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A multidimensional Fokker-Planck-Kramer equation for rotational relaxation of small solutes in complex liquids is devel- 
oped wherein collective solvent effects are explicitly represented by rotating torques and stochastic fields. A simplified version of 
the model is apptied to interpret the breakdown of the Hubbard-Einstein relation at high viscosities. 

1. Introduction 

The usual approach for modeling rotational relax- 
ation of solute molecules in molecular liquids is based 
on the classical treatment of a Brownian object ro- 
tating in a homogeneous fluid. Based upon the orig- 
inal contribution due to Debye [ 11, the only rele- 
vant set of degrees of freedom for the system o,f solute 
molecule+solvent is the set of Euler angles (IY, 8, y) 
determining the orientation of the molecular frame 
of reference with respect to a fixed laboratory one, 
or the equivalent [ 2 1. Any solvent effect on the probe 
dynamics is included as a constant damping term 
and/or a mean field potential in which the particle 
reorients. A Smoluchowski equation [ 21, or a Fok- 
ker-Planck equation [3] when the conjugate mo- 
mentum Z is included, can readily be written and 
solved numerically to obtain any correlation func- 
tion of interest. 

Although a qualitative resemblance of simulation 
with experimental data can often be achieved within 
this simple scheme, optical [4] and magnetic reso- 
nance [ $61 experiments performed in complex liq- 
uids show that the simplified picture of a continu- 
ous, homogeneous fluid providing a simple viscous 
background for the rotating object is insufftcient. This 
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is also supported by molecular dynamics simulations 
[ 7 1. It is clearly unrealistic to expect that the com- 
plex phenomenon of stochastic torques acting on the 
probe would yield simple relaxation behavior for the 
probe, especially in extreme regimes of temperatures 
and pressure. 

In the past, many attempts have been made to im- 
prove the Debye approach and to retain the concep- 
tuaI simplicity of a stochastic model, without intro- 
ducing excessive complications. In this Letter we 
present preliminary results based on a systematic 
multimode procedure, in which explicit additional 
solvent degrees of freedom, having correlation times 
comparable to the rotating molecule under investi- 
gation, are included in order to simulate the com- 
plexity of a real liquid environment but with a lim- 
ited set of “relevant” parameters or modes. Our 
approach is in the spirit of various attempts at mod- 
eling complex liquids with a multibody or “mesosc- 
epic” description. Thus Coffey and Evans [ 8 ] have 
considered a planar two-body description and Gri- 
golini and co-workers have tried to simulate a com- 
plex stochastic environment with a small set of vari- 
ables [ 9 ] : An interesting recent contribution in this 
spirit is due to Kivelson and Miles [ 4 1. Several years 
ago a systematic attempt was initiated by Stillman 
and Freed [ 10 ] to develop a general stochastic mul- 
tibody methodology within the formalism of the 
“augmented” Fokker-Planck equations. 

One may contrast such a multi-mode or “mesosc- 
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epic” approach with that of a molecular dynamics 
(or Brownian dynamics) simulation. One can al- 
ways try to devise such simulations or “computer ex- 
periments” to be as close to reality as possible. How- 
ever informative molecular dynamics may be, it, like 
an actual experiment, requires interpretation to pro- 
vide physical insight. One would like to use infor- 
mation available from laboratory and/or computer 
experiments in conjunction with physical insights to 
define a reduced set of variables, able to describe the 
main features of the effect of the solvent upon the 
solute without having to resort to the full many-body 
description of all the degrees of freedom of the liq- 
uid. Whereas it is very difficult, purely on the basis 
of formal theory, to define appropriate “collective” 
degrees of freedom, reasonable choices can be made 
by defining solvent coordinates of a mesoscopic na- 
ture, i.e. those more or less related to well-defined 
properties of the solvent. Thus, for example, one can 
include a dynamic equivalent of the static “solvation 
sphere” widely used in the thermodynamics of so- 
lutions, and/or a fluctuating polarization by analogy 
with the reaction field used in interpreting dielectric 
relaxation in polar solvents. 

