CHAPTER XIX

NUMERICAL METHODS AND MODEL DEPENDENCE IN CHEMICALLY-INDUCED
DYNAMIC SPIN POLARIZATION#*
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Department of Chemistry, Cornell University,
Ithaca, New York 14853
\

| /
|

In this chapter we describe some of the more advanced theo-
retical methods, which may be usefully employed in the study of
chemically-induced spin polarization and related phenomena. The
emphasis will be on the finite difference methods developed by
Pedersen and Freed [1-6].

1. SOLUTIONS OF THE DIFFUSION EQUATION
1.1 The diffusion equation

Let us consider the diffusion equation:

"
8 - pr Lo (1.1)
r

where p(?,t) is the classical probability or distribution function
for motion of a particle (or, in the present prgblem, the relative
motion of a pair of particles), while DF? = DV~ is the Markovian
operator for the diffusion with diffusion coefficient D. When

the problem admits of spherical symmetry (i.e., any potential
terms in DI'y depend only on r = |r| and any boundary conditions
depend only on r), then it is most convenient to write I} in
spherical polar coordinates in the form:

rr=T_+ (1/r2>rQ (1.2a)
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where, for Brownian motion in the absence of potentials, T'_, the
radial part is given by r

r_ = (/5 (/e (a/0r) (1.2b)
while the angular part Tgs is:

I, = (1/sin8)(3/36) [sin6(3/30)] + (1/sinze)(az/aez) (1.3)
We then can focus on the radial part of the distribution function:

m

2m
p(r,t) = (1/4m) J dosiné J dop(r,t) (1.4)
0

0
which obeys the diffusion equation:

ap(r,t) /ot = DFrP(r,t) (1.5)

1.2 Eigenfunction solutions

The solution to this diffusion equation is well known, and may be
expressed as a conditional probability function, or Green's func-
tion:

> >
p(R;r,t)

> 2
(4nDt)—3/2exp{— Szisgl— }

]

o, J exp{-i(T-B) -5 - p°pt}ap (1.6)
2m

Then by using the usual spherical Bessel function expansion of
elf*T as well as the addition formula for the Legendre polynomials
and their orthonormal properties, one has

00 2

> 1 -p Dt . 2

p(JE-R],t) = — J e’ Jg(pR)i (o) dp (1.7)
27 0 )

where jo(pr) is the zero order spherical Bessel function;

jo(z) = sin z/z. This result may be understood as an expansion

of the solution in the Hilbert space spanned by the jolpr) for

each different value of r. That is, we may regard this as an
expansion in the orthonormal eigenkets:

[cm@,;» = IJ—%-jl(pr)YI;j(Q)> (1.7a)

where, because of spherical symmetry, we will only be interested
in the £ = m = 0 terms. Thus, we have:
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2Dt

p(&;T,0) = J o%do § o, (3, D> Pcs, (3,0 (1.8)
0 m

and pl?—ﬁl,t) is obtained from this equation by setting 2 =m = 0,
to yield the result of eq. 1.7.

Let us now note some useful variations on this formula. If
the space is bounded by some outer wall (e.g., the walls of the
container) taken to be spherical, then the integral over p becomes
a sum over p corresponding to those discrete values of p which
satisfy this outer boundary [7]. Of more use is the case of an
inner boundary at r = d corresponding to closest contact; thus we
have as tge range of r: d < r <, In this case, one replaces
the [ka(p,r)> by the correct eigenfunctions given by Carslaw and
Jaeger [7] which include appropriate linear combinations of Bessel
functions. Let us call them 'ékm(g}r)>. Now the inner boundary
condition will be purely reflective if there is no reaction, but
will be at least partially absorptive if there is a finite reac-
tivity. Collins and Kimball [8] considered such a boundary for
chemical kinetics. It may be written as:

kp(d) = D(3p/3r) _, (1.9)

and it states that the probability flux into r < d [given by
D(3p/3r)q] is equal to the rate of reaction at the surface [given
by kp(d)] where k plays the role of a reactivity. [In Carslaw
and Jaeger's [7] notation h = k/D.] (We will relate it to a
first order rate constant below.) From Collins and Kimball's
treatment, one has that the steady-state rate constant, which may
be experimentally observed, is

kf = A2k2(d) (1.10)

where 2kp(d) = 4ndD is the rate of new bimolecular encounters,

and we have [6] that A is then the fractional probability of

reaction. The CK result is:
dk/D

1+dk/D

A= (1.11)

so for A << 1, one has k¢ = 4ﬁd2E, and it is independent of the
diffusion, as it should be. (Below, we compare this result with
that from finite differences). One has obtained an analytical
solution to this problem (cf. [8]). [Another approach is to use
the boundary condition of eq. 1.9 but with h = k = 0, i.e., a
pure reflecting wall. Then it is necessary to introduce a reac-
tion at r = d+¢. This is utilized in the finite difference
method below].
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Now suppose we must generalize the diffusion equation to
include, for example, some potential of interaction. That is, we
would have a Smoluchowski equation for the relative diffusion:

QL(&rE,t_) - DV—r>2p + /kD)¥2- [p2u())] = Drap (1.12)

where U(r) is the potential energy between particles assumed to
depend only on r. The new p(?,g) will no longer be expressible
in terms of the ngm(g,?)> or |G£m(3,?)>. Instead, our solution
will be expressible in new eigenkets, each of which may be written
as an expansion in the [élm(3a¥)>' The expansion coefficients
may then be obtained by perturbation theory, when applicable, or
by some other methods. Actually, it is easier to work with a
symmetrized form of eq. 1.12., That is, let po(?) be a measure of
the equilibrium probability distribution such that pg(ty)/po(r;)
is the ratio of probability of finding the radical-pair separa%ed
by ?i to that for ?j (e.g., let po(?) = e'U(r)/kT). Then let

PE = 175 E 0
and (1.13)
. > .=1/2 > .1/2
I> = {py(r)] I2lpy(0)]
Then, one can show that eq. 1.12 becomes:
pp(v27u(r)  D[F(m) |

dp(z,t) 2
—P—r;=D1’—r>ﬁ=Dv;f>+ +

dt 2kT (1.14)

o

(2kT) 2
where
F(r) = -%;U(r)

which results in f? being a Hermitian operator. One may then,
for example, introduce perturbation theory to handle U(r) # O.
Thus, let us first take the Laplace-transform of eq. 1.14 to give

p(F,8) = [s - Dr21 " p(,0) (1.15)
with -

p(r,s) = J e St (T, b) (1.15a)

0

Then with

750 = vl

r r
while

' = o)/ + [Fo |/ 2xn? (1.16)
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as the perturbation, one may use a resolvent-type approach [9] to
give:

n
N o ~ 1
[s - Dr2] 1. ) ———l:—ﬁ(—DF; ) l~ 1.17)
n=0 |s -~ Dl";:> s - DI‘?

The conditional probability solution is obtained by letting

00
> > > > 2 ~ > > A > >
p(R,r,0) = §(x-R) =J pide ] |G, (p,T)><C* 3,B)| (1.18)
m im
0 2,m
Note that the zero-order solution (i.e., n = 0) is just the
Laplace transform of eq. 1.8, as it should be. However, the
first order correction is given by

5(§,?,S)>(l) = J( p'zdo' Y Iél.m.(p',r')> x

0 2 m'
© - >, > - 14 > >
J 2240 ) <Gprgr (P'T)[-DIFT[E, (p,7)> )
0 l’m s + Dp'2
1 > >
—— <6* (o,R)| (1.19)
s + Dp m

i.e., one must evaluate the matrix-elements (in ; space) of
<Gl'm'(3',?)If?lIClm(E,?)>. For a spherically symmetric f? , we
would get 2' = £ and m' = m. In a similar manner, one can gener—
ate higher-order corrections. A variety of procedures for accom-
plishing this has been compared by Yoon, Deutch, and Freed [9].

A powerful technique that lends itself to numerical solutions,
involves starting with eq. 1.15 and then expanding 5(?,5) (this
is not the conditional probability) in a complete orthonormal
set, e.g., the Clm(B,?):

- > 2 -+ - + >
Ip(x,s)> = f pdp ) Con(P28) (G, (o, 7)> (1.20)
2,m
Then by rewriting eq. 1.15 in the form
[s - Df;]|5(¥,s)> = |p(z,0)> (1.15")

and then pre-multiplying by <Clvm'(3',¥)| one obtains a set of
coupled integral equations for the expansion coefficients Clm(g,s):
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2 A >, > ~ P s -
- > =
J p dp sz <G2.m.(p ,) | (s DF;)Isz(p,r) Clm(p,S)

A >
<Gl.m.(3',?)|p(r,0)> (1.21)

Note that the coefficient of Clm(g,s) in eq. 1.2]1 may be rewritten
as:

J p2dp ¥ [(s4-pzD)6 s §(p-0")
2

o 22' “mm
b
+ <, G DME @D (1.22)
2'm' Pt T Lm e,T )

This then again involves calculating the same matrix elements as
above.

Now what are the typical questions asked about p(r t) [or
p(r s)]? In one case we might want to ask for the total proba-
bility over all space d £ r < «. Suppose, for the moment, we
have U = 0. Then this corresponds to just the coefficient
CO,O(O’S)' That is

<|1‘>(¥,s)>AV = J a2 5dE,s) = Cy (0,9
d ’

00,0 [p(z,5)> (1.23)

where the last two equalities follow from the use of eq. 1.20.
This quantity will be unity, unless there is a reaction which
depletes radicals (e.g., k in eq. 1.9 is non-zero). Thus one
must calculate in eq. 1.21 (or eq. 1.19) how the coefficient

Co 0(0,s) couiles to the other coefficients Co O(p,s) by the per-
turbation F+ , which need not be small (but we are assuming it
is Spherlcally symmetric). When there is a non-uniform equilib-
rium distribution, i.e., po(?) # constant, then the averaging
prescription becomes:

- * 1/2- > 1/2,- ~»
<]p(r,S)>Av z J d3¥[po(¥)] / p(t,s) = <[p0(r)] / |p(r,s)>
d
(1.24)
In the absence of a chemical reaction, [po(r)] 1/2 will correspond

to the zero eigenvalue solution of Ty, i.e., it represents the
conservation of probability over all space, which is unaffected
by the diffusion.

