
parameters on the calculated spectrum. Likewise, it is difficult to properly interpret the
final results without being familiar with the theory behind the parameters and how
they enter into the calculations. In addition, Section 3 should provide valuable insight
into the workings, both in theory and in practice, of the algorithms on which the
spectral calculations are based.

2. GENERAL THEORETICAL CONSIDERATIONS

The stochastic Liouville equation (SLE) is used here to describe the time evolution
of the orientation-dependent density operator, and thereby the time evolution of the
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magn’cliza-lion operator of the individual spins. Averaging this result over the ensemble
of spins in the sample leads to an equation describing the time evolution of the
macr?scopic magnetization. The Fourier-Laplace transform of the time autocorrelation
function of the x component of the macroscopic magnetization in the laboratory-fixed
frame can be identified with the frequency-swept cw ESR spectrum in the limit of very
weak microwave fields (i.c., in the fincar response regime). However, in most experi-
ments it is the field-swept rather than the frequency-swept cw ESR spectrum that is
qbl?incd. This restricts the direct application of the present method to the high-ficld
limit where the results from the two types of cxperiments are esS‘emiaHy indistin-
guishable. :

For the present purposes, the stochastic Liouville equation amounts to treating
the spin degrees of freedom of the system in a quantum-mechanical fashion, while the
orientation of the molecule is determined by a classical stochastic process. The quantum-
mechanical spin degrees of freedom are coupled to the classical orientatjonal degrees
of freedom through the anisotropic part of the orientation-dependent spin Hamiltonian
so that the tumbling of the molecule drives time-dependent Ructuations in lhe‘energ;
levels of the spin system. The choice of stochastic process used to model the reorientation
of the molecules affects the time evolution of the spin system and therefore the resulting
ESR spectrum. More detailed explanations and derivations of the ideas presented here
are available in several places in the literature (Freed, 1976; Schneider and Freed, 1989).

The central result of the stochastic Liouville theory (Freed, 1976, Schneider and
Freed, 1989) as applied to the magnetic resonance line-shape problem is that the
unsaturated, high-field, frequency-swept cw ESR spectrum, I(w — w,), is given in .
compact “matrix element” notation (cf. equation 1-7) as

1o - 00 = (L)eolil - i2) + 10 ~ w0110 ‘W

In this .equation. w is the sweep frequency and wp = goB8.Bo/ h where B, is the static -
magnetic field, go = }(g.. + gy + 8..). B, is the Bohr magneton, and # is Planck’s
constant divided by 2. Also, £ is the Liouville sdperoperator associated with the
orientation-dependent spin Hamiltonian, I is the *“‘symmetrized™ diffusion super-
operator used to model the classical reorientational motion, and I is the identity
operator, The starting vector, [v}, includes both the spin operator for the allowed ESR
transitions and the equilibrium probability distribution Tunction for the orientation of

the radicals. The quantity (I" - i&) is commonly referred to as the stochastic Liouville

superoperator.

2.1. Terms Included in the Liouville and Diffusion Superoperators

The types of terms allowed in the Liouville and diffusion supcroperators limit the
types of systems which can be modeled. The Liouville superoperator used here is for
doublet radicals (S = §) interacting with a single nucleus of arbitrary spin, such as a
nitroxide. In particular, the secular and pseudosecular terms in the spin Hamiltonian
arising from electron Zeeman and hyperfine interactions are included in the calcutation.
The nuclear quadrupole, nuclear Zeeman, and the nonsecular portions of the electron
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Zeeman and hyperfine tensors are completely neglected. These terms can be included
in.a more complete treatment (Moro, 1980a; Meirovitch ef al, 1982; Gorcester, 1985),
but are usually not necessary for nitroxide radicals in the slow motional and high-feld
limits.

The reorientational dynamics of the spin label (assumed to be rigid) is modeled
by a symmetrized rotational diffusion superoperator with a restoring potential of the
form (cf. equation 1-55)

) = -kuT{L'[.2 A625(0) + AT Do(N) + 9’-:(‘1)]} (2
2,4

where (1 = (a, B, y) represents a set of Euler angles describing the orientation of the
radical relative to a laboratory-fixed frame (cf. Section 2.2). The functions D%, (Q)
are the generalized spherical harmonics or Wigner rolation matrix elements, We note
that for M = 0,

4n
2L +1

2
Fox() = ( ) Yx(B.7) 3)

where the Y, (B, y) are the well-knowa spherical harmonics (Rose, 1957; Messiah,
1962; Biedenharn and Louck, 1981). A restoring potential of this type is appropriate
for modeling the rotational dynamics of spin probes in uniaxial liquid-crystalline media,
In addition to the diffusive type terms one may model jump processes between an
arbitrary number of equivalent sites, and Heisenberg spin exchange interactions are
included and can be utilized when appropriate, The overall “diffusion™ operator is
assumed (0 be the simple superposition of these terms. The user can choose between
the three canonical models of Brownian, jump, and free diflusion (cf. equations 1-34
to 1-44) to describe the dynamics of radicals in isotropic media (Freed, 1976; Korst
and Antsiferova, 1979). :

2.2. Definitions of Coordinate Systems

Before discussing the types of terms which are included in the Liouville and
diffusion superoperators in these calculations, several coordinate systems must be
defined (cf. Figures 1 and 2 below). First, (£, Ji, Z,) is the laboratory-fixed reference
frame, where the 7, axis is slong the static magnetic field, the §; axis is along the axis
of polarization of the (linearly polarized) oscillating magnetic ficld of the microwave
radiation, and the £, axis is chosen to make a right-handed coordinate system.

The sccond frame of interest is the director frame, (£,, F,, 7). The I, axis of the
director frame is taken to be along the symmetry axis of the restoring potential while
the £, and 7, axes are taken to be coincident with the £, and 7, laboratory axes,
respectively, when £, | £,. With this choice of axes, the director tilt is defined by rotation
through an angle ¥ about the . axis which takes the 7, axis into the Z, axis. If there
is no restoring potential present, the director frame is taken to be coincident with the
laboratory frame. This generalization of distinct director and laboratory frames was

i
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not included if the programs. given, in I, but is included here, as it is important (or the
analysis of many experiments on model membranes and other liquid-crystalline samples.

The director and laboratory frames will be referred 10 as space-fixed frames, since
they are.defined 10 appear to the experimenter as being fixed in space and are related
10 one another by a simple {time-independent) coordinate transformation. The orienta-
tion of the laboratory and director frames for a simplificd experiment involving spin
probes dissolved in an oriented uniaxial liquid-crystal sample sandwiched between (wo

" glass plates is given in Figure 1. In this figure & would be positive, since this rotation

would advance a right-handed screw along the positivé #, = §, axis. Note that in |
the laboratory frame is denoted (x, v, 2) and the director frame (x", y°, 2"), Also, both
of the Euler angles used in | to relate laboratory and director (rames are not nceded
for uniaxial liquid crystals, »

The third coordinate system is defined by the principal axis system of the magnetic
tensors, (X,,, m, ). Here it is assumed that the principal axis systems of the A and
g tensors are coincident and rigidly fixed in the molecular framework. The final
coordinate system is the principal axis system of the rotational diffusion tensor,
(%r, ¥r, Zr). The diflusion tensor, R, is assumed to be axially symmetric, and the %,
axis is defined to be parallel to the unique axis of the diffusion tensor. Because of the
assumed axial symmetry of the diffusion tensor, the 23 and jx axes are arbitrary and
can be chosen to simplify the calculation of the masrix elements. As in the case of the
laboratory and diffusion frames, it is assumed that the diffusion frame can be rotated
into the magnetic frame by a rotation through an angle ¢ about the #, axis. The angle
¢ is called the diffusion tilt angle. In general, a second Euler angle is required to
specify an arbitrary tilt between the diffusion and magnetic frames. This second angle,
as well as a general tilt between the principal axis systems of the g and A tensors
(Meirovitch er al, 1982), have not been included in the present set of programs for

. simplicity. In practice, the quality of the rigid limit spectra for nitroxide spin labels

rarely justifies the inclusion of these (eatures in dynamical calculations.

The magnetic and diffusion frames are rigidly fixed with respect to the molecular
framework and are therefore referred to as molecular or body-fixed frames. The
relationship between the magnetic and diffusion frames for an idealized spin labeled

Figure 1. Diagram of laboratory and director
frames for an experiment involving spin probes
dissolved in an oriented liquid crystal sand-
wiched between two glass places. Note that 7, § B,
and that §;, %,, I., and £, al} lic in the same
plane. For most conventional experimental set-
ups, where TE,q, cavities are used, the 5, = ¥,
——eeeeeee axis is vertical when viewed by the experimenter
B, in the laboratory while £, is horizontal.

N
=
— I
-
/

TN
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polymer is given in Figure 2. For simplicity, it is assumed here that the six-membered
piperidine ring is planar and that the N—O bond lies in the symmetry plane defined
by the ting. These simplistic assumptions are made only to simplily the diagram and
the related discussion and are not required in general. In this idealized situation,
symmetry restrictions constrain the principal axis systems of the g and A tensors to
be coincident. In addition, symmetry arguments also require that one of the principal
axes of the magnetic tensors lie along the N—O bond, one be perpendicular to the
plane defined by the piperidine ring, and one be parallel to the line connecting C, and
C,. The established convention for labeling the magnetic axes'is to take Z,, as the axis
which is perpendicular to the ring, the £,, axis along N—O bond, and the §,, axis
parallel to the line connecting C, and C, (Freed, 1976; Lajzerowicz-Bonneteau, 1976)
to give a right-handed coordinate system. A consequence of this convention is that A,,
is numerically the largest of the three principal components of the hyperfine interaction
tensor for nitraxide spin labels based on the 2,2,6,6-tetramethylpiperidine-1-oxyl moiety
(e.g., TEMPONE, TEMPOL, TEMPAMINE, etc.). It should be recognized that this
choice is a matter of convention and that there are many situations when a different
choice is very advantageous. It should be noted that in I the diffusion (rame is denoted
{x’, »', 2') and the magnetic frame (x™, y", z7).

2.3. Basis Vectors and Scalar Product in Operator Space

The role of the SLE is to determine the time evolution of the orieatation-dependent
density operator. Hence the stochastic Liouville operator is a superoperator in the sense
that it maps operators into operators rather that wave functions into wave functions.
To use this formalism, a basis set of orientation-dependent spin operators must be
introduced. The orientation-dependent density operator acts as both a classical probabil-
ity distribution function for the orientation of the molecule relative to a space-fixed
frame and a quantum-mechanical density operator for the spin system. As such, it can

be expanded in the direct product space spanned by a complete orthonormal set of °

Figure 2. Diagram of the magaetic and diftusion frames
for an experiment involving an idealized spin-labeled
polymer. It is assumed that #, is paraliel to the covalent
bond between C, and the polymer and that there is rapid
rotation about this bond modulated by the slow overall
tumbling of the polymer backbone. In accordance with
the standard convention, £,, is taken along the N—O
bond, §., is parallel to the line connecting C; and C,,
and i, is normal to the plane defined by the idealized
flat piperidine ring.
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spatial functions of the Euler angles specifying the orientation of the radical in space
and a sct of electron and nuclear spin projectors. The general properties of supet-
operators and bases in operator space have been treated by many authors (Faho, 1957;
Jecner, 1982; Lowdin, 1982, 1985). B )

A convenient and advantageous choice of spatial functions for rotational diffusion
problems such as this are the normalized Wigner rotation matrix clements (Freed.
1976). Using Dirac notation, the basis functions are

. IR '
L MK)= \/—8—;— i (0) 4

where the indices L, M, and K are integral, 0 s L, and lMl, IK| = L. These functions
form an orthonormal set in the sense that

(L, My, Kl“-z- M,, Ky) = J‘ d(L,, My, K,[ﬂ)(ﬂle, M, Ky)

) |
= Ny(L,. Ln(a—,) J an eyt ()93, ()

= 8¢,.1,0m, 00,0k, .5, %

where the normalization factor N (L,, L,) is dcﬁncd as

NL(LI' Lz) = VizL] + ’)(ZLI + l; (6)

This choice of basis enables one.to easily apply group theoretical arguments in evaluating
matrix elements. . _

The most convenient basis for the spin part of the basis vector for ESR problems
is a direct product of projectors for the electronic spins (with quantum numbers S and
myg) and nuclear spins (with quantum numbers I and m,):

Ips' qs; p" q,) = (Iso mS)(sv '"'S') ® (l’v ’"IX’. m;l) (7'
where pS = ms — m§ and q° = mg + mj, and similarly for p’ and ¢". In the following-
discussions the principal spin quantum numbers S and 1 will be suppressed. These

direct product projectors are complete and orthonormal with respect to the trace metric
defined as '

{plod = w{p'o} . it

where p and o are arbitrary spin operators, the symbol t implies Hermitian conjunction,
and the trace is taken over both the electronic and nuclear spin quantum numbers, i.c.,

€ri.q%:pl. al1p3. af: P, al) = (mg | maXm, | m}) trs{ImiXm?l) try {imiXm7H}

S LT N 9

This is the conventional scalar product of iwo operators,
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It is quite useful to give the following physical interpretation of the spin indices
of the basis vectors. First, consider a g-tensor-only problem (/ = 0). Since the p* index
labels the difference in electron spin projection numbers, a state with p* = 0 corresponds
to a diagonat spin density matrix element, i.e., it represents the population of the spin
state with projection quantum number mg = ¢°/2. In the same manner, the states with
p> = 21 represent off-diagonal densily matrix elements whick are connected to the
diagonal density matrix elements by the microwave radiation field, i.c., they represent
magnetic-dipole allowed clectron spin transitions. The gg index distinguishes between
the (possibly degenerate) transitions with the same value of p°. The interpretation is
only slightly more complicated when the electron spin is coupled to a nuclear spin via
the hyperfine interaction. Here, the p* = p' = 0 states correspond to diagonal density
matrix elements, the p* = £1, p' = 0 states correspond to allowed ESR transitions,
and the states with p® = 0 and p' = %1 represent allowed NMR transitions. The rest
of the states represent forbidden transitions of various types. For example, the states
with p® = 1 and p' = %1 represent singly forbidden ESR transitions, since both the
clectron and nuclear spin projection quantum numbers are different. Similarly, the
states with p° = 21 and p' = £2 represent doubly forbidden ESR transitions. Anatogous
interpretations are possible for the remainder of the states in terms of forbidden ESR
and/or NMR transitions. This interpretation is very useful to keep in mind when trying
to understand the physical meaning of the sometimes overwhelming equations which
arise in these problems.

The direct product of the spin and spatial parts gives the total basis vector

ILM,K;p%q%p',q') = ILLM,K)®|p*.¢% ', q") (10)
which, by equations (5) and (9), must satisfy the following orthonormality conditions:

(le M“ Kl; Pf' qf;p‘vq“l‘!- Mz. K::pgv ‘Ig;l’g- ‘I;)
= 80,05, 0%, k, 85751842, 41851,51 5L, a! an

The basis set which consists of all basis vectors with L = L, will be denoted {B(L,...)})-
This basis has been constructed in a manner which makes no use of any symmetries
related to the stochastic Liouville superoperator or starting vector. However, it has the
distinct advantage over the symmetry-adapted basis set constructed in Section 2.8 in
that the matrix elements of the Liouville and diffusion superoperators are more con-
venient to calculate in this basis.

The large number of indices needed to completely specify the states makes the
expressions for the matrix elements of the Liouville and diffusion superoperators rather
unwieldy. To partially alleviate these difficulties, the shorthand notation

lo.) = |L,, M., K.: p5.q5: ph,qt) (12)

for the basis vectors will often be used in the following.

A vector in the direct product space can be associated with an arbitrary orientation-
dependent spin operator in an unique manner. This vector can be defined in terms of
its components in the basis {B(L,,.,)}

o lod =T cuanptatote'lL M K p% 4% p' ") (13)

£

.
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2.4. Construction of the Spin Hamiltonian

One of the most tedious aspects of calculating matrix elements of the Liouville
and dillusion superoperators is keeping track of the coordinate frames tn which the
\{arious quantities are defined. For instance, components of the magnetic tensors are
time-independent in a body-fixed frame such as the magnetic or diffusion frames
introduced above. In contrast, the static magnetic field, By, is only static in a reference
frame whi.ch is fixed in space. The confusion is compounded by the fact that the
spectrum is given in terms of the autocorrclation function of the component of the
magnetization along the £, axis, but the magnetic tensors which determine magnetiza-
tion are most conveniently studied in a frame fixed in the molecule. To unravel these
complications in a general maniner it is extremely useful to introduce the concept of
an irreducible spherical tensor operator (ISTO).

There are several alternative ways to define an ISTO (Bicdenharn and Louck
1981). Because of the present interest in the behavior of various quantities unde;
fotation, it seems appropriate to use the definition that an operator T is an ISTO of
rank J if it can be written as a sum of coniponents which transform as

.

, .
TN TP e T TR E ) (14)

where =, represent the set of Euler angles which take the initial frame into the final
frame and the functions @4, (=) are again the Wigner rotation matrix elements
(Messiah, 1962; Biedenharn and Louck, 1981). These functions will play a central role
in the following discussion. For this problem, only tensor operators of rank zero, one,
and two are important. A list of the important tensorial quantities, their ranks, and the.
most “natural™ type of frame of reference for defining them are given in Table 1.

We note here that the spi‘n Hamiltonian is a rank-zero tensor. This must be so,
since it is necessary that the energy of the spin system is independent of the coordinate
system used to describe the orientation of the molecule in space and the quantization
axes of the spin and magnetic field operators (Kivelson, 1972; Biedenharn and Louck,
1981). Since the Hamiltonian must be a scalar (i.c., a rank-zero tensor), it can be written
as a contraction of tensors (cf. equation 1-17),

H@Q) = T FIALD = T (=1)"Fl ™Al (15)
nm, o

TABLE |
Important Tensorial Quantities

Tensor Rank Frame of definition
Spin Hamiltonian 0
~ Electron spin 1 ' Space
Nuclear spin 1 Space
Magnetic field 1 Space
g tensor 2 Molecular
A tensor 2 Molecular
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where the F,'7" are proportional to the standard ISTO components of the magnetic
tensor of type i in the reference frame 7. The quantities A'*™' are the ISTO components
of the tensors which arise from the coupling of spin and/or magnetic field operators.
For reasons which will become clearer in Section 2.7, it is convenient to parameterize
the orientation of the molecule by specifying the orientation of the diffusion frame
(body-fixed) with respect to the director frame (space-fixed) by a set of Euler angles
(Rose, 1957, Messiah, 1962; Bicdenharn and Louck, 1981),

N=0y. e =(a,87) 116)

Since the simple product of two distinct ISTOs does not necessarily transform as
an ISTO [cf. equation (14)), it is useful to introduce the decomposition of a. product
of two ISTOs into a new set of ISTOs. This coupling relies on well-known results,
presented below, from the quantum theory of angular momentum (Messiah. 1962;
Biedenharn and Louck, 1981). If T*(1) and T/(2) are two distinct ISTOs of rank j,
and j, respectively, then the product { T'(1) x T/4(2)] in general decomposes into a
sum of ISTO operators, T/, (1,2).

TAL ) = (TR X THDY = T Gromys, malje, jady TA(NTS 2 (17)

where (j,, my j;, myljy. ja, j. m) is a Clebsch-Gordon coefficient. This same scheme of
coupling ISTOs can be used to form the AL'7’ in equation (15) and to construct a
rotationally invariant quantity from the product of FU:7™ and AT, Actally, the
spin Hamiltonian is usually defined as a sum of dot products of ISTOs rather than a
contraction of ISTOs. These two definitions differ by a factor of v2I'+ 1. The spin

Hamiltonian as defined in equation (15) is consistent with the usual definition in terms

of dot products.

