Uncoupling of Allosteric and Oligomeric Regulation in a Functional Hybrid Enzyme

Constructed from $Escherichia\ coli$ and Human Ribonucleotide Reductase*

Yuan Fu,[†] Marcus J. C. Long,[‡] Mike Rigney,[§] Saba Parvez,[†] William A. Blessing,[†] and

Yimon Aye*,^{†,J}

SUPPORTING INFORMATION

CONTENTS

Supporting Methods

Recombinant Expression	S-2
Isolation	S-3
Pull-down	S-3
Competition Assay	S-4
Supporting Table	
Table S1. Primers information	S-5
Supporting Figures	
Figure S1A. Amino acid sequence of HE	S-6
Figure S1B. Pull-down of HE, E-CB, H-NTD and E-NTD	S-6
Figure S2A. Anisotropy assay: CB was able to bind dATP	S-7
Figure S2B. Competition assay: CB was able to competitively bind E - β	S-7
Figure S3. dATP Titration on canonical H- α	S-8
Figure S4. Gel filtration standards	S-9

SUPPORTING METHODS

Recombinant Expression of HE and Single Domains of RNR-α. BL21-CodonPlus(DE3)-RIL competent cells (Stratagene) were transformed with pet28a–His₆-HE, or -H-NTD. For E-NTD and E-CB, non-codon enhanced BL21 competent cells were used. Cells were then grown overnight on LB agar plates in the presence of 50 µg/mL kanamycin. In a typical expression procedure, a 5-ml culture containing 50 µg/mL kanamycin (and 50 µg/mL chloramphenicol for CodonPlus cells) was inoculated with a single colony and incubated overnight at 37 °C. The overnight culture was subsequently diluted into 1.2 L LB media containing 50 µg/mL kanamycin. Cells were grown to OD₆₀₀ of 0.6–0.8 at 37 °C and induced with 250 µM IPTG for 16 h at 28 °C for HE. Recombinant expression of NTD alone of H-α and E-α, and CB alone of E-α was attempted 16 °C. The cells were harvested by centrifugation (7,000 x g for 20 min), flashfrozen in liquid N₂, stored at –80 °C and used within two weeks for protein isolation. Approximately 3 g of wet cell paste was harvested per L of culture.

Isolation of HE and E-\alpha-CB (Figure 2A and S1B). All steps were carried out at 4 °C. The cell pellet was suspended in the lysis buffer (5 vol/g) containing 50 mM NaH₂PO₄ (pH 7.0), 0.1% Triton X-100, 10 mM imidazole and 5 mM BME with Roche protease cocktail inhibitors. The cells were lysed by two passages through a French pressure cell operating at 13,000 psi and cell debris was removed by centrifugation (20,000 x g, 30 min). DNA was precipitated by dropwise addition of streptomycin sulfate (2% wt/vol) with continuous stirring over 15 min, with an additional 15 min incubation. The precipitated DNA was removed by centrifugation (20,000 x g, 30 min) and supernatant

was incubated for 1 h with TALON resin (1 mL bed vol/g cell pellet) that had been preequilibrated with lysis buffer. Subsequent to removal of flow-through, the column was washed under gravity with the wash buffer containing 50 mM NaH₂PO₄ (pH 7.0), 0.1% Triton X-100, 50 mM imidazole, 5 mM BME and 800 mM NaCl until the A₂₈₀ absorbance reaches background level. The bound His₆-tagged protein was released with elution buffer containing 50 mM NaH₂PO₄ (pH 7.0), 125 mM imidazole, 1 mM BME and 300 mM NaCl. The fractions with eluted proteins were identified by A₂₈₀ absorbance, pooled and concentrated using Amicon Ultra (Millipore, 30,000 MWCO). Removal of imidazole and exchange into storage buffer [50 mM Tris-Cl (pH 7.6), 100 mM KCl, 15 mM MgCl₂, 5 mM DTT, and 5% glycerol] was carried out using Sephadex G25 chromatography (GE healthcare). Typical yields for HE was 4–5 mg/10 g of wet pellet, and for E-CB, 10 mg/10 g.