Another question might be the probability of finding the
particles separated by ¥' at time t. One then needs
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<8 (E-E)[p(E,8)> = J ofa0 1 & G.Inc, @) (1.25)
0 2,m m m

which follows from the form of the Dirac-delta function (eq. 1.18),
and it involves a knowledge of all the Clm(g,s). Alternatively,
we may just ask for a particular radial separation and use

d(lrl— 1r']). Then, it follows from eq. 1.7, that eq. 1.25 would

become:

<6(|r|- lr'l)lﬁ(;,S)> = ozdp@* (3,?')0 (3,s> (1.26)
0 00 0,0

1.3 Numerical methods and eigenfunction solutions

An equation like eq. 1.21 may be solved numerically by replacing
the integral over p by a sum. In fact, this will occur naturally
if one introduces a finite outer wall at r = ry with an appro-
priate boundary condition, as we have already noted. The result-
ing coupled algebraic equations can be solved by standard computer
techniques for matrix inversion or diagonalization. Such a method
is an effective one provided (1) the needed matrix elements
(involving integrations over ¥) can be conveniently calculated by
analytic or numerical methods, and (2) it is not necessary to use
too many discrete values of p to obtain convergent solutions
(i.e., independent of TN OF pyMip E 2m/ry).

The resolvent method should prove more useful for (1) small
perturbations or for (2) cases when the integrations of the matrix
elements over p, are best performed analytically. It could also
prove to be a useful method when these integrals are to be done
numerically. [It should be noted that the denominators in an
expansion like eq. 1.19 can go to zero (for s = 0 and p or p' > 0).
This problem can be eliminated by reordering the expansion in a
manner shown by Yoon, Deutch, and Freed [9] corresponding to a
total-time-ordered cumulant or projection operator procedure.]

Actually, while these methods have proved very useful when
applied to problems involving rotational diffusion (e.g., the
triplet initial CIDEP mechanism [6,10]), except for perturbation-
type approaches, they have yet to be extensively applied to prob-
lems involving translational diffusion (e.g., the radical-pair
mechanism).

1.4 Finite difference method

We now turn our attention to finite-difference methods, which have
been extensively employed in numerical solutions.
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The finite difference solution of the diffusion equation
amounts to first letting p(r,t) = rp(r,t) so that

~ 2.
9B(r,t) _ p 37B(x,0)

Y (1.27)
ar
and then to let
3p(r,t 1 - - R
—Eizi—l = [p(r-Ar,t) - 2p(r,t) + p(r+ir,t)] (1.28)
ar Ar

where we have used the standard mean difference form for the
second derivative in terms of the radial increment Ar [6]. This
application of the finite difference technique is essentially
equivalent to transforming the continuous diffusion equation into
a discrete Master equation involving a transition-probability
matrix W, coupling p(r,t) between discrete values p(rgt+jAr,t)
where j = 0, 1, 2, ..., N. These discrete values form a column
vector p. Thus

2,
p2E-up (1.29)
or

and the discrete Master equation becomes:
25-¥p (1.29")
ot =

with Laplace transform:

3(r,8) = [s - Wl p(r,e=0) (1.30)

which can be solved by straightforward matrix diagonalization or
inversion methods, once W is specified [see below]. We now have,

by comparison of eqs. 1.28 and 1.29, that:

2
W, . =W, . = D/Ar 1.31
j»i-1 j-1,j / ( 2)

W, . = -2p/ar? (1.31b)
J5]
and this corresponds to a tri-diagonal matrix, which is easily
solved. Note that Wj j-1 is the transition probability from the
j=1 box (at rj_l) to tﬂe jth box (at rj).

We must also be careful to specify boundary conditions. The
reflecting~wall boundary condition at d, the distance of closest

approach, is just:

Bp(r,t)/ar]r___d =0 (1.32a)
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or

3p(r,t)/3r] __, = p(d,t)/d (1.32b)
which, in finite difference notation, becomes:

[p(d+Ar,t) - p(d-Ar,t)}/2Ar = p(d,t)/d (1.33)
This means, that at the boundary we have

W —20/Ar2 (1+Ar/d) (1.34a)

0,0

2
wO,l 2D/Ar (1.34b)
when eq. 1.33 is used to eliminate the p(d-Ar,t) term that would
otherwise appear in eq. 1.28.

Now, in principle, we want solutions over the whole region
d < r < »; but in order to make them tractable, we require a
finite outer limit ry = d+NAr. A very useful boundary condition
at ry, which yields convergent solutions (for ry large enough),
even as t + » is the "collecting wall" boundary condition. This
amounts to letting Wy-1 N = O, so the particles (or radical-pairs)
collect at ry and cannot diffuse back. Then the conservation of
probability condition requires that Wy iy = 0 and WN,N-1 = 2D/Ar2
as well. This conservation of probabiiity condition may be
stated as:

® A w0 2
ap(r,t D
J &L o J 3P rdr =0 (1.35)
3t
d d ar

or in finite difference notation where:

o

ga=£i=9 , (1.36)
as:
N
Yy V()w, , =0 for j=0,1, ..., N (1.37)
1=0 1,3

where rdr + V(i). That is, the weighted sum of elements of W for
each column must be zero. 1In particular, we have:

V(0) = dAr/2 (1.38a)
V(i) = riAr (1.38b)
V(N) = rNAr/Z (1.38¢c)

It is often useful to distinguish two regions of space
(i) d £r < vy and (ii) ry < r £ ry, such that fine graining in
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Ar is required in region (i) to properly account for particle
interactions, while much coarser graining in Ar may be utilized
in region (ii) corresponding to large separations. One takes Ar
in (ii) as f times larger than that of the former region (where
f ~ 10 to 100). Then eqs. 1.38 become:

V(0) = dAr/2 (1.39a)
V(i) = riAr for 0 < i <M (1.39b)
V(M) = rM(l+f)Ar/2 (1.39¢)
V(i) = rifAr for M < i <N (1.394)
V(N) = erAr/Z (1.39¢)

The matrix elements of W are again given as in eq. 1.31 for

ri < ry. For rj > ry, they can be obtained from the elements of
eq. 1.31 by dividing by £2. The Mth row is determined by the
conservation of probability eq. 1.37 with the V(i)'s of eq. 1.39
giving:

2
Wy -1 = [2/(1+£)](D/Ax7) (1.40a)
2
Wy =~ (/) (D/ar") (1.40b)
2
Wy wep = [2/Q+D)E1(D/AT7) (1.40c)

So far, this procedure will merely give numerical solutions
to the diffusion equation whose analytic solution is known (e.g.,
eq. 1.6). We, therefore, consider the new features, such as
reactivity and potentials of interaction. Rather than introducing
reactivity by an inner boundary condition like eq. 1.9, it is
more convenient to explicitly include the effects of a finite
reactivity upon radical contact by adding to the diffusion equa-
tion a term:

j—‘t’] = —k(r)p(r,t) (1.41a)

rxn

where k(r) plays the role of a first-order chemical rate constant.
One may use a variety of forms for the functional dependence of
k(r) on r. Usually, the simple form:

k(r;) = ké,

1,0 (1.41b)

has been used, where k is a constant. This represents a "sphere
of influence" for the colliding radicals extending from d to d+Ary
with Ary = Ar. The effect of this reaction, then, is explicitly
included in an augmented W matrix. It will be seen below that
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this form leads to the following result for A, the fractional
probability of reaction:

A= krl/(l + krl) (1.42)
with
_ ?
T, = dArk/D (1.42")
the characteristic "lifetime" of the interacting pair. One may

rewrite Ty -1 = 4nDd/AV where AV is the "reaction volume." A com-
parison of thls result with that from [8] yields k > kAT .

We now consider the inclusion of the interactive potential
U(r) in the form of eq. 1.12. It is rather easy to deal with this
new term in the finite difference method. We first define a func-
tion F(r) by

F(r)é> = (1/KDVU(x) = (1/kT)[3U(r)/3r)éz (1.43)
where F(r) plays the role of the force (but in units of inverse

length) in the radial direction represented by unit vector e+
Equation 1.27 now becomes:

Bp(r,0) | ) A%B(r,) 2 [(FOp(r,0)] (1.44)
ot 2
ar
with F(r) = rF(r). The effect of this force is thus to introduce
new terms into the W matrix when the finite difference approach
is employed, i.e.,

F(r-Ar)p(r-Ar,t) - F(r+Ar)p(r+ir,t)

3 A N
e [F(r)p(r,t)] » AT (1.45)
We summarize the additional contributions to W:
- »
D le - r,F(1)/brd (1.46a)
-1 F
D Wo 1= F(0)/Ar (1.46b)
o iuF = —F(j)/2Ar 0<j<M (1.46c)
js3-1

“LF 1. s
D le,j = (@) MG, /e - FG D, /]

0<j<M (1.46d)

D le,3+1 = F(§)/2Ar 0<j<M (l.46e)
Dy oy = ~FOO/Br(1+6) (1.46£)

DTWE | = ~F(M-L)r, [t AT (14£) (1.46g)
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-1.F _
D™ Wy vy = O (1.46h)

when one chooses ry such that for r > ry, U(r) = 0. Note that
these equations are obtained by applying the conservation of prob-
ability condition eq. 1.37 wherever necessary. (Note that now

: in eq. 1.37 includes the additional terms due to the forces
[6 il It should be clear, from the concept of W as a transi-
tlon—probability matrix, that we require Ar to be small enough so
the off-diagonal elements of W are nonnegative, while the diagonal
elements of W must be nonpositive. An inspection of these elements
leads to the sufficiency condition that:

Ar < |2/F() | (1.47)

where, usually |F(0)] is the largest of the F(j)'s. The solutions
may now be obtained by matrix inversion or by diagonalization.
It is possible to symmetrize this matrix by the transformation:

=S W gl (1.48)

=

where S is the diagonal matrix whose matrix elements are:

SOO =1 (1.49a)
= i o
Sy = 831,005,451 1>0 (1.49%)
-1 _ -1
(s )ii = (Sii) (1.49c)
It is, thus, necessary to have Wy /W1 i-1 > O, so one must let

WN-1,N > 0, but a value of Wy-j, N/WN N-1 < 10710 is sufficient
[11].