To illustrate these concepts, consider the g-tensor contribution to the spin
Hamiltonian, H = 8,B, - g+ S. The g tensor is a real symmetric Cartesian tensor which,
by definition, .is diagonal in the magnetic frame (cf. Section 2.2). As such, it must
decompose into a sum of a rank-zero tensor (Nordio, 1976),

1
0o o 2 +g. +p.. (18
4 A (g tg,+g..) | (18)

and the five components of a second-rank tensor, g™,
g3 = g - &) g%V =, 9 = Vilg.. ~ Kg.. + gl (19)

The constant of proportionality between the Fym' and the g'*™ is just the Bohr
magneton, B,, which would give the Hamiltonian the proper units of energy. In practice,
however, it is desirable to convert the Hamiltonian into angular frequency units since
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a frequency-swepl spectrum is desired.’ Hence the F(" are given by

1 (8.
F‘:-:-“ = -ﬁ (%)‘gu + 8w + 8::) (20)
and _
22 l Bc » hJ 2 pf
Fint=3 (T)“" g FEM=0, . \[3 (Fr. -t

(1)

The neéxt step is to construct the ISTO components of the tensor product of B,

and S. This is most convenicntly done in the laboratory frame, since 8,12, and the

autocorrelation function of the component of the magnetization along the £ axis is

(hopefully!) related to the observed experimental spectrum. In the laboratory frame,

the coupling of the rank-one operators associated with B, and S also gives rise to a
zero- and a second-rank tensor, ' : '

1 o
AY = —(;,-3) B,S, (22)
AT =0, AN =F(1)B,S,, AN = ()B,S. (23)

The arguments for construction of the hyperfinc portion of the spin Hamiltonian
follow the same lines. The results are ‘

ALD = -(%)[s:l&&(&l- S (29)
Al =1s.1,, A = ':g(s, I. +8.1,), AGD = \/§[s_.l= ~¥S.1.+S.1,)]
(25)
and
2= (ot a4t a0 e
=3 ()= a0, Fan o,
Fiu = \@ (%%)[A..g -HAL+AL)] . (27)

~ This completes the construction of the ISTO components of the F,.mand A, tensors,

Once the ISTO components Fin' and AT have been constructed, they must be
transformed into a common coordinate frame, so that the spin Hamiltonian can be
written in the form given in equation (15). To accomplish this, the transformation law
used to define an ISTO can be used. Since the quantity of interest is the autocorrelation
function of the projection of the magnetization along the £, axis, it makes sense to
leave the spin and magnetic field operators alone and transform the F, . tensor into
the laboratory (rame. The complete transformation from the magnetic frame into the

) This is somewhat misleading in the sense that the Hamiltonian as used in the computation of
the matrix elements of the Liouville superoperator is converted into units of gauss rather than
angular frequency. This is done so that the resulting spectrum can easily be compared to
experimental ESR spectrs obtained in the feld.awept mode,
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laboratory frame can be broken up into three successive transformations which can be
schematically represented as m + R -+ d » L. This can be stated more precisely as

Fol = Foo (28)

1
Filt= L P 0@ ) P onl - )R (V) (29)
Ll B
However, the rotation angles defined in Section 2.2 are for the opposite sense of rotation,
0=, n#* Np., {cf. cquation (16)]. Put another way, in terms of the sense of
rotations used to define the angles of rotation in Section 2.2, the components of the
F, tensors have been constructed in the final (L) frame rather than the initial (d)
frame (Nordio, 1976) given definitions of the coordinate systems and Euler angles.
This confusion always arises in the problems involving both space- and body-fixed
frames (Biedenhamn and Louck, 1981).
One way to resolve this problem is to use the properties of the Wigner rotation
matrix elements (Messiah, 1962; Biedenharn and Louck, 1981),

9.’*1'.\1(31-1) = 914‘»:-(3;-,) (30)

which follows from the unitary nature of the rotation operator. Using equations (29)
and (30), the components of the F, tensor in the laboratory frame can be written as

FOP = FOO | (31)

F(:.i", = i Qf:n'(\yLwd)gf:'n'(nd»ll)gf:'m'((bk-tm)F(:,:'.) (32)

"
m omTmTe 2

where the senses of the rotations are now consistent with the definitions in Section 2.2,

ie, Vs =(0,4,0), Ny pn =(a,B,7), and Ou.,, = (0, $,0). Finally, it.is actually

the complex conjugate of the tensor F, which appears in equation (15), so

F*,o‘f" - F(,?_',',’," . (33)
Form= T dl ()9l D) dh () Fm) (34)
-~ mT .-

where use has been made of the fact that general Wigner rotation matrix elements take
on a simpler form when the rotation depends only on the second of the three Euler
angles (Messiah, 1962; Biedenharn and Louck, 1981) and that the elements of the Frm

tensors are real.
Now, putting the pieces together, the spin Hamiltonian is a sum of two parts, the
sum of contractions of zero-rank tensors ’

Ho = 5 FOALY (35)
”»

and a sum of contractions of second-rank tensors

HiMy= T ($)2 A Q)d N (6)FERI AT (36)

nm' . m m
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It is noteworthy that the only portion of the spin_Hamiltonian which is dependent on
the angles (1 arises from the contraction of second-rank tensors. The interested reader
is encouraged to independently verily equation (36) by transforming the A, tensor
{rom the laboratory frame into the magnetic fraine. This coriStruction is more straightfor-
ward, since the A, tensor transforms in the mannaer stated.in equation (14) with the
sense of rotations given in Section 2.2.

The construction given here is consistent with the results given by Nordio (1976)
and Mcirovitch ef al. (1982). For more details on these matters, the reader is urged to
consult the review chapters written by Kivelson (1972) and Nordio (1976) and the
more comprehensive treatments given in standard texts (Rose, 1957; Messiah, 1962;
Biedenharn and Louck, 1981). A diflerent convention has been used in 1 [compare
equation (14) and equation 1-46), but the final results are equivalent.

2.5. Matrix Elements of the Liouville Superoperator

Using the definition of the scalar product in operator space [cf. equations (5), (9),
and (11)] and the definition of the Liouville superoperator as the commutator with the
spin Hamiltonian [cf. equation (15)),

¥|oY = |Ho — vH) (37N
the matrix elements of the Liouville supcroperator in the basis {B(L,..,)} are

€ol€lod = T dL (9 ($)FLTTN(L,, L)

nlimm, m m

1
x (Eﬁ) J' 40 DL ()DL (MDY, ()

x (pi. ais o1, il ALTT 165, ¢3: p4, q1) (38)
The integral over Q can easily be expressed in terms of Wigner 3-J symbols as
(Edmonds, 1957)

l L * ] L ( L| l ) L ,
—— dn ) . ] - L2 1 LI
(8 n’) J- 23w (2 (ﬂ)g”’“’(n) M, m M, (K. m* K,) (9)

Since | = 0 or 2 in equations (38) and (39), the so-calied “triangle” conditions on the
3-J symbols restrict the norizero matrix elements of the Liouville superoperator to lie
within a band about the diagonal determined by [L,~ L] < 2.

To evaluate the spin part of the matrix elements, it is first necessary to exami}le
the action of the spin commutator superoperators on the standard basis of spin
projectors. We note that these basis vectors are cigenvectors of the J* operator. This
fact will be used later in the discussion of the symmetry-adapted basis set (cf, Section
2.8). The matrix elements of the [A,..)" superoperators can also be evaluated in this
manner using equations (22)-(25). The complete expressions for the matrix elements
of the Liouville superoperator are quite tedious and will not be presented here (but
see Meirovitch er al. 1982). The results presented so far are sufficient to give the reader
a feeling for the symmetry arguments presented in Section 2.8.
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2.6. Construction and Matrix Elements of the Diffusion Superoperator

The symmetrized diflusion operator, T°, is assumed to be a sum of five independent
terms corresponding to the processes:

. F wes Potential-independent part of rotational motion,
I..: Heisenberg spin exchange,

. ©'¢-: potential-dependent part of rotational motion,
{*,.: effects of anisotropic viscosity,

. l.’ﬁ: jumping between equivalent sites,

ph Wt

so that the total symmetrized diffusion superoperator can be written as
P=l+ T +Fy+T,,+ Fy; (40)

The first two processes are independent of the existence of a restoring potential and
are thus appropriate for modeling the-motion of radicals in isotropic liquids. In contrast,
the last three processes require the local environment of the radical to have lower than
spherical symmetry. These contributions will be discussed separately below.

The general forms of some of the contributions to the diffusion superoperator are
somewhat awkward. In these cases, the matrix elements of the corresponding operator
will be presented rather than the operator itself. :

2.6.1. Contributions to the Diffusion Superoperator in Isotropic Media

The matrix elements of 1", in the basis {B(L,,,,)} are (Freed, 1976; Moro, 1980a;
Moro and Freed, 1981; Meirovitch et al., 1982)

B CAEA TR SR R NP R e R T X3
{ R.L(L,+1) + R(K}
(1+ 7, R LI(L + D5 (1 + 1 RKD]S

_ R, K} }
[+ LR L+ 0] “n

Here, Ry and R, are the parallel and perpendicular components of the rotational
diffusion tensor, R. That is, Ry is related to the correlation time for the motion of the
spin probe about the symmetry axis, 75, of the diffusion tensor, while R is related to
motion perpendicular to this symmetry axis. The parameters characterizing the three
canonical rotational difflusion models are

¢ Brownian: 7, =0, E, =0,
o free: 7, # 0, E, = §,
¢ jump: 1, %0, E =1,

where j = [}, L and the nonzero values of the 7; parameters for jump and free diffusion
are to be interpreted as mean residence times at each site, between jumps (cf. equations
1-34 10 1-44), The matrix of ', is seen to be both real and diagonal in this basis.

£
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The use of different madels for the paraliel and perpendicular rotational motions
{with subscripts || and 1) is justifiable only if there exists & clear time-scale scparation
characterizing these two processes (Mason-ef al.; 1974; Freed, 1976; Meirovitch and
Freed, 1979; Camphell ¢r al., 1979; Meirovitch ef ol., 1984) (e.g., when Ry is dominated
by a relatively more rapid internal motion, sce Campbell et al,, 1979);

The form of the Heisenberg spin exchunge contribution 10 the ditfusion super-
operator is based on two approximations:

¢ The lifetime of the radical-pair interaction is short compared both to the effeciive
exchange time and the rotational correlation times.

¢ The exchange rate does not depend on the relative orientation of the two members
of the radical-pair (sec also Zicntara and Freed, 1979).

The validity of these approximations for the system under study should be carefully

scrutinized before including this term in a calculation, The matrix elements of .. in
these limits are . )
«allrn"’!’ = 5!.,.1438\'...":8N..K:6ri"r:‘6l':.r.!
x "'NE{‘S«’J?G':.G:' - !61-:.05-:.'.45 -2+ l)"&,{_oa;{.,{.‘] (42)

2.6.2. Contributions to the Diffusion Superoperator in Anisotropic Media

The Fokker-Planck equation for the stochastic motion of a particle in an external
potential is convenicntly soluble only for the Brownian model, so attention will be
restricted to this special case. The symmetrized diffusion (Smoluchowski) superoperator
in this case is

Fom i+ Ty = [L- (LU 2k TIR(L + (LU)/ 2Ky T) (43)

where L is the generator of infinitesimal rotations of the diffusion frame relative 1o the
director frame, R is the rotational diffusion tensor, and U = U(n) is given in equation
(2). A simple decomposition of Iy exists due to the parsticular form of the restoring
polential. This becomes more obvious if equation (43) is cast into the form -

Fo=R,[*+(R)~R)L:+ (-—l—-)[R;(EU)’ +(Ry = RLUY]
2ksT.

I . F Uy
_ (zT,F) [RALLUNEU) + R(LUY] “

The matrix elements of the sum of the first two terms in equation (44) coincide with
those of the Brownian dilfusion superoperator in isotropic media (cf. Section 2.6.1),
We note that in equation (44), the action of each of the operators L, L2, and L, on
members of the basis set {B(L,,..)} is ’

l::lLO A’o K;Ps’ qs: F" q"’ L(L+ 1)'1-, .“I,K;ps, qs; p’,q', ) . (45)
LAL M K3 p% a5 p', 9D = KIL, M, K; p%. 050", q"D ‘ (46)
LAL M K3 p% ¢% ', ¢y » VETCFIT=RTRSTIL M, K 2 1: 0%, ¢% p'. 0" (47)
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1€ these three equations are used to further simplify the form of equation (44), we oblain

X% Zax (1) (48)

™e

i~ e
I(: = z
Le2 K

The X' parameters in equation (48)-for L # 0-are numerical coeflicients which depend
on the polential parameters (Meirovitch et al., 1982).* These coeflicients satisfy

XE =Xt (49)

and Xk = 0.if cither L or K is odd.
The matrix elements of I'- can now be written as

(ol yla) = Sar,.0, 80003045, e300 01801 o

. ;
x Z: (-™% X g _k,Ni(Ly, L)
L=

L, L L. )('-| L LZ)
X(M, o -mJ\K, K.-K, -K, (50)

The matrix of I’y is seen to be real and symmetric in this basis, but is not diagonal.

Before proceeding, it is useful to make a few remarks about the implications of
the form of T'¢. Since the restoring potential is. a linear combination of the Wigner
rotation matrix elements for which M =0, it is clear that the restoring potential is
indépendent of the Euler angle a. Therefore, the restoring potential is axially symmetric
in the director frame, hence the term is uniaxial. Indeed, this requirement is used to
define the director frame in uniaxial liquid crystals. The main point, however, is that
this symmetry implies that all spin probe molecules whose orientations in space are

related by a simple rotation about the I, axis experience similar forces and thus will .

reorient in a similar manner. In contrast, the restoring potential can depend on the
Euler angle y if the K = 2 terms are included in the expansion. If the potential does
depend on ¥, then spin probes whose orientations in space are related by a nontrivial
rotation about the yx axis at a given time will experience different forces and thus will
reorient dissimilarly, so long as they continue 10 experience diflerent forces. However,
it has been assumed (or convenience that the diffusion tensor, which is related to the
geometry of the spin probe molecules, is axially symmetric about Z,. This symmetry
of the ditfusion tensor implies that the reorientational dynamics of spin probes related
by rotations about 25 should be similar, not dissimilar as suggested by the preceding
argument. The resolution of this apparent. conflict is simply that the axial symmetry of
the spin probe is usually only approximate. In essence, the eflect of the diffusional
terms which depend only on the deviation of the diffusion tensor from axial symmetry
are usually quite smail and have been neglected. However, even if the assumption of
an axially symmetric diflusion tensor for a given radical is valid for studies involving
isotropic media, the terms which involve the eflect of the asymmetric portion: of the
restoring potential on the reorientational dynamics can still be quite large for the same

“ A factor of 1/4 is missing in front of the double summation in equation A23 in this reference.
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radical in liquid crystalline media, Therefore, these terms may be included in th
calculation if necessary. In summary, the ¢ffects of molecular a:wmmclrv are ustmllc
morce pfonoum:ed in asymmetric environments than in symmc(ric' cnv‘iro;tmcms. Y
) It is also possible to have discrete-jump-type motions between equivalenl. sites
11}:5 type of motion can be incorporated into the model for the reorientational dynamic :
of the probe molecules by the inclusion of a term of the form ] )
Collylod =5, , ,5\'.M,.'sx._x.&,--,‘,-;5.,:.,;?5,‘.',.3‘5...'.6"J,‘[l = Bkt an] (1))

where n, is the number of equivalent sites and 15 is the discrete jump frequency.
In the presence of an orienting potential, the viscosity can be a tensorial quantity.

This effect can also be included by adding a term T,,. The correction term to I, can
be writlen as "

(ol Jod, = 5',..1.,5.\1...\1_.5x..x,5p LR T SR )

b b A b
LELE At IR KRl Y I TN

X[R,L(L + D+ (R - RoM}] (s2)

whzre R is the parallel diffusion cocflicient in the director frame. The correction terms
to I’y can be found in Polnaszek and Freed (1975).

2.7. Components of the Starting Vector

§|nce a fymme(ri‘zcd diffusion operator is being used, and the spectral function
assoclat?d with _lhg %L component of the clectronic magnetization is desired, the
appropriate starting vector is ’ '

o} =21+ 1)""S, @ 1, ® P
= (l/ﬁ)[lv.» + l”-l»] (53)

where P, i _equilibri DT .
given byo(ﬂ) is the equilibrium probability distribution for the spin probes and is

- 5Pl U () ks T)
Po(0) 2 (54)

dQ exp{~U()/ky T}

In addition, I, is the unit operator in the nuclear spin space, and
loed=QI+ D)5, @1, ® P (55)
In the basis {B(L,,,)} [cf. equations (10) and (11)] the elements of the vectors

|v.1) making up the starting vector are

8721+ 1)

2 "2 -
(LMK p%q%p" q'lv,) = [—i'—] U an exp[-U(ﬂ)/k.Tl] v
x(p°q%.p'. q'1S.® 1) '

x I dN) 240 exp[-U(A)/ 2k, T] (56)
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Some simple symmetry arguments can greatly simplify this cxpfcssion. First, the
testoring potential has only Af = 0 terms in its expansion [cf. equation (2)] and th'us
does not depend on the first Euler angle. This implies-that only the basis vectors with
M = 0 can have a nonzero projection on the stasting vector. Second, all teems in the
expansion of the restoring potential have even K quantum numbers,. lhc'reforc only
basis vectors with even K quantum numbers can have nonzero projections on the
starting vector. Finally, since the Wigner rotation ‘matrix qlenren(s with M =0 are
proportional to the usval spherical harmonics (Mcssu'ah. 1962; Biedenharn and Lousk.
1981) and only the states with cven values of K are.important, one can I'u.rlhcr verifly
that only states with even L quantum numbers can. have nonzero projecnorts on the
starting vector using a simple parity argument. Using these three observations and
evaluating the spin part of equation (56) gives

: QL+1L- KN
(LMK p% 50", q' 10.0) = 8,5.184208, 085081k mea 2o ST I X1

-

x r dz P¥(2) explA(2)] JJ dy expliKy + cos(2y) B(2)} (57)

-t ()

where z = cos B, P¥(z) is an associated Legendre function of the first kind, and

-t,2
N, = [81:’(2] +1) J an exp[-U(ﬂ)/k,.T]] (58)
A(2) = (AY/2)PU2) + (A/2) Pi(2) (59)
B(z2) = (A}/2VB) Pi(2) + (A}/610) Pi(2) (60)

The norm;liza(ion factor N, and similar factors which are independent of the basis-set

quantum numbers will be ignored in the following. In the calculation of the starting

vector, the unnormalized vector resulting from the neglect of trivial normalization

factors is normalized numerically. ) )
The integral over the angle y can be expressed in terms of the modified Bessel

functions of the first kind' I,(v) (McLachlan, 1961) of strictly real argument as
2w
I dy cos(Ky) exp[cos(2y) B(2)] = 27(2 — 8x o) Ix/2( B(2)) (61)
[}

It is also possible to simply evaluate the double integral in equation (57) r'wmerically.
though this method becomes unstable for large L and/or K where the integrand is
highly oscillatory.

2.8. The High-Field Approximation

Considerable simplifications in the above discussion are possil?le if one is ablg to
take advantage of the approximations valid in the unsaturated, high-field, and slow
motional timits. More precisely, if the follow statements are true;

k
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¢ The anisotropic part of the spin Hamiltonian (the part arising from the contrac.
tion of second-rank tensors) is small compared to the isotropic part of the
Zeceman interaction.