Pull-down of E-NTD, H-NTD and HE (Figure S1B). All steps were performed at 4 °C. Buffers used were identical to protein isolation buffers. Lysis was carried out as described above using 3 g of each of the three different pellets. In each case, 5% of the homogenous lysate solution was incubated with 50 μ L bed vol of TALON resin for 40 min. Subsequent to centrifugation (500 x g, 5 min) and removal of the supernatant, the resin was washed twice (2 x 500 μ L) with wash buffer. In between each wash, the resin was incubated with wash buffer for 10 min prior to centrifugation (500 x g, 5 min). Elution of his-tagged protein/domain from the resin was induced by incubating the resin with elution buffer (50 μ L) for 15 min followed by centrifugation (4000 x g, 2 min). **Competition Assays (Figure S2B).** The reaction mixture contained in a total volume of 30 µL: 50 mM Hepes (pH 7.6), 15 mM MgCl₂, 3 mM ATP, 2 mM NADPH, 0.1 mM Trx, 1 µM TrxR, 0.5 µM E- β , 0.5 mM [5-³H]-CDP and either 0, 0.5, 1, 2.5, 5, 7.5, 10 or 15 µM E-CB. The reaction mixture was pre-incubated at 37 °C for 1 minute prior to initiation with 0.5 µM final concentration of E- α . The reaction was quenched at 5 minutes by the addition of 30 µL of 2% HClO₄ and subsequently neutralized with 30 µL of 0.4 M NaOH. [5-³H]-dCDP produced was analyzed as described elsewhere in the manuscript.

SUPPORTING TABLE

TABLE S1. Primers used for the construction of pET-28a –HE and E-CB. (E = E.

coli, CB = catalytic body)

A) Primers to clone out NTD of H-α

Fwd: ACTTGCACAAAGAAACAAAGGGCCAGTTTGAGCCGCCTGC Rev: TTGTTAGCAGCCGGATCTCATCAGATCTTACATGCGCCGCT Fwd extender: CCTGACTATGCTATCCTGGCAGCCAGGATCGCTGTCTCTAACTTGCACAAAGAAACAAAG Rev extender: CGGATTATCAGTATCTCGCCGCGCGCCCTGGCGATCTTCCACCTGCGTAAAAAAGCCTACG

B) Primers to clone out CB of E-α

Fwd: TGGTGCCTCGTGGTAGCCATATGCATGTGATCAAGCGAGATG Rev: ACAGCGCAGGCGGCTCAAACTGGCCCTTTGTTTCTTTGTGCAAGTTAGAGAC Fwd extender: ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCTCGTGGTAGCCAT Rev extender: TTTGCCCATCTCGACCATTTTCACCACGTGGTCGTACAGCGCAGGCGGCTCAAACTGGCC

C) Primers to construct pET-28a-E-CB

E cat. body Fwd: TGGTGCCTCGTGGTAGCCATGGCCAGTTTGAGCCGCCT E Rev: CTCAGCTTCCTTTCGGGCTTTGTTATCAGATCTTACATGCGCCGCTT

SUPPLEMENTAL FIGURES

FIGURE S1.