One may then diagonalize W with a real orthogonal transforma-
tion represented by the matrix 0 such that [11]:

-1 -1 _ -1

=00 T =-0s8uS§ SIHT (1.50)

fi=
o
=

where w is the diagonal form consisting of real, nonpositive
eigenvalues [12]. Then eq. 1.30 becomes:

3,9 = T s -wiTlp(x,0) (1.51a)
or N, D,
Bry,e) = ] —=—L 50,0 (1.51b)
. sS-w,, k
j,k=0 i3
SO
X N sy Het X
p(r;,t) ", E=o (T e 7 (DB (r,,0) (1.52)
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Then
p(t) = J rdrp(r,t) - Z V(1)B(r,,t) (1.53)
d i=0

is readily obtained as a sum of exponentially decaying quantities.
In the absence of any chemical reactions, p(t) = 1 is the conser-
vation of probability condition. It arises because there must
then be one eigenvalue wg = 0 and this corresponds to the sum:

N N
. Z V(i) (T ) i0 Okp(rk,O) which must equal Z V(k)p(rk,o).
i, k=0 k=0
Thus, we must have
_ -1 Vk) _
V(k) = § VAT ) oToe ©F T, c (1.54a)

independent of k from which it follows (using T_lT = 1) that

el
Z V(1)Tij = c8q 5 (1.54b)
Now let us consider the limit t > . Then for
Yoo = 0 and wjj <0 for j#0
we get
N -1
Lim p(r ,t) = ) (T ) 0T 0P (Fie» O (1.55)

£ k=0

But by eqs. 1.51 and 1.52, this is easily seen to be equivalent

to taking lim sp(r.,s), since, in this limit, only the terms
s+0 .

involving the zero eigenvalues of w persist. In general then,

for any matrix A (which is time independent but may be complex)

and which has an eigenvalue spectrum ajs such that Rea- < 0, it

will follow, given f(t) = Af£(0), that ]
lim sg(s) = lim f(t) (1.56a)
s>0 to
where
s
g(s) = J e f(t)dt (1.56b)
0

Now when there is a chemical reaction occurring at r = d, there
is no longer complete conservation of probability (unless there
is an inner collecting box). This is then replaced by conserva-
tion of all particles (or probability) that reach the collecting
wall at ry at t » @, so that we may write
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lim p(t) = lim V(N)ﬁ(rN,t) = lim sV(N)ﬁ(rN,s) (1.57)
o oo s>0

It is interesting to ask about the relationship between solu-
tions such as eqs. 1.51 or 1.52 and eigenfunction expansion methods.
The diagonalization of W will yield eigenfunctions corresponding
to linear combinations of the basis vectors: ri> representing
the finite grid points in the finite difference method. Each
linear combination must correspond to one of the Bessel-function-
type eigenfunction chosen for the appropriate outer and inner
boundary conditions (including the reactivities). 1In particular,
a finite outer wall at ry will mean discrete values of p such that
Pmin v 2m/ry. But because of the discreteness of the space we
now also have a ppay v m/Ar (i.e., an upper cutoff to the allowed
wave-vectors).

1.5 Interaction potentials
A) Ionic interactions. A convenient way to represent spin-

independent Coulombic forces between charged radicals in ionic
solution is to use the usual Debye formulas. Thus, one may write:

UCr) = (eZZaZb/sr)[e-K(r—d)/(l-+Kd)] (1.58)

where eZa and eZ, are the charges on the radicals, and where «,
the reciprocal tﬁickness of the ionic layer, obeys:

K2 = (4ne2/skT) E nizi (1.59)
i

where ¢ is the dielectric constant and njy is the number density
of the ith type of particle of charge Zj.

One finds [6] that the effect on the reactivity A is merely
to require

-1 _ -1

] uf*exp[U(d)/kT] (1.60a)

where
)™ = g J exp[U(r) /KT)dr /x> (1.60b)
d

and T1,u is the value for the uncharged radicals given by eq. 1.42.

B) Pair correlation functions. One can show that U(r) is the
potential of averaged forces between the spin-bearing molecules.
Thus, we may obtain U(r) from the pair-correlation function g(r),
i.e.,
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In g(r) = -U(r)/kT (1.61)

so that one has from eq. 1.43

F(r) = - 31—“8r8ﬂ (1.62)

When these express1ons are incorporated into eq. 1.12, then in
the limit t -+ o, p(R; r t) will yield the equilibrium g(r), while,
for finite times, F(r)e; is the driving force acting to restore
this equilibrium. The Debye-Hiickel formula, eq. 1.58, which in-
cludes charge-shielding by the solvent, is only one example. One
is able to use pair-correlation functions g(r) obtained from
theories of equilibrium statistical mechanics or even from com-
puter dynamics calculations, since for the finite difference
method, it is sugficient to have numerical solutions to g(r). An
analysis of p(R r,t) for hard-sphere potentials appropriate for
liquid ethane is given by Hwang and Freed [11] utilizing the
finite difference approach.

2. THE STOCHASTIC LIQUVILLE EQUATION: CIDNP AND CIDEP
2.1 Stochastic Liouville equation

The most general form of the stochastic Liouville equation appro-
priate for the relative diffusion of two spin-bearing molecules,
which includes the spin dynamics, has been derived by Hwang and
Freed [13] and is glven in terms of a position-dependent, spin
density matrix p(r t):

3p (£, t) -

= - Do (F,t) + DI (F,t) + DT (,t)

+ K2p (¥,t) > (2.1)

Here H" (r) is the Liouville operator associated with the spin
Hamiltonian H(Z) (i.e., for any two operators A and B, A*B =
[A,B]). Also, Iy is the diffusion operator of the previous sec-

tion. The term Ty is given by:

T = ﬁ&- \7-> [(V->H (o (z,0)] (2.2)
where H+(r) is the anti-commutator form (i.e., A+B =z [A,B]
AB + BA). This term gives an effective spin-dependent force which
is to be included into the diffusion. It represents the back-
reaction of the spins, whose Hamiltonian depends on ?, onto the
diffusional process. In the high-temperature limit (i.e.,
|H|/KT << 1) it is shown to be associated with relaxation of the
spins to thermal equilibrium. Equation 2.1 may be derived by
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first writing the quantum mechanical Hamiltonian equation of
motion for the complete liquid and then passing to the semi~
classical limit, where the nuclear motions become classical while
the spin systems remain quantum mechanical. Then the relative
nuclear motions are assumed to obey simple Brownian motion. [In
fact, more generally, eq. 2.1 may be interpreted such that the
electronic spin and orbital states (as well as nuclear spin
states) are treated in terms of a quantum-mechanical density
matrix, while the nuclear motions are described by a class1ca1
probability distribution function.] The density matrix p(r t)
then includes both the properties of a spin-density matrix and
the classical p(F,t) for the relative diffusion. A more complete
discussion of this is given by Hwang and Freed [13].

In eq. 2.1, the operator K is introduced phenomenologically,
when needed, to represent reactivities for the radical pair. Note
that when the interacting molecules have no spin, then eq. 2.1
reduces to the diffusion equation for p(r t) discussed in Sect. 1
(cf. eq. 1.1 or 1.12).

When we deal with CIDEP and CIDNP, the important quantities
we need are: (1) the total probability function:

P(¥,t) = Tro(r,t) (2.3a)
or 3> >

P(t) = [ d7rP(x,t) (2.3b)
Also 3 o

p(t) = [ d7rp(x,t) (2.3¢)

N
[where P(?,t) = p(r,t)] and Tr implies a trace over spin states,
and the time-dependent polarization of radical a, given by:

P (r,t) = -2Tr{p(¥,t)s__} (2.4a)
or a az

P(t) = [ &P (,0) (2.4b)
i.e., the difference in populations between spin up and spin down
(the sign convention yields positive equilibrium polarizations

The quantity P,(t) is of fundamental importance for CIDEP,
while the quantity:

F(t) =1 - P(v) (2.5)
is of fundamental importance for CIDNP.
We will, as in Sect. 1, assume only r-dependent terms in

U(r) and H(r), and let p(r,t) = rp(r,t). Then, again using
Laplace transforms, we have:
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~ ~ X ~ 32 1 9 = TiA
sp(r,s) - p(r,0) = -ifl (£)p(r,s) + D|— + T o~ F(r) p(r,s)
ar
+ Krﬁ(r,s) (2.6)
where
A, T _ & 1 3H+(r)
F(r) = F(r) + m-—‘a—r— 2.7)

We need only solve this equation by straightforward generaliza-
tions of the methods employed in Section 1, i.e., eigenfunction
expansion procedures or finite differences. We follow [6] and
employ finite difference below in discussing the radical pair
mechanism. Also, for simplicity, we initially let f‘(r)T = F(r),
so, if not for the spin Hamiltonian term HX(r), we would just
have the diffusion problem of Section 1.

2.2 Finite difference method

How do we now introduce the effects of H*(r)? Recall that for
each finite-difference value ri we would have a value of p(ri,s) =
Trﬁ(ri,s). Thus, for each rj we have a matrix of values of
p(ri,s). Let 6(ri,t) be represented by an L dimensional matrix,
so there are LZ matrix elements. Then the vector space in which
éjs) is defined will be an 12x(N+1) dimensional space formed from
the direct product of the L2 spin-superspace and the N+l dimen-
sional space spanned by the rj for 0 =1 < N. The complete solu-
tion will now become a matrix equation in this space:

[sl-K' -¥'+ iglp(s) = 5(0) (2.8)

The W' matrix is just the W matrix of Section 1, but with each
element replaced by the product of that element and an L“XL® unit
matrix, since DI, is independent of spin. The & matrix represents
the matrix elements of H*(r). It consists of blocks of 12xL2 ma-
trices for each value of ry; i.e., it has a block diagonal form.
The K' matrix includes the effects of the reactivities.

One solves the matrix eq. 2.8 for the elements of ﬁjs) or
S(ri,s). This could be performed by diagonalization techniques
as discussed in Section 1. Instead, let us consider the long
time limit so that it is only necessary to consider the s> 0 case,
i.e., we solve for

P = lim P(t) = 1lim sP(s) (2.9)
> s>0
and
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Pa = lim Pa(t) = lim SPa(s) (2.10)
oo s+0

This is accomplished by solving eq. 2.8 for a value of s, small
enough that éﬂs) has converted to its limiting value., (Note that
the eigenvalues of the matrix W' + K' - iR will be complex: the
real nonpositive contributions coming from W' + K' and the imagi-
nary parts from -iQ.)

2.3 Density matrix elements and spin Hamiltonian

Let us now consider the particular matrix elements of p that are
required. We first express them in terms of the standard singlet
and triplet states of the radical pair, using S, Ty, and T,, while
pap refers to the ABth matrix element of p.

