ELDOR SPIN ECHOES AND SLOW MOTIONS

Joseph P. HORNAK and Jack H. FREED
Baker Laboratory of Chemistry, Cornell University, Ithaca, New York 14853, USA

Received 25 July 1983

Abstract

It is shown how an CLDOR technique based upon spin cchoes and rapid stepping of the magnetic field may be employed to measure rotational correlation times, τR for very slow motions. Experiments on PD-Tempone in 85% glycerol/ $\mathrm{D}_{2} \mathrm{O}$ at low temperatures led to τ_{R} values of 10^{-4} to 10^{-5} s obtained with a simple analysis of the data.

Electron-electron double resonance (ELDOR) is a useful technique for studying cross-relaxation phenomena [1.2]. While it has typically been applied in the past as a cw technique [2], pulsed ELDOR is relatively unexplored [3,4]. We wish to describe here an ELDOR technique based upon spin echoes which may effectively be used in the study of slow motions.

The use of cw ELDOR for the study of slow motions was suggested some time ago by Bruno and Freed [5]. and detailed cw studies and analysis have been performed by Hyde and Dalton [6-8]. The use of spin echoes in such studies has also been suggested previously [9]. The advantages of an echo technique are (1) the absence of the radiation fields (as well as any dc field modulation) during the evolution time of the spins and the (rotational) diffusion of the molecules, $(\underline{2})$ the cancellation of effects of inhomogeneous broadening, and (3) the direct measurement of relaxation rates rather than just their ratios are obtained by cw ELDOR. Thus (1) permits a much simpler theoretical analysis (in terms of the stochastic Liouville equation [9-14]), while (2) suggests greater accuracy in data analysis (without having to resort to deuteration of spin labels) $[12,15]$ and (3) removes the need for additional techniques.

The precise technique that we have employed is a stepped-field method [16] in conjunction with a conventional three-pulse $180^{\circ}-\tau_{1}-90^{\circ}-\tau_{2}-180^{\circ}-\tau_{2}$ sequence (spin-echo STELDOR). The first 180° pulse inverts the magnetization at one resonant field H_{0}. in the spectrum. Then H_{0} is rapidly stepped by ΔH_{0} to a
new region of the spectrum, and the $90^{\circ}-180^{\circ}$ pulses are applied to yield the usual echo at time τ_{2} after the last 180° pulse. The timing of the various pulses is shown in fig. la. In this experiment τ_{1} is varied, while τ_{2} is maintained at a fixed value. The echo amplitude. as a function of τ_{1} gives the variation of the spin magnetization at the spectral region $H_{0}+\Delta H_{0}$ due to initial inversion of the spins at H_{0} (Salikhov [17] and coworkers are using a similar technique). It is thus a direct measure of transfer of spin polarization.

Our electron-spin-echo (ESE) spectrometer is described elsewhere [15,18]. Stepped magnetic fields in the local region of the ESR sample were produced by a coil wound on the inside tube of a variable temperature dewar cavity insert. The geometry of this coil was chosen to keep its capacitance low, and it was epoxied firmly to the dewar to eliminate mechanical vibration during the application of current. A specially constructed pulsed current supply provided the current for driving the coil. It was driven by a variable width and amplitude pulse from a pulse generator triggered by the ESE spectrometer. Several precautions were taken to reduce the rise time of the pulse to a minimum. They include (i) adjusting the rise and fall times of the pulse generator to match the characteristics of the pulsed current supply; (ii) selecting a suitable $R C$ combination on the input of the supply to initially overdrive its transistors; (iii) powering the circuit with two 12 V storage batteries; (iv) locating the current pulsing circuit close ($\approx 10 \mathrm{~cm}$) to the coil. A typical STELDOR fieid pulse is shown in fig. 1 b . Current pulses with a risetime of

lig. 1. (a) Pulse vequences for the stepped field ELDOR electron spin echo experiment. The first π pulse is applied at $\boldsymbol{H}_{\mathbf{0}}$ and the $\pi / 2 . \pi$ pulses at $H_{0}+\Delta / I_{\text {. The abserved echo is record- }}$ cd ds a function of the time betueen the end of the first π pulse and $\pi / 2$ pulse using the bovear signal gate set at the masimum tehol intenvity and the baseline gente at a point later on the step. (b) The stepped magnetic field as represented by the current through the STELDOR coil and measured across a 22 ma resistor in series with the coil. The risetime (to 90\% (of the prak walue) is $\approx 100 \mathrm{~ns}$ and the falltime $\approx 4 \mu \mathrm{~s}$. Highfrequency ascillation in ΔH_{0} during the first $2 \mu s$ impeded the ohvervation of an echo at times <2 μ s onto the step.