¢ The rotational metion is slow cnough that wyre » 1, where T is the rotational
correlation time on the order of unity. ’

® The microwave radiation ficld is sufliciently weak that the spin system is not
being saturated (i.e., the absorption mode signal is directly proportional to the
incident microwave field).

then one can neglect all terms in the spin Hamiltonian which do not commute with S,
{i.c., the nonsccular terms) and also make the rotating wave approximation, When
these approximations are valid, one can neglect the coupling of the basis vectors with
dillerent values of the p* quantum number. Therefore, the subspaces labeled by different
values of the p* index evolve independently, and one can calculate the spectrum by
knowing only the time evolution of the siates with p* = 1, since these are the ones
which couple to the microwave radiation field in the rotating wave approximation,

With these simplifications ‘in. mind, it is possible to reformulate the problem by
neglecting the nonsccular terms in the spin Hamiltonian and developing a new basis
set which takes advantage of the fact that only the P* =1, ¢° = 0 states need be
considered, since these are the only states connected to the starting vector by the
simplified stochastic Liouville superoperator. A careful analysis of this stochastic
Liouville superoperator shows that the matrix of the stochastic Liouville superoperator
is reduced to a complex symmetric form in the subspace spanned by the basis vectors -
(Meirovitch er al., 1982; Schneider, 1989), '

LM K 1,0,p',¢") = 201 + 8, 4)]1?

X (1L, M, K; 1,0, p", '3 + (=1)**¥|L, M, -K; 1,0; p', ¢'D)
(62)
where the K’ index is now constrained to be positive. Furthermore, the starting vector
can have nonzero projections only on vectors within this subspace.
A further reduction in the size of the basis is possible by taking advantage of the
symmetry of the matrix elements of the Liouville superoptrator under the simultaneous

reversal in sign of the M and p' indices. The result of this analysis is that it is possible
to further restrict one's attention to the subspace spanned by the basis vectors

(L M K 1L,0:p', g = [2(1 + 8498,70)) "2
x(IL, M, K" 1,0;p',q")
+(=D"ML -M, K5 1,0, -p',q')) (63)
and the new M’ index is also positive. This is true only if the nonsecular terms in the

spin Hamiltonian are omitted. Although the expressions for the mutrix elements of the
spproximate high-field stochastic Liouville superoperator are somewhat awkward in
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this basis, it docs have the very significant advantage of reducing the dimension of the
resulting matrix to a minimal size {Meirovitch er al., 1982). ‘

By symmetry arguinents, il can also be shown that in special cases only small
subsets of these basis vectors are needed (Meirovitch er al., 1982). For instance, in the
absence of dircctor tilt, only the states with M’ = p' are nceded. Similarly; if there is
no diffusion tilt, then F%' = 0, so thut only basis vectors with even values of K’ are
important. Finally, il the magnetic tensors are axially symmetric in the diffusion frame
so that Fi = §,4, then only the states with even values of L and K'=0 are
needed.

The programs in this package use all of these approximations and take advantage
of the resulting reduction in the size of the basis set which must be considered. In the
following, this high-field basis set will be used exclusively, therefore the primes on the
M and K subscripts will be dropped to simplify the notation.

3. MAGNETIC RESONANCE LINE SHAPES AND THE COMPLEX
SYMMETRIC LANCZOS ALGORITHM:

In 1950, the Hungarian physicist and mathematician Cornelius Lanczos developed
a very powerful algorithm for tridiagonalizing arbitrary square matrices (Lanczos,
1950), which now carries his name. The algorithm attracted quite a bit of interest shortly
after its development, but fell into disrepute when it was found that it was prone to
certain instabilities in practical numerical applications (Wilkinson, 1965). Interest in
the Lanczos algorithm was renewed when the source of these instabilities was uncovered
by Paige (Paige, 1976, 1980; Golub and Van Loan, 1983; Cullum and Willoughby,
1985).

The basic scheme behind the Lanczos algorithm is quite simple. For simplicity,
the attention will be restricted here to real, symmetric, positive definite (RSPD) matrices
with nondegenerate eigenvalues. Given an N x N RSPD matrix A and an arbitrary
nonzero, real N-vector v, we form the sequence of vectors k;, j = 1,2,..., N using
the formula

k, = A"ty ‘ (64)

The elements of the set of vectors {k,} generated.in this manner are referred to as
Krylov vectors, The application of the Gram-Schmidt orthonormalization procedure
to the sequence of Krylov vectors, in order of appearance, gives a new orthornomal
basis, denoted {q;}. Let Q be the N x N matrix composed of the vectors q;. In-exact
arithmetic, the matrix T = QAQ" is tridiagonal and has the same cigenvalues as the
original matrix A.

In practice, the Lanczos algorithm does not actually generate the vectors k,.
Instead, it forms the vectors q;, which will be referred to as Lanczos vectors, in a direct
manner using a stepwise orthogonalization procedure that will be discussed in detail
in Section 3.1, This procedure has the tremendous advantage that it requires only two,
not N, intermediate vectors of dimension N. The instabilities observed in the computer
implementation of the Lanczos algorithm are due to the fact that in finite precision
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urithmetic the overall, or global, orthogonality of the sequcnce of Lanczos vectors
gencrated by the simple stepwise orthogonulization procedure cannot be maintained.

Several methods, all mgntialiy based on the results of Paige’s error ‘analysis, haveé
been proposed to cil‘qumvem this difficulty in order to enable onc to reliably determine
the entire set of cigenvalues of large, spurse matrices (Parleu, 1980; Golub and Van
Loan, 1983; Cullum and Willoughby, 1985). One set of methods is based on teying o
maintain global orthogonality in an eflicient manner (Parlett, 1980; Golub and Van
Loan, 1983). The computer implementation of these methods has the drawback of
requiring relatively large amounts of memory to hold intermediate vectors and the
associated CPU time to perform the reorthogonalization steps. Alternatively, one can
simply allow the instabilities to arise and run their course, giving rise to spurious or
“ghost™ eigenvalues. These spurious eigenvalues can be identified after the fact and
discarded (Cullum and Willoughby, 1985). This method also requires the storage or
recalculation of large numbers of intermediate results. It also may require the execution
of far more than N Lanczos steps on-an N x. N matrix.

The loss of global orthogonality is a severe problem if one tries 10 use the Lanczos:
algorithm to calculate the entire eigenvalue spectrum of large matrices. Fortunately, it
poses little or no problem if one uses the Lanczos algorithm to calculate spectral
functions in the manner discussed below. These assertions . will be justified in the
following sections. k

Not long after Lanczos made his contribution, Hestenes and Stiefel (1952)
developed a related algorithm to solve linear systems of algebraic equations known as
the conjugate gradients algorithm. The relationship between these two algorithms is
very close, but not necessarily obvious at first glance. Given an N x N RSPD matrix
A and a real N-vector v, the conjugate gradients algorithm attempts to solve the system
of linear algebraic equation Ax = v for the unknown vector x. The conjugate gradients
algorithm can be thought of as a Lanczos algorithm where the tridiagonal matrix T is
constructed in a factored form (Golub and Van Loan, 1983: Cullum and Willoughby,
1985). This factored form of T can then be used to gherate a sequence of approximate
solution vectors x; where xo = v. In exact arithmetic,this sequence terminates after at
most N steps giving the exact solution vector. v

As with the Lanczos algorithm, the conjugate gra&ier_nts method is prone to the
loss of orthogonality of the sequence of Lanczos vectors. This is manifested in the fact
that the computer implementations of the conjugate gradients algorithm do not converge
to the exact solution vector in at-most N steps.

Again, this loss of orthogonality does not pose serious difficulties in the use of
the conjugate gradients algorithm for the calculation of spectral functions. In addition,
it can be used as a very effective means of determining a minimal truncation scheme
(MTS) for a given problem (cf. Section 3.4). '

3.1. The Real Symmetric Lanczos Algorithm

A short derivation of the Lanczos algorithm for real symmetric matrices will be
given here as a reference for readers who are unfamiliar with the algorithm. The
derivation given here is based on simple linear algebra and is slanted toward the
generalizations needed for complex symmetric matrices. First, the Gi’am-Schmidt
orthonormalization procedure will be used to derive the general three-term recursion
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formula for the Lanczos vectors. These results will then be collected into a single matrix
equation for the Lanczos tridiagonal matrix. The majority of this section is devoted to
the study of the algorithm in infinite precision arithmetic. The impact of finite precision
computer arithmetic on the algorithm is briefly summarized at the end.

As stated previously, the Lanczos algorithm amounts to the application of the
Gram-Schmidt orthogonalization procedure to a sequence of vectors defined by the
malrix in question and g starting vector. This starting vector is determined by the form
of the desired spectral function.

To start the process of generating the set of Lanczos vectors, assume Aisan N x N
real symmetric matrix and that v is a given real N-vector, The vector v will serve as
the starting vector. The first member in the orthonormal set of Lanczos vectors, q,, is
taken to be parallel to the starting vector v, i.e.,

Bﬂl = k' =y ‘ (65)

The requirement that the new set of vettors be normalized (q}'q, = 1) implies 8, = {v||.
In the following steps, the vector q;., being added to the existing set of Lanczos
vectors is written as a linear combination of the previous vectors and the vector Aq, i,

)
4er = cfiiAq +.‘Z' i/*"'q. (66)

The expansion cocfficients, ¢{/*"), are determined by requiring that q;., be normalized
and orthogonal to all previous Lanczos vectors. The relationship between the sets of
Krylov and Lanczos vectors becomes evident if the relations defining the previous
Lanczos vectors are inserted into equation (66) and terms of the form A*v are collected.
The advantage of using the Lanczos vectors rather than the Krylov vectors is demon-
strated below. ‘ ' :

Now, one can proceed with the construction of the second Lanczos vector using
equation (66) in the form - :
B =(A-al)q, (67)

To determine the coefficient a,, equation (67) is multiplied on the left by qY. If q, is
to be orthogonal to q,, it is clear that .

a, = qyAq, (68)

In contrast, the coefficient B, is chosen to normalize the second Lanczos vector, q,,
giving \

By = (A = aI)q,} (69)
In a similar fashion, the third vector is

B = (A - a)l)q; — 7\q, (M

’f,

24 D. J. Schoeider and J. 1. Freed

Again, y, and a, are determined from the orthogonality requirements,

Y = ‘I'I'A‘I! = fi, (71)
wy = qyAq; (12)

These cocflicients can now be used in cquation (70) to give the general form of the
three-term recursion relation on which the Larniczos algorithm is based,

B2y = (A = a,l)qs - Bigy ©(13)

Again, B, is chosen such that q, is normalized, as done previously,

The explicit calculation of the fourth vector demonstrates the validity of the general
form of the Lanczos recursion relation given in equation (73). In general, q, must be
expressible as a linear combination of Aq,, qy, 4, and q,,

By = (A - ayl)q, ~ 7,q; = 8,q, (74)

To verily that equation (73) is indeed a prototype of a three-term recursion relation,
it must be shown that 8, = 0.and ¥: = By. It is easy to see that 5, = 0 by premultiplying
equation (74) by q¥,

8 =qYAq, (75)
Using equation (67) this can be rewritten as: ,
8 = (Buz + @,qy)"q, : (76)

which vanishes by the orthogonality of the Lanczos vectors. In addition, premultiplying
equations (73) and (74) by qY gives 8, = v,. » R

The same behavior is observed for all further vectors. Therefore, the general
Lanczos recurrence relation

Brlmss = (A = 1) = Bro—iQs (1)

can be used to generate all successive vectors ¢ 50 long as the quantities 8 are nonzero.
If B, = 0 for m < N then the procedure terminates. This occurrence is a manifestation
of the fact that the starting vector does not have a projection on all eigenvectors of A.
In this case, the eigenvalues of the matrix T,, correspond to the subset of the eigenvalues
of A whose associated eigenvectors have a nonzero projection on the starting vector
(Parlett, 1980; Golub and Van Loan, 1983; Cullum and Willoughby, 1985).

We note that, from equation (77), it is clear that only the last two Lanczos vectors
are required for the construction of the next member of the set. This surprising fact is
one of the major reasons why the Lanczos algorithm is such an efficient means of
computing spectral functions. The other major reason is that the matrix A is not
modified, so full advantage can be taken of any special structure of the matrix elements
of A to simplify the computation (e.g., sparsity or bandedness). Co

It is informative to summarize these results in a matrix form, The transformation
matrix, Qn, whose jth row is given by the elements of q, for 1 5 j < N, transforms the
original N x N matrix A into a N x N real symmetric tridiagonal matrix, Ty,

Ty = QnAQY (78) .
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Using the Lanczos recursion relation derived above [see equation (77)), it is straight-
forward (o verify that the matrix Ty is indeed symmetric and tridiagonal. The diagonal
and off-diagonal matrix clements of Ty are just the cocllicients appearing in equation

(77),

- (TN)M =a, (79)
(TN)l.H-I =B (80)

It can be shown that the matrix Ty can have only distinct cigenvalues, and that if
Bomsy = 0 then the cigenvalues of T,, are identical to those cigenvalues of A whose
corvesponding eigenvectors have a nonzero projection on the starting vector 30, 31,
32] (Parlett, 1980; Golub and Van Loan, 1983; Cullum and Willoughby, 1985).

-In addition, it is easy to verily that for each m < N,

Q.AQL =T, (81)

where Q,, is the m x N matrix constructed from the first m Lanczos vectors, and T,
is identical to the m X m submatrix in the upper left-hand corner of Ty. Furthermore,
from the orthonormality of the Lanczos vectors, it follows that

QQ* =1, (82)

where I, is the m x m identity matrix.

The effect of the finite precision arithmetic on the Lanczos algorithm is the subject
of Paige’s analysis (Paige, 1976, 1980; Parlett, 1980; Golub and Van Loan, 1983; Cullum
and. Willoughby, 1985). The basic result of this analysis is quite simple, though the
analysis itself is rather sophisticated and will not be presented here. The finite precision
error analysis is based on the fact that as the matrices T,, in equation (81) increase in
size as m is increased, the eigenvalues and eigenvectors of T., become better and better
approximations to the eigenvalues and eigenvectors of A, but the convergence rate is
not the same for all eigenvalue-cigenvector pairs. Assume for a moment that at step
m = M one of the eigenvalues of T, is identical to one of the cigenvalues of the
original matrix A to the working precision of the computer. The basic result of the
finite precision error analysis is that all further Lanczos vectors-q,, for m > M tend
to have a spurious projection along the eigenvector associated with the numerically
converged eigenvalue. This phenomenon leads to a lack of orthogonality of these
Lanczos vectors and the appearance of spurious eigenvalues.

However, this loss of orthogonality does not adversely affect spectral calculations
performed in the manner advocated here. This subject is treated in Section 3.5.

3.2. The Complex Symmetric Lanczos Algorithm

The formal extension of the real symmetric Lanczos ilgorithm to handle non-
Hermitian, complex symmetric matrices of the type which occur in magnetic resonance
line-shape problems is relatively simple. In his original paper Lanczos (1950) showed

2% | ‘
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h‘_’“f certain classes of complex nonsymmetric matrices could be reduced (o a compl
(rudlug?llal form using « pair of closely related  three-term recurrence relati::::
A starting vector is also néeded for cach recurrence relation. These relations are use.d'
to generate a biorthogonal set of vectors (Houscholder, 1964; Witkinson 1965: Golub
and Van Loan, 1983; Cullum and Willoughby, 1985). The matrices con;lrucl;d from
these sets of biorthogonat vectors then define a general similarity transformation which
reduces (h'c matrix to tridiagonal form. These very general Lanczos recursion relations
are sometimes ?sed in the study of physical problems (Wassam, 1985a, 1985b). )
l.-l.owever. il one is interested in studying complex symmetric matrices, a more
deflinitive statement can be made. A classical result in linear algebra states lh'at il two
complex symmeétric matrices ace similaf, then they are related to one another by a
compl.ex orthogonal transformation (Gantmacher, 1959; Horn and Johnson. l98y5)
11.|u.s, ifan N x N-complex symmetric matrix A can be reduced (0 a complex syt‘nmctric.
tridiagonal matrix T, by the Lanczos algorithm, the: transformation matrix must be
complex anc! orthogonal. A reexamination of the biorthogonal Lanczos relations for
nonsymmetric matrices inthis light.shows that the pair of recursion relations degenerates
toa ‘smg!e three-term recursion relation identical in form to equition (‘77) il the two
starting vectors are chosen properly (Moro and Freed, 1986; Vasavada et al,, 1987). In

. the original Moro and Freed work (1981) the complex-symmetric form was introduced

at the outset. :

Though the form of the Lanczos recursion relation is identical for real symmetric
and complex symmetric matrices, the elements of the resulting tridiagonal matrix and
Lanczos vectors for the complex symmetric case require more explanation. In particular
the.fact that the Lanczos vectors form a complex orthogonal matrix in the origina;
basis means that they are not orthonormal in the usual sense. The canonical scalar
product of two vectors x and y in an N-dimensional complex vector space is

N
(x,y) = x'y = ‘gi & (83)

A cdmplete orthonormal set of basis vectors {&, j é

. = 1,2,..., N},where(é,, eXé! &)=
é,;, hasbeen mtrodu::ed to obtain the ﬁngl form (Gantmacher, 1959; Horn azndlj)éh'n:’zn
.198'5), so that &, :-.(e,. x) and n; = (é,, y). The canonical vector norm in the same space.
is simply the positive square root of the canonical scalar product of a vector with itself,

- ‘x = = .‘"’
Il = (E. u"‘"’) (84)

It should be noted that this norm is positi
positive for all it i

rontive oy { nonzero vectors, as it is a sum of

A complex vector space equipped with such a norm a

4 ; ce : nd scalar product is called
& unitary space. This norm and scalar product endows the complex vector space with
.a geometrical structure very similar to a real Euclidean space (Schneider and Freed
in press). ' '

The Lanczos vectors generated by the complex symmetric Lanczos algorithm
however, are not orthonormal with respect to this canonical scalar product lnslead'

. ) !
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to form a complex orthogonal matrix the Lanczos vectors must satisfy (Ganlmaéhcr,
1959; Horn and Johnson, 1985)

N
(9, 9;) = qi'q; = kZ| ‘lgn‘l‘l“ = 8y (85)

where ¢'y! = (&, q..). A set of vectors which satisfics equation (85) is called rectanormal
(Choudhury and Horn, 1986; Schneider, 1989; Schneider and Freed, 1989) rather than
orthonormal. We note that summands in equation (85) are not necessarily nonnegative,
therefore it cannot be used to define a vector norm in the strict sense. However, one
is free to define a “pseudonorm™ or rectanorm of a vector as

Q 02
= (£ ) (86)

Complex vector spaces: equipped with a generalized norm and scalar product of
this type [cf. equations (85) and (86)] are called complex orthogonal spaces. Since the
rectanorm of a vector can be negative or even imaginary, the geometry of these spaces
is much different from the more familiar unitary and Euclidean spaces (Schneider and

Freed, 1989).
The calculation of the spectral function from the Lanczos tridiagonal matrix is

discussed in Section 1.5.

3.3. The Real Symmetric Conjugate Gradients Algorithm

The conjugate gradients method of Hestenes and Stiefel (1952) amounts to a clever
adaptation of the Lanczos algorithm for solving systems of linear algebraic equations.
An exposition of the conjugate gradients algorithm as applied to RSPD matrices and
its connection with the Lanczos algorithm (cf, Section 3.1) is presented here. '

In the conjugate gradients algorithm, a sequence of approximate solution vectors,
x;, for the problem

Ax =v (87)
is desired. Associated with each approximate solution vector is a residual vector,
== Ax, (88)

Clearly, the norm of these residual vectors can be used as a measure of the deviation
of the approximate solution vectors from the true solution vector, x.