Then

P(t) = pss(t) +pTOTO(t) + pT+T+(t) + pT_T_(t) (2.11)

Now we rewrite 28 = (S _-8_ )+ (s
az az bz a

-+sz). Then we easily
find that

z

P (8) = -lpgp (E) +o, ()] + [p (t) -p (6] (2.12a)
e ST, T,S T_T_ T,T,

Pb(t) —2Tr{p(t)sz} = [DSTO(t)+pTOS(t)]

+ [pT_T_(t) - pT+T+(t)] (2.12b)

Let us now consider the spin-Hamiltonian H(r) for the interaction
of radical pair A-B.

We write this as:
Hir) = Ho(r) + H! (2.13)
where Ho(r) is diagonal in the singlet-triplet representation,

while the off-diagonal part, H' of H(r) is independent of r.
Then we have

0 1 -1 1 a, > b, =
Hi(r) = 5 (ga+gb)Be‘ﬁ Bo(saz+sbz) +35( J{ AjIj +JZ A L) x
> > 1 > >
(5, +5,) - I(x) G+ 25_-5,) (2.14a)
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. _ 1 _ -1 _ 1 a, = _ yvb, ¥y,
H ) (ga gb)Béh BO(Saz sz) + 2 ( z AjIj g Aka)
@ +3) (2.14b)

(N

Thus H' only includes differences in g-values and hyperfine ener-
gies between the two interacting radicals as discussed in previous
chapters. J(r) is the exchange interaction between radicals which
depends explicitly on r.

We will now simplify the analysis to high-field experiments.
Thus we only need consider the AjI-ZSaZ—type hyperfine components.
As a result of this, only the S ana Tg states are found to couple
to give induced polarizations (except when the initial triplet
polarization is operative [6,10]. Thus, for the high-field
radical-pair mechanism, we can neglect the pT4T4+(t) in eqs. 2.12.
We can now use the eqs. 2.14 to find the matrix elements of H(r)p
in the subspace defined by the S and Tgp levels. One finds that

H* 1 0 o1 [ W
[ (r)o]SS -Q Q Pgg
[H ()] -Q 2J(x) O Qe
g STy | = 5Ty (2.15)
[H (r)p]TOS Q 0 -2J3(r) -Q pTOS
[H (r)p] 0 Q -Q 0| e
ToTo) U TpTo)
Here:
_ -1 a a b,b b
20 = (g, -8, )8 By + ( § Al - IZ(AkMk) (2.16)

so 2Q is the difference in ESR resonant frequencies between sepa-
rated radicals A and B. Equation 2.15 thus defines the 4x4 block
form of @ of eq. 2.8 for each value of ry. The only r dependence
is in J(r). One expects an exponentially decaying exchange inter-
action, which we write as:

J(r) = Jexpl-A(xr-d)] (2.17)

0
One also finds that [HXQ]T+T = [H+p]T_T_ = 0, thus confirming
the fact that the T, states 30 not contribute to the polarization
process in the high field limit.

2.4 Spin-dependent reactivity
We now consider the superoperator K(r) and its associated matrix

K'. In particular, we wish to consider a spin selective reaction
between the radical pair when in contact. For definiteness, we



328 J. H. FREED

assume that only radical pairs in the singlet state may react.
Thus, we may introduce equations like egs. l.4la and b, but only
for singlet states. Since K(r) is phenomenologically introduced,
we need to use it in a fashion that is consistent with the proper-
ties of the density matrix. It is well known that a decay of
diagonal density matrix elements [e.g., pgg(d,t)], will lead to a
lifetime—uncertainty-broadening for associated off-diagonal ele~
ments (e.g., QSTO(d,t) and pTos(d,t) are broadened by the mean of
the decay rates of S and Tp states). These two effects are well
represented by writing [2]:

Ko = [-k(r)/2]1[|S><S|p + p|S><5]] = [—k(r)/2],S><s]+p (2.18)

If we use eq. 1.41b for k(r), then K' is completely defined.

[Note that, in general, off-diagonal elements Pij are not com-
pletely independent of the diagonal elements pii and Pijs due to
the inequality Tr(pN)2 < 1 where pN Z p/Trp (which follows from
the fact that in diagonal form all elements of pN must be real

and positive [14]). This formal requirement is what should be
associated with the Heisenberg uncertainty-in-lifetime effect
(usually written as AwAt 2 1), on Pij» 1 # j, with eq. 2.18 repre-
senting the equality.]

However, it is not necessary to be satisfied simply with a
phenomenological treatment of reactivity. This is because we have
in eqs. 2.6-2.7 a spin-dependent potential and associated force
(1/2kT) [t (x) /3r] = (l/2kT)(%-fZ%a-gb)+[3J(r)/3r], which, for
singlet reactivity, will lead to bonding attraction of the singlet
state but anti-bonding repulsion of the triplet state (cf. Fig. 1).
This tells us that eq. 2.6 already includes chemical reactivity
for the radical-pair even with the phenomenological Ky = 0. This
is as it should be, since the spin-dependent Smoluchowski eq. 2.6
has been derived from the complete semi~classical many~body prob-
lem including all the interactions. It is then only approximate
in (1) its treatment of the surrounding molecules as a simple
diffusive background and (2) its coarse-graining-in-time neglect
of momentum of the radical-pair, which is equivalent to letting
the momentum relax instantaneously. The former ignores solvent
Structure, while the latter is really inadequate in dealing with
strong interactions, although the more complete spin~dependent
Fokker-Planck theory including momentum still contains the same
spin-dependent potential. Thus, either in the Smoluchowski or
Fokker-Planck forms, this theory supplies the spin-dependent, but
adiabatic, reactive trajectories, which are determined by Coulomb
and exchange interactions. This is referred to as a self-consis~
tent (SC) method, since it requires that the effects of H(r) must
appear both in the commutator H*(r) representing the purely dy-
namical motions of the spins in eq. 2.6 and the total force F(r)T
in eq. 2.7. Also note that the anti-commutator [H+(r)/2kT] plays
a role formally analogous to the phenomenological k/2 |S><S[+ in
eq. 2.18.
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Figure 1. Spin Dependent Potentials Uy(r) as a function of r the
interradical separation. The solid curves labeled S and T repre-
sent the exchange potentials utilized for singlet and triplet

states respectively, with a reflecting wall at r = d.

The dashed
Freed [3].)

lines represent the usual continuation of the potentials in the
absence of a reflecting wall. (By permission from Pedersen and

We will, in our discussion of specific models below, find
that we can approximate the particular SC model based upon Fig. 1

(referred to in [6] as the EFP model), by replacing the H¥(r)/2kT
term in eq. 2.6 with a phenomenological
Kp = —k(r)lS>pSS<S|

(2.19)
but with H(r) still in the commutator of eq. 2.6.

We will call
this the ASC model (in [6] it is referred to as the EFA model).

We will favor the ASC model in our discussion (partly also for

its greater simplicity), while the fully phenomenological form of
eq. 2.18 is employed in the original work of ref. [2].

2.5 Initial conditions and transfer factors

It now only remains to specify initial conditions in order to be
able to solve eq. 2.6.

We will usually consider a radical-pair
at some initial separation, ry.

Thus p(r,0) = pod(r—rI)/rI .
Thus in the case of pure singlet at ry = d one has in finite-
difference form:
bg, 5ty = &5 o/V(O)

(2.20)
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It follows from the linear homogeneous form of eq. 2.1 (or 2.6)
that we can superpose solutions obtained for different initial
conditions, to obtain the solution to the problem involving an
initial condition, which is itself a linear combination of already
solved initial conditions. We refer to this as the superposition
principle.

In problems involving random collisions (i.e., RI) in which
there are forces between radicals, the diffusion affects the rate
of the initial encounter. Thus it is necessary to start the
radical-pair (for RI) at a position r1 such that ?(rI)T z 0.
Then, to get around the arbitrariness of such an initial state,
we define a transferred polarization, etc., by:

P = [y (e /iy (IR (r) = (2 /d)P(x,) (2.21)

11}

As a result of the effects of the forces between radical-pairs,
P:(dt) is not the same as that for a true initial condition of
r; = d, since it includes the effects of the forces on the ini-
tial approach before contact of the radical-pair. In the case of
a finite absorbing wall at r = N, €q. 2.21 must be rewritten as:

o finite -1
Pa(dt) ———;;——* d “(r

This expression comes about as follows. One has from eqs. 1.10
that ko(ry) = ry/d = t:f(rI)'l (or inversely with the probability
of encounter) for diffusional encounters from an infinite medium.
The probability that particles separated at ry will encounter is,
however, d/ry, and since there is an absorbing (or collecting wall
at ry), one musElsubEEact this amount, i.e., ky(ry) « 1/{te(ry) -
te(ry)] = d'l(rI -ry’). Similarly for ko(dy) (neglecting forces)
« [1 —tf(rN)]‘l = (1 - d/rN)_l. (See below for a definition of tf.)

-1 _ _l)_

I Ty l(l—d/rN)P:(rI) (2.22)

3. RESULTS AND MODEL DEPENDENCE

As we have previously noted, it is possible by numerical methods
to obtain solutions for a .wide range of models which may not be
accessible to analytic solutions. One of the significant findings
in the original work [1-6] is that the numerical results (where

at t = 0 the particles are in contact) may be summarized by a
series of relatively simple expressions, and that most of these
expressions are model independent.

