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A many-body stochastic approach to rotational motions in liquids: 
complex decay times in highly viscous fluids * 
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A two-body Smoluchowski equation, including a solute molecule and a collective solvent mode, is developed for studying 
reorientational dynamics in complex fluids. Multiexponential decay correlation functions for first- and second-rank observables 
are computed. They exhibit bifurcation and other properties related to typical observations on glassy and supercooled liquids. 

1. Introduction 

Reorientational relaxation in complex liquids is 
still lacking a unified treatment that is capable of 
dealing with the relevant stochastic processes with- 
out excessive complications. A significant challenge 
is offered by the study of highly viscous, glassy and 
supercooled liquids. Rotational relaxation of flexible 
short chain and small rigid molecules in supercooled 
organic liquids have been studied in the past by re- 
searchers including Johari [ 1,2] and Williams [ 3,4]. 
Typical systems considered were CH2Cl, and C6HS- 
Cl in cis-decaline. More recently, Nozaky and 
Mashimo [ 5 ] have described a series of results on 
the dielectric friction of polyvinylacetate over a large 
range of frequencies. Supercooled liquids with highly 
anisotropic interactions, mainly due to hydrogen 
bonding (alcohols and water ) have been studied by 
Floriano and Angel1 [ 6 1. Magnetic resonance tech- 
niques have been applied to the study of relaxation 
processes in glassy systems. This includes the deu- 
terium NMR study by Dries et al. of the glass tran- 
sition in toluene, polystyrene and supercooled ortho- 
phenyl [ 7 1. It provided spin relaxation times ( T, and 
r,) and spin-alignment data that yield accurate in- 
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formation on slow molecular reorientations on the 
time scale 10m4 to lo2 s. 

A rough model for explaining far-infrared data 
measured for supercooled decaline was proposed a 
few years ago by Reid and Evans [ 8,9] as an appli- 
cation of the so-called “itinerant oscillator theory”. 
In a recent series of papers, Kivelson and Miles [ 10 ] 
and Kivelson and Kivelson [ 111 have focused their 
attention on the rotational relaxation of small mol- 
ecules reorienting in supercooled organic fluids, and 
they attempted a partial interpretation based on a 
“three-variable” model [ 121. Although the experi- 
mental data have to be considered incomplete, ex- 
perimental techniques sensitive to both first-rank 
tensor correlation functions (IR, dielectric relaxa- 
tion, shear compliance relaxation) and to second- 
rank tensor correlation functions (NMR, ESR, Ra- 
man scattering) suggest the presence of two main re- 
laxation processes, usually named a and B. Above a 
given “bifurcation temperature”, r, only the faster 
b process is observed: it has a low activation energy 
and the ratio between the first-rank correlation B time 
(58) and the second-rank correlation B time (T!) is 
close to 3, indicating diffusive behavior, 

rf/$ N 3 . (1) 

Below TB, the slower process cr is characterized by 
a higher activation energy and a ratio between the 
first- and second-rank correlation times close to 1, 
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ry/r; z 1 , (2) 

which could suggest the presence of a strong colli- 
sional relaxation process. This is, of course, a sim- 
plified picture reflecting the uncertainty in the ex- 
perimental data. In many cases both the a and the 
p processes are better described as non-exponential 
functions, or as convolutions of many exponential 
functions [ 131. Moreover, high frequency libra- 
tional processes are observed in dielectric relaxation 
experiments (Poley absorption or y process ) usually 
as broad signals that are nearly temperature 
independent. 

A theoretical interpretation of these experimental 
features is hardly obtained in the usual context of 
single-body stochastic descriptions, based on a 
Brownian model for a reorienting rigid molecule in 
an isotropic solvent. The presence of two main re- 
laxation processes is a clear indication of the neces- 
sity of adopting a many-body model, in which the 
phase space of stochastic coordinates is enlarged to 
include some description of the collective nature of 
the solwnt interacting with the solute. In ref. [ 111 
Kivelson and Kivelson attempt a study of two dif- 
ferent models of an intrinsic two-body nature, in 
which the system includes a solute body interacting 
with a solvent body via a first-rank torsional poten- 
tial (i.e. with a single well) that depends upon their 
relative orientation. (They also consider a one-body 
model in which an activated process is added to the 
free rotation of the solute body in the form of a static 
potential with different wells (their model (c).) In 
their first two-body model both the solute and the 
solvent bodies are engaged in Brownian (slow dif- 
fusion) motion (model (a) ); in the second one the 
solvent body is described as an object jumping sud- 
denly from one orientation to the other (model (b ) ) . 