Our basic hypothesis is that the solvent environ- 
ment is described by a few local structures (or 
“cages”) relaxing with correlation times r,, , rc2 etc. 
of similar order of magnitude as the intrinsic cor- 
relation time rR for the probe, and described for- 
mally as other rotating tops or more precisely as 
torque and force fields, interacting via a given po- 
tential. We regard such a model as an approximate 
and convenient one that can be expected to repro- 
duce the level of complexity of the role of the solvent 
as observed in many experiments and simulations. 
Clearly the degree of success must ultimately be 
judged on the basis of its ability to correlate a range 
of experimental results in a consistent fashion. 

Our current objective is to provide a framework 
for modeling solvent-solute interactions using mul- 
tibody Fokker-Planck-Kramer (FPK) equations. 
A stochastic multidimensional equation is written 
and numerically solved for the conditional proba- 
bility density of the system, including all the angular 
and linear momenta. A detailed study of our method 
applied to different physical systems will be pre- 
sented elsewhere, together with a comparison with 
previous theoretical studies [ 111. Here we empha- 

size how some key weaknesses of the classic one-body 
model may be overcome by a proper choice of ad- 
ditional degrees of freedom in conjunction with ac- 
curate computations. 

The problem we consider concerns the well-known 
Hubbard-Einstein relation [ 121 

I 
7R7J= KT> (1) 

which relates the (second-rank) rotational correla- 
tion time rn to the angular momentum correlation 
time rJ for a Brownian rotor. In eq. ( 1 ), Z is the mo- 
ment of inertia of the Brownian particle, T is the 
temperature and kB is Boltzmann’s constant. In ESR 
studies [ 5,6] of linewidths (or T,) and of spin-lat- 
tice relaxation, Tl one finds that whereas ~,at//T 
(where rl is the solvent viscosity), rJa T/q only at 
high temperatures. At lower temperatures 7, is more 
nearly temperature and viscosity independent (pro- 
vided that the measured T, is appropriately attrib- 
uted to spin-rotational relaxation). Similar T, ob- 
servations have been made in NMR studies [ 13 1. 
Finally, 7J is, in general, found to be larger than pre- 
dicted by eq. ( 1 ), even when rJa T/q. 

Hwang et al. [ 51 report that the changeover from 
behavior consistent with eq. ( 1) to the “anomalous” 
behavior occurs for the probe PD-Tempone in sev- 
eral solvents for rRR> lO_” s, corresponding to 
tJ< 5 X 1 O- I4 s according to eq. ( 1) , with similar re- 
sults for the dianion radical peroxylamine disulfon- 
ate [ 141. They point out that “such values (of rJ) 

are already of the order of, or faster than molecular 
vibrational periods. Thus, one can question the 
interpretation and physical meaning of z,...“, In fact, 
it is unrealistic to think that tJ can continue to de- 
crease in accordance with eq. ( 1) as rn increases with 
viscosity. Hwang et al. proposed a simple model 
wherein the finite relaxation time of the fluctuating 
torques was taken into account, but to lowest order. 
Such a perturbation approach did not predict any 
breakdown in eq. ( 1). 

It has remained as an open problem whether a sys- 
tematic treatment of stochastic solvent modes (either 
considered as fast fluctuating torques or slowly re- 
laxing local structures, cf. refs. [ $6,101) would able 
to account for this and other weaknesses of the clas- 
sic one-body approach. In the following we present 
some computational results based on a simplified 
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multidimensional stochastic model that suggests, at the system is assumed to be governed by a FFK op- 
least partially, a positive answer to this question. erator f 

2. General formulation 

We shall denote by a, a set of Euler angles defin- 
ing the orientation of the solute molecule (hereafter 
body 1) . Since we explicitly consider inertial effects, 
the momentum vector Z, is included in the relevant 
set of degrees of freedom. A second rotating top, de- 
scribed by an analogous set of coordinates and mo- 
menta @ and Z2, is coupled to the probe. It might 
be thought of as a collective structure of solvent mol- 
ecules reorienting at roughly the same range of rates 
at which the probe moves. In order to explicitly 
model the dissipative interaction of the probe and 
the solvent cage with the rest of the solvent, a sto- 
chastic field X and its conjugate momentum P is in- 
cluded, coupled both to body I and body 2. For a 
simple electrostatic representation of the solvent, one 
can think in terms of a polarization variable, or to 
the stochastic analogue of the static Onsager reaction 
field [ 151. However, the physical interpretation of 
the third set of coordinates should be considered as 
less precise. In fact, we could alternatively treat the 
“third body” by rotational rather than translational 
degrees of freedom with no substantial changes in 
the qualitative nature of the final results, in view of 
the lowest order treatment (cf. below) accorded to 
them [ 111. Its major role is to account for the fast 
(but not very fast) stochastic processes due to the 
solvent and affecting the probe. A small damping 
term is also included, due to the interaction with all 
the remaining unspecified very fast solvent degrees 
of freedom. 