3.1 CIDNP

Let us first consider CIDNP. We note that A, the fractional
probability of reaction (for Q = 0) of singlet (for singlet
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reactivity) may be defined as
A= FO(S) (3.1)

(Note, in this notation the subscript refers to Q = 0 and F(i)
means i initially.) This fractional probability of reaction in-
cludes all re-encounters of the radical-pair, which we shall refer
to as the complete collision. We then define:

F* = 1im F(T.) = lim [F(T,) - F,(T.)] (3.2)
Aol 0 Aol 0 0°°0

since Fy(Tg) = 0, so that F* measures the conversion from triplets
to singlets for the whole collision. A set of results that are
exact and model independent are:

~[F(8) - Fo(8)1 = =[F(8) - Al = (1= DF(T) (3.3)

i.e., the net decrease in reaction for pure singlets per colli-
sion due to Q@ # 0 is just the probability a singlet does not react
for Q = 0 (i.e., 1-A) times the probability pure triplets do ulti-
mately react because of mixing of triplets and singlets (Q-mixing).
The superposition principle may then be applied to obtain the
result for random initial condition (i.e., equal amounts of sing-
let and triplet):

FRI) = 3 [F(S) + F(T] (3.4)
then eq. 3.3 may be rewritten as:
[FRI) - F (RI)]/F(RI) = F(T() (3.5)

where F3(RI) = %A. The role of the parameter F* appears in the
exact relation:

F(Ty) = AF*[1 + F*(l—A)]'1 (3.6)
so that eqs. 3.3 and 3.5 become:

F(S) = A[L + Fr-n)]7t (3.7
and 1 -1

F(RI) = E-A(1+-F*)[14-F*(1—A)] (3.8)

[Note that these expressions are easily converted for Ty reactivity
by interconverting F(S) and F(Tp) in all the definitions and ex-
pressions above. The T4 states are still treated separately and
independently in the high field case.] The triplet or singlet
initial cases are of interest for CIDNP due to recombination of a
geminate radical pair which were originally formed in the triplet
or singlet state. The random initial case is appropriate for a
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radical-pair which experience a random encounter. One may com-
bine the result of eq. 3.8 with the usual steady-state bimolecular
rate of encounters, eq. 1.10, to obtain the effective bimolecular
spin-dependent reaction rate (for singlets) of:

s
kf = F(RI)kz(d) (3.9)

Again, it is interesting to note that these above results
are all model independent and exact as demonstrated by the numeri-
cal results. It is only in the precise forms of A and F* that
there is model dependence. Note that typically A obeys the form
of eq. 1.42 but with 1] given by eq. 1.42a for no interaction
potentials, while it is given by eq. 1.60 for interaction poten-—
tials (e.g., Coulombic interactions). We have found that for a
model, which corresponds to an apparent space~dependent diffusion-
coefficient [i.e., the replacement of D by D(r) = D(l - a/r)] and
based on Oseen's tensor, one obtains eq. 1.60, but with f* re-
placed by f*:

2 -1 ; 2 -1

(f%) =d [ exp[U(r)/kT][r (1 - a/r)] ~dr (3.10)

d

Equation 1.60 also applies for models involving the spin-dependent
exchange interaction, provided MiJg/kT| is not much greater than
unity (see below).

We now consider F*, 1In the case of small values of Jod/AD
it is found to be indepengent of J(r) and a function only of the
dimensionless variable Qd“/D. (See [6] for a discussion of the
solutions to eq. 2.6 in terms of dimensionless variables.) 1In
the interaction-free case, it is then possible to obtain good
agreement with the numerical results with the analytic form:

% {1 +—%— 1n[l+ (de/D)l/z] }(de/D)l/2

F* o~ (3.11)

1
1 +% {1 +% 1n[1+ (Qd2/D) 1} (qd? /D)

1

as demonstrated in Table 1. The simple form F* ~ %(de/D)é, valid
for (de/D)’i << 1, confirms the important role of the re-encounter
mechanism as discussed in the previous chapters. A likely inter-
pretation of the logarithmic term in eq. 3.11 in terms of the
"initial encounter" mechanism is presented below. Note that in
the asymptotic limit: lim F* = 1, i.e., with infinitely rapid

(Qd2/p)>
Q-mixing all the initially triplet spins are completely converted
to singlet states and react (cf. eq. 3.2). [Note a simpler form
of eq. 3.11 (Table 1) was slightly misprinted in [6].]

This, then, is an example of how numerical results can be
converted to useful approximate analytic forms. 1In this, it is
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Table 1. Dependence of F* on (QdZ/D) for small values of J(r)

2 a b c
Qd”/D *(numerical) F*(theory) F*(simple)
1.6x10-3 0.019863 0.01998 0.019608
1.6x10—2 0.067974 0.06281 0.059484
1.6x10-1 0.20099 0.18940 0.16667
1.6 0.49620 0.47117 0.38743
1.6x101 0.78435 0.78305 0.66667
1.6%x102 0.93588 0.93585 0.86347
1.6x10% 1.0000 0.99875 0.99503

a) Results computed by finite differences.
b) Results predicted by eq. 3.11 9L 1
c) Results predicted by simple form F* = %(Qd /D)Z/[l+-%(Qd2/D)2].

useful to be guided by (1) analytic solutions to simpler models;
and (2) consideration of proper limiting cases.

The effects of Debye-Hiickel-type Coulombic forces on F* may
be approximately represented by letting

(1+9)

F* = F:f* (3.12)

where F* are the results obtained for uncharged radicals and

§ = 4% for attraction and 0 £ § £ % for repulsion (with Q ~ 10
sec'l, D~ 1072 cmz/sec), but more generally § is somewhat sensi-
tive to Q and kd. They are given in graphs in [6]. Note that
from the simple form of F* = %(de/D)f valid for (de/D) << 1
[cf. eq. 3.11], one might expect to replace the d by an effective
interaction distance, f*d (cf. eq. 1.60b), so that F* = f*F%,
Thus the small 8§ # 0 in eq. 3.12 reflects the long-range effect
on the relative diffusive motion affecting the re-encounter
dynamics and Q-mixing. This illustrates an important difference
between CIDNP and the usual models of liquid-state reaction
kinetics.

When Oseen's tensor is introduced, the effects of F* are
somewhat more complex, but are discussed in detail in [5]. 1Imn
general the ratio FSS/F* (05 = Oseen, N = without Oseen tensor),
range from ca. 1/2 to 1.3. Again, to a first approximation, one
should 5eplgce d in eq. 3.11 by f*d, so for small de/D one ex-—

< -~
pects FOS/FN x fR/f% Tl,N/Tl,OS'

The above discussion is appropriate for Jod/AD << 1. When,
however, Jgd/AD & 1, the results for F* become weakly dependent
upon F*, tending to reduce it in magnitude. This effect is
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roughly expressed by:

Fi_o/F* = 1 +2 0 " nl1+ (3a°/p) 0) ™ 1in(1+ (@a?/m) %45

(3.13)

The physical picture here is that of an "exchange-volume," i.e.

a region extending beyond the contact distance d and satlsfylng
J(r) > Q, so that Q-mixing is suppressed. Since it is found that
for small Qd /D the effects of re-encounters after longer separa-
tions are needed for Q—mixlng, this excluded volume has less of

an effect for small Qd /D. The effects of Oseen's tensor and
shielded Coulombic attractions are also modified by appreciable
values of Jgd/AD. Again one finds enhanced effects for larger
Qd2/D (cf. [5]) Also, one should note how, by numerical methods,
it 1is possible to calculate the simultaneous effects of these
various interactions. It is then frequently possible to interpret
them in terms of one's understanding of the physical models.

Another important property of the CIDNP solutions is given
by the transfer factor tg, defined as:

te = AF(RI,rI)/AF(RI,d) (3.14)
where

AF(RI,rI) = F(RI) - FO(RI) (3.15)
with an initial separation of rr 2 d. For a simple diffusive
model,

te = d/rI (3.16)

Also, tg¢ 1s the probability that two particles initially separated
by ry will encounter at least once at r = d. That eq. 3.14 is
equivalent to this simple definition, follows from the fact that
for random initial condition, the CIDNP process only starts upon
initial encounter. Equation 3.14 may be usefully employed with
eq. 3.8. (The results for singlet and triplet initial have been
discussed in [6].) When (shielded) Coulombic forces are intro-
duced, then one finds quite a good fit to:

tf =1 - f*/f*(rI) (3.17a)
where
T
-1 I 2
f*(rI) =4d J exp [U(r) /kT](dr/r") (3.17b)
d
so that
f* = 1lim f*(rI) (3.18)
T o

I
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Now one way of looking at tg(ry) is that it must equal the ratio
of the rates of new bimolecular encounters at separations of ry
versus d. That is, tg(ry) = kp(d)/ky(ry) which is easily shown
to be in agreement with eq. 3.17. Similarly, with Oseen's tensor
one expects ty = 1- f*/f*(rI) by analogy with eq. 3.7 and using
eq. 3.10.

3.2 CIDEP polarizations

For CIDEP we again obtain a series of exact expressions:

o«

2,k=0(8) = P4 10 (To) (3.19)

P:(RI)/F(RI) = -p

where the subscript k = 0 indicates no chemical reaction. This
is easily rearranged with the use of eqs. 3.3 and 3.4 to give

PLRD) = 3 AIL+F(TQIP, | ((T)) (3.20)
Also one finds

PL(Ty) = (L+FO L+ A-0F*IT8] | (1)) (3.21)
and

PL(S) = (-DP] (1) (3.22)

Thus, we see that all the CIDEP polarizations are obtained
from a knowledge of A, F*, and Pa k=0€Tp)- Again these exact
relations are 1ndependent of the model. We, therefore, only have
to discuss Pa k=0(Tg) and its model dependences [Note that these
results are based upon using eq. 2.19 for K(r). The results for
eq. 2.18 are discussed in [2,6]. They require some modification
of the above exact expressions for k # 0 for smaller values of Jg.
However, small values of Jj, according to the self-consistent
approach, should mean that the spin-dependent reactivity is negli-
gibly small (see also below).]

The numerical results can be incorporated into the approxi-
mate form:

3 e!
|p” (T)]| = [993]8 213,l1 )+ 5 (@)™ 1127 rl(A)]
a,k=0 0 D

where

T () % @DV + ()7 (3.24)

1+ [27.1. (1%
01 (3.23)

and e N or (Qd /D) 0.016 while ' ~ 1 for Ad >> 1 and
(Qd /D) < 0.016, but ¢ and €' become smaller as these inequalities
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are violated. Also, the sign of Pg,k=0(T0) is determined as
follows:

Sign[P:] = [Sign Q]x[Sign J] (3.25)

Note from eq. 3.23 that for large Jg, PZ takes on an asymp-
totic value:

lim [P eeo(Tg) | = —— (Qd%/D)€ (3.26)

Jo—>m * 2(xd)°©

while the maximum value of P: occurs at
Jymax) ~ (21,0017 (3.27)
A special case of the exponential decay model, referred to as the

contact exchange model, for Wthh J(ry) = JOG O’ may be obtained
by letting Ad + o, whlle ATT > Arg. %hls yield

I |t
1" ()] = (Qd?/p) e "oty _ (3.28)
a,k=0""0 1+ (23 1 )2
with O 1,3
Tl,J = dArJ/D (3.28a)

where Ar; is the very small extent of the exchange region. The
(Qd2/D)/ dependence in eqs. 3.26-3.28, for smaller values is
indicative of the re-encounter mechanlsm discussed in the previous
chapters. However, for larger values of (de/D) (e.g., viscous
solvents), the required S-Tp mixing can occur extensively, so one
expects the effects of the "complete collision" to be dominated

by the initial encounters. This is shown by the expression, valid
for small JO2 which we have found to represent the Q dependence
for large Qd</D:

1.56(Qd>/D)
I
1+ 1.56(Qd2/D)2

o - 2 1
P4, 10T | = 1.18(ad /D)z[zJOTl(x)]{l

_ 0.8 1n[1+%(qd’/D)?] )
~ 1
1+1.60a%/p) Q489 1111 1y a?/my i)
(3.29)

for |2Jorl(k)| << 1.