Α

В

MGSSHHHHHHSSGLVPRGSHMHVIKRDGRQERVMFDKITSRIQKLCYGLNMDFVDPA QITMKVIQGLYSGVTTVELDTLAAETAATLTTKHPDYAILAARIAVSNLHKETKGQFEPPA LYDHVVKMVEMGKYDNHLLEDYTEEEFKQMDTFIDHDRDMTFSYAAVKQLEGKYLVQN RVTGEIYESAQFLYILVAACLFSNYPRETRLQYVKRFYDAVSTFKISLPTPIMSGVRTPTR QFSSCVLIECGDSLDSINATSSAIVKYVSQRAGIGINAGRIRALGSPIRGGEAFHTGCIPFY KHFQTAVKSCSQGGVRGGAATLFYPMWHLEVESLLVLKNNRGVEGNRVRHMDYGVQI NKLMYTRLLKGEDITLFSPSDVPGLYDAFFADQEEFERLYTKYEKDDSIRKQRVKAVELF SLMMQERASTGRIYIQNVDHCNTHSPFDPAIAPVRQSNLCLEIALPTKPLNDVNDENGEI ALCTLSAFNLGAINNLDELEELAILAVRALDALLDYQDYPIPAAKRGAMGRRTLGIGVINF AYYLAKHGKRYSDGSANNLTHKTFEAIQYYLLKASNELAKEQGACPWFNETTYAKGILPI DTYKKDLDTIANEPLHYDWEALRESIKTHGLRNSTLSALMPSETSSQISNATNGIEPPRG YVSIKASKDGILRQVVPDYEHLHDAYELLWEMPGNDGYLQLVGIMQKFIDQSISANTNY DPSRFPSGKVPMQQLLKDLLTAYKFGVKTLYYQNTRDGAEDAQDDLVPSIQDDGCESG ACKI

Figure S1. (A) Amino acid sequence of Hybrid His₆-HE. **dark**, His₆-tag and linker bearing thrombin cleavage site; **red**, human N-terminal domain; **blue**, *E. coli* catalytic barrel; **green**, *E. coli* C-terminal tail. (**Blue+green** = *E. coli* catalytic body, E-CB). (B) Pull-down analysis validating expression and solubility of His₆-H-NTD (11 kDa) (1) and His₆-E-NTD (10 kDa) (2), in comparison with His₆-HE (87 kDa) (3) and His₆-E-CB (75 kDa) (4). Lanes a→f, pellet, lysate, supernatant subsequent to TALON incubation, 1st wash, 2nd wash, elution.

Α

В

Figure S2. (A) E. coli CB was able to bind ligand. Fluorescence anisotropy resulting from titration of 0.1-160 µM E. coli CB and 0.5 µM Texas Red-5-dATP. Error range derived from N = 2. Estimated binding affinity of Texas Red-5-dATP to S site within E- $CB = 5.3 \pm 0.3 \mu M.$ (B) E. coli CB was able to competitively bind E- β . Catalytic activity of 1:1 E- α : E- β (0.5 μ M) was increasingly perturbed with increasing concentrations of E-CB. Calculated IC₅₀ = $7.9 \pm 1.4 \mu$ M. 100% corresponds to specific activity of 515 ± 19 U/mg (calculated per mg of E- α) (0.746 ± 0.028 s⁻¹). Error range derived from at least N = 2.

FIGURE S3.

Figure S3. Titration of dATP to canonical H-α. (Also see reference 19 in the manuscript). As in HE (Figure 3A), allosteric activity promotion was observed at low [dATP] through binding to the S site of H-α. However, saturating amount of dATP (A-site binding) led to >70% loss of H-α activity (EC₅₀ = 33 ± 7 µM), with respect to the value measured in the absence of dATP. [This is in stark contrast to HE (Figure 3A) wherein HE activities in the absence as well as in saturating amount of dATP remain similar]. Normalized activity of 1.0 on the Y-axis corresponds to 67 ± 8 nmolmin⁻¹ of [5-³H]-dCDP produced per mg of H-α. (Note that assays contained no allosteric promoter ATP). Error range was derived from N = 2.

FIGURE S4.

Figure S4. Gel filtration standards. (A) Elution profile of molecular weight standards: thyroglobulin (669 kDa, 17.6 min); ferritin (440 kDa, 20.6 min); aldolase (158 kDa, 24.6 min); conalbumin (75 kDa, 27.8 min); ovalbumin (44 kDa, 29.8 min). (B) Standard curve. Also see Table 1.