This algorithm can be used in several ways in magnetic resonance problems. First,
the spectral function at a particular field position can be calculated directly, since
equation (1) is equivalent to

Hw = wp) = (-;lr-)(x(u ~wley (89)

where |x(w ~ w,}) is the solution to

(I - i(w = wo)l = iL]|x(w ~ wo)} = |v) (90)
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Second, it can be used as an alternative means of generating the Lanczos tridiagonal
mateix [cf. equation (106) below] in the calculation of the entire spectral function. In
fact, the conjugate gradients algorithm ofien has a significant advantage over the usual
Lanczos tridiagonalization procedure as described in Section 3.2. The third major
application of the conjugate gradicnts algorithm is in the determination of a minimal
truncation scheme for a given problem. Here, equation (90) is solved for a set of field
positions; during this “field sweep,” the maximum value of the modulus of each of
the components of the solution vector divided by the amplitude of the spectral function
[cf. equation (89)] is monitored. This quantity, ’

féyx(w — wy)ll
$; = Max o —————————— 1)
O V(e = wai 5t

where ¢ is the jth member of the original basis set, can then be used to assess the
significance of the contribution of each basis vector in the overall solution of the
problem. This application is discussed in more detail in Section 3.4.

In the conjugate gradients algorithm, the residual vectors are taken to be colinear
with the Lanczos vectors,

- .
ey = *;‘ 5y (92)
(]

This choice ensures that the sequence of the residual vectors, and therefore the sequence
of approximate solution vectors, terminates after at most N steps (in exact arithmetic).

If this scheme of defining a residual vector and determining the approximate
solution vector is to be successful, then one must be able to solve ¢quation (88), or its
cquivalent, for the associated approximate solution vectors without actually inverting
the matrix. This difficulty is most easily overcome by ‘reformulating thé conjugate
gradients algorithm as & minimization problem of a special type. This discussion follows
Golub and Van Loan (1983) quite closely. We consider the functional

Fly}= ()y"Ay - y'v (93)
and note that, if y = x where x is the solution to equation (87), then
FIx]) = (" Ax — x*'v

= (Dx"A(x = v) = ()x""v
= (Hv"A"y , (94)

It is easy to see that this is actually a unique minimum point by examining F[x +y] -
where y is an arbitrary vector, : .

Flx +y] = () (x +y)"A(x +y) = (x + y)}v
= Flx] + (Dy"Ay ’ (95)
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Since A has been assumed 1o be RSPD, the solution vector x must be unique and
Flx+y] - F{x]>0 (96)

for all vectors y # 0. Thus, the problem of solving the system of linear algebraic
equations in equation (87) can be reformulated us a minimization problem involving
the functional F[y] dcfined by equation (93).

One is now left with the problem of developing a systematic scheme for the
minimization of F[y] subject to the constraint that the residual vectors are collinear
with the Lanczos vectors [cf. equation (92)]. To begin, it is clear from equation (88)
that the difference between two successive residual vectors can be written as

G- = "A(xl - xl-|)

This defines a new sequence of vectors, p,, which are known as conjugate direction
vectors. The relationships between successive members of the sets of residual and
approximate solution vectors can be reexpressed using the conjugate direction vectors:

l’l - f’_l - a,Ap, and xl o x'..| + alpl (98)
Now, F[x;] is just

F[x,] - F[x[-l + “/P;].

2
= Flx,y] + (%‘)n}'Aw = a;pj'v %9)

By setting the derivative of equation (99) with respect-to 4, cqual to zero, it is easy to
show that the minimum value

. l tr, _ 2
Flx)} = F{x,.,] - (5) Q#ﬁ)— (100)
is attained when
a4 = pyr,./p) Ap, (101)

It follows from this result and equation (98) that p; and r; are orthogonal,

API L] -G;'(r, - l'l-|)
=a;pi'Ap; = pj(r; ~1,,)
0=pir, (102)
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A more detailed treatment (Golub and Van Loun, 1983; Cullum and Willoughby, 1955)
shows that the conjugate direction vectors can also be abtained by

Py =t +byp,., o (103)

where . .
by = pj-1/pj. (104)
Now, equations (101)-(103) can be used to derive a more symmetrical formula fora,,

(o + Bpy-i)r, i Pi-1
o/ Ap; piAp,

= (105)

This completes thie exposition of the basic equations used in the conjugate gradients
algorithm [cf. equations (98), ( 103)-(105)). ‘Using these equations, the problem of
minimizing the functional Fy] over the entire N-dimensional space, and therefore
the solution of the original set of linear algebraic ¢quations, has been reduced to a
sequence of simple one-dimensional minimizations. -

~ The connection between the residual and Lanczos vectors in ¢quation (92) can be
exploited to derive the following equation for the Lanczos tridiagonal matrix from the
quantities q, and p; as calculated by the conjugate gradients algorithm (Golub and

Van Loan, 1983; Cullum and Willdﬁghby, 1985):

Ty = LDLY ' (106)
where D is a diagonal matrix 'with elements

D, = a;'s, (107)

and L is a lower bidiagonal matrix with elements

Lu =&y - (-gl;'.) sl-l.l (108)

I-

The sign ambiguity noted in equation (92) is i result of the fact that it is only pj that
is actually calculated within the conjugate gradients algorithm. This same sign ambiguity
can also lead to sign differences in the off-diagonal matrix elements of the tridiagonal

_matrices generated by the Lanczos and conjugate gradients algorithms. These sign

differences do not affect the calculated spectrum, since only the squares of the of-
diagonal matrix elements occur in the continued-fraction expansion of the spectral
function [cf. equation (124)].

3.4. The Complex Symmetric Conjugate Gradients Algorithm

The generalization of the conjugate gradients algorithm to handie complex. sym-
metric matrices is analogous to the generalization of the Lanczos algorithm treated in
Section 3.2. In particular, the rectanorm (cf. equation (86)] and associated scalar
product [cf. equation (85)] should be used everywhere instead of the usual unitary
space norm and scalar product [cf. equations (83) and (34)).
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However, there is onc signilicant difficulty which can arise. Since the matrix A is
now complex and symmetric, it cannot be assured that p}’Ap, does not vanish for some
index j, thereby disrupting the algorithm. In (act, the way that the matrix elements of
the stochastic Liouville superopcrator are calculated, this problem always ariscs on the
very first step for calculations involving isotropic liquids. Fortunately, there is a very
simple solution to this problem in that one can always choose an offset § such that
p;(A + 81)p, # 0 for all j. In practice, & is usually chosen to be a small positive number
on the order of the expected inhomogeneous linewidth of the experimental spectrum
under consideration, Alternatively, one could simply use the Lanczos algorithm for the
calculation. The presence of such an oflset does not aflect the results of either the
Lanczos or conjugate gradients algorithms.

Using the connection between the Lanczos and conjugate gradients algorithms {as
defined in equation (106)], one can calculate the entire spectral function while taking
advantage of the modulus of the rectanorm of the residual vector to determine when
to terminate the algorithm. The use of the error estimate provided by the residual vector
can lead to substantial savings in computer time, despite the fact that each conjugate
gradients step involves a little more computation than the corresponding Lanczos step.
The offset & which is required to avoid spurious divisions by zero is simply subtracted
from the diagonal matrix elements of the tridiagonal matrix to give, within sign changes
in the off-diagonal matrix elements, the same tridiagonal matrix as generated by the
complex symmetric Lanczos algorithm in the absence of the offset.

Finally, the utility of the complex symmetric conjugate gradients algorithm in the
determination of the MTS warrants further discussion. In this application, one is
interested only in obtaining the quantities s;, as defined in equation (91), which are
used to assess the overall significance of the contribution of the jth basis vector to the
spectral function. Therefore, it is not necessary to obtain the Lanczos tridiagonal matrix,
but rapid convergence becomes very important since equation (90) must be solved at
10 to 100 different values of the sweep variable. Various methods of accelerating the
convergence of the real symmetric conjugate gradients algorithm are known (Golub
and Van Loan, 1983). Of these methods, the simplest one is known as the diagonal
preconditioning scheme, which works well in cases where the diagonal matrix elements
are much larger in amplitude than the off-diagonal elements. This is precisely the case
for the matrix of the stochastic Liouville superoperator where the diagonal elements

of the diffusion superoperator tend to increase in amplitude like L? while the magnitude

of the elements of the Liouville superoperator tend to decrease as L increases. The
diagonal preconditioning scheme amounts to solving the modified set of equations,

M ™ (A+8D)x=M""v (109)
where M is the diagonal matrix whose elements are just the positive square roots of
the real parts of the diagonal matrix elements of A + 81. Thus, the real parts of the
diagonal matrix elements of the scaled matrix

A=M'A+ DM : (110)

are unity. This scaling improves both the numerical stability and rate of convergence
of the algorithm, It is important to observe that the transformation defined in equation

1
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(110) is not a similarity transformation. Using cquation (110), it is straightforward (o
rewrite equation (109) in the form

Ay =w o

where w = M~'v, and the solution to the original set of equations can be 6btained from
the relation

x=My - | (i

Thus, it is clear that a minor variant of the standard conjugate gradients algorithin
may be used 10 solve the set of diagonally preconditioned equations dand obtain the
desired quantities. However, since this scheme involves a transformation which is not
a similarity transformation [cf. equation ( 110)], one cannot reconstruct the Lanczos
tridiagonal matrix in any simple manner.

3.5. The Continued-Fraction Representation of the Spectral Function

The continued-fraction representation of the spectral function holds a central

position in both the theoretical and practical aspects of the methodology presenied
here. From a theoretical point of view, it aliows one to view the Lanczos and conjugate
gradients algorithms as a natural translation of the very powerful but abstract projection
operator techniques of nonequilibrium statistical mechanics into a concrete compula-
tiona'l framework. From a practical point of view, it represents an efficient means of
obtaining an entire sequence of approximations to the spectral functions directly from
the tridiagonal matrix, The emphasis here will be on the practical side. The interested
reader is encouraged to consult the literature for surveys of the theoretical aspects
(Moro and Freed, 1981; Wassam, 1985a; Dammers, 1985; Moro and Freed, 1986;
Schneider and Freed, 1989), '
. The sequence of continued-fraction approximants to the spectral function is defined
in terms of the elements of the tridiagonal matrix. The derivation of these approximaats’
is quite straightforward in that it relies only on some basic linear algebra. To begin,
the spectral function can be written in the form

TN (z) = vzl + A) 'Y (113)

The superscript and subscript N refer to the dimension of the matrix A. The sequence
of approximants to be constructed is actually a sequence of approximations to J*'( z).
The extent to which J™)(z) is a good approximation to the experimental spectrum
depends on the values chosen for the parameters on which the matrix A depends as
well as on the basis set (cf. Section 2).

The transformation matrix Q  defined by the Lanczos vectors allows one to rewrite
equation (113) in terms of the tridiagonal matrix Trn, o

J*z) = QR Qulrly + AI'QEQNY (1)
= (Qu¥"2L, + T} Quw) a1s)
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Since the matrix Q, is orthogonal, it must satisfy QuQn = In. lr.n addition, the matrix
clements in the first row of Q, are just the components of v. Using lljese two facts to
simplify the right-hand side of equation (115) yields the particularly su'nple result that
J'™(z) is just the (1, 1) matrix element of the inverse of [zl + Ty, i.c.,

TN ) = [zl + To)ih (116)

The entire sequence of continued-fraction approximants is obtained directly from
equation (116). This is accomplished by using the determinant-cofactor formulas for
the clements of the inverse matrix and by using Laplace’s m_elhod h:) expand the
determinants: and’ cofactors. Using, this approach, it is: convenient to introduce the
determinants Dy}, of the diagonal blocks of [zIy + Ty],

z+a B
B 2+ ay,, B
Dl',vm(z) =det Bin AT el (117)
o el B
Bt z2+ta,

where it is assumed that N = m = I The spectral function can then be written as the
ratio of two of these determinants,

JNX(z) = DYn(2)/ DY p(2) (118)

Itis noteworthy that the determinants appearing in the numerator and derlominator
of equation (118) are simply polynomials in z of order N — 1 and {V, respectively. ’!he
continued-fraction representation of J*"'(z) follows from equation (118) by using

Laplace’s method to derive a recurrence relation for the determinants. The expansion -

of D{!n(z) about its first row or column gives the result -
’ Difn(z) = (2 + a)Diin(2) ~ BIDNn(2) (119)

This expansion can then be inserted into the denominator of equation (118). Dividing
both numerator and denominator by D;.’,.,(z) gives

Din(z) (120)
(z + @) DY)y ~ BiD}In(2)

J(N)(z) -

1 .
= (121)
z+ oy - ﬂfo_’N(z)/DZN(Z)

The reapplication of this technique for the ratio of determinants occurring in the
denominator of equation (121) gives

(122)

J(N’(z) - ﬂf
zta;- ﬂ;D:.N(!)/DgN(Z)

z"'a‘_
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The recursive nature of the cxpansion into a continucd fraction is now obvious. Using
the standard notation for continued fractions, the complete expansion of J'N Y(z) can
be writicn as

JNYG) = ! Bi B3 ... B BA,
Ttm—z+a,- 2+ ay~- ztay.,—z+ap

(123)

The sequence of continued-fruction approximants, J,)"’(z), is obtained simply by
truncating the continued-fraction cxpansion appearing in equation (123), '

, ‘. R o |
J¥z) = Bi B | _ B B ¢z
tto-z+ay- 24 ay- Zt @y~ z+a,,

This amounts to assumit'ng that B, =0form =2,3,..., N,
The line-shape function, S (Aw), associated with a particular continued-fraction
approximant is (in angular frequéncy units) :

S Aaw) = -1'; Re(/S%1/ T2 + iAw)) (125

where 1/ T3 is a real constant used to model line-broadening effects which are not
explicitly included in the computation. However, following established practice, all
calculated line-shape functions presented here will be plotted as a function of applied
magnetic field rather than angular frequency. As stated earlier in Section 2, this
conversion is only valid in the high-field approximation. In addition, the usual ESR
signal obtained using field modulation and a lock-in amplifier is related to the derivative

of JM(2),

(126)

I T+ i - 12)_)}
dw

5" (e = wo) = Re{
.

It is ve'ry important to note that since the previous elements of the Lanczos
tridiagonal matrix are not modified by the execution of further steps, the continued-

~ fraction approximant J¢"(z) can actually be evaluated after only m Lanczos steps. In

other words, each member of the set of continued-fraction approximants to SV Xz)
can be evaluated afier the cofresponding number of Lanczos steps has been completed.
The behavior of the family of continued-fraction approximants for a mode] problem
is demonstrated in Section 3.6.

Since the determinant in the denominator of equation (118) is just the characteristic
polynomial of T, it is clear that there must be a close relationship between the -
eigenvalues and weight factors of T., and the associated continued-fraction
approximant. It is useful to explore this point in some detail, as these ideas are vsed
frequently in the discussion of the convergence of the sequence of continued-fraction
approximants in Section 3.6.
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First, we note that the mth approximate spectral function J47'(z), just like the
*

true spectral function JV'(z), may be written as the ratio of two determinants, where
the order of the determinant in the denominator is onc greater than the order of the

determinant in the numerator,

J(z) = DY, (2)/ DY.o(2) (127)

i i is just acteristic polynomial of the truncated
The denominator of cquation (127) is just the chamc'ten.s : t
tridiagonal matrix T,,. Assuming that the polynomial in the t?cnommator of equation
{127) can always be lactored into the product of m distinct linear factors

Dy (2) = ﬁ (z+A4A) (128)
J=t

one may decompose the ratio of polynomials in equation (127) into a sum of m distinct
partial fractions (Gantmacher, 1959),
m gl
(N)( 5} - —d (129)
= £

The coefficients w} are called weight factors. This procedure of ex;_)anfiing rat'ios of
polynomials into partial fractions is commonly used in the indefinite integration of

rational functions. ) ) .
The connection between the eigenvalue-weight factor and continued-fraction

representations can also be derived by writing equation (127) as the (1, 1) element of
. d a
the inverse of the tridiagonal matrix (21, + T,]"",
TN (z) = €21, + T )7'é (130)

i isti Schneider

= (1,0,0,...,0). Assuming that the eigenvalues of T,, are duqna( der,

‘l’;hS;")e é";'.,, S:an always be diagonalized by a complex orthogonal"transformation
{Gantmacher, 1959; Horn and Johnson, 1985),

OT,0" =A™ (131)

This result can now be used to simplify equation (130),
J&(2) = €70 O[z21,, + T, ) 'O 08,
= (08&,)" 1., + A.]"'(0¢)

WO a32)
Jmrz+ A

36 . D J. Schaelder and J. H, Freed

A comparison of cquations (129) and (132) shows that the weight factors w} are just
the squares of the elements of the first row of the transformation matrix O which
diagonalizes T,,. In contrast to the clements. of T,,, which are not altered by the
execution of more Lanczos steps, the eigenvalues and weight factors of Twand T

can be dramatically dilferent. This point is explored in Section 3.6.

me+

3.6.  Convergence. of (he'Sequence of Approximate Spectral Functions

There are two different types of convergence which ‘must be considered in the
application of the Lanczos algorithm to calculating magnetic resonance spectra. First,
there is the question of how weil J*V '(z) approximates the “true™ spectral function
defined by equation (1). The difference between equations (1) and (123) is due to the
truncation of the basis set to a finite dimension. This is Jjust the MTS problem discussed
in Section 3.4. The second type of convergence is the central topic in this section,
namely, the convergence of the sequence of approximants to the spectral function. For
simplicity, this discussion will be presented in terms of the cigenvalue-weight factor
representation of the approximate spectral functions rather than the continued-fraction
representation and will be heuristic in nature with little attention paidto the mathemati-.
cal details. The discussion of the convergence of the spectral functions in terms of the
continued-fraction representation is. more pleasing from a theoretical point of view,
but it also involves more complicated and unfamiliar mathematical techniques
(Schneider, 1989; Schneider and Freed, 1989). :

To orient the reader, the values of the linc-shape function S ~ wy) associated
with a sequence of continued-fraction approximants for a particular calculation are
presented in Figure 3 as a function of both the number of Lanczos steps and the applied
magnetic field. The final line-shape function in the absorption [cf. equation ( 125)] and
derivative modes is presented in Figures 4 and 5, respectively. This calculation was
performed using TEMPONE:-like magnetic parameters and moderately slow isotropic
Brownian diffusion (Ry = R, = 10°s™"). The MTS used here was taken from the
appropriate entry in Table 2, These values were determined (Vasavada er al, 1987)
using the field-sweep conjugate gradients method (cf. Section 3.4). These plots ali
include a residual linewidth of 0.3 G, which is faitly typical for TEMPONE radicals
in this motional regime.

The general features of the derivative spectrum given in Figure 5 are probably
quite familiar to most readers. The large overall spectral width (60G ~2A,.), the
narrowness of features of the high--and low-ficld extrema, and the splitting observed
in the central region are all indications of slow rotational motion. This spectrum was
calculated using 62 Lanczos steps giving a conjugate gradients residual of frllps =~ 1072
(cf. Section 3.4) indicating the convergence of the cw ESR spectrum. The corresponding
absorption spectrum given in Figure 4 is probably not so familiar. It is presented here
to-help the reader in understanding the two-dimensional plot in Figure 3.

This particular calculation was chosen because it demonstrafes.the most common
convergence behavior of the approximants as a function of the number of Lanczos
steps. In Figure 3 the absorption-mode line-shape function is plotted as a function of
the number of Lanczos steps and the difference between the applied magnetic field
and the field at the center of the spectrum (3200 G). According to convention, each
line-shape function is normalized to unit area. '
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Figure 3. Two-dimensional plot of the convergence of the absorption-mode spectra
[d"..equution (125)] as a function of magnetic ficld and the number of Lanczos uep.s for TEMPONE
spin probe undergoing slow isotropic Brownian diffusion. The diffusion and basis-set parameters
were taken from line 2 of Table 2 and the magnetic parameters are given at the bottom of that
table. The spectral functions for Lanczos steps 2 to 62 are plotted here. Note th,t the magnetic
field increases to the left.