Here § increases slowly from zero as Qd2/D becomes 2 16 and is
larger for smaller A. This fits the data very well, cf. Table 2.
Note that the correction terms include (Qd2/D) to the first power,
which should represent the effects of the initial encounter [see
below]. The results for large J(r) are somewhat more complex,
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Table 2. Dependence of P: on (QdZ/D) for small values of J(r).2

Qa?/p r_=2&P r =4 S r =824
ex ex ex
1.6x10~% 21.4 (21.1) 42.0 (44.0) 97.1 (95.0)
1.6x10-3 64.3 (63.3) 127 (132) 292 (285)
1.6x10-2 169 (170) 331 (355) 761 (766)
1.6x10~" 326 (332) 637 (693) 1436 (1496)
1.6 323 (300) 617 (625) 1290 (1350)
16 163 (159) 280 (332) 466 (716)

a) Polarizations given as lO3XPZ. The first number is the numeri-
cal solution, the number in parentheses is from eq. 3.29 but
with § = 0. Also roy = A™151n10.

b) 2Jgt1(X) = 1.450.

c) 2JgT1(}) 3.021.

d) 2JgT1 (M) 6.525,

so we do not reproduce them here. In all cases, however, omne
finds that

lim P: =0 (3.29a)
Q—Nb

The asymptotic dependence of P: with Jgt1(}) >> 1 may be
understood in terms of an effective region of polarization. The
inner region, where J(r) > Jg(max), is primarily effective in
quenching any polarization by a Heisenberg exchange mechanism;
while the desirable or polarization-effective range in J(r), i.e.,
J(r) ~ Jo(max), merely moves out farther from rg. (Note also
that one may consider different functional forms for J(r), but
the above results are not very sensitive to such variations [6].)

We may attempt to predict the effects of Coulomblc forces on
CIDEP polarlzatlons as follows. For 2Jgty < 1 and (Qd /D) << 1,
then P} =z (Qd /D)22JOT1(A) Then, to a first approximation we
would let 11(}) have the f*~ lexp[—U(d)/kT] dependence that appears
in eq. 1.60. [This will not be such a good approximation if A is
small, i.e., a long-range J(r).] Also we would let d + f*d. This
simple analysis would lead to:

00, 00
b~ - .30
Pa/Pa,u exp[~U(d) /kT] (3.30)
which is in accord with the actually calculated trends, although
it 1s not quantitative. In particular [with rgy/d = 1 with r o =
AT 5]1110] for attractive forces the calculated result is about

80% of the simple prediction of eq. 3.30 while for repulsive
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forces it is about 160-180%. This is as though one should use a
U(r) with r a little larger than d in eq. 3.30. As (QdZ/D) be-
comes larger, the trends are affected by the changed dependence
on this variable. A similar analysis for large Jgtj(A) utilizing
eq. 3.26 suggests that for (Qd2/D) small, P; should only depend
weakly upon Coulomb forces. The repulsive forces yield an en-
hancement (typically less than 50%), while attractive forces give
reductions by factors up to 3. These effects may again be under-
stood by recognizing that for higher Jjy-values the region of
effective polarization moves out to r > d where the Coulomb forces
are reduced.

When Oseen's tensor is included, one sees effects which can
be ragionalized similarly. Thus for small J;,, (P3)os/Pa = T108/71%
F6s/F* ~ 1, while for much larger Qd“/D, this ratio » f*/f*.  The
results for high J,, show only a small effect, again because the
effective region is r > d, where Oseen tensor effects are reduced.

3.3 Convergence of the solutions

The above results are based upon obtaining convergence with the
finite difference method. One can summarize these conditions as:
(1) Ar must be small enough; (2) ry and ry must be large enough;
and (3) s be small enough that the limit s - O has been achieved.
Condition (1) is found to be satisfied 1f J(r;)/J(ri+ir) = T <5,
while (2) for ry requires that J(ry) << Q. Note that a small s
implies a large t. That is, consider eqs. 1.51 and 1.52. The
limit on p(r;,s) is achieved when s << Twminlz where wyin is the
smallest non-zero eigenvalue of W; while for p(rj,t) it is achieved
when t~1 << [wminl' Thus, we see that the s and t needed for con-
vergence should be approximately related as s, ,,, "V tE%nv. In
general, one finds that s,on, = Q (provided ry is sufficiently
large). 1In particular, for CIDEP one has

s < Q/3 (3.31a)
while for CIDEP one has:

Sconv S Q/80 (3.31b)

(where Scony Mmeans that the associated P* or F* is within 107 of
its limiting value) e.g., for Q ~ 10 sec'l6 P is generated in

about 3%x10~% sec and F* takes about 0.8x107° sec to develop.

This large difference between CIDEP and CIDNP convergence
may be understood in terms of the basic re-encounter mechanism.
Thus CIDEP involves the two-step path, e.g.,

Q J(r)

et Ly

P == P -.p = +p ’
T, S,TO TO,S S,TO TO,S
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only the first of which involves Q-mixing and re-encounters. On
the other hand, CIDNP involves two successive Q-mising steps, e.g.,

Seo -0 .
S S To
Thus re-encounters after longer periods of separation are needed
for CIDNP. Also, as the polarization effects take longer to de-
velop, other processes such as individual radical T1's and Tp's
(ca. 1076 sec) and scavenging reactions, begin to affect the po-
larization process (cf. [6]). Note that a position and spin-in-
dependent "radical-pair"-scavenging reaction can be introduced by
adding a term -kp to eq. 1.27 (or eq. 1.29). This does not affect
the diagonalization of W. Hence the new eigenvalues become wi: =
(Wjj-k). This is equivalent to letting s + s+k in eq. 1.51, so
instead of taking the limit s + 0, one may now take the limit
s + k., But now lim sp(ri,s+k) = 0 for finite k. However, if we

s~>0
look at the polarization of the radical pairs, as they are scav-
enged, then we want to collect the polarization contributions
expressed as the time integral:

Pr "—Q—"’ST T Pr
0 ) 0’

P = J P, (t)kdt = kP, (s=0) = kP(s-k) (3.32)
o K k

where Pp(t), etc., implies that we have included —ké in the den-
sity matrix equation of motion.

Similarly, we have for F*:

F* = J F:(t)kdt = kFl’:(s=0) = kF*(s=k) (3.33)
0

Equations 3.32 and 3.33 thus replace eqs. 2.9 and 2.10. When
k>0 these two approaches become equivalent. But when k2 Sconv’
the polarization generating mechanism will be interfered with by
the rate process. In particular for s (or k) > 3Q one finds that
instead of the (de/D)’z dependence of P: and F*, one now obtains
P° « (Qd?/D) and F* « (Qd2/D)2. This is due to the fact that the
polarization processes are quenched before the reencounter mecha-
nism can be effective, and it is only the effect of the initial
encounter which can be observed. The linear and quadratic depen-
dences of P and F* on (de/D) reflect the respective one and two
step Q-mixing already noted. The initial encounter mechanism is
discussed in more detail in the previous chapters. Note that the
logarithmic correction used in eq. 3.11 and Table 1 for F* may
well be reflecting contributions from the initial encounter
mechanism as QdZ/D gets large. See also eq. 3.29 and Table 2 for
PZ, where the role of the initial encounter mechanism is even
clearer.
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The convergence of the solutions with ry (for small enough s)
may be related to that for s just discussed. Thus, if we use the
diffusion expression

D = <Ar’>/6t = (ZrN)2/6t (3.24)

(where we have assumed that the radical-pair must diffuse apart
to ry and then return for a re-encounter after maximum separa-
tion), then we have:

rjds Gr 0/ s Ooss aHie 0/F  (3.35)
N © 2 “conv Y conv ‘

Thus, as Q decreases (or D increases), reencounters after longer
distances of separation are needed to provide effective Q-mixing
and a larger ry is required.

3.4 Self-consistent method

In the self-consistent method, one sets K = 0 in eq. 2.6, and one
uses the complete form of F(r)T in eq. 2.7. As a result, the
diffusion becomes spin-dependent due to the spin-dependent forces,
and the reactivity is explicitly included for |[AJ(r)/kT| >> 1.

The results of such a model have been summarized in [6], and we
only touch some of the salient points here. In particular, Fig. 1
corresponds to Ugg(r) = -Urr(r) = -hJ(r), r > d and Ugry(r) =
UTOS(r) % 0. This results from recognizing that from hydrogen-
atom-pair potential surfaces

Ugg () = (Hy + H)/(1 +5) (3.36a)
Upp(E) = (Hy = ) /(1 + 8) (3.36b)
where Hy is the "Coulomb integral," H; = -fiJ(r) the exchange inte-

gral, and S is the overlap integral. Our simplified model is
based upon the fact that Hy >> Hg for r > d and Hy is the main
source of the attractive forces, while S tends to be small. The
strong Coulomb repulsive forces for r < d are approximated by a
reflecting wall at r = d corresponding to Ugg(r) = Upp(d) for

r <d. It is this model, for which USTO(r) 2 0, so that pgrs(r)
experiences no net forces, that is approximated by the use of eq.
2.19 as discussed above. [Suppose, however, we were to employ a
model for which Ugg(r) = -U(r) and Upr(r) = 0 for r > d, corre-
sponding to an attractive and binding potential for singlets but
no potential for triplets (i.e., Hg ~ Hj). Then USTO(r) = -LU(r),
and the resulting self-consistent model would bear a close relation
to the phenomenological approach based upon eq. 2.18.]

The main results of the SC model are to demonstrate that
(1) since substantial CIDNP polarizations require non-negligible
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values of A, and large values ﬁJO/kT >> 1 are required for reac-
tivity, then the finite range and magnitude of J(r) must be con-
sidered in a complete treatment of CIDNP; (2) the effect of the
spin-selective reaction of singlets is well approximated by the
ASC method (cf. eq. 2.19) in which only the diagonal density
matrix elements for singlets react; (3) to a large extent (for
RI), the CIDEP polarizations are independent of the details of
the spin~selective chemical reaction and they are just linearly
dependent on F, i.e., one may just as well use the ASC method as
the SC method to calculate P”/F (although P® and F are signifi-
cantly altered); however, (4) since the reaction region is around
r v d, the CIDEP polarization is developed in a region for which
r > d such that AJ(r)/kT < 1.