The discussion is based on approximate calcula- 
tions of correlation functions of first- and second- 
rank tensors for the reorientation of the solute. The 
fast p process is related to the reorientation of the 
solute within the potential well, while the slow a pro- 
cess is associated with the reorganization of the po- 
tential itself, due to the relaxation of the local struc- 
ture. On the long time scale of the a process, the 
conditional probability for the system is given by the 
time-independent probability of having the solute in 
a certain orientation within the well, multiplied by 
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the conditional probability for the reorganization of 
the potential (i.e. of the solvent stucture body). Then 
by choosing a Brownian diffusive or a strong colli- 
sion description for the solvent structure relaxation 
one recovers model (a) or model (b). Kivelson and 
Kivelson argue that model (b) is more favorable for 
interpreting actual glass transition phenomena in 
liquids, since it would give results close to eq. (2), 
but model (c) may be of some interest in solids. 
Model (a) is ultimately interpreted as a “renormal- 
ization of the tagged particle, resulting in a larger ro- 
tating pseudoparticle”, without significant depar- 
tures in the ratio between the slow motion first- and 
second-rank correlation times, from the expected 
diffusion-like value of three. 

In this Letter we wish to consider a more detailed 
analysis of many-body stochastic models applied to 
the study of glassy fluids, taking advantage of a gen- 
eral theoretical and computational methodology we 
have been developing for the study of rotational re- 
laxation in complex liquids [ 141. Our main purpose 
here is to show that whenever the constraint of a sin- 
gle relaxing body is removed, and a two- (or higher- 
) body description is allowed, qualitative new fea- 
tures (not just quantitative details) emerge; and that 
they seem to be in accord with some of the features 
observed in experiments. 

In the following we shall consider a two-body 
Smoluchowski equation for spherical rotators, inter- 
acting only via a potential of first or second rank in 
the relative orientation of body 1 (the solute probe) 
and body 2 (the solvent cage or “slowly relaxing local 
structure” ) . Instead of employing highly approxi- 
mate procedures for evaluating correlation functions 
of interest, we shall use a complete computational 
treatment, based on the matrix representation of the 
full time evolution operator. This is made conve- 
niently possible by the use of a very efficient set of 
basis functions (which is generated by taking ad- 
vantage of the spherical symmetry of the liquid) and 
then by applying a powerful iterative algorithm for 
diagonalizing the matrix (the Ianczos algorithm 
and/or the conjugate gradient algorithm). Although 
the calculations presented here are only a partial ov- 
erview of our main results, they demonstrate the 
strong influence of the interacting potential as well 
as the wide range of behavior that can be obtained 
without having to invoke any strong collision relax- 
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ation, and this can be of considerable interest for the 
analysis of the glass transition problem. 

2. The model 

We shall denote by Q, a set of Euler angles defin- 
ing the orientation of the solute molecule (hereafter 
body 1). Since we suppose that, given the high vis- 
cosity of the system, inertial effects are negligible, the 
conjugate angular momentum is not included in the 
relevant set of degrees of freedom, i.e. a purely 
Smoluchowski description for the solute is em- 
ployed. A second rotating top, described by an anal- 
ogous set of coordinates and momenta 9z is coupled 
to the probe. It might be thought of as a collective 
structure of solvent molecules reorienting at roughly 
the same range of rates at which the probe moves. 
The time evolution of the probability density for the 
system is assumed to be governed by an operator 
p: 

f=l+,-t-f+Z) (3) 

where f, and f, are the rotational Smoluchowski op- 
erators for the first and second top. An isotropic fluid, 
corresponding to spherical symmetry is assumed for 
simplicity; the explicit form of the rotational oper- 
ator for the nth body (n= 1, 2) is 

f,, d&J,, exp( - V/k,T) J, exp( Vfk,T) . (4) 

Here J, is the operator (defined according to Hwang 
and Freed [ 15 ] ), proportional to the infinitesimal 
rotation operator and D,, is the diffusion coefficient 
for the nth body. The interaction potential V is ex- 
pressed as a sum of pair potentials involving the two 
bodies, 

where P, stands for the Legendre polynomial of de- 
gree n. 