The final trace along the field axis in the immediate foregound o.f Figure 3 represents
the fully converged absorption mode cw ESR spectrum determined by these lnpl'lt
parameters. This trace is identical to the trace in Figure 4, except lh.at Figure 3.is
plotted so that the field decreases from left to right. The initial trace in the extreme
background in Figure 3 corresponds to only two Lanczos steps. .

The most striking aspect of Figure 3 is how quickly, as a funcno? of the number
of Lanczos steps, the approximate line-shape function begins to fook like a reasonable
¢w ESR spectrum. An examination of the traces in the background of Figure 3 shows
that the gross features of the final spectrum are well represented after only 10 to 15
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Field (6)

Figured. Fully converged (62 Lanczos steps) cw ESR absorption spectrum for the same magnetic,
diffusion, and basis-set parameters as for Figure 3. This plot corresponds 1o the trace in the
immediate (oreground of Figure 3. Note that the magnetic field increases toward the right.

Lanczos steps. It is most convenient to discuss this phenomenon in terms of an
cigenvalue-weight factor decomposition of the line-shape functions (<f. equations
(129) and (132)] rather than in terms of continued fractions. These representations are,
however, equivalent as was shown in Section 3.5. From this point of view, the spikes
in the line-shape functions corresponding to the individual eigenvalues of the smaller
tridiagonal matrices appear to (decrease in amplitude and move out toward the wings
to the spectrum as the dimension of the tridiagonal matrix is increased (cf. Figure 3).
The regions between the spikes are gradually filled in by the new éige_nvalues which
must appear as the dimension of the tridiagonal matrix is increased. This extremely
rapid convergence of the gross features of the spectrum is observed in essentially all
calculations. ' ‘

| I 1 ‘I A 1 'y A A A J
-500 -400 -300 -200 -100 00 100 200 300 400 %00
Field (6)

Figure 8. Fully converged (62 Lanczos steps) cw ESR derivative spectrum [cf, equalidn (126)}
for the same magnetic, diffusion, and basis-set parameters as for Figures 3 and 4. Note that the
magnetic field increases toward the right,
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TABLE 2
Truncation Parameters and MTS (or cw. ESR Spectra

No. Spin probe” RYar e Lo Ko M NN
! TEMPONE 1w o 6 3 2 2 42 33
2 TEMPONE w o 14 7 6 2 171100
3 TEMPONE 10" 0 30 13 10 2 543 256
4 TEMPONE 10 0 s4 15 10 2 990 447
s TEMPONE o' 10 10 None 2 2 63 26
6 TEMPONE 10" S 12 3 2 2 78 42
? TEMPONE 10* 10 10 None 0 2 33 29
L] TEMPONE (90" tilt) 107 1 6 3 2 6 288 74
9 TEMPONE (90 tilt) 107 10 10 9 4 4 822 69
10 TEMPONE (90" tilt)  10° 10 12 1 6 6 1719 245
n CSL 10° 0 14 7 14 - 2 23 162
12 CSL 10° 6 30 13 30 2 762 474

* Values of g and A tensors for TEMPONE: g,,, = 2.0088, Buy = 2.0061, g,, = 20027, A,, = S8G, A, =38G,
A,, =308 G. Values of g and A tensors for CSL: g,, = 2.0021, g, = 2.0089, g,, = 2.0058, A_, = 33.44 G,
A,, =320, A,, = $.17. Siatic magnesic field By = 300G, ) =100,
ional diffusion (units of s7*).
) Cocmdm of first term in the expansion of the scaled restoring potential, — U(1)/k, T.
L,..,. snd L, are the largest even value of L snd 0dd value of L, respectively, for which there exist basis
vectors with 5, > 0.0). Similarly, K, 8nd M, are the fargest values of K.and M for which this occurs.
¢ N is the dimension of the matrix if all the basis vectors whose indices are less than or equal to LY., L.,
K qaes and M. are included,
TN pin 8 the dimension of the MTS (the number of basis vectors for which s, > 0.03).

The convergence of the fine details of the line-shape function is emphasized in
the difference plot presented in Figure 6. This plot was generated by subtracting the
final converged line-shape trace from all the previous traces in Figure 3. There are
three major points illustrated in Figure 6. The most obvious point is again the rapid
convergence of the gross spectral features. The second point is that the wings of the
spectrum converge. far more rapidly than the central region. This phenomenon can be
rationalized in terms of the close spacing of the eigenvalues in this area. It is well
known in the real symmetric case that eigenvalues of the tridiagonal matrix correspond-
ing to cigenvalues of the original matrix which are widely separated from their neighbors
converge most quickly (Parlett, 1980; Golub and Van Loan, 1983; Cullum and
Willoughby, 1985). This general trend also seems to hold true for complex symmetric
matrices, where it has previously been noted that the line-shape function converges to
within experimental accuracy well before closely spaced eigenvalues of the original
matrix are resolved (Moro and Freed, 1981). Finally, it should be noted that it can
happen that there is little change in the approximate line shape for a reasonably large
number (10-15) of Lanczos steps followed by a sudden change where significant features
can appear or disappear. Again, this phenomenon is well known in the real symmetric
case where it is referred to as misconvergence (Parlett and Nour-Omid, 1985),

Until now, this discussion has been focused on interpreting the convergence of
the approximate line shape in terms of the eigenvalues and weights of the sequence
of tridiagonal matrices generated by the Lanczos algorithm, However, to understand
the effects of finite precision computer arithmetic on the approximate line shapes, the
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Figure 6. Two-dimensional difference plot of the convergence of the absorption-mode spectral
function [cf. equation (125)] emphasizing the rapid convergence of the wings of the spectrum
but slower convergence of the central region. This plot was generated by subtracting the fully
converged absorption spectrum (shown in Figure 4) from alt of the traces in Figure 3. Note that
the magnetic field increases to the left as in Figure 3.

behavior of the cigenvalues and weights themselves must be examined more closely.
Unfortunately, since both the cigenvalues and weights are complex numbers, it is nearly
impossible to plot all of these quantities, as a function of the dimension of the associated
matrices, in a meaningful way. However, it is possible to plot the imaginary parts of
the cigenvalues of the tridiagonal matrices (i.c., the magnetic field positions of the
individual complex Lorentzians) used to generate Figure 3. This is done in Figure 7
to further illustrate the spreading of the eigenvalues toward the wings of the spectrum
as the dimension of the tridiagonal matrix increases. This is, however, just a small part
of the story.

An examination of the lists of cigenvalues and weights reveals that, for the matrices
of dimension 2 to 16, the real parts of the eigenvalues (i.c., the widths of the complex
Lorentzians) are relatlvely small (Re{A;} = 7.1 G) and all eigenvalues have relatively
large weights ([w]ll = 107°). In addition, the real parts and weights for the cigenvalues
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Figure 7. The imaginary parts of the eigenvalues of the sequence of Lanczos tridiagonal matrices
used to generate Figure 3 as a function of the number of Lanczos steps. Note the rapid convergence
of the eigenvalues near the high- and low-ficld extrema. In contrast, the central region shows
considerable variation in the positions of the eigenvalues as the number of Lanczos steps increases.

in any given region in the spectrum vary substantially from step to step. Note that the
gross features of the full converged spectrum have essentially been defined by step 15
(cf. Figure 3).

Now, after 17 steps a qualitatively different type of eigenvalue appears—one with
a large real part (13.7 G) and a smali weight ([fw?]] = 1.75 x 107¢). The imaginary part
of this eigenvalue is ~13.0 G. This cigenvalue “disappears™ at step 18. The cigenvalues
and weights display bizarre behavior for the next several steps. In particular, some
cigenvalues develop negative real parts corresponding to negative linewidths! Though
these cigenvalues usually have negligible weight factors, occasionally they do not.
However, if the eigenvalues with negative real parts have nonnegligible weight factors,
the real part of these weight factors is also negative. In addition, these eigenvalues
appear as part of a “pair.” The imaginary parts of cigenvalues of the two members of
the pair are nearly the same, while the real parts of the cigenvalues are nearly equal
in magnitude, but opposite in sign. The weight factor associated with the member
whose cigenvalue has a positive real part is usually quite small. The net contribution
of this pair to the spectrum is quite small. As the dimension of the tridiagonal matrix
increases still further, the frequency and relative importance of these physically unrealis-
tic eigenvalues diminish rapidly which is indicative of their “spurious™ nature.

In addition, near the end of this calculation, duplicate or “‘ghost™ eigenvalues also

begin to appear. However, the weight factor for all but one of the numerically multiple:

eigenvalues is on the order of the machine precision used in the calculation. In general,
this remains valid until one performs far more than N Lanczos/conjugate gradients
steps on an N x N matrix. Therefore, these unwanted duplicates of converged eigen-
values cannot corrupt the calculated spectrum using the computational strategy advo-
cated here.
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. 'ﬂlcsq obscrvations suggest that it is not necessarily suflicicnt vlo calculate the
line-shape function aftér every Lanczos step and terminate the procedure’ when no
significant change is observed. This was the original suggestion by Moro and Freed
(1981) on how to monitor convergence in practical problems. Indced, this procedure
works well on simple problems but'sometimes can be misteading in problems involving
potentials or very anisotropic rcorientation.

Exu:.nsivc expericnce (Vasavada ef al,, 1987; Schneider, 1989; Crepeau, private
communication) now suggests. that the rectanorm of the residual occurring in the
complex symmietric conjugate.gradients algorithm can be used. as a more reliable means
of monitoring the convergence of the line-shape function (cf. Section 3.4).

More information on the qualitative and quantitative aspects of the convergence
of the complex’ symmetric' Lanczos algorithm for the calculation of ESR line-shape
functions can be found in the references (Moro and Freed, 1984, Dammérx, 1985;
Vasavada ef al., 1987; Schneider, 1989; Schneider and Freed, 1989). ' '

4. COMPUTATIONAL CONSIDERATIONS

Until about 1980, almost all slow motional magnetic resonance spectral calculations
were either based on the solution of a system of linear equations by the LU algorithm
(Freed et al., 1971a, 1971b) or the complete diagonalization of the stochastic Liouville
matrix (Gordon and Messenger, 1972; Goldman er al., 1972; Freed, 1976).-At that time,
Moro and Freed (1981) introduced a modification of the Lanczos algorithm for real
symmetric matrices (Lanczos, 1950; Parlett, 1980; Golub and Van Loan, 1983; Cullum
and Willoughby, 1985) which is capable of handling complex symmetric matrices and
which leads to at least an order of magnitude reduction in computer time over the
traditional methods. The reader is referred to the literature for more information on
the application of the complex symmetric Lanczos algorithm (Moro, 1980b; Moro and
Freed, 1981; Cullum and Willoughby, 1985; Dammers, 1985; Moro and Freed, 1986;
Schneider, 1988; Schneider and Freed, in press) and the related donjugue ‘gradients
algorithm (Vasavada et al, 1987; Schneider, 1989; Schneider and Freed, 1989) to
spectral calculations of various types.

In this section, the names of variables used in the computer programs will be
printed in lower case teletype-style typeface (e.g, ndim, zmat) while the names
of the programs, subroutines, and disk files will be printed in the corresponding upper
case teletype-style typeface (e.g., LBLL, EPRLL). ‘

The general organization of the program is as follows:

LBLL ) This programy will prompt the user for the magnetic tensor parameters,
diffusional model and associated parameters, basis-set truncation values, ete. This
must be the first program of the set run, since all the other programs require the
parameter file generated by LBLL as input. The parameters required by LBLL are
defined in Section 2. This program also determines whether or not the dimension
of the matrix is too large for the associated arrays in the main calculation programs,

EPRLL, EPROGL, and EPREL.

m . This program constructs the stochastic Liouville matrix, then tridiagonalizes
it using the complex symmeétric Lanczos algorithm. :
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EPRCGL This program is quite similar to EPRLL, but uses the complex symmetric
conjugate gradicnts algorithm to tridiagonalize the stochastic Liouville matrix.
The ouput of this program is compatible with the output of EPRLL.

EPRBL This program constructs the stochastic Liouvilie matrix in the same manner
as done in EPRLL and EPRCGL. Rather than constructing the Lanczos tridiagonal
matrix, the main calculation performed in EPRBL is the solution of the system of
fincar algeheaic equations defining the spectral function by means of a precondi-
tioned complex symmetric conjugate gradients procedure as outlined in Section
3.4. This calculation is perfarmed at a sequence of magnetic ficlds to dctermine
the contribution of cach basis vector to the averall spectral function, This informa-
tion can then be used to truncate the basis set for future calculations involving
similar input parameters.

TOLL This program reads in the parameter file wrilten by LBLL and the Lanczos
tridiagonal matrix generated and stored by EPRLL or EPRCGL. The user is presented
with several options: ‘

1. List the elements of the tridiagonal matrix on the screen.
2. Write the elements of the tridiagonal matrix into a formatted file.
3. Diagonalize the tridiagonal matrix using the complex symmetric QL
algorithm to obtain the cigenvalues and associated weighting factors.
4. Calculute the approximate cw ESR spectrum by evaluating the continued
fraction representation of the spectral function.
The first three options are employed by more experienced users to analyze the
behavior of the Lanczos algorithm as explained in Section 3.6, The last option is
the preferred method of obtaining the approximate cw ESR spectrum for com-
parison with experimental data.

TNLL This is an auxiliary program which is used to process and print the output
file generated by EPRBL.

MATLST This is an auxiliary program included here to aid users in porting these
programs 1o new systems. It reads an optional matrix file generated by EPRLL or
EPROGL and prints it out in an intelligible manner.

VECLST This program plays a role analogous to MATLST for the starting vector.

D200  This program will calculate the order parameter for a radical subjected to a
_ certain restoring potential. The order parameter is defined to be the canonically
weighted average value of the L = 2 Legendre polynomial,

I dQ Pycos B) exp[-U(Q)/ ke T
(133)

(DL = (Py(cos B)) =

I d exp[-U(Q)/kaT]

| !

This program treats only the special case where —U(02)/ ks T = A3 Py(cos B), since

in this case the integral above can easily be evaluated. This program can be used
|

z |
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in conjunction with LBLL to find the propér potential coefficient to give a desired
order parameter.

4.1. Naming Conventions for Files

To simplify the problem of keeping track of the FORTRAN source files for these
programs, as well as the output files generated by them, certain naming conventions
have been adopted.

First, all of the FORTRAN source files contain only one program or subroutine.
The file names for these source files are constructed from the name of the program or
subroutine followed by the suffix **.F.” For example, the source code for the program
EPRCGL. can be found in the file EPRCGL.F. ' ‘

The common block and parameter definitions that are needed in mahj programs
and subroutines are defined in so-called include files. These include files have been
given names which reflect the usage of their contents and carry the suffix **.INC.” For

- example, the value of the unit roundoff error is defined in the include file RNDOFF . INC

and the arrays to hold the matrix elements of the stochastic Liouville superoperator
are defined in EPRMAT . INC. o

A consistent naming convention has also been used for the output files generated
by these programs. This convention is similar to the one used by Moro (1980a).-In
particular, all files associated with a given set of input parameters are referred to using
a two-character file identifier. This two-character file identifier is specified by the user
when LBLL is executed to create the input parameter file for the calculation, The actual
file names are constructed from a two-character prefix which indicates the nature of
the contents of file, the two-character file identifier which was assigned in LBLL, and
a three-character suffix which specifies whether the file is formatted or unformatted.
The names of all formatted output files carry the suffix “*.FMT,” while the file names
of unformatted files use the ** .DAT suffix. '

To illustrate this convention, suppose that a given input parameter set was assigned
the identifier “XY" by the user when running LBLL. The output file written by LBLL
which contains the desired input parameters is given the name LBXY.DAT. The prefix
“LB" indicates that this particular file was created by LBLL, while the suffix reflects the
fact that this file was written in an unformatted manner. The names of the output files
generated by the various programs will be outlined below when the .programs are
discussed in detail. In those discussions, the two-character file identifiers will be referred
tﬁt: simply as “?7" to indicate any two characters that can be used 1o construct a valid

e name,

4.2, Array Dimensions and Common Blocks

The declarations of parameters used to define the dimensions of important arrays
that are used by several programs or subroutines are given ‘in the include files
STDDIM. INC and MAXL.. INC. The user can casily change the dimensions of all the arrays
whose dimensions are determined by the parameters in these two files in all the programs
in a consistent manner by simply changing the value assigned to these parameters and
tecompiling all of the programs,
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The file MAXL.. INC defines an integer parameter (mxlval) which is used in LBLL
to determine whether or not the maximum L vafue requested by the user is too large
for a panticular array (array nrb) in the subroutine MATRLL. This array is uscd to hold
the starting/ending column number for cach L value. This information is used to skip
aver the calculation of matrix elements which must he zero on symmetry grounds.

The file STDDIM. INC declures the integer parameters defining the maximum allow-
able number of Lanczos or conjugate gradients steps (mxstep) which may be requested
in LBLL. It also declares the maximum allowable values for the dimension of the matrix
of the stochastic Liouville operator (mxdim), as well as the number of matrix elements
(mxel). Finally, it defines the maximum number of input parameter sets (mxcalc). All
of these parameters are used to define dimensions of arrays in many programs and
subroutines. They are also used to make sure that array subscripts remain within bounds.

The common block used to hold the data read in from the input parameter files
generated by LBLL is defined in the file EPRDAT. INC. This file is included in all main
programs except D200, The data stored in this common block is read in by the subroutine
RDDAT and written by the subroutine WRDAT. The contents of this common block are
defined in Section 4.3.

The arrays to hold the matrix elements of the stochastic Liouville supcroperator
(arrays zmat and zdiag) and associated column pointer array (array izmat) are defined
in EPRMAT . INC. The dimension of these arrays is determined by the values stored in
STDDIM. INC. The function of these arrays is discussed in Section 4.4.2.

The logical unit numbers for reading from the usér's keyboard (luttyi), writing
to the user’s display device (luttyo), and reading and writing disk files (Ludisk) are
defined in the include file STDIO. INC. All I/O is done to one or another of these logical
units. Only one logical file unit is required for reading and writing to the disk, since
these programs were all written in a manner which requires at most only one disk file
open at a time.

Finally, the files PIDEF . INC and RNDOFF . INC define the values of (pi) and the
unit roundoff error (rndoff), respectively, A short program to determine the unit round-
off error for any given computer is also given in the header of the file RNDOFF . INC.

4.3. The Parameter Input Program; LBLL

This program is the starting point for all spectral and basis-set calculations. The
definitions of the various input parameters have been presented in Section 2.

At the beginning of the program the user is prompted for a two-character file
identifier. This file identifier must consist of two nonnull ASCII characters and is used
to construct a file name for the input parameter file. These characters are read in and
an inquiry is made as to whether or not an old parameter file with the same name
already exists on the disk. If such a file exists, it is read in, and its contents are displayed
on the screen. Otherwise, a new file will be created at the end of the program. If an
old file exists, its contents will be overwritien with the new input parameters.