100 ns could be produced. but the characteristics of the turn-off are much poorer. This dictated that the field-step be turned on after the first 180° pulse and be maintained during the $90^{\circ}-\tau_{2}-180^{\circ}-\tau_{2}$ sequence.

We show in fig. 2 the echo-induced ESR spectrum from a $5 \times 10^{-4} \mathrm{M}$ sample of PD Tempone in 85% glycerol-d ${ }_{8}-D_{2} \mathrm{O}$ at $-86^{\circ} \mathrm{C}$. (A simple two-pulse $90^{\circ}-$ 180° sequence was used with $\tau=250 \mathrm{~ns}$). This has the appearance of a rigid-limit cw ESR absorption spectrum [11]. which is insensitive to residual rotational motion of the probe. Typical spin-echo STELDOR results are shown in fig. 3 for various temperatures. For these

Fig. 2. Echo amplitude spectrum from a fixed $90^{\circ}-\tau-180^{\circ}$ pulse sequence of $0.5 \mathrm{~m} M \mathrm{PD}$ tempone in glycerol- $\mathrm{d}_{8}-\mathrm{D}_{2} \mathrm{O}$ at $-86^{\circ} \mathrm{C}$ as a function of the externally applied H_{0} magnetic field strength (reletive to the point of maximum echo intensity taken as $H_{0}=0$).
cases $H_{0}=-22.5 \mathrm{G}\left(\mathrm{cf}\right.$. fig. 2) while $\Delta H_{0}=22.5 \mathrm{G}$. The 180° inverting pulse width is 60 ns (corresponding to an average rotating $H_{1}=3 \mathrm{G}$). A variety of tests were conducted to assure that these signals were not instrumental artifacts. Data are shown in fig. 3 only for τ_{1} $\geqslant 4 \mu \mathrm{~s}$, because, even though the rise of the field step is $\approx 100 \mathrm{~ns}$, there is a severe attenuation of the echo intensity when the 90° pulse is started earlier than $2 \mu \mathrm{~s}$ after the step. This could be due to high-frequency transients in the field during the initial "ring-time" (cf. fig. 1b).

The characteristic feature of all the curves in fig. 3 is the initial decrease in signal to a minimum followed by a slower return to an equilibrium value. This shape is consistent with a model in which a portion of the spin inversion at $H_{0}=-22.5 \mathrm{G}$ is transferred to the $H_{0}+\Delta H_{0}=0 \mathrm{G}$ region, and then it relaxes back to equilibrium. The transfer of spin polarization would be due to rotational reorientation, while electron-spin T_{1} processes would then restore the spins to equilibrium. A thorough theoretical analysis of this experiment can be provided by the methods given elsewhere [14,19]. Instead of this time-consuming and arduous analysis, we present here a simplified approach, which may be expected to give correct order-of-magnitude estimates of τ_{R}, the rotational correlation time.

First we note that ew ESR spectra of PD Tempone in $\mathbf{8 5 \%}$ glycerol have been previously fit to a model of