The complete time evolution operator obeys all the 
requirements of detailed balance as described by 
Stillman and Freed [ 161; the probability density 
tends to the equilibrium function defined by the 
Boltzmann distribution with respect to the total en- 
ergy of the system given by the potential in eq. (5 )_ 

Computational treatment. One is interested in 

evaluating correlation functions for the reorienta- 
tional relaxation of the probe 

(6) 
with j= 1,2 as well as the associated spectral densi- 
ties JFm( w ) given by the Fourier-Laplace transforms 
of eq. (6). Due to the spherical symmetry (i.e. iso- 
tropic liquids) eq. (6) is the same for all values of 
m. 

As noted above, we perform this task effectively 
by adopting a matrix representation for the operator 
f’ using an efficient set of basis functions, which are 
obtained by the systematic application of standard 
angular momentum coupling techniques [ 141, in or- 
der to benefit from the full spherical symmetry. In 
the appropriate coupled representation we find that 
only two coupled degrees of freedom are relevant 
[ 14 ] (from the initial six ) . In general, not very large 
basis sets are required (up to order 10 3, for this task. 
Only 50- 100 s of supercomputer CPU time were re- 
quired for each spectral density calculation. 

For each computed correlation function, the final 
outcome of the calculation is given by the collection 
of distinct time decay constants that contribute to 
the time evolution of the process. Each time decay 
constant ri is the inverse of an eigenvalue ,li of the 
Fokker-Planck operator. Thus the spectral density 
can be expanded as a sum of Lorentzians, according 
to the general expansion [ 17-191 

J(o)=Re T & 
I 

and a weight ci is associated with each eigenvalue Ap 
Usually, in all the many-body models we have stud- 
ied a few dominant eigenvalues (or clusters of close 
eigenvalues are found to give an important contri- 
bution to the process. In the present case, when the 
potential is zero or very small, or when the second 
body (solvent structure) is much faster than the first 
one (solute), the system behaves as a single Brown- 
ian spherical rotator in an isotropic fluid. A unique 
decay constant is observed, proportional to j(j+ 1 ), 
where j is the rank of the correlation function, and 
no bifurcation (i.e. the simultaneous presence of two 
different relaxation constants) is allowed. When the 
interaction potential is significant (large uI and/or 
u2, corresponding to low temperature), a second, 
slower relaxation process appears, provided that the 
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solvent body is slow enough (see section 3). 
By increasing the potential, the relative weight of 

the second relaxation process is increased. Further- 
more, the relative ratios of first- and second-rank 
correlation times are significantly changed. In sec- 
tion 3 we describe some numerical results illustrat- 
ing the effect of changes in the energetic and diffu- 
sional parameters of the system. 

3. Results and discussion 

We have selected two cases that we believe are of 
major interest in dealing with the glass transition 
problem. A variety of additional cases will be de- 
scribed elsewhere [ 141. Our present intention is to 
show the relevance and versatility of the model rather 
than to attempt to reproduce (or fit) the detailed be- 
havior of the experiments. 

The first case that we are going to consider is 
equivalent to Kivelson’s model (a). A first-rank po- 
tential is turned on between body 1 and 2, so that 
only u1 is different from 0. Thus the motion of both 
bodies is constrained to a “single well” potential in 
their relative orientation (i.e. a single minimum in 
the range O<&<lt, where PI2 is the axial angle of 
the Euler set a2 -Q, ). In the following we will con- 
sider the solvent body as an object that is much slower 
than the solute. Due to the collective nature of the 
solvent body (a cage of solvent molecules surround- 
ing the solute rotating probe), it is reasonable to sup- 
pose that its dimensions are much larger than the 
solute. We have chosen a value of 100 for the ratio 
D, /D2- The diffusion coefficient for body 1, D1 has 
been taken as LOLo s-l, a reasonable value in many 
experimental situations (of course all our results scale 
linearly with DI so that the tables herein can be ad- 
justed to any value of D1 consistent with DI/D2 
= 100). 