Several sample input parameter files are included in the program distribution. The
contents of these files are displayed in the Appendix. The actual input parameter files
are stored in unformatted files on the disk. This scheme was adopted to discourage the
direct manipulation of the contents of the parameter files. This ensures that the input
parameter file is internally consistent.
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The process of entering or altering parameters is quite straightforward, For cach
different type of parameter, the old or delault values are displayed on the screen, and
the user is prompted to decide whethier hefshe wants to change these values. The
prompt string which is used is ‘

Do you want to change these values? [Y/N]:

to which the user can respond affirmatively by cntering 2 Y, y, or 1 followed by a
carriage return, Alternatively, negative responses can be indicated by entering N, n, or
0 Toliowed by a carriage return. All other responses are ignored and the-prompt string
is redisplayed. o '

The lirst group of parameters requested by the program comprises the rigid limit
magnetic parameters Used in the definition of the Liouville superoperator, These
parameters are the principal components of the g tensor (gxx, gyy, and gzz), two
times the nuclear spin (1n2), the principal components of the A tensor (axx, ayy. and
azz), and the static magnetic field corresponding to the center of the spectrum (b0).
The program assumes that the values of the principal components of the A tensor and
static field are given in units of gauss. The properly scaled F,, ,, tensors are constructed
from this information (arrays fgm and fam).

The members of the second group of parameters are all related to the definition
of the diffusion superoperator. The first parameter in this second group is the diffusion
parameter index (ipdf) which selects the rotational diffusion model used in the
calculation. The options for ipdf are

® ipdf = 0: Brownian diffusion (isotropic or anisotropic media),
® ipdf = 1: Free or jump diffusion (isotropic media),
® ipdf = 2: Brownian diffusion with anisotropic viscosity (anistropic media).

We note that not all options are valid if a restoring potential is present. When starting
a series of calculations, it is usually recommended to start with the Brownian diffusion
model unless other experimental data clearly indicate that the jump or free diffusion
models are more appropriate. In general, this choice leads to the smailest basis sets
and therefore the fastest computations. in addition, the Brownian model often leads
to the best agreement with experiment—at least for nitroxide radicals in viscous liquids.

The next set of parameters requested by the program are the perpendicular (dxy)
and parallel (dzz) principal components of the rotational diffusion tensor, R, and R,,
respectively, in units of s™'. If a nonzero value of ipdf has been selected, then the
user is prompted to input the residence times ., 7, and 7, from equation (41) in
units of s (t1, tkxy, and tkzz) and the corresponding model exponents (mpl, mpkxy,
and mpkzz). Values for these parameters are not requested if Brownian motion has
been selected (ipdf =0). Note that it is possible to use different models for the
perpendicular and parallel rotational motions, As stated previously, choosing a mixed
diffusion mode! can be justified only when the diffusion tensor is very anisotropic. h
is important to bear in mind the fact that the components of the rotational diffusion
tensar are closely related to the molecular structure of the spin-bearing molecule (Freed,
1976). .
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Next, the user is prompted for the parameters related to the contribution to the
diffusion superoperator due to jump-type motions of the radical between equivalent
sites as defined in equation (51). The relevant parameters are the number of sites (ist)
and jump frequency (djf). Also, a value for the Heisenberg spin exchange rate (oss)
is requested. These contributions are rarely used in calculations involving nitroxide
radicals in viscous media. The units of the discrete jump and Heisenberg spin exchange
frequencies are's ™', :

The third major group of parameters is related to the restoring potential. First,
the user is prompted to input the number of nonzero values of A% in the expansion
of the resoring potential (ipt) in equation (2). For isotropic liquids, ipt = 0. If a
nonzero value of ipt is entered, then the user is requested to enter the associated
values of L and K (array ixp) and A% (array cxp). These terms can be input in any
order, since they are immediately rearranged into a standard order (array cpot). It is
often helpful to consult Figure 9 (see Section 5.1) or run the program D200 (cf. Section
4.7) to determine a reasonable starting value for A3. :

If a nonzero value of ipt has been requested, the user is also prompted for the
angle, in degrees, between the static magnetic field and the unique symmetry axis of
the restoring potential (psi). In isotropic liquids this angle is chosen to be zero. This
completes the specification of the parameters used in the definition of the diffusion
superoperator. : ‘

The specification of the Liouville superoperator is then completed by defining the -

diftusion tilt angle (bed) in units of degrees. Using this parameter, the scaled components
of the F,  tensors are calculated and stored (arrays fgd and fad). This completes the
specification of the parameters defining the Liouvitle superoperator.

The last major group of parameters is related to defining the basis set and calculation
type. Firsi, the user must define the Targest even value of L (1emx), odd value of L
(lomx), and the maximum allowable values of the K, M, and p' indices (kmx, mmx,
and ipnmx) allowed in the basis. Suggested basis sets for a variety of problems can be
found in Tables 2 and 3. We note that in these tables it has been assumed that the
maximum value of the p’ index is two [cf. equation (7)]. The basis set defined in this
manner is then checked for internal consistency and the appropriate symmetry restric-
tions are applied to make sure that no unnecessary basis vectors are included in the
calculation. All basis véctors which satisfy the limits set by the user and can couple to
the starting vector are included in the calculation. Second, the user is asked to set the
maximum number of Lanczos/conjugate gradients steps allowed (nstep). Third, the
user is asked to select the type of computation to be done (1type). The options are

® itype = 0: Lanczos spectral calculation,

® itype = I: conjugate gradients spectral calculation,

® jtype = 2: field swepl conjugate gradients calculation for the determination of
the MTS. :

I a Lanczos calculation is selected, then no further questions are asked. Otherwise,
the user must specify the maximum allowable modulus of the rectanorm of the conjugate
gradients residual vector (cgtol) which is used as a termination criterion in the
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conjugate gradients iterations as well as the real and imaginary parts of the origin shift
(shiftr and shiftl). This origin shifl is required to avoid spurious divisions by zero
during the conjugate gradients iterations. Finally, if a ficld-sweep conjugate-gradients
calculation has been requested, the user must supply the initial and final fields (fieldi
and fieldf) as well as the number of field positions at which the conjugate-gradients
iteration is to be performed (npt). This completes the specification of the basis set-and
calculation options. ' '

At this point, the new parameters are displaycd on the screen for review. Since
most internal limits and symmetry restrictions are silently enforced, the final values of
the parameters displayed may not agree with the parameters specified by the user. This
phecnomenon may occur if the maximum values of the indices defining the basis set
are not consistent with the appropriate symmetry restrictions. The program uses a very
conservative strategy in modifying parameters given by the user. The user is strongly
encouraged to determine the source of any discrepancies between the final parameter
values and those that he or she gave in response 1o the program prompts before
proceeding with .a spectral calculation. :

The last question presented to the user is whether or not a complete listing of the
basis set should be displayed on the screen. If this is desired, the indices for the entire
basis set will be listed on the screen in order of appearance in the stochastic Liouville
superoperator matrix element calculation subroutine. Whether or not this final display
option is selected, the program checks to make sure that the basis set is not-too large
for the arrays currently dimensioned in the main calculation programs. A warning
message is issued if the matrix is too {arge. The program will then write out the parameter
file, overwriting the old file if present, and exit. This is the only output file generated
by LBLL and is assigned the name LB?7.DAT. This parameter file is required to run-afl
programs except D200.

4.4. Spectral Calculations: E.'PRLL" and EPRCGL

The main spectral calculation programs are EPRLL and EPRCGL. These two programs
are very similar and will be treated together whenever possible. The programs proceed
in two stages.

In the first stage, the user is prompted to input a sequence of two-character file
identifiers. This sequence is terminated by simply entering a. carriage return at the.
prompt for another file identifier, , _

The second stage is the main body of the program involving the sequential execution
of the following steps for each input fle:

® construct a set of file names using the file identifier supplied by the user,

® read in the input parameter file created by LBLL and verify that the calculation
type is correct, Lo

® calculate the matrix elements of the stochastic Liouville operator,

calculate the elements of the starting vector, .

® tridiagonalize the matrix of the stochastic Liouville operator by the desired
method (complex symmetric Lanczos or conjugate-gradients algorithms),

& update the input parameter file and save it,
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® create or overwrite the output file containing the matrix elements of the Lanczos
tridiagonal matrix.

IT problems arise for a given input filc, the remainder of that calculation is bypassed, -

and the next file is read in and processed.

Typicatly, there is only one new output file created by these programs. This file,
TO?7.DAT, contains the elements of the Lanczos tridiagonal matrix, This file is processed
by TDLL (cf. Scction 4.5). The input parameter file LB?7 .DAT, originally created by
LBLL, is also modified. In addition, there are several sections of code that will produce
files containing the elements of the stochastic Liouville matrix and starting vector,
MT?? .DAT and VT?7.DAT, respectively (cf. Section 4.7). These files are needed only
for debugging purposes, thus the sections of code that generate them are commented
out in the programs supplied on the diskette.

The parameter file LB?7? . DAT is read into the common block defined in the include:-

file EPRDAT . INC by the subroutine RDDAT. This common black is then used to pass
these parameters (o the matrix element calculation subroutine MATRLL and the starting
vector calculation subroutine STVECT. .

The dimensions of the various arrays are defined in the include file STDDIM. INC.
The vector arrays are, for the most part, defined in dimension statements and passed
to subroutines as arguments rather than through common blocks.

In contrast to the vector arrays, the matrix element and matrix element index
arrays are defined in a common block in the include file EPRMAT . INC. The dimensions
of these arrays are also.controlled by parameters defined in the include file STDDINM, INC.
The matrix elements and associated indices are calculated in MATRLL and directly stored
in this common block. The matrix element and index arrays are passed to the
(ridiagonalization subroutines via this common block.

4.4.1. The Starting Vector Calculation Subroutine: STVECT

The structure of the subroutine STVECT, which calculates the. elements of the
starting vector, is quite simple. It consists of five nested loops over the L, K M,p'
and q' indices (Ir, kr, mr, ipnr, and iqnr). The selection rules described in Section 27
are used to reduce the number of numerical integrations of equation (57) to a minimum.
The calculation of the modified Bessel functions and associated Legendre functions in
the integrand of equation (57) is discussed below. Since this integral depends only on
the L and K indices, it is evaluated within the loop over K, but before the loop over
M. Within the innermost loop, the unnormalized elements of the starting vector are
stored (array v) and the norm of the unnormalized starting vector is evaluated. Following
the completion of this set of five loops, the starting vector is normalized, the number
of nonnegligible elements of the starting vector is determined (nelv), and the imaginary
part of the starting vector is zeroed out.

The numerical evaluation of the elements of the starting vector becomes increas.-
ingly more difficult as the maximum L and K values in the basis set become larger.
This is due to the highly oscillatory nature of the integrand in the definition of the
starting vector elements {cf. equation (57)). '

In pan, these difficulties can be overcome by doing the integral over the Euler
angle y in equation (57) analytically in terms of the modified Besse! functions (cf.
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equation (61)]. The modified Bessel functions can then be evaluated in a stable (ashion,
However, this evaluation is not trivial, The method employed in the subroutine BESST
is based on the following recurrcnce relation,

Jo (X)) = 20/ XA+ £, 0 (x) (124)

This equation is satisfied by the modified Besse! functions themselves (McLachlan,
1961; Abramowitz and Stegun, 1964), but is uscd in the actual calculation to evaluate
the ratio of two of these functions. It is known (Saokne, 1973a, 1973b; Cody, 1983;
Press e1 al., 1986) that this recurrence relation is numerically unstable in the direction
of increasing n, but stable for decreasing n. Let us assume that one¢ wishes to compute
1..(x). In this scheme one chooses a sufliciently large M, where M » m, at which 1o
begin the computation. The recurrence relation is then secded with the values

Sredx) = Ly o () Iy (x) =0 (135)

Sa(x) = Iyg(x)) Iy (x) =1 (136)

and equation (134) is evaluated for decreasing values of n all the way down to n = 1,
While equation (136) is exact by definition, equation (135)is only approximately valid.
However, for the same reason that the forward recurrence is unstable, the error
introduced by this approximation is inconsequential if M is chosen properly.(Press er
al., 1986). Finally, the desired result is given by

L (x) = f(x)o(x)/ folx) (137)

The value of Zo(x) is computed by using the Taylor series expansion for small values
of x, or by an asymplotic approximation for large values by the subroutine BESSIO,
The function I,(x) is also evaluated in this manner in the subroutine BESST1. All three
of these subroutines are modifications of routines with similar functionality in the book
by Press er al. (1986).

The values of the associated Legendre functions are also calculated using a
well-known recurrence relation, :

(L= M)PY(x) = (2L = DXPY ((x) = (L + m = 1) P¥.(x) (138)

However, this relation is evaluated in the direction of increasing values of L starting
with the (exact) initial conditions

Py (x) = (=DMQM - 1)1 = x)HY"  and PUai(x) = (2M + 1)xPY(x)

Again, the subroutine PLGNDR used to evaluate the associated Legendre funciions is a
slight modification of a routine given by Press er al. (1986).
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The subroutines BESST and PLGNDR are called by the subroutine FZ to evaluate
the integrand of equation (57). The numerical. integration itsell is performed using a
Romberg integration scheme with cautious extrapolation (Press et al., 1986) using the
subroutine CCRINT taken from Bruno’s thesis (1973).

4.4.2. The Matrix Element Calculation Subroutine: MATRLL

The matrix elements of both the upper and lower halves of the matrix are calculated
and sorted in MATRLL, even though the matrix is complex and symmectric, This is done
for several reasons. Unfortunately, the most important reason for adopting this approach
is not obvious, since it has to do with how most multitasking computer operating
systems manage users’ programs and data.

Most multiuser operating systems limit the amount of physical memory that can
be allocated to any one user. If the matrix is too large to fit in the physical memory
altocated to the user by the operating system, the remainder of the data must reside
on a disk and be swapped in and out of the limited amount of physical memory
aHocated to the program. The entire data set is divided up into smaller sections, called
pages or segments. Typically, cach page contains several thousand floating point
numbers,

Now, consider the matrix-vector multiplication operation occurring in both the
Lanczos and conjugate gradients algorithms. In most instances, the majority of the
computer time used in a spectral calculation is spent doing matrix-vector multiplications.
As the computation proceeds, if a matrix element or index which is needed does not
currently reside in the physical memory, the page containing that element or index is
read-off the disk and overwrites one of the least recently accessed pages allocated to
the user. This operation is called paging. Unfortunately, paging is a very expensive
operation—typically hundreds or thousands of loating point operations can be executed
in the time it takes to read a page in from the disk. Therefore, it is prudent to store
the matrix elements in the order that they are accessed. This enables one to minimize
these costly paging operations.

When these programs were written, the existence of a'scheme for storing only halfl
of the matrix elements, but wording excessive paging overhead, was not known to the
authors; therefore, the full matrix store scheme was adopted. Since that time, it was
pointed out to us by Dr. Vijay Sonnad that there is a scheme that is widely used in
mechanical engineering calculations which does enable one to take advantage of the
symmetry of the matrix, but not incur any paging overhead. Unfortunately, there
was not enough time to incorporate and fully test this scheme in the present set of
programs. '

The matrix elements are calculated inside a group of ten nested loops. The outer
set of five loops run over the L, K, M, p', and gq' indices for the row (1r, kr, mr, ipnr,
and iqnr), while the inner set of five run over the related indices for the column (lc,
ke, me, ipnc, and ignc). The number of the current row (nrow) and column (ncol)
is monitored for use as indices for the matrix elements. The matrix elements of the
stochastic Liouville superoperator are assembled inside the innermost loop. In addition,
the row index corresponding to the beginning of each block of matrix elements with
a given value of L is stored (array nrb). These indices are used later to determine in
which column to start looking for nonzero matrix elements.
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in all cases, the matrix elements of the diffusion superoperator are purely real,
while the matrix elements of the Liouville superoperator are purely imaginary. Since
the vast majority of ofl-diagonal matrix elenicnts is purely imaginary, a special storage
strategy for the matrix elemcats has been adopted. This strategy involves storing the
real’ and imaginary parts of the nonzero matrix elements separately, and then only if
they are nonzero. In particular, if a nonzero Liouville superoperator matrix element is’
found, the matrix element counter (neltot) is incremented, the matrix element is
stored in the matrix element array (zmat), and the associated column number is stored
in the matrix element index array (izmat). Next, if a nonzero diffusion superoperator
matrix element (or the same row and column is found, the matrix element counter is
incremented, the matrix element is stored.in the matrix-element array, and ~1 times
the column number is stored in the index array. In addition, the diagonal matrix
elements are also stored in a separate array (zdiag). This array.is used only in the
field-sweep conjugate-gradients calculation. The end of a row is signaled by increment.
ing the matrix element counter and.inserting a zero value into both the matrix element
and index arrays. In this way, the sign of the index element is Wsed as a flag for. whether
the associated matrix element is real or imaginary, the absolutc value of a nonzero
index refers to the column number, and a zero index tags the end of a row. In-addition,
the end of the matrix is flagged by inserting another zero value into the matrix element
and index arrays. This index information can be very efficiently decoded in the
matrix-vector multiplication step coded in subroutine SCMVM.

If the number of matrix elements ever exceeds the dimensions of the arrays, the
return error code (1err) is set to one and control is passed back to the calling program.
If this does not happen, the return code is set to zero indicating successful execution,

One of the major difficulties encountered in the calculation of matrix elements is
the efficient and accurate evaluation of the Wigner 3-J symbols. Very slow motional
calculations often require L truncation values of 80 or more. However, due to overflow
problems, the function subroutine used by Moro is not usable for L > 48. This problem
has been circumvented for the 3-J symbols of the type

(L, L L,)
M, M, M,

where |Ly = 2, by using the algebraic formulas for these quantities. These formulas
are given in an appendix in Edmonds’s book (1957). These are the only type of 3-)
symbols required in the calculation of matrix elements of the stochastic Liouville
operator in the absénce of a restoring potential. These formulas can safely by used for
L » 100 without overflow. One is still restricted to L = 48 in the presence of a potential,
This difficulty could be overcome by using an asymptotic approximation for the 3-J
symbols for L > 48 (Edmonds, 1957).

4.4.3. The Lanczos and Conjugate-Gradients Subroutines: CSLNZS and CSCG

The complex symmetric Lanczos and conjugate-gradients algorithms used here
are very straightforward. The more theoretical aspects of these algorithms have already
been treated in Section 3.
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The Lanczos subroutine (CSLNZS) is a simple translation of a single vector Lanczos
tridiagonalization algorithm for real symmetric matrices given in algorithm 9.1-1 in the
book by Golub and Van Loan (1983), The required numerical tinear algebra operations
are performed by calls to appropriate subroutines. The diagonal (array alpha) and
off-diagonal (array beta) elements of the Lanczos tridiagonal matrix are stored and
returned to the calling program. '

Many of these subroutines are also called by the conjugate gradicnts subroutine
(CSCG). This subroiitine is also a simple translation of a single vector algorithm for
real matrices given in algorithm 10.2-4 in the book by Golub and Van Loan (1933).
The quantities generated by the conjugate-gradients algorithm that are nceded for the
construction of the Lanczos tridiagonal matrix (al and bl):are stored, The conjugate-
gradients iteration is terminated when the niodulus of the rectanorm of the residual
vector becomes less than the tolerance specified by the user or if the maximum aumber
of steps-has been exceeded. When the conjugate-gradients iteration has finished, the
required arrays are passed to the subroutine which actually constructs the Lanczos
tridiagonal matrix (OGLTRI). This subroutine constructs the tridiagonal matrix using
the scheme outlined by Golub and Van Loan (1983) and overwrites the input arrays
with the elements of the tridiagona) matrix. If the calculation converges within the
allotted number of steps, the number of conjugate-gradients steps actually executed
(nstep) is returned to the calling program EPRCGL. If the calculation does ot converge,
~1 times the number of steps is returned as an error signal,

As stated previously, the most time-consuming operation in most spectral calcula-
tions is the matrix-vector multiplication step required in both the Lanczos and conjugate-
gradients algorithms. Since this is such an important part of the calculation, and the
implementation used here requires the decoding of the index array “on the fly,” it
seems worthwhile (o discuss this procedure in detail.