Fig. 3. Stepped field ELDOR echo amplitude versus time in $\mu \mathrm{s}$ between the first 180° pulse and the 90° pulse for a 0.5 mM PD tempone in 85% glycerol-d $\mathbf{d}_{2}-\mathrm{D}_{2} \mathrm{O}$ at (a) -73 , (b) -93 , (c) -103 , and (d) $-124^{\circ} \mathrm{C}$. The circles represent a seven point smoothing of the data obtained by averaping of $(45-180) \times 10^{3}$ pulse sequences. The solid line is the best non-linear lenst-squares fit to the data.
moderate-to-large angle jumps [20]. The limiting case of large angle jumps would imply that a rotational jump at rate $\tau_{\mathbf{R}}{ }^{-1}$ would occur to all angles on the unit sphere with equal probability, independent of initial angle. We find that to within a factor of ≈ 2, the same ELDOR effect is observed as ΔH_{0} is varied from ± 28 to $\pm 10 \mathrm{G}$ (keeping $H_{0}+\Delta H_{0}=0 \mathrm{G}$), and this is consistent with large angle jumps. (For $\left|\Delta H_{0}\right|<10 \mathrm{G}$ one begins to ob-
serve the direct spin inversion effect in the region H_{0} $\approx 0 \mathrm{G}$ that is initially produced by the first 180° pulse. It is distinguished by the minimum signal occuring at $\tau_{1} \approx 0$.) We therefore invoke the theory previously given for time-dependent slow-motional ELDOR [9, 10] in the strong-jump and very slow motional limit. In this limit, we find that the orientation-dependent echo-signal, $\Delta S\left(\Omega_{i}, t\right)$ at Euler angles specified by Ω_{i}
due to initially madating at Ω_{i} is given by:

$$
\begin{align*}
& \Delta S\left(\Omega_{i}, t\right) \propto\left(-1 / S_{\pi^{2}}^{2}\right)\left\{\exp \left(-w_{00} t\right)\right. \\
& \quad+\exp \left(-i^{\prime} t\right)\left[S \pi_{i}^{2} \delta\left(\Omega_{i}-\Omega_{j}\right)-1\right] \tag{1}
\end{align*}
$$

where $w_{00}=T_{1}^{-1} \cdot u^{\prime}=T_{1}^{-1}+\tau_{R}^{-1}$. and $\delta\left(\Omega_{1}-\Omega_{j}\right)$ is the Dirac delta function ${ }^{\circ}$. Here T_{1} is the electronspin T_{1} which is largely independent of orientation. Thus. if $\Omega_{i} \neq \Omega_{j}$ one has:

$$
\begin{align*}
& \Delta S\left(\Omega_{i}, t\right) \propto\left(-1 ; S_{\pi^{2}}^{2}\right)\left[\exp \left(-w_{0} t\right)-\exp \left(-w^{\prime} t\right)\right] \\
& \quad \Omega_{i} \neq \Omega_{j} . \tag{2}
\end{align*}
$$

Ey. (I) clealy show's that there will be a non-negligible effect only if τ_{R} is not much longer than T_{1}. In actual fact, a range of Ω_{j} are affected by the first 180° pulse. while the detecting pulses "observe" a range of Ω_{i}. Thus we mas write:

$$
\begin{align*}
& S\left(\widetilde{\Omega}_{i} \cdot \tau_{1} \cdot \tau_{2}\right)=S_{0}\left(\widetilde{\Omega}_{i} \cdot \tau_{2}\right)\left\{1-C\left(\widetilde{\Omega}_{i} \cdot \widetilde{\Omega}_{j}\right)\right. \\
& \quad \times\left[\exp \left(-s_{\left(10_{1} \tau_{1}\right)}\right)-\exp \left(-w^{\prime} \tau_{1}\right)\right] ; \quad \widetilde{\Omega}_{i} \neq \widetilde{\Omega}_{j} \tag{3}
\end{align*}
$$