As a second case, we have considered a second rank 
interaction potential between the two bodies, i.e. we 
have allowed only u2 to be different from 0. The po- 
tential energy then has two equivalent wells (in the 
range OG&~ GX); the bodies can librate within or 
jump between them [20]. Again body 2 is taken 
much larger and slower than body 1 (D, /Dz= 100). 

In both cases we have computed for each value of 
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the potential the “total” correlation times ~1, t2 and 
the “partial” correlation times rf, r!, T? and 7% The 
“total” correlation times T, and TV are defined as the 
spectral densities (for correlation function of rank 1 
and 2) evaluated at zero frequency; the “partial” 
correlation times u and p have been evaluated from 
the analysis of the eigenvalue spectrum for each cal- 
culation, i.e. the dominant eigenvalues have been se- 
lected, and they have been assigned either to the slow 
process a or to the fast process p. Usually one finds 
just two dominant eigenvalues, one for each process; 
sometimes a cluster of close eigenvalues have been 
found for the p process, and a weighted average has 
been taken. Alternatively, one can simply force fit 
the correlation function to a sum of exponentials 

G(t)= i ciexp(-t/Ti). 
i=l 

(8) 

Then by taking n= 1 another estimate of the total 
correlation time is obtained, while the choice n=2 
would yield the best fit to two decay constants, i.e. 
the a and $ processes; we have found that as long as 
the second body is kept much slower than the solute 
body ( D2 e D, ) the two procedures give practically 
the same results. 

We show in table 1 results for the case of a first- 
rank potential. One can easily note that when the po- 
tential is increased, the slow process becomes more 
and more important in determining the time decay 
of both the first- and second-rank correlation func- 
tions. According to Kivelson and Kivelson, the first- 
and second-rank slow correlation times (~7 and 
7;) are very close to the values expected for the free 
rotation of the second huge body; that is the solute 
does indeed behave as a gigantic particle. The ratio 
between ry and T; is always very close to three, the 
typical value of a free Brownian rotator. The cor- 
responding ratio for the fast p process ranges from 
3 to 1.5. Note that zf has a weak maximum for 
u, z 2k,T. In fig. 1 we show the first-rank (fig. la) 
and second-rank (fig. lb) correlation functions at 
increasing u,. The increasing importance of the a 
process is made evident by the very slow decay to 
zero for large potentials, in both cases. 

A completely different situation is found when a 
second-rank potential interaction exists between the 
bodies. The results are presented in table 2. Again a 
slow process appears when the potential is non-zero, 
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- 
0.0 5.0 10.0 0.0 5.0 10.0 

t x IO’O set-’ t x 1O’O set-’ 

Fig. 1. Correlation functions for a first-rank pawtrial, curves correspond to entries in table 1 (ranging consecutively from u,=O.%,T 
for the bottom curve to u, = 4kaTfor the top curve). (a) First-rank correlation functions G, (t) (cf. eq. (6) ), (b) second-rank correlation 
functions G2(t) (cf. eq. (6)) 

and its relative weight (which is large even at low 
potentials) is increased when the potential is in- 
creased. In fig. 2 we have plotted G, (I> and Gz ( t) 
for increasing u*. One can easily notice, however, that 
whereas t$ is very close to the expected value for a 
free Brownian rotator (i.e. it is proportional to 6&), 
t;” is completely altered, and it is much smaller than 

0.0 5.0 10.0 

t x IO'" set-’ 

one could expect from an analogy with the previous 
case. The somewhat surprising result is that the ratio 
-rVrf is !ess than I in all the calculations. The ratio 
tP/~g is less affected, although it is significantly close 
to I for higher potentials. 