f=z+, tp; t&, (2) 

where r, and p* are the rotational Framers opera- 
tors for the first and second tops and p’ is the trans- 
lational operator in (X, P). An isotropic fluid, cor- 
responding to spherical symmetry is assumed for 
simplicity; the explicit form of the rotational oper- 
ator for the nth body (n = 1, 2) is 

fn,= fZ.J,, tT,,V,,-k,TC:V,, 
II ( 

V,,+ +=Z,, . 
n B ) 

(3) 

Here J, is the operator (defined according Hwang 
and Freed [ 17]), proportional to the infinitesimal 
rotation operator and L, is the angular momentum; 
V, is the gradient operator in Z,; I,, is the (scalar) 
moment of inertia, lt is the friction acting on the 
body due to the very fast solvent degrees of freedom. 
Finally T, = - iJ, Yis the torque on body n due to the 
interaction potential V expressed as a sum of pair 
potentials involving the three bodies. An analogous 
form is written for the Cartesian term f’, 

f’,= ~PV~tFVp-kBT@+‘p+ $TP). 
B 

(4) 

VX, VP are the gradient operators respectively on X 
and P, A4 and & are the scalar mass and friction as- 
sociated with the stochastic field; F= -V,I’ is the 
force acting on X and due to V. 

The potential function V has been taken according 
to the following general form: 

The field X behaves as the source of “fluctuating 
torques” [ 10,161 acting on both the probe and the 
“slowly relaxing local structure” (or second body) 
[ lo,16 1, and it is identified with the solvent struc- 
ture. It should also be stressed that this minimal 
“three-body” picture could easily be generalized, and 
the number of interacting objects increased in order 
to better reproduce the complex range of stochastic 
processes in the solvent, although the numerical 
computations become more and more difftcult. 

The time evolution of the probability density for 

V=~~(P,,~~)-n,u,x-n,u,xtja~x2 (5) 

and it is a two-body analogue of the potential de- 
fined for a single-body problem in ref. [ 151. Here 
F’o(B,, 4) is the direct interaction between the sol- 
ute and its immediate surroundings, i.e. the solvent 
cage. It is always possible to write it explicitly as a 
multipole expansion in terms of first, second rank 
etc., depending only on the relative orientation be- 
tween the top bodies, i.e. &-a), [ 61. The last term 
in eq. (5) is a minimal description of the stochastic 
isotropic fluctuations of the field X, whose averaged 
amplitude depends on the unique parameter B [ 151. 
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Finally a simple linear coupling between the field and 
the nth body is realized via the scalar product of the 
field and a unitary vector II, fixed in the body; an 
obvious electrostatic analogue being the dipole-field 
interaction between the dipole A$” and the electric 
field X. 

Eq. (5) obeys all the requirements of detailed bal- 
ance as described by Stillman and Freed [lo]; the 
probability density tends to the equilibrium function 
defined by the Boltzmann distribution with respect 
to the total energy of the system given by 

(6) 

Note that it is possible to establish equivalences be- 
tween the present multidimensional FPK equations 
and the “augmented” FP equations [ lo] by means 
of a projection procedure [ 111. 

3. Reduced expressions 

In the following, we will further simplify the time 
evolution operator f of eq. (2), under the hypoth- 
esis that both X and P are much faster than the ro- 
tational motions of the iwo tops. Our principal in- 
terest is in the averaged effect of the fast stochastic 
field on the rotating solute. For this purpose a pro- 
jection procedure [ lo] can be applied to the original 
operator, and a reduced system of only two inter- 
acting bodies is obtained, governed by a modified 
FPK operator whose structure exhibits the presence 
of new interaction terms due to residual effects of 
the averaged field. First of all, there is a modified 
interaction potential given by 

from which the new torques T, and T2 are calculated 
instead of from eq. ( 5 ) . The two new potential terms 
in eq. (7 ) are obtained from averaging the original 
terms linear in X in the total energy of eq. (6). They 
represent the solvation energy of the composite sys- 
tem of solute + cage due to the undifferentiated “rest 
of the solvent”. 