The matrix-vector multiplication subroutine is SCMVM. The actual matrix-vector
muliplication is carried out as a sequence of sparse vector dot products in which the
rows of the matrix are successively dotted with the input vector (x) to give the elements
of the output vector (y). Both the input and 'outpqt vectors are indexed as two-~
dimensional arrays of double precision floating point numbers and are passed to this
subroutine through the argument list.

The sparsity of the matrix is taken advantage of by doing only those matrix
element-vector element multiplications which can give rise to nonzero results. Initially,
the accumulators for the real and imaginary parts of the output vector elements (accr
and acci) as well-as the matrix element (iel) and row counters (ir) are set to zero.
Now, the list of matrix elements is processed sequentially by incrementing the matrix
element counter and examining the contents of the matrix element index array. If the
value of that particular index element is nonzero, the absolute value of the index, which
represents the column number of the associated matrix element, is used to pick out
the correct element of the input vector. The mattix element is then multiplied by the
input vector element in the manner indicated by the sign of the index element, and
the accumulators are updated. This process is then repeated with the next matrix
element and index until a zero index value is found. Since a zero index value indicates
the end of a row, the row counter is incremented, the contents of the accumulators are

stored in the positions of the output vector array specified by the updated row counter, -

and the accumulators are then zeroed out, In this manner, the matrix is processed row
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by row. When the processing of the last row of the matrix is completed, the algorithm
encounters the final zero index element labeling the end of the matrix. When this
happens, the row counter is incremented to a value onc greater than the dimension of
the matrix. This event is used to detect the end of the matrix clement and index lists
and the completion of the matrix-vector multiplication step, i

4.5.  Calculation of the Spectral Function: TDLL

The program TDLL processes the Lanczos tridiagonal matrix generated by EPRLL
or EPROGL. Like the rest of the programs described here, the action that the program
undertakes is to prompt the user to supply the two-character file identifier for the file
to be processed. After accepting the two-character file identifier and constructing the
file names, the program reads in the parameter file LB?7?.DAT written by LBLL and the
Lanczos tridiagonal matrix file TD??.DAT which was generated by EPRLL or EPRCGL.
The user is then presented with several aptions:

1. List the elements of the tridiagonal matrix on the screen.

2. Write the elements of the tridiagonal matrix into a formatted file,
3. Diagonalize the tridiagonal matrix.

4. Calculate the cw ESR spectrum.

The first option is sell-explanatory. If the second option is selected, a file TD?? .FMT
is created. This file is just a list of the row number and the real and imaginary parts
of the diagonal and superdiagonal elements of the Lanczos tridiagonal matrix,

The third option is to diagonalize the Lanczos tridiagonal matrix to obtain the
eigenvalues and associated weighting factors. Though ote can calculate the cw ESR
spectrum from this information, this is not done here. If the cw ESR spectrum is
desired, it can be calculated directly from the tridiagonal matrix by selecting the fourth
option. The third option is most often used in the calculation of 2D-ESE spectra
(Millhauser and Freed, 1984) and in the study of the convergence of the Lanczos
and/or conjugate-gradients algorithms. The diagonalization algorithm used here is a
simple variant of the complex symmetric QL algorithm of Cullum and Willoughby
(1985). The major difference here is that the projections of the eigenvectors of the
tridiagonal matrix on the starting vector are needed. The squares of these overlaps are
the weighting factors [cf. equation (132)]. If this option is selected, a file EG?7.FMT is
written which contains the eigenvalue number, and the real and imaginary parts of
the cigenvalues and associated weight factors. The eigenvalues are sorted in order of
increasing imaginary parts (field positions) and are numbered accordingly. The QL
and closely related QR algorithms are thoroughly treated in many reference works
(Parlett, 1980; Golub and Van Loan, 1983; Cullum and Willoughby, 1985).

The most commonly used of the several options is the last one—the calculation
of the approximate cw ESR spectrum. This is done by evaluating the continued-fraction
representation of the spectral function. The elements of this continued fraction are
defined by the matrix elements of the Lanczos tridiagonal matrix. If this option is
selected, several more parameters must be supplied by the user. First, the magnetic
field corresponding to the center of the spectrum is displayed, then the user is prompted
for the beginning and ending fields (bi and bf), in units of gauss, relative to the center
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of the spectrum. The default values for these parameters are ~50 G and 50 G, respec-
tively. Next, the user must supply two parameters defining the intrinsic linewidth for
the spectrum (wintO and wint2). The total intrinsic linewidth (wint), which is
elfcctively a constant real positive term added to each diagonal element of the Lanczos
tridiagonal matrix during the evaluation of the continued fraction [cf. equation (125)],
is defined by

W) = wit + Wi cos® ¢ (139)

It is left 1o the user to verily that this quantity is positive. These parameters can be
used to mimic the effects of dynamical processes which have not explicitly been included
in the calculation and/or inhomogencous broadening. The continued (raction itself is
evaluated “from the bottom up™ at a number of equally spaced points (mxpt) between
the desired beginuing and ending field values, inclusive. The selection of this option
generates an output lile SP??. FMT, which contains the ficld values and associated real
and imaginary parts of the spectral function. To obtain the usual derivative mode
spectrum, the real part of the spectral function must be numerically diflerentiated.
Since many data plotting and analysis packages supply this function, it is not duplicated
here.

4.6. “Field Sweep” Conjugate-Gradients Calculations: EPRBL and TNLL

These programs are used only for the determination of the MTS (cf. Section 3.4).
The program EPRBL has a structure similar to EPRLL and EPROGL, but uses the diagonally
preconditioned complex symmetric conjugate-gradients algorithm to solve equations
{111} and (112) at a set of equally spaced field positions. The range and number of
points in the ficld sweep are determined by parameters entered into LBLL as described
in Section 4.3.

For ‘every desired set of input parameters, the matrix and starting vector are
generated exactly as in EPRLL and EPRCGL. Within the loop over the input parameter
sets, the field sweep is accomplished by varying the imaginary part of the origin shift
and using the diagonally preconditioned complex symmetric conjugate.gradients
algorithm to solve equations (111) and (112) at each point in the subroutine CSPCCG.
This subroutine is based on. the diagonally preconditioned version of the general
preconditioned conjugate-gradients algorithm for real symmetric matrices given in
algorithm 10.3-3 in the book by Golub and Van Loan (1983). However, we recall that
only the real parts of the diagonal matrix elements are used as the preconditioning
matrix (cf. Section 3.4). The subroutine CSPCCG is supplied with the starting vector
(array b), dimension of the matrix (ndim), maximum number of conjugate-gradients
steps allowed (cftol), and origin shift (temp). When it completes the calculation it
returns the approximate solution vector (array x), the number of conjugate-gradient
steps actually executed (ndone), and the estimated error based on the modulus of the
rectanorm of the residual vector. Immediately after control is returned to EPRBL from
CSPCCG, the exact residual is calculated and its unitary space norm is computed to give
an improved error estimate (terror). The number of conjugate-gradients steps actually
executed is also used as a flag to indicate whether or not the calculation in CSPCOG
converged. Alter a short message is printed, the significance factors as defined in

k
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equation (91) (array basis) and spectral function (or that field position as given by
¢quation (89) (array spect) are calculated. The field positions at which the current
maximum values of the individual significance factors have been detected are also
monitored (array basis). When the field sweep has been completed, the significance
factors along. with their associated field-values and the spectral function are written to
the disk file BS?7.DAT.

The basis-set truncation information contained in the output file BS?7?.DAT gener-
ated by EPRBL is further processed by the program TNLL. In this program, the significance
factors and field values are read in and the significance factors are normalized so that
the largest factor is unity. This step is necessitated by the Fact that the largest significance
factor, as defined by equation (91), can vary widely in amplitude. After this scaling
has been completed, the s, are prinicd along with their associated field values and
basis-set quuntum numbers. This list can then be scrutinized to determine the MTS
(Vasavada ef al., 1987).

4.7. Auxiliary Programs: D200, STVT, MATLST, snd VECLST

The program D200 can be quite useful in deciding upon a reasonable choice of
Ag il the order parameter is known. The form of the equation for the order parameter
actually used in this program can be derived by starting from equation (133) and letting
z = cos 8 10 get '

' .
. I dz 2% exp[3A32°/2]

Pzl =3 = T2 (o
J dz exp{3A22°/2]

Now, the changes of variable ¢ = V3A}/2 and y = ez followed by integration by parts

gives

(Ply/sh = =4 S . (141)

&
exp[—e’] I; dy exp[y?)

.The remaining integral in the denominator of equation (141) is known as Dawson's

integral (Abramowitz and. Stegun, 1964). This integral is evaluated -numerically. by
evaluating a continued-fraction expansion (Dijkstra, 1977). For more information about
the numerical and analytical properties of Dawson’s integral, see the literature (Fried
and Conte, 1961; Abramowitz and Stegun, 1964; Dijkstra, 1977; Bender and Orszag,
1978). This program does not generate any oulput files, -

The program STVECT is also useful during the initial stages of calculations involving
restoring potentials. This program is little more than a stand-alone version of the
subroutine STVECT. It is used to calculate the elements of the starting vector without
doing the entire spectral calculation. In this manner it is possible to determine if a
sufficiently large value of L;,,, has been chosen and examine thie overall structure of
the starting vector. The determination of L;,,, is simply based on making sure that the
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average magnitude of the efements of the starting vector with L = Ly ,, is much less
than the magnitude of the L = 0 terms. A reasonable value for the ratio of the L = L7,
to the L = 0 terms is 107 to 10~*. This program does not produce any output files.

The last (wo programs are most useful in the process of porting these programs
to other machines. The program MATLST is used to list out the matrix elements calculated
by the subroutine MATRLL which is called by EPRBL, EPRCGL, and EPRBL. There exist
some lines in the programs EPRLL and EPRCGL just after the calls to MATRLL which, if
uncommented, will store the matrix elements of the stochastic Liouville operator in a
file on the disk. This program will read in those files and generate an intelligible listing
of the matrix clements on the screen. This is useful in verifying that the matrix elements
generated on the target machine are correct,; The program VECLST performs the
analogous function for the starting vector. Again, there are commented lines in EPRLL
and EPROGL right after the call to the subroutine STVECT which, if uncommented, will
siore the elements of the starting vector in-a file on the disk in the form that can be
read in by VECLST. Neither of these programs gencrates output files.

4.8. Porting Programs to Other Machines

These programs are based on a set of programs writien by G. Moro in 1980 (Moro,
1980a, 1980b; Moro and Freed, 1981; Meirovitch er al., 1982). The older programs
were very general, quite complicated, and written in FORTRANIV for use on a
computer with a very limited amount of physical memory. The present set of programs
are written in a modular, more easily portable fashion in FORTRAN 77 and make use
of the more advanced hardware that is available today. As supplied, these programs
should compile and run without error on-1BM PCs or compatibles under MS-DOS
(ver. 2.1l or higher) and Microsoft Fortran (ver. 3.0 or higher). The PC version of
these programs, as supplied here, is intended mainly as a reference point in porting
these programs to a larger machine to be used for routine calculations. However, some
users may find it sufficient to increase the matrix and vector dimensioning parameters
in STDDIM. INC to the limits allowed by their compiler and use a PC for most cal-
culations. The main limitation on this practice is that the segmented addressing
used in these machines is not well suited to handling large arrays. Indeed, many
FORTRAN 77 compiters for PCs limit the maximum size of single arrays or common
blocks to 64 kbytes.

A serious atiempt has been made to use only standard FORTRAN 77 features.
The major exceptions to this rule are discussed below. This section is quite technical
in nature, where it is assumed that the reader is a fluent FORTRAN programmer and
has some knowledge of computer hardware.

The modular way in which these programs have been written makes it easier for
the user to substitute more accurate or faster library subroutines for many of the
function subroutines supplied here. In fact, most commonly available scientific library
packages such as IMSL® and SLATEC® have many routines for calculating special
functions and doing basic linear algebraic operations which are superior to those
supplied here. Users are encouraged to use these library routines whenever possible.

* IMSL is 2 trademark of IMSL Corporation.
® Availabie from National Energy Software Center, Argonne National Laboratory.
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4.8.1. Data Types and Explicit Declarations of Variables
In these programs, the following statements are true; .

L] ‘All variables and parameters are explicitly declared, This has been done to make
it easier to detect spelling errors with compilers which have the capability of
flagging undeclared quantities.

® Al integer variables and parameters arc declared to be of type integer, not
integer » 2 or integer» 4. ;

® Al foating point numbers arc declared of type double precision, not real « 4
or real * 8.

e Common blocks and parameters defining the dimensions of important arrays
used in séveral programs or subroutines are defined in include files.

Unfortunately, include statements are not part of the FORTRAN 77 standard and their
implementation varies widely, 8 ' .

It has been assumed throughout that long (4 byte)-integers are the default integer
length. If this is not the case; the usc of long integers should be enabled or care taken
to ensure that integer overflows do not occur at execution time, R

The use of double:precision (8 byte) floating point numbers throughout is somewhat
excessive. However, most machines with enough computing power to handle serious
calculations of this type also have enough physical memory where space is not a major
issue. The use of double precision numbers throughout is actually required on some
machines with small mantissas and large exponents; :

The logical variables used here can-be any length, but one cannot £0 wrong in
sticking to the FORTRAN 77 default size of 4 bytes.

Extensive use has been made, especialty in EPRLL, of the fact that most compilers
store complex numbers as two consecutive real quantities with the real part being first,
When this is true, an N-dimensional complex » 16 array is compatible with an array
dimensioned 2 x N (not N x 2) of type real «8, If, for some reason, complex numbers
are not stored inthis manner, orif complex arithmetic and data types are not supported
at all, the easiest solution would be to change all arrays and variables of type com-
plex « 16 to 2 x N dimensioned arrays of type real + 8 and do all complex arithmetic
explicitly. This would also require function subroutines of type complex * 16 to be
changed into conventional subroutines which return the real and imaginary part of the
result through the argument list.

4.8.2. 170 Issues

One of the major sources of difficulty in porting FORTRAN 77 programs is the
lack ?l' uniformity of 1/O features among. compilers. As a rule, the required 1/0
functions in these programs are confined to specific subroutines and functions to make
the programs easier to port to other machines.

A few of the more important sources of difficulty associated with doing 1/0 are
listed below. Unfortunately, this list is not exhaustive. ' .

® The logical units for writing to and reading from the screen and for opening
disk files are defined in the include file STDIO.INC. Al programs have been
written such that at most one disk file is open at any given time.
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® The status keyword “UNKNOWN™ has been used in disk file open statements. Some
compilers do not recognize this keyword. If this is the case, the keywords “OLD"
or “NEW™ could be substituted in appropriate places or the defaults slatus could
be assumed and the status definition remaved cntirely.

¢ Not all compilers supply an inquire function as used in LBLL. If such a function
is not supplied, it is relatively straightforward to writc one by trying to open
the file using the “NEW™ and “OLD" status keywords with the 1/0O error handling
mechanism provided by the ERR keyword,

¢ The $ edit descriptor to suppress the carriage return after writing to the screen
is used when prompting the user for input, Some compilers do not recognize
this edit descriptor. It can easily be omitted if necessary,

® A logical record length of 1024 bytes-is used for the unformatted direct access
files containing the input parameters which are written by the subroutine WRDAT
and read in by RDDAT.

4.8.3. Vector and Parallel Computation

The modularity of these programs and the exclusion of screen and disk 1/0 from
the subroutines where the majority of the heavy numerical work is done should make
it easier to adapt these programs for use on array processors. We note that the word
adapt rather than port has been used here. The work involved in getting programs
running on array processors is often considerably more difficult than on conventional
computers, because the unique features of the hardware often influence the extent to
which the machine is programmable in standard FORTRAN. The added difficulty in
adapting a program for use on an array processor must always be weighed against the
expected decrease in execution time. In practice, only the serious user who is confronted
with a large body of very slow motional spectra to analyze should consider this
undertaking.

With this caveat in mind, the only programs which are serious candidates for
adaptation to array processors are EPRLL, EPRCGL, and EPRBL. Even here, it may pay
to adapt the code only for the Lanczos and/or conjugate-gradients algorithms, while
doing the matrix element calculation on the host computer.

This story might be somewhat different on machines that have several array
processors. Because of the structure of the arrays used in EPRLL to hold the entries of
the stochastic Liouville matrix and the associated integer indices, it should not be too
difficult to have difierent array processors generate the matrix elements for different
sections of the matrix once a matrix element calculation subroutine is working at all.
In addition, these same structures would allow one to break up the matrix-vector
multiplication step of the Lanczos algorithm into several picces, each of which could
be independently executed by a separate array processor. This would not be so easy
il only the upper or lower half of the matrix is stored, as was previously done
(Moro,1980b; Gorcester, 1985), since cach processor would need access to-the entire
matrix.

5. EXAMPLE CALCULATIONS

To aid the reader in using these programs, several model calculations are discussed
in. detail in Section 5.1. In addition, a short survey of actual applications of these
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programs to the analysis of experimental data is given in Section 5.2. The presentation
of these examples is intended to demonstrate how 1o choose reasonable input parameters
as well as the wide variety of spectra that can be quickly and casily generated,

S.1. Model Calculations and General S(ritegy

The purpose ol this section is to discuss in some derail a set of example calculations
that can be run on a PC. In addition, some hints are given for doing careful, accurate
calculations on a new system 10 extract out dynamical information. The cslculations
actually presented here are relatively simple but they do model the dynamics of “real”
radicals,

The first issue that must be dealt with is the proper choice of g- and A.tensor
values. These quantities should be determined for the particular system under study
by a separate experiment to obtain the rigid-limit values of the magnetic tensors ( Freed,
1976). The validity of the dynamical and structural information obtained from the
slow-motional spectral calculation programs depends crucially on the use of accurate
magnetic tensors. A rigid-limit spectral calculation program is not included in this set
of programs, but several reliable programs can be easily obtained. In the following it
will be assumed that the proper rigid-limit magnetic tensors are known, Finally, if the
field sweep required to obtain the rigid-limit absorption spectrum is not much smatler
than the field at the center of the sweep range, the programs discussed here should
not be used to analyze the dynamics of the system since the nonsecular terms in-the
spin Hamiltonian have been omitted. Systems of this. type should be analyzed with a
program which includes the nonsecular terms (Moro, 1980a; Meirovitch er al.,, 1982;
Gorcester, 1985). . ’

The next thing to consider is the structuse of the radical and the orientation of
the principal axes of the magnetic tensors in relation to the principal axes of the
diffusion tensor. In many cases, consiructing a molecular model ‘is very helpful in
determining a proper choice of axes and the associated diffusion tilt angle, ¢ (cf. Figure
2). In many cases, such as for the TEMPONE class of nitroxide spin probes, one can
assume a spherically symmetric diffusion tensor, In this case, it is useful to assume
that i, coincides with that principal axis of the magnetic frame whose principal value
differs the most from the other two. For X-band experiments on nitroxide radicals, the
magnetic axis which is most different is the one with the largest A-ténsor component.
The labels of the magnetic frame axes ca.nfa!so be permuted to make this the Z,, axis.
This choice implies & = 0 and leads to the stochastic Liouville matrix of “smallest
dimension. The use of nonzero diffusion tilt angles in conjunction with a sphericaily
symmetric diffusion tensor can lead to much larger matrices, but must finally give the
same spectrum as the ¢ = 0 case. For axially symmetric diffusion tensors, the calculated
spectra can depend greatly on the diffusion tilt angle, especially if the diffusion tensor
is very anisotropic (Mason ef al., 1974; Meirovitch and Freed, 1979; Campbell et al.,
1979; Meirovitch et al, 1984). Typically, spin probes bound to polymers and large,
rigid radicals such as cholestane require the use of axially symmetric diffusion tensors.