An interpretation of the unusual behavior of the 
first-rank correlation function may be attempted by 

0 
G 

go 
(s1” d 

4 
0 

------7 

0.0 5.0 10.0 

t x 10’0 set-’ 

Fig. 2. Correlation functions for a second-rank potential; curves correspond to entries in table 2 (ranging consecutively from u2 = 0.5kBT 
for the bottom curve to q=4k,T for the top curve). (a) First-rank correlation functions G, (1) (cf. eq. (6)), (b) second-rank correlation 
functions G2(1) (cf. eq. (6)). 
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recalling the qualitative difference existing for dy- 
namic processes that take place in first rank, “one- 
well” potentials (such as our first case) and pro- 
cesses that take place in the presence of multistable 
potentials, i.e. potential surfaces with two or more 
wells separated by a barrier (such as our second 
case). Whenever local minima are present, the sys- 
tem can jump from one of them to another (while 
librating within a well between jumps). We may con- 
sider for simplicity the case of a single planar Brown- 
ian rotor reorienting in a two-minimum potential like 
U/k,T=dsin’$, with d the potential barrier be- 
tween the two equivalent minima. Stochastic motion 
for this and other planar multiminimum systems has 
been studied by Moro and Nordio [20]. For this 
simple system, the jumping process is associated with 
a unique eigenvalue which depends exponentially on 
the potential parameter A according to an Arrhenius 
law (i.e. it is proportional to exp( - A/k,T) ). The 
corresponding eigenfunction @of the Smoluchowski 
operator is representative of the slow process of tran- 
sition between the two equivalent potential wells, and 
it is antisymmetric with respect to the origin; i.e. it 
belongs to the B, irreducible representation of the 
CzV group. Any correlation function with odd sym- 
metry (e.g. sin @) will be dominated by the low jump 
eigenvalue; correlation functions of even symmetry 
are not affected by the jumping process, and they can 
only mbnitor the librational motions within the wells. 

0 

e 
n 
0 

A 

o A 

0 n 
A 

0 
A 

0 n 

0 

i 

’ 0.0 5.0 10.0 

To/T 

Fig. 3. Log( l/r;) (circles) and log( l/r!) (triangles) as func- 
tions of the inverse of temperature (see text ) 

intrinsic activation energy E l has been taken for D, 

and 4, 

(9) 

and we have set E * =2k,T,. One can see that the u 
correlation time has an Arrhenius dependence on the 
temperature, but the activation energy is resealed 
roughly as E * + u2. 

Similar considerations can of course be applied to The bifurcation effect has been rationalized in the 
three-dimensional systems. Only odd-rank con-ela- above discussion largely as an energetic effect, i.e. as 
tion functions are expected to be sensitive to the the result of a tight interaction between the small sol- 
jumping process. So we may associate the slow first- ute molecule and the massive solvent structure. 
rank correlation time 7: with the jump motion of the However, one should consider the possibility that, at 
solute body, at least for large ( u2=- kBT) potential low temperatures, the dimensions of the solvent body 
coupling, while the second-rank correlation time are increased, due to the “aggregation” of new sol- 
7; is related to the “free” rotation of the solute with vent molecules to the cage structure. This would ul- 
a renormalized diffusion coefficient close to D2, such timately be reflected in an activation energy E$ for 
as is the case for the first-rank interaction potential. Dz significantly higher than the activation energy 
An indirect way to confirm this interpretation can be E: for D,, which would lead to an increased ratio 
obtained by observing that T? does increase expo- Dl/Dz, and thus to an enhanced bifurcation effect. 
nentially with the potential parameter u*, according Finally, we note that in the limit DpO one would 
to the expected Arrhenius law for an activated encounter behavior of the type expected for a glass 
process. transition. 

In fig. 3 we have plotted log( l/77) (circles) and 
log( 1 /zf ) (triangles) versus To/T, where T,, is a ref- 
erence temperature corresponding to u2 / kBTo ~0.5, 

D1=D~=lOio s-l, D2=D~=108 SK’. A common 
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