Due to the coupling of the initial torques Tl and 
T2 with TX, a second interaction term arises in the 
reduced operator, which is strictly dynamical in na- 

ture (i.e. it does not affect the final energy distri- 
bution expressed by eq. ( 6 ) ) . It appears as new fric- 
tional contributions which are orientation dependent 
and proportional to the square of the coupling pa- 
rameters A, and AZ, but they are the averaged effect 
of the stochastic fluctuation of the fast field X. The 
interesting feature of this new frictional effect is that 
not only is there a large additional friction acting on 
each isolated body, but there is also a frictional cou- 
pling between the bodies that is of the same order of 
magnitude, i.e. the total viscosity on body 1 depends 
on the orientation and angular velocity of body 2 and 
vice versa. The overall friction tensor may be written 
in the form of a partitioned matrix 

where each <,, is proportional 

G = s t . J 

(&1t22)1’2uIu1 1 i3 +<2u*u: ’ (8) to TX 
(9) 

U, and U2 are 3x 3 matrices depending on the in- 
stantaneous orientations of u1 and u2 respectively, 
defined simply as 

Un=-iJ”@II,, (IO) 

where the @I sign implies that the pq component of 
U, is given by the p component of -iJ, applied to 
the q component of u,. If each vector and vector op- 
erator is defined in a fixed laboratory frame, the im- 
plicit definition of U, given in ref. [ 151 holds. 

It is interesting to note that if the total friction ten- 
sor of eq. (8) is referred to a molecular frame fixed 
on body 1 (or 2), the diagonal friction block for body 
1 (or 2) becomes a constant diagonal matrix, whereas 
the diagonal friction block for body 2 (or I) and the 
coupling friction blocks are only dependent on the 
relative orientation a,-Q, i.e. the friction is easily 
separated into a constant contribution and a time- 
dependent one, that is a function only of the absolute 
orientations of the two bodies. 

One of our principal goals in this Letter is to in- 
vestigate the effect of this dissipative interaction on 
rotational correlation times, such as the second-rank 
correlation function, tR and the angular momentum 
correlation time, rfi The averaged operator rcan now 
be written explicitly as 
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r=+,J,+T,v,-kBTv,~, v,++TL, 
1 ( 1 B > 

--k&‘%~~, VI + i-+-, . ) (11) 
I B 

This is still a very large system ( 12 degrees of free- 
dom) to be treated numerically by the FPK approach. 

One is interested in evaluating correlation func- 
tions for the reorientational relaxation of the probe 

G%(~)=(~~(~)l&,(O)) > (12) 

with j=2, and correlation functions for the relaxa- 
tion of the momentum vector L, components 

C%(t)= (L:(t) IMO)) (13) 

as well as the associated spectral densities Jym( w ) 
and JJ, (at), given by the real parts of the Fourier- 
Laplace transforms of eqs. ( 12) and ( 13). Due to 
the spherical symmetry (i.e. isotropic liquids) both 
eqs. ( 12) and (13) are the same for all values of m. 
Finally we note that rR =.&JO) and z.,=&(O). 

It is possible to perform this task effectively by 
adopting a matrix representation for the FPK op- 
erator of eq. ( 11) using an efficient set of basis func- 
tions, which are obtained by the systematic appli- 
cation of standard angular momentum coupling 
techniques [ 111. In this manner, one may benefit 
from the full spherical symmetry. In the appropriate 
coupled representation we find that only 8 coupled 
degrees of freedom are relevant [ 111. The desired 
spectral densities can be evaluated very efficiently by 
means of an iterative algorithm, especially appro- 
priate for the treatment of large sparse matrices, such 
as the Lanczos or conjugate gradient algorithm 
[ 18,191. In general, very large basis sets are required 
(up to order 105) for this task. However this is ac- 
tually the case only for physical regimes with strong 
potential effects and low frictions (i.e. inertial re- 
gimes). In this Letter we present computational re- 
sults for quasi-diffusional conditions, in which the 
effective frictional parameters are quite large (i.e. 