Note that 7q and F* are easily calculated by eqs. 1.60 and
3.12, respectively, with U(r) = KJ(r), and with § = 0, as expected
for very short range interactions. When A < 10"3, then one begins
to see CIDEP polarization effects due to the differences in diffu-
sion rates for singlets versus triplets in the polarization region.
This leads to a slight excess of singlets generating polarizations.
Such effects might possibly be of importance for faster diffusion
where non-negligible values of P®/F are predicted, but F itself is
negligibly small [3].

3.5 Nonspherical radicals

While all current theories are for spherically symmetric exchange
interactions, most interacting radicals are expected to display
anisotropic features in their exchange interactions and their
ability to react. On the basis of our discussion of the SC method
it is possible to make some qualitative comments about effects
from nonspherical features. First we note that for CIDNP, one
expects the primary effect is to lead to a reduction in A compared
to that predicted for a spherically-symmetric J(r). This is be~-
cause only that fraction of reencounters for which AJ(¥)/kT > 1

is important. The effect on CIDEP will, however, be different.

It is illustrated in Fig. 2 for a spherical radical (e.g., H atom)
interacting with a nonspherical one. Only in Region 1 is ﬁIJOI/kT
> 1, as required for a reaction to occur. When a reaction can
occur, net triplet character (symbolized by F) is created. Then
subsequent reencounters will occur at different regions in Fig. 2
each with its own characteristic range of values of J. Thus while
geometric factors will substantially reduce F (via the reduction
in A), one may still anticipate that P”/F (which is independent

of F for spherical radicals) need not be very significantly
altered. This 1is because a wide range of J values experienced in
reencounters can still lead to comparable polarizations, largely
due to the asymptotic dependence of P*/F on Jg (cf. Fig. 2b).
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P®(max)/#

2 P® (asympt)/#
log(P™/%) la 1

log{Jod?/D)

b

Figure 2. Nonspherical radicals. (a) Suggested contours of con-
stant J value about a nonspherical radical interacting with a
spherical radical (e.g., J varies by a factor of 10 between adja~
cent curves). Spin-selective chemical reaction may occur only at
Region 1. (b) Typical variation of P®/F with J3d“/D for spherical
radicals showing suggested equivalent points corresponding to
Regions 1-4 in (a). (By permission from Pedersen and Freed [3].)

4. SPECIAL TOPICS
4.1 Heisenberg spin, exchange

We have already discussed the negative role that Heisenberg spin
exchange plays in the CIDEP polarization process. It is possible
to explicitly calculate the effects of spin depolarization due to
Heisenberg spin-exchange. Also, it must be included in a com-
plete treatment of signal intensities [6] (cf. Chapter by Peder-
sen). Furthermore, such calculations are useful for spin-relaxa-
tion studies involving spin exchange [15]. One obtains such
results by the finite difference approach by selecting as the
initial case: P,(t=0) = -1, or more precisely:

2RepS T (r) = 6(r-rI)/ri (4.1)
’70

while pgg = PpT = ImpS’TO = 0. The calculation then leads to
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-AP(rI) = P:(rI,t+w) -1 (4.2)

where P:(rI,tﬁw) is the polarization which remains at the end of
the collision, after having started with the initial conditions
given by eq. 4.1. Thus AP(ry) measures the change in polarization
at the end of the collision. Typical results have been obtained
for the transferred AP(dy) (cf. eq. 2.22). The results for a con-
tact exchange model [J(rj) = JoSr;,0] bear a simple relation to
the well-known analytic Tesult: ]

2

(2J011’J)

AP(d, ) = >
1+ 4(JO~+Q )T

t

5 [1-H] (4.3)
1,J

where H(QdZ/D, JOdZ/D) is a small correction due to the effect of
successive reencounters, which tend to generate new polarizations
[6] and 11 ;7 is given by eq. 3.28a. When one includes the finite
range of the exchange, then for small Jy < Jp(max) one has a very
similar result:

~ 2 1 .
AP(dy) = (ZJOTI(A) [1-H'] (4.4)
with H' =~ H and 11(}) is given by eq. 3.24. However, for
Jg >> Jp{(max), one finds that AP(d.) > 1, representing the fact

that the depolarization can occur for r > d. This effect is
approximated by:

8P(d,) = g(34d7/D, Ad)  for (|3g]a’/D) »> 1 (4.5)
where

8(3ga°/D, 2d) = 1+ 0@ a1+ (382 /p) Gy T (4.6)
The Heisenberg exchange frequency wyp is then given by [15]:

Ogg = kz(d')Np(dt) (4.7)
where we have let

kz(d') Z 2rnDd’ (4.8a)
(cf. eq. 1.10) and

a'/a = g(34%/D, Ad) (4.8b)
while p(d,) = AP(d,)/g(Jpd%/D, Ad). In this notation ky(d') is
the "effective" rate of bimolecular collisions, while p(dt)

(ranging from O to 1) is the probability of exchange per collision.

Recently the combined effect of the finite range of J(r)
and of ionic effects has been studied [16]. These results may be
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summarized by eqs. 4.7, 4.8 and the approximate forms:

2
‘ (23,1.) 2
p(d,) = 0°1 5|1 - h(Qc12/D)2 ; (4.9)
1+ (2J011) 1+ 4(J0+Q )rl
where o
2 -1, -1
T, ® [d"/DAd][1+ (Ad) “]1f* “exp[-U(d)/kT] (4.9a)
h(Qd2/D) ~ (qd%/p)%E*  for Qd2/D < 0.16 (4.9b)
and ) _1 Jod2 _1
g(Jd"/D),2d) = {f*+(xd) 1n[[ = ](Ad) f*+l]} (4.10)

The first term in eq. 4.10 is just the usual Debye-Hiickel effect
on the collision diameter, and the second term approximates the
correction due to the finite range of J(r) as well as the Coulombic
forces. More detailed results will be given elsewhere [16].

4.2 Spin polarization in two dimensions

The possibility of observing spin polarization in two dimensions
is interesting from the point of view of problems in surface
catalysis and membrane biophysics. It is no less interesting
theoretically, since it affords us a chance to explore the spin
polarization mechanism from a different point of view with perhaps
new insights. Here we summarize some of the interesting observa-
tions one is able to make, in particular from a finite~difference
polnt of view [17]. One can utilize the theory outlined in Sects.
1 and 2 for three dimensions with very little change. The main
points are that the diffusion operator given by eqs. 1.2 and 1.3
are first written in cylindrical coordinates; one integrates over
the single angle; and one assumes D,, the diffusion parallel to
the principal cylinder axis is zero, so particles remain on the
surface. Then the finite-difference solution in two dimensions
requires that we now let p(r,t) = p(r,t) and the matrix elements
of W given by eqs. 1.31 now become:

2

W a1 = (D/Ar )[(ltAr/er)] (4.11a)
and 2

W, , = -2D/Ar (4.11b)

3,3

Note, here, that W‘+j+1/w'+'-1 = (1+Ar/2r;)/(1-Ar/2r;), which says
that the rate of transition from larger to smaller values of r is
greater than the reverse rate. In three dimensions, one sees by
eqs. 1.31, that they are equal. This "inward diffusion" effect,
in two dimensions, which is purely geometrical, has a very
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important consequence, viz., te(ry) the reencounter probability
for initial separation ry, equals unity independent of ri. Thus,
no matter how far a radical pair confined to an infinite surface
is initially separated, if one were to wait a long enough time,
then they would ultimately encounter (provided only they are not
scavenged or destroyed in some other manner). This has to have
important consequences in the spin polarization process, since it
means that the radical-pair "collision" is never complete as
t>®, unless other processes, such as radical scavenging, radical
T1, or radicals leaving the surface succeed in terminating the
process.

We have presented a preliminary summary in ref. [18]} of S-T,
results for finite ry but as t+«, The effect of an outer col-
lecting wall at ry is to terminate the process, but our results
show they tend toward their limiting values for ry-+® as a func—
tion of 1n(ry/d). Here we summarize some of our S=Ty results [18]
from the other point of view of large ry but finite t, or more
precisely finite s > 0. In order to do so, it is useful to define
a quantity L given by:

L(s,c) = In[l + c(D/sd®)?] (4.12)

so lim L(s,c) + «», Then for L(s,2) > ln(rI/d) one has:
s+0
ln(rI/d)

tf(rI) 1 - 1+—l_(—5‘.,—2)~ (4.13)

which approaches unity as s + 0. Similarly, one has for A(s):

leL(s? 4/3)

Ms) = 5 krlL(s, 4/3) N (4.14)

T

so the reactivity also approaches unity as s + 0. This makes
sense, since for finite k > 0, the radical-pair will continue to
reencounter until they finally react. We may therefore think of
T1, the effective duration of the collision as becoming 71iL(s, 4/3).
Now, for CIDNP:

Fa(s) = @20)® T
s 2, 2,.-0.2 Py 2, 0:2,, %
1+(Q/2s)"(Qd" /D) [L(s,2 ®)] 7[1+(Qd"/D) "“I¢s,2 %]
2 (4.15)
which for small sd“/D becomes :
L(s,27% (qa?/my -2
F* = 2 (4.16)

1+ L(s,27%) (qa?/;)0+2 .
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which increases as s >+ 0 to its maximum value of unity. Equation
4,15, in its essentially quadratic dependence upon Q, is thus very
different than the Q% behavior of eq. 2.32 which is appropriate
for three dimensions. In fact, it is more nearly the behavior
associated with an "initial encounter' mechanism (cf. discussion
below eq. 3.33). On ‘this basis, one might venture to suggest

that in two dimensions, the role of the initial encounter, in
which Q mixing occurs during the encounter, is the dominant pro-
cess. The role of the reencounter is then essentially just to
begin anew the "initial encounter" process.

Why is there such a change from the three-dimensional mecha-
nism? It appears likely that this is due to the "inward diffu-
sion" effect in two dimensions (cf. discussion of egqs. 4.11),
which will tend to keep the radical-pair closer together for
longer periods of time. Nevertheless, it is interesting to note
that all of the model-independent, exact relations eqs. 2.24-2.29
still hold true.