where $S_{0}\left(\widetilde{\Omega}_{i}, \tau_{2}\right)$ measures the echo signal from a conventional $90^{\circ}-\tau_{2}-180^{\circ}-\sigma_{2}$ sequence that arises from the appropriate range of orientations centered about Ω_{i}. Also, $C\left(\widetilde{\Omega}_{i}, \widetilde{\Omega}_{j}\right)$ is a factor determined by the range of orientations centered about Ω_{i} whose spins are imtally inverted and the range about Ω_{j} whose spins are "observed". It is both an instrumental factor via H_{1} (and its inhomogeneity oser the sample) and a function of the spectral lineshape of fig. 2. This factor can be removed from the analysis by solving for $\tau_{1 . m i n}$ such that $S\left(\widetilde{\Omega}_{i}, \tau_{1}, \tau_{2}\right)$ is a minimum. One easily obtains:
$\ln \left(1+T_{1} / \tau_{\mathrm{R}}\right)=\tau_{1 \text {. min }} / \tau_{\mathrm{R}}$.
Also, one finds that τ_{1}.min is accurately determined from the experimental data. Eq. (4) plus independent measutements of T_{1}, uthlizing strong irradiating pulses of conventional $180^{\circ}-90^{\circ}-180^{\circ}$ sequences (without field stepping) $[9.10,15.19]$ can then be employed to obtain τ_{R}. These results can be independently verified by means of a non-linear least-squares fit of the data to eq. (3) to obtain the rate constants directly.
\doteqdot The opposite limit of brownian reorientation is characterized be 4 sum over many evponential decays with rate constants $"_{I L L}=T_{1}^{-1}+L(L+1) / 6 \tau_{\mathrm{R}}$ for integer L ranging from zero to infimt [9,10].

[Fis. 4. (a) Mean values of $w_{00}(\bullet)$ and $u^{\circ}(\bullet)$ in $\mu \mathrm{s}^{-1}$. The solid lines are drawn to guide the eye. (b) Arrhenius plot of τ_{R} in μs versus inverse temperature in $10^{3} \mathrm{~K}^{-1}$.

Results covering the temperature range of $-73^{\circ} \mathrm{C}$ $10-124^{\circ} \mathrm{C}$ are shown in fig. 4 for w_{00}, w^{\prime}, and τ_{R}. We found that $C\left(\widetilde{\Omega}_{i}, \Omega_{j}\right) \approx 0.06$ consistent with the fact that only a weak region of the low-field transition was observed (neglecting any effects of nuclear-spin flips). The estimates of τ_{R} range from 10^{-5} to $10^{-4} \mathrm{~s}$, a time regime previously accessible only by cw saturation transfer techniques $[6,21]$. Below $-124^{\circ} \mathrm{C}$ the echo signals become weak, so it becomes difficult to measure the ELDOR effect. We expect that, as the techniques are perfected, $\tau_{\mathrm{R}} \approx 10^{-3} \mathrm{~s}$ should be accessible to study. In order to measure τ_{R} values significantly
faster than $10^{-5} \mathrm{~s}$ it will be necessary to "stabilize" the stepped field in times much shorter than $2 \mu \mathrm{~s}$, so that shorter τ_{1} values may be used. This latter requirement would also be necessary to extend the method to motionally narrowed spectra, wherein one would study cross-relaxation and nuclear spin relaxation rates rather than $\tau_{R}^{-1}[1-4]$.

The results on τ_{R} in fig. 4 b are significantly faster than those obtained from a simple extrapolation of the motionally-narrowed results [20] utilizing an Arrhenius plot with activation energy $E_{\mathrm{a}}=15.2 \mathrm{kcal} /$ mole (or with a temperature dependent E_{a} that increases with $1 / T$] [22]. Instead, we obtain from fig. 4: $E_{\mathrm{a}}=2.2 \mathrm{kcal} / \mathrm{mole}$ (and $\tau_{\mathrm{R}}=5 \times 10^{-8} \mathrm{~s}$) in the very slow motional regime studied here. Recent hydrodynamic theories [23.24] predict a saturation effect on the increase in τ_{R} with $1 / T$ in the very viscous limit (i.e. τ_{R} is approaching an asymptotic value independent of temperature) with some supporting observations reported on other systems [23], and this could be compatible with an apparently small E_{a}, but further work of this type would be required to adequately explore this possibility ${ }^{\dagger}{ }^{\dagger}$.

In summary, spin-echo ELDOR shows considerable potential for the direct measurement of rotational correlation times for very slowly rotating spin labels and probes. Simple analysis of the data allows approximate estimates, while the more complete theory [14,19], including full description of the microscopic model and the inclusion of effects of nuclear spin flips, can be performed to obtain accurate microscopic data. Improvements in experimental techniques to allow rapid "jumps" bet ween pumping and observing spectral regions, to provide a more homogeneous microwave field over the sampie, and general improvements in ESE methods can be expected to extend this potential.