342 

low temperatures), so that only matrices of order 
103-lo4 were necessary. Only 100-200 s of super- 
computer CPU time were required for each spectral 
density calculation. 

4. Results and discussion 

In this Letter we limit ourselves to investigate the 
effect of additional solvent degrees of freedom on the 
Hubbard-Einstein relation, eq. ( 1 ), for two limiting 
cases. We have chosen them to make contact with 
previous similar, but more approximate, models. {A 
more general exploration of various extended models 
will be given elsewhere [ 111, ) In the first case only 
a “slowly relaxing local structure” (SRLS) is in- 
cluded. It involves the orientation-dependent poten- 
tial (i.e. I/,(0,, Q2) in eq. (5)) between the probe 
and the solvent cage. (The role of the third body is 
ignored here by setting 1, =&=O.) In this limiting 
model the reorienting probe is affected by its inter- 
action with the solvent cage, which relaxes with a 
correlation time that is slower than that of the probe 
itself [ 10,111. The explicit form of the potential we 
used is 

Vo=17=-uzPz(Q2-Q,), (14) 

where PZ ( Q2 - Cl, ) is the second-rank Legendre po- 
lynomial in the relative orientations of bodies 1 and 
2, and u2 specifies the magnitude of the interaction. 
We also consider the overdamped or (nearly) 
Smoluchowski regime, but the full FPK form has 
been retained to obtain angular momentum corre- 
lation functions and to allow for any residual inertial 
effects on rotational reorientation due to the restor- 
ing potential. (This SRLS model has previously been 
considered in the Smoluchowski limit [ 10,161, but 
that precluded the calculation of angular momentum 
correlation functions and inertial effects. ) The “sol- 
vent cage” is taken to be both larger (12/1, = 10) and 
slower (<!/<y = 10) than the solute molecule. 

As a second case, we consider the effects of the 
frictional coupling between the two bodies as given 
by eq. (8 ) . This case may be referred to as a “fluc- 
tuating torque” (FT) one [ 5, lo]. For simplicity we 
neglect the interaction potential (i.e. P may be set 
equal to zero). The FT acting on bodies 1 and 2 are 
the cause of the orientation-dependent friction ten- 
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sor (measured by parameters <, and &) that are in 
addition to the “zero-order” friction (cl and c$). 
Note that the frictional coupling has no effect on the 
final equilibrium distribution. In fact, since P=O the 
equilibrium properties are those of two Brownian ro- 
tors. (As noted in section 1, the earlier FT model of 
Hwang et al. [ 51 was only to lowest order in per- 
turbation theory and could not predict any break- 
down in eq. ( 1). Furthermore, our result given by 
eq. (8) provides a precise source for the FT, whereas 
the Hwang et al. treatment was for a very simple and 
ad hoc quasi-one-dimensional orientation-indepen- 
dent form. ) 

We show in table 1 results on ?R and rJ for the SRLS 
case for a range of values of the potential parameter, 
u2 with all other parameters kept constant. The in- 
ertial and frictional coeff%ients used for body 1 
( (/cJ/I,)‘/~=~O’~ s-’ and Ty/I, ~10’~ s-‘, re- 
spectively) are in the range appropriate for a mod- 
erately small solute molecule (e.g. PD-Tempone 
[ 5,6] ) in solvents of moderate viscosity. In fig. 1 we 
show the spectral densities for the rotational and the 
momentum relaxation at u2= 0 (no coupling) and 
u2 = 2kJ. In the limit of u2= 0, the numerical results 
are in complete agreement with eq. ( 1) and a simple 
Debye model for r,, as they should. As u2 is in- 
creased, fR substantially increases, where rJ only de- 
creases slightly. This leads to a substantial break- 
down of eq. ( 1). The increase in 511 is the SRLS ef- 
fect discussed previously [ 6,10,16] in the context of 
the Smoluchowski limit for which one can write 