We see a very similar effect in the results for CIDEP. Thus
for contact exchange [and (4/7) (D/sd2)% > 1], one has:

5
N e (Q/s) 2J011,J
Pa(s) > o 7 (4.17)
1+b(Q/s)(Qd"/D)~ {1 + (ZJOTl J) L(s,7)

with b =5/2 and € = 0.2 for (2Jg7q J) (13/4)L(s, 4/7) << 1 and

3/4 and € = -0. 15 for (2J011 J) (13/4)L(s, 4/7) 2 1. Equation
4 17 shows a linear dependence on Q, which is again just what is
expected for the "initial encounter' mechanism. When we introduce
a finite A, then the results are approximated by:

Pa(s) - (8/7) (Q/s) . 2‘]011()‘)
1 +— (Q/S)(Qd /D)
for (2J0'rl(>\)) 3 L(s, &y << 1 (4.18a)

with

T ) = %% [1 +%x1—d] (4.18b)
and by: 3 02

(D/ZOSd ) 2(Qd /D) [2Jorl.u)]
P (8) = 4. .2.75 0.85, .2

+l23-[L( 4127 0/20sa%) %2(0a?/m)° % (@?/x () ®

o, (4.19)
for (ZJO'rl()\))2 %-L(s;%) > 1.

On the other hand, the results for Heisenberg spin exchange
do not suggest a fundamental change in mechanism, except for the
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fact that tf = 1. Thus for contact exchange one has:

[L(s, 17 I 7))
AP(s,d. ) = ) 7 73 [1 - f] (4.20)
L+ [L(s,7p 1205 + QD)2

where £(Qd?/D) ~ (Qd2/D)* for Qd2/D"< 1, and £(Qd2/D) = 1 for
Qd“/D 2 1.6. One can recover the three-dimensional result of eq.
4.3 merely by letting L(s, 3/10) + 1 in eq. 4.20 [except for
£(Qd2/p)].

Again, for finite A we have:

8P (s,d,) = [L(s;li)]Z(ZJOTl(A))Z[l-f]

for (2J0T1(A))2[L(s,l§)]2 « 1 (4.21)
and 2
ln(l+Jod /D) 2 15.2
B(s,d) v 1+ ze—5e— for 20;7, 0L, 2% 2 1
— [L(S’T)]
V3 (4.22)

The above results can be approximatéiyk;glated to solutions sum-
marized in [18] for A, F*, and P, as a furvtion of ry/d by letting

1
2J (4.23)
Another very interesting feature of the two-dimensional
theory compared to three dimensions is the fact that the conver-
gence conditions on ry, and ry are significantly altered. These
changes occur because of the (1+Ar/2r;) factor in eq. 4.11 for
W; s+1, and because of the new role of the reencounter process.
Ohé finds that the "inward diffusion" effect is considerably
amplified by introducing the factor f >> 1 at ry (cf. eqs. 1.40),
and this interferes with the convergence of the solutions. That
is, in ¢ space, one is introducing an additional reflected "wave"
component at ry. Such an effect is found to be unimportant in
three dimensions but of considerable importance in two dimensions.
Thus, it was deemed desirable to avoid altogether any change in
the finite-difference element (i.e., let f = 1). This means that
it is not conveniently possible to use values of rN/d v 10° as
was found necessary for convergence in three dimensions. However,
because of the changed role of the reencounter mechanism in two
dimensions, and the relatively simple asymptotic dependence on
In(ry/d) [17,18], it becomes only necessary to use values of rN/d
such that the inequality

sl [(rN)2/4D][ln(rNﬂd).:N

(rN/d)z[ln(rN/d) --%] > 4D/d%s ~ 4Dt/d2 (4.24)

(cf. eq. 4.23) is obeyed; i.e., ry is large enough to converge to
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the correct solution for finite t (or s). Once this 1s satisfied,
the solution is obtained as a function of s anyway! In this
manner, satisfactorily convergent solutions are obtained for
<
ry ~ 25
N -

The use of these quantities A(s), F*(s), Pa(s), and AP(d.,s)
in the time-evolution expressions of actual observables (cf. E6]
and Pedersen's chapter for three dimensions), will be given else-
where [17]. However, we may simply note here that if k represents
a first order rate constant for interrupting the process (e.g.,
rate of desorption from a surface), then one is interested in
values for s v k.

Finally we note these two-dimensional results are a good
example of how, by a combination of approximate fits of the numer-
ical results to relatively simple analytical forms, one is able
to obtain a great deal of insight into what is physically a very
different result than in three dimensions.

4.3 Low-field spin polarization

Low-field spin polarization is discussed in Adrian's chapter.

One finds that only CIDNP effects are important, while CIDEP
effects are too small to be of interest. From our point of view,
in low fields it is necessary to include the pr,T+ terms in eq.
2.11 to determine the CIDNP effects. This is because of the sig-
nificant role played by S-T47 mixing by the hyperfine interac-
tions. That is, suppose one of the interacting radicals has no
nuclear spins, while the other has a nuclear spin I. We class
the combined electronic and nuclear spin states by |i,MI> where

i =8, Tg, or T4+, while My is the nuclear-spin quantum number.
Then we can write for the Hamiltonian H(r) [cf. eq. 2.13] in this
basis:

]s,MI> |T0,MI> T M -1> IT_,MI+1>

+°71

2J3(r) A -B Bt

A 0 B~ . B*

B— B- c- - 0

Bt B+ 0 -C* (4.25)

where:

1 -1 1
A=3 (ga—gb)eeh B, + 5 AM; (4.26a)
+ _ 1 L
B™ = 7_ A[I(I+1) - MI(MIi 1] (4.26b)

8 -

i+

1 -1 1
C” =3 (g +g )8R "By + 5 AQM £ 1) (4.26c)
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Thus, in low fields, one now has a 16x16 matrix representation of
H* for each value of r (tve., Q is still block diagonal, but each
block is 16x16). However, this leads to matrices of huge size to
be solved. Thus, for typical high-field sglutions one has ry v
5x103 &, or N~ 300 (with M~ 100, Ar = % A and £ ~ 100). In low
field, the complete super matrix will be of order 16x300 = 4,800
with a bandwidth of 33. Thus considering just the banded portion
of such a matrix, one needs to store ~ 160 K elements as double
precision complex numbers (16 bytes/matrix element). This means
that the matrix storage alone requires about 2.4 Megabytes of
core, in order to employ a standard matrix inversion routine,

such as DGELB (cf. Table A #4), which is otherwise a very reliable
method. Because of such enormous core requirements, we have been
examining other computer algorithms which would permit the exten~
sive use of storage devices, because at a given step in the solu-
tion they need only operate on a portion of the complete super-
matrix [19]. Simpler Gaussian elimination methods (cf. Table A
#5) can be used in such a manner. But, without employing Gaussian
elimination with complete pivoting as does DGELB, one encounters
difficulties, because the CIDNP super-matrices are ill-conditioned.
For our purposes, this means that for small s, the off-diagonal
elements of @ are not small compared to the diagonal elements.

Diagonalization methods, which do not require complete matrix
storage in core, and which are not subject to the ill-conditioned
problem, may well be the most fruitful, (e.g., Table A #2).

Other approaches are based on a direct study of time-dependent
solutions as opposed to solutions in Laplace space (cf. below).

4.4 Time-dependent solutions

We have already noted that the stochastic-Liouville equation in
the form of eq. 2.8 could be solved by standard matrix diagonali-
zation procedures operating on A = W' - K' + 12 (cf. Table A #1)
by analogy to the method outlined by eqs. 1.50-1.53 for diagonal-
izing W' as employed in [11]. This would yield time-dependent
solutions when desired (cf. eq. 1.52). Such methods would require
the storage in core of A as well as the complex orthogonal matrix
O (provided W' -K' has been previously symmetrized by a matrix
like S of eq. 1.48).

For problems involving very large matrices (e.g., low-field
CIDNP), one may propose an alternative procedure [19]. First,
one may explicitly solve the finite difference equations in t
space [20]. That is, one solves eq. 2.1 (cf. eq. 2.8) as:

p(t) = [-1Q+H' +K']Atp(t-At) + p(t-At) (4.27)

Actually, it is found [19] that eq. 4.27 does not lead to a stable
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finite difference method, because it does not exactly preserve
conservation of probability (for K' = 0). This problem can be
resolved as follows. We first rewrite eq. 4.27 in a manner that
is correct to lowest order in At (as is eq. 4.27 itself). That is

24

o(t)
Then:
p(t)

(AtW' +1) @ - 10At +K'At)p (t-At) (4.28a)

144

(AtW' +1) [exp(-12At +K'At) ]p (t-At) (4.28b)

Equation 4.28b is the basis Of an effective finite difference
method [19]. One then solves é_for each time t in terms of the
previously obtained solution at the previous time t-At. The
stability condition on W' for such a method is

2At
(ar)?

so that the diagonal elements of W'At are smaller than unity. (A
convenient value of At ~ 10712 sec for D & 1072 cm2/sec, Ar v % &),
However, such a method still requires that A be stored in core.

We can improve on this by taking further advantage of the separa-
tion of the solution into the two parts rélating to K'-i@ and W',
and recognizing that if W' is spin-independent, then we can sepa-
rately diagonalize each L2xL2 block of K'-iQ as needed. Now the
W' matrix has simple elements (cf. eqs. 1.31). Thus, eq. 4.28b

is easily solved for each value of rj utilizing only a small por-
tion of the total LZXN dimensional space [19]. The ensuing itera-
tive process can efficiently employ an external storage device
with a minimum core requirement (cf. Table A #3).

D<1 (4.29)

In this way, one can contemplate newer computer algorithms
to solve more challenging CIDNP/CIDEP problems.

4.5 The triplet mechanism for CIDEP

This topic is discussed in the chapter by Atkins from the point
of view of analytical or perturbation methods. The main point to
be made here is that the triplet mechanism involves rotational
diffusion which modulates the zero-field triplet temsor. Thus an
analytical solution of the density matrix analogous to eqs. 1.17-
1.19 given for translational diffusion is appropriate. The eigen-
functions for rotational diffusion are the generalized spherical
harmonics. Such a point of view was utilized by Pedersen and
Freed [6,10]. When, however, the tumbling motion slows down
sufficiently and/or the zero-field splitting increases, then the
lowest order perturbation approach breaks down, and one must use
a numerical approach analogous to eqs. 1.21 and 1.22 to solve for
the coupled algebraic equations resulting from the eigenfunction
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expansions in generalized spherical harmonics. A comparison of
these numerical solutions has shown that perturbation-type
approaches are adequate for

-2

R 1 (4.30)

2 .1 .2
= = +
D > [wo T
where D is the zero-field splitting constant, wo is the ESR
Larmour frequency, and TR is the rotational correlation time.
When this inequality is not satisfied, then the numerical solu-
tions are required. They are discussed further in [6] and [10].
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