The structure of the thermodynamic phase of the solution must also be known. If
the solution under- investigation is isotropic (i.e., does not form ‘a:liquid crystalline
phase at the particular tempersture and pressure at. which the experiment was con:
ducted), then no restoring potential should be included in the calculation (A% = 0 for
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all L and K, since one cannot exist in isotropic fluids. For radicals in liguid crystalline
phases however, the restoring potential models the interaction of the radical with the
surrounding solvent molecules and must be included in the calculation. If the sample
is ordered on both the macroscopic and microscopic levels, then the director tilt angle,
&, is determined by the angle between the static magnetic field and the preferred axis
of alignment of the solvent molecules. A diagram showing this director tilt angle is
given in Figure 1. On the other hand, if the sample is microscopically ordered but
macroscopically disordered (MOMD), then it is possible to do a sequence of calcula-
tions at diflerent director tilt angles and model the spectrum of the composite as the
appropriately weighted integral of the spectra calculated as a function of the director
tilt angle (Meirovitch er al, 1984). These calculations are quite time-consuming, and
it is more difficult 1o extract reliable information from such spectra, because they
involve the superposition of many overlapping spectra. They should be avoided il
possible by using macroscopically ordered samples. It also should be kept in mind that
the diffusion tensor, at least 10 a first approximation, is independent of the value chosen
for the coeflicients of the restoring potential. It is strongly suggested that one start with
a Aj term alone in the restoring potential and introduce the higher.order terms only if
necessary. Often it is simpler to think in terms of the order parameter (D) =
{ Py(cos B)), rather than in terms of the potential expansion parameters, AL . Tosimplify
this transitition, Figure 8 and the program D200 (cf. Seéction 4.7) have been provided.

Except when intentionally studying radical-radical interactions, it is very important
to work with radical concentrations low enough to avoid Heisenberg spin exchange
effects (as well as effects of dipole~dipole interactions) which broaden the spectra and
obscure information about rotational reorientation. The radical concentration at which
Heisenberg spin exchange begins to affect the spectrum varies widely and should be
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Figure 8.  Plot of the order parameter as & function of A3 for 0 A} s 10. For larger values of

Ad, the order parameter slowly approaches its asymptotic limit of unity. This plot was -

generated using the subroutine DANSON which is described in Section 4.7,
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determined by experiment. Care should also be taken to purge the solution under
investigation of any oxygen for the same rcason. These considerations are especially
important for relatively fast motional spectra where the intrinsic broadening of the
spectral features is largely due to the rotational motion,

These considerations usually give sufficient information to begin the process of
calculating spectra to model experimental results. The general procedure in fitting
experimental spectra is as follows:

1. Obtain accurate values for the rigid-limit magnetic tensors from fitting a rigid-
limit spectrum.

2. Decide on a rotational diffusion model.

. Using a molécular model, define an approximate diffusion asymimetry parameter
and diflusion tilt angle.

. Guess at a starting value for the coeflicients of the restoring potential if present,

. Guess at a starting value for the rotational correlation time.

. Determine the proper basis set for the parameters chosen.

. Calculate a spectrum and compare with the experimental result.

. If a satisfactory fit has not been obtained, refine the estimate of R and go back
to step 5, otherwise refine estimates of previous parameters and go back 1o step
4,3, 0r2. '

g

[- BT - WLV -

Obviously, the time it takes to reach a satisfactory fit is drastically reduced if one
can start with good estimates of the final parameters. There are several ways to
accomplish this. First, and most important, is to have a thorough understanding of the
definitions of the parameters that go into the calculation and the physically reasonable
values they could have for the system under study before attempling any calculations.
This knowledge will help to avoid spending time doing calculations with physically
unreasonable parameters, Second, previous spectral calculations done on similar sys-
tems can be very instructive. A survey of previously published experimental spectra
and the input parameters used to fit them is given in Section 5.2. And third, other
experimental data, such as NMR, neutron, or X-ray scattering, ‘etc., on the same or a
closely related system may prove useful in obtaining good estimates of order paramelers
and other structural information. .

Once a reasonable set of input parameters has been decided upon, the proper
basis set should be determined. This is most reliably and conveniently accomplished

" by using the programs EPRBL: and TNLL to determine the MTS. The data in Tables 2

and 3 were obtained using the diagonally preconditioned conjugate-gradients algorithm
(Vasavada ef al., 1987). These truncation parameters can be used as they stand, or they
can be used to aid in deciding on input basis-set truncation parameters for EPRBL. We
note that the input basis-set truncation parameters for EPRBL must always be larger
than the expected MTS basis-set truncation parameters for the problem.

Several of the calculations outlined in Table 2 can be executed on the PC version
of the programs supplied with this book. The calculation corresponding to the second
line of Table 2 has already been extensively studied in Section 3.6 and will not be
treated further. The remaining calculations (lines one and five through seven in Table
2) will be discussed here, although in less detail.
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TABLE 3
Table of Truncation Parameters and MTS for 20-ESE Spectra®

No. Spin probe R » L. Law Keww Mo, N N,
1 TEMPONE 10’ o0 10 7 6 2 123 92
? TEMPONE 1t 0 22 17 10 2 429 307
3 TEMPONE 100 0 44 » 18 2 1485 9N
4 TEMPONE 10 o 88 n 28 2 4614 2506
s TEMPONE IO’ 10 16 7 2 2 108 16
6 TEMPONE 0t s 20 15 8 2 3y 209
7 TEMPONE 10 10 16 n 4 2 168 120
] TEMPONE (90° tilt) 10"t 10 ? 6 10 1440  $B6
9 TEMPONE (90° 1ilt) 10" 10 16 15 6 6 2601 607
10 TEMPONE (90° tilt}  10* 10 20 19 10 12 8196 283§
1} CsL 10° 0 2 9 2 2 600 485
12 CsL 108 0 46 » 46 2 2310 1818

“ ANl parameters have the same meaning as in Table 2, except for 3; which is taken to be 0.0003.

The first line in Table 2 cosresponds to moderately slow isotropic Brownian
diftusion of the TEMPONE spin probe dissolved in an isotropic liquid (Ry = R, =
10" s™"). The smoothness of the prominent spectral features (cf. Figure 9), together
with the reduced overall width of the spectrum compared to Figure 5, are indicative
of faster motion. The large breadth of the high- and low-field extrema also indicates
that this spectrum is in the vicinity of the minimum of the T, curve.

[ L 'l A ) ] 1 1 1 L 1 J
-50 -40 -30 -20 -0 o 10 0. 3 40 S0
Field (G)

Figure 9. Plot of specirum generated by input parameter file LBL1.DAT in the Appendix, The
input parameters used to generate this plot correspond 1o line 1 of Table 2.
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'F‘llllt 10. Plot of spectrum generated by input parameter file LBL5 .DAT in the Appendix. The
Input parameters used to generate this plot correspond to line § of Table 2. '

The calculation defined by the parameters on the fifth line of Table 2 is presented.
in Figure 10. This plot could be imagined to correspond to an experiment on the
TEMPONE spin probe dissolved in a well-aligned smectic liquid crystal. The order
parameter in this case is about 0.9 (cf. Figure 8). Note the unusual ratio of the heights
of the three hyperfine lines. In addition, the hyperfine lines are well separated, despite
the fact that the diffusion tensor is the same as in Figure 5. Both of these features are
due to the fact that the probe is highly aligned by the restoring potential.

| S— 1 A A L L I} i 1 ;)
-50 -40 -30-20 10 O 10 20 30 40 S0
Field (6)

.l-'lgun 11, Plot of spectrum generated by input parameter file LBLG.DAT in the Appendix. The
input parameters used 10-generate this plot correspond to line 6 of Table 2,
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The plot in Figure 11 cocresponds 1o line six of Table 2. When compared to Figure
10, this plot demonstirates the effects of lowering the order parameter 10 0.8 and slowing
down the motion by an order of magnitude. Note the widely separated hyperfine lines
and shift.in the ratio of peak heights.

The final plot in this set, Figure 12, corresponds to line seven of Table 2. This
plot, when compared with Figure i1, shows the eflect of increasing the order parameter
from 0.8 10 0.9. The major changes are in the linewidths rather than the line positions.
These last two plots emphasize the fact that not all “threc line™ nitroxide spectra are
duc to fast isotropic motion!

$.2. Examples from the Literature

In 1, a number of examples of calculated spectra of nitroxide spin probes in
isotropic and liquid crystalline media are given. A summary of a number of more recent
applications, where the present package of programs can be effectively employed, is
given here. .

An important test of the theory behind these programs is to properly interpret the
spectra of nitroxide spin probes in oriented liquid crystalline media as a function of
the director tilt angle. This was done for thermotropic liquid crystals by Meirovitch et
al. (1982). The appendices to that work aiso present a slightly more general theory for
slow-motional line shapes than is given in the present chapter. Further studies along
these lines may be found in Meirovitch and Freed {1984) and Meirovitch (1983) in
which a variety of nitroxide spin probes were utilized.

The application of these ideas to oriented model membranes, as well as dispersions,
is discussed in detail by Tanaka and Freed (1984, 1985) and Kar ef al. (1985). In these
studies, various chain-labeled lipids and cholestane spin labels were utilized to deter-

[ 'l 1 A 1 L i '] L J ] )
-850 -40 -~30 ~20 ~10 ] 10 20 30 40 30
Fleld (G)

Figure 12.  Plot of spectrum generated by input parameter file LBL7.DAT in the Appendix. The
input parameters used to generate this plot correspond to line 7 of Table 2.
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minc the ordering and dynamics in the various lipid phases as well as the effects of
such additives as cholesterol and the small polypeptide gramicidin A. These applications
have recently been reviewed by Freed (1987).

In dealing with dispersion samples of model membrane preparations, and macro-
scopic misalignment in general, it is nccessary 10 obtain an average spectrum by properly
weighting the spectra caleulated for a range of different director tilt angles. This is just
the MOMD modcl which was bricfly mentionced in Section 5.1, Calculations bascd on
this meodel are thoroughly described in a paper by Meirovitch ef al. (1984). It is also
employed in other recent work (Tanaka and Freed, 1984, 1985; Kar et al,, 1985).

An important development in the process of comparing calculated spectra to
experimental data is the recent use of very gencral nonlinear least-squares fitting
methods in conjunction with the powerful Lanczos and conjugate-gradients algorithms
already described here. In this method, one simply allows the nonlinear least-squares
algorithm to systematically vary the input parameters for the line-shape calculation
program to minimize the deviations between the calculated and experimental spectra.
This procedure can require 100 to 150 separate line-shape calculations, yel the overall
running time is. not inordinate owing to the efliciency of the algorithms chosen.
Nevertheless, because of the extensive computations involved, these calculations are
curiently limited to large mainframe computers. In general, this appears to be a more
unbiased, reliable, and accurate way to fit experimental data to thearetical models than
the trial-and-error approach (Crepcau e1 al,, 1987).

In the past few years there have also been significant new developments which
enhance the resolution and scope of studies of molecular dynamiics by ESR spectrscopy.
These are time-domain experiments based on electron-spin-echo (ESE) (Millhauser
and Freed, 1984) (Millhauser er al, 1987; Freed, 1987) or Fourier transform (FT)
methods (Gorcester and Freed, 1986; 1988a; 1988b). The application of ESE techniques
to the study of slow motions is discussed from a theoretical point of view by Schwartz
et al, (1982) and examples of the interpretation of experimenta! data are givenin papers
by Millhauser and Freed (1984) and by Kar ef al. (1984). The basic ESE technique
has given rise to a new two-dimensional (2D) ESE technique wherein the homogeneous
linewidth at each point in the'spectrum is obtained as a function of the magnetic field.
It shows a remarkable sensitivity to the details of the reorientational dynamics
(Millhauser and Freed, 1984; Millhauser et al., 1987; Freed, 1987) and has been
successfully employed in the study of spin probe motion in model membranes (Kar
et al, 1984) and in the study of spin labeled proteins (Kar ef al,, 1987). The present
set of programs can be adapted to calculate this type of 2D-ESE spectra as discussed
elsewhere (Millhauser and Freed, 1984; Vasavada ef al, 1987; Schneider and Freed,

" in press).

Other kinds of time-domain ESR spectroscopies exist, which cannot be treated by
the present set of programs such as spin-echo ELDOR (Homak and Freed, 1983;
Dzuba ef al, 1984) and 2D-magnetization transfer ESE (Schwartz et al, 1986). In
general, the analysis of these experiments requires the more complete theory involving
the slow-motional relaxation of both the-longitudinal and transverse components. of
the magnetization. However, the Lanczos and conjugate-gradients algorithms can still
be used to analyze these experiments—once the matrix elements are calculated
(Schneider and Freed, 1989). This lass of experiments is especially sensitive to very
slow molecular motions.
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A major breakthrough in ESR techniques has been the devslopmcn( qf 2'D-Fl'
ESR spectroscopy. At the time of wriling, its effectiveness in studying dynamics in the
fast-motional regime has been demonstrated for nitroxides (Gorcester a?d Freed, 1986,
1988a, 1988b). These methods are expected, in the future, to be' cflectively emploxed
for slow-motional speciroscopy providing valuable new information on llfe u.ndctlymg
dynamical processes. Such 2D spectra can also be described by a generatization of the
methods described here. . .

Last ol all, we wish to point out that these programs can be applied 1o experiments
on stow-motional NMR spectroscopy (Meirovitch and Freed, 1979'; Can?pbcll et al.,
1979} and in more general form (Meirovitch er al., 1982) (0 inorg:u'uc radicals suc!w as
the vanadyl (Campbell and Freed, 1980) and cupric (Subczynski et al, 1987) ions
which are often used in biophysical studies.
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APPENDIX: PARAMETERS FOR EXAMPLE CALCULATIONS

SANARRENARARACRAORNNONESY  11]¢ : 1bli.dat l!“.ll"'ll"l'ﬁllll'ﬂ'

g-tensor [pox,gyy.gzz] : 2.00880 2.00810 2.00270.
twice the nuclear spin [in2] : 2

A-tensor [axx,ayy,azz) (gauss) : '6.80000 6.80000 30.8000
static field (B0} (gause) : 23200.00

diffusion parameter [ipdf] = o

diffusion tensor [dxy,dzz] (1/sec) = .100000E+08  .100000E+08
discrete jusps parameters (llnt.djf] : 0 ,000000

Heisenberg spin exchange trequency [oss] = 000000 _

nusber of terms in the potential {ipt]) = 0

angle between BO and local director (ps1) (degrees) : .000000
diffusion tilt tndex [itd] = o

truncation values tlnx,lonx.ku;nx.ipnnx] : 6 3 2 2 2
nuaber of Lanczos/CG steps {natep) : 33

calculation type (O=Lanczos,1=CG) (itype) : 0

.ﬂlll'll'“l'l”ll.llll'”ll.ll"l”ll’”llll“llllﬂ“”t!"l'll'f.“
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ARNRIRRRANANARNNNUINARANS  f1]e : 1b16.dat SERUNRNRTEANRARAR AN NN A RN

ARRANARNRS
FASAARERERANARANNRNANRINS  file 1b12.dat  FRURRSRERENNANS

g-tensor [gox.gyy.gzz] :  2.00880 2.00610 - 2.00270
: 200080 2.00810 2.00270 twice the nuclear spin [in2) : 2

-tensor (gxx.gyy.grz] : '
§-te A-tensor [wox,ayy,azz) (gauss) :  5.80000 6.80000 30,8000

v 2
tvice the nuclear spin [in2] :

30.8000 static field [BO) (gauss) : 3200.00
. 5.80000 6.80000

A-tensor [axx,ayy,azz] (gauss) :

) 3200.00 diffusion parameter (ipdf) = 0
static field [BO)} (gauss) : .

diffusion tensor [dxy,dzz] (1/sec) = 1 £e08 .1 £v08
-0
diffusion parameter (ipdf]

discrete jumpe parameters [ist,djt) : o .000000
E+07

) = .100000E407 100000

diffusion tensor [dxy.dzz) (1/sec

Helsenberg spin exchange frequency [oss) = 000000
djt} : 0 . 000000
discrete jusps parameters [ist,

nuaber of terms in the potential [ipt] = g
Heisenberg spin exchange frequency {oss] = .000000 po p

coetficients of the potential :
number of terms in the potential [ipt] = 0

. . ipt = 1 [l,k,coef.)] » 2 o 10.0000
angle betveen BO and local director (psi] (degrees) :  .000000

angle between BO and local director (ps1) (degrees) : .000000
.- o
diffusion tilt index ([itd]

truncation values [leax,lomx kmx,mux,ipnmx] : 14 7 8 2 2 diffusion tilt index litd] = o

(netep] : 100 truncation values (lemx,lomx.kax,mmx,dpnax] : 10 1 2 2 ,
nuaber of Lanczos/CG steps (ne ep) :

nusber of Lanczos/CG st t : 63
calculation type (O=Lanczos,1=CG) [itype] : O pe (netep)

calculation type (O=Lanczos,1=CG) [itype] : ©

RRNANRINS
SERENAREN AN SRARNOURRASERNNRNOTRARRSNTRRARERENNNRARIRNRRNAER

nuucununn"nnnnnnnunuunnu"nnnuannunun



T -

Calculating Slow Motional Msgaetic Resonance Spectra ' n

REBNRAARINRAANBNANANANNER  f1)le ; 1D16.dat FERRANARANRARARINRRAE N RN

g-tensor [pox.gyy.gzz) @  2.00880 2.00610 2.00270
tvice the nuclear epin [inﬁ] T2
A-tensor [axx,ayy.s2z] (gauss) : §5.80000 6.80000 30.8000
static field (BO] (gaues) :  3200.00
diffusion parameter (ipdf] = 0
diffusion tensor [dxy,dzz] (1/sec) = ., 100000E+07 . 100000E+07
discrete juaps parameters [ist.djf] : O .000000
Heisenberg spin exchange frequency ([oss] = 000000
nusber of terms in the potential [ipt] = 1
coefficients of the potential :
ipt = 1 [l,k,coe2.] »2 0  6.00000
angle between BO and local director [psi] (degrees) : .000000
diffusion tilt index (itd] = 0
truncation values [leémx,lowx,kmx,mmx, ipnmx]) : 12 3 2 2 2
nuaber of Lanczos/CG steps [nstep] : 78

calculation type (O-Lanczos,1=CG) [itype] : O
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n D. J. Schaeider and J. H. Freed

WRAARNNRRNAAGANRRRENINONE  file : 1D17.dat NURERARRARARNRRRAR NI SN Y

g-tensor ([gpox.gyy.gzz) :  2.00880 2.00610 2.00270

tvice the nuclear spin [in2]) : 2

A-tensor {mxx,ayy.azz) (gauss) : 6.80000 6.80000 30.8000
static field [BO} (gauss) : 3200.00

diffusion parameter [ipdf] = 0

diffusion tensor (dxy.dzz] (1/sec) = . 100000E+07 . 100000E+07
discrete jusps parameters [ist,djf) : o . 000000
Heisenberg spin exchange frequency [oss} = 000000
nunber of terms in the potential [ipt) = 1
coetfficients of the potential :
fpt = 1 [l.k,coef.) =2 0  10.0000
angle betwesn BO and local director {psi] (degrees) : .000000

diffusion t{lt index (itd] = ©

truncation values [lemx,lomx, kme,mmx,ipnax]) : 10 1 o 2 2

‘nuaber of Lanczos/CGC steps [nstép] v 33

calculation type (OsLanczos,1=CG) (itype] : O
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