Table I 
rR and r, calculated for the SRLS model with different values of 
the potential coupling ‘) 

alkJ Si 1O’O ?a( s) lOI t(s) 1 oz4 7R7, ( s2 ) 

0.0 0.000 0.167 1.000 0.167 
0.5 0.106 0.349 0.982 0.342 
1.0 0.220 0.928 0.926 0.859 
1.5 0.334 1.877 0.841 1.578 
2.0 0.434 3.092 0.741 2.291 
2.5 0.530 4.394 0.646 2.838 
3.0 0.605 5.638 0.566 3.191 
3.5 0.664 6.724 0.504 3.388 
4.0 0.7 11 7.607 0.461 3.506 
4.5 0.748 8.268 0.431 3.563 

*) The values of the other parameters are: (k,T/I, )I/‘= 10” s-‘, 
rT/I, = lOI s-’ and (ksT/12)“2=0.316x10’2 s-‘, &I, = 
10’5s-‘. 
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Fig. 1. Spectral densities for the SRLS model (cf. table 1). Solid 
lines: u2 =Q broken lines: u2= 2k,T. (a) Rotational spectral den- 
sities (note JR(0)=3.09~IO-‘o s for u2=2kBT); (b) angular 
momentum spectral densities. 

TR%(l-#)To,+$T,, (15) 

where ti is the intrinsic or Debye-model To value in 
the limit of u,=O (i.e. T~=<Y/~&T), and ~,is the 
correlation time of the solvent structure in the same 
limit. Also in eq. (15), S,= (P,(P,)) is the order 
parameter of the solute relative to a fixed solvent cage 
at the given potential. The results of table 1 are in 
reasonable agreement with eq. ( 15 ), which shows 
that as u2 increases, ~~ is increasingly determined by 
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the reorientation of the slower solvent cage; note that 
in table 1, rx/7Sg = 100. There is a slight underesti- 
mation of computed z, versus eq. ( 15 ) that is prob- 
ably due to the effect of librational motions within 
the potential well. This is a small effect given the 
strong damping, but it is of increasing importance as 
the potential is increased. 

For each computed correlation function and its re- 
lated spectral density, it is possible to look at the full 
eigenvalue spectrum, i.e. the collection of distinct 
decay constants that contribute to it. Each eigen- 
value A, contributes to the spectral density with a 
given weight c,, according to the general expansion 
[181 

J(w)=ReT&. (16) 
1 

A study of the composition of the corresponding ei- 
genvectors, in terms of the original basis set of func- 
tions, for the dominant modes in the expansion given 
by eq. ( 16) can be a very helpful instrument to un- 
derstand the physical behavior of a complex system. 
In the present case, one finds that two dominant ei- 
genmodes are present in the orientational spectral 
density: one of them is related to the free rotation of 
body 1 whereas the second is related to the free ro- 
tation of body 2. When the potential coupling is in- 
creased, the weight c, associated with the second 
mode is increased, implying that the reorientational 
motion of the solute is more and more affected by 
the motion of the solvent structure. The fact that 7_, 
is hardly affected when the potential interaction is 
strengthened (by only a factor of two for up going 
from 0 to 4.5 kaT units), may be understood by ob- 
serving that the momentum relaxation process is 
dominated by eigenmodes that are essentially char- 
acteristic of an isolated Brownian rotor, Physically, 
this may be due to the fact that angular momentum 
relaxation occurs much more rapidly, and it is not 
affected by a solvent cage that is relatively static [ 111. 

We show in table 2 results on T, and T_, for the FT 
case, for a range of the renormalized friction param- 
eters <, and &, keeping the zero-order friction pa- 
rameters <y and <S constant; in fig. 2 the spectral 
densities for &/I, ~4.0 x 1 014 s and <,/I, = 0 s are 
shown. One observes that ?R increases with increase 
in the friction &, becoming almost linearly depen- 
dent on <, when C X= t?, i.e. the dominant friction 

344 

Table 2 
sk and 5, calculated for the FT model with different values of the 
frictional coupling a) 

10-~4rJl,(s-‘) 10” Ta(S) 10” r,(s) 10” 7&(S2) 