We wish to thank Drs. V.S.S. Sastry and Uzi Eliav as well as G. Millhauser and L.J. Schwartz for their considerable help with this project. This research was
$\dagger \dagger$ One can estimate, for our viscous and dilute samples, the role of intermolecular spin-relanation processes such as electron-spin exchange and electron spin dipole-dipole interactions in the transfer of spin polarization. One finds they are of negligible importance [utilizing a StokesEinstein (SE) model] compared to the direct effect of the molecular rotation. However, this is best checked experimentally by performing concentration-dependent studies.
supported by NSF Grant No. CHE 8024124 and NIH Grant No. GM-25862.

References

[1] J.S. Hyde, J.C.W. Chien and J.h. Freed, J. Chem. Phrs. 48 (1968) 4211.
[2] M. Dorio and J.H. Freed, eds., Multiple electron-spin resonance (Plenum Press, New York. 1979).
[3] M. Nechtschein and J.S. Hy-de. Phys. Rev. Letters 24 (1970) 672.
[4] L. Kevan and R.N. Schwartz, eds., Time domain electron spin resonance (Wiley, New York. 1979).
[5] G.V. Bruno and J.H. Freed. Chem. Pins. Lenters 25 (1974) 328.
[6] J.S. Hyde, M.D. Smigel. L.R. Dalton and L.A. Dalton, J. Chem. Phys. 62 (1975) 1655.
[7] L.R. Dalton, B.H. Robinson, L.A. Dalton and P. Cotfey. Advan. Maミn. Reson. S (1976) 149.
[8] L.A. Dalton and L.R. Dalton, in: Multiple electron-spin resonance, eds. M. Dorio and J.H. Freed (Plenum Press. New York, 1979) ch. 5.
[9] J.H. Freed, in: Time domain electron spin resonance, eds. L.N. Kevan and R.N. Schwartz (Wiley, New York, 1979) ch. 2.
[10] J.H. Freed, J. Phys. Chem. 7 S (1974) 1155.
[11] J.H. Freed, G.V. Bruno and C.F. Polnaszek, J. Phys. Chem. 75 (1971) 3385.
[12] J.H. Freed, in: Spin labelins: theory and applications. ed. L.J. Berliner (Academic, Press. New York. 1976) ch. 3.
[13] A.L. Stillman and R.N. Schwartz. in: Time domain electron spin resonance, eds. L.N. Kevan and R.N. Schwartz (Wiley, Nen York, 1979) ch. 5.
[14] L.J. Schuartz, A.E. Stillman and J.H. Freed. J. Chem. Phys. 77 (1982) 5410.
[15] A.E. Stillman and R.N. Schwartz, J. Phys. Chem. 85 (1981) 3031.
[16] S.K. Renwan, V.R. Bhagat, V.S.S. Sasiry and B. Venkataraman, J. Maミn. Reson. 33 (1979) 227.
[17] K.M. Salikhov, private communication.
[18] J. . Norris, M.D. Thurnauer and M.K. Bowman, Advan. Biol. Med. Phys. 17 (1980) 365.
[19] L.J. Schwartz and J.H. Freed, unpubhshed.
[20] J.S. Huane, R.P. Mason, L.P. Hwang and J.H. Ireed. J. Phys. Chem. 79 (1975) 489.
[21] J.S. Hyde and L.R. Dalton, in: Spin labeling: theory and applications, Vol. 2, eds. L.J. Berliner (Academic Press. New York, 1979).
[22] S.A. Zager and J.H. Freed, J. Chem. Phys. 77 (1982) 3344.
[23] D. Kivelson and P.A. Madden, Ann. Rev. Phys. Chem. 31 (1980) 523:
J.L. Dote, D. Kivelson and R.N. Schwartz, J. Phys. Chem. 85 (1981) 2169.
[24] S.A. Zager and J.H. Freed, J. Chem. Phys. 77 (1982) 3360.