0.0 0.167 1.000 0.167 
100.0 0.641 0.515 0.330 
200.0 0.907 0.485 0.439 
300.0 1.142 0.471 0.537 
400.0 1.369 0.464 0.635 
500.0 1.591 0.461 0.733 
600.0 1.765 0.458 0.808 
700.0 2.016 0.457 0.921 
800.0 2.228 0.455 1.013 
900.0 2.439 0.453 1.104 

1000.0 2.641 0.452 1.196 
1100.0 2.858 0.452 1.291 
1200.0 3.058 0.45 1 1.379 

a) Thevaluesoftheotherparametersare: (kBT/11)1’2=10i2s-‘, 
<y/I, = 10” s-l and (kB~/1,)“z=0.316X lOL2 s-‘, <$/I2 = 
10’4s-1. 

affecting the solute originates from the FT terms in 
this limit. On the other hand, rJ becomes virtually 
independent of c, for large values of this parameter. 
Again the Hubbard-Einstein relation is violated. A 
simple interpretation of the behavior of T-, in this case 
can be obtained by considering the full friction ma- 
trix given by eq. (8). In particular, z3 is essentially 
determined by the eigenvalues of this matrix. The 
smallest eigenvalue is directly proportional to the core 
friction (7 when & and 5; are large. Thus there is a 
cluster of decay constants (i.e. eigenvalues of the time 
evolution operator) close to ty in value. In this limit 
their associated eigenvectors are found to have the 
major effect in determining the spectral density for 
the angular momentum. If we consider the simpler 
planar analogue of the 3D case (i.e. two dipoles ro- 
tating in a plane), it is easy to write down, after av- 
eraging the fast reaction field, a simpler 2 X 2 friction 
matrix 

(17) 

after neglecting a residual orientation dependence. 
The correlation functions for the relaxation of both 
the momenta L, and L2 can be computed analyti- 
cally, and it is found that for large r, and & they are 
controlled by <? and c$? (note that eq. (17) is the 
sum of a diagonal matrix with elements <y and {! 
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w x 10-12 set 

I 

0.0 10.0 
w x 1O-12 set 

20.0 

Fig. 2. Spectral densities for the FT model (cf. table 2). Solid 
lines: &/I,=O; broken lines: <,/I,=4.OX10’4 s-’ (note 
JR(O) = 1.37x IO-” s in the latter case); (b) angular momen- 
tum spectral densities. 

and a 2@2 singular matrix, which leads to this 
property). 

A different type of behavior is observed for the ro- 
tational correlation time Q. The spectral density is 
now dominated by an eigenfunction that can be re- 
lated to a free rotation of the solute, with an in- 
creased friction proportional to <, (and an “inter- 
cept” given by the constant iy), i.e. the fluctuating 
torque has the only effect of increasing the effective 
damping on the solute, without significantly en- 

hancing the coupling with the solvent cage. 
In both the SRLS and FT models the Hubbard- 

Einstein product rRrJ can be increased by orders of 
magnitude with respect to the theoretical value pre- 
dicted by eq. ( 1) for the classic single-body model. 
One can try to infer what the effect of lowering the 
temperature would be for a physical system de- 
scribed either by the SRLS or the FT model. In the 
SRLS case, decreasing the temperature would cause 
both the friction and the order parameter to in- 
crease, so T, could initially increase somewhat faster 
than rJ decreases. However, since at low tempera- 
tures TV should be roughly equal to rX, the product 
~7, should reach a limiting, nearly temperature-in- 
dependent value that is greater than eq. (1) by the 
ratio of moments of inertia ZJI,. As to the FI model, 
when the temperature is decreased the frictional pa- 
rameters {y, 48 and & increase. The relative impor- 
tance of <, versus r? would be enhanced as the tem- 
perature is lowered (cf. eq. (9) ) if (i) & increases 
faster than (y with inverse temperature, possibly be- 
cause of enhanced collective effects (e.g. a larger 
“third body” which would have a larger friction), 
and/or if (ii) 1;, increases faster than E*. Thus the 
rate of increase of r, with temperature would be 
faster than the rate of decrease of rJ (which is con- 
trolled only by the zero-order friction in the low tem- 
perature regime). In either case, the final outcome 
is that the rRr_, product is larger than the classic value 
predicted by the free Brownian rotator model. 
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