Application of Lanczos and conjugate gradient methods
to a class of computatlonal problems In physics

Kashyap V. Vasavada

Department of Physics, Indiana—Purdue University, Indianapolis, Indiana 46223

Jack H. Freed

Baker Laboratory of Chemistry, Cornell University, Ithaca, New York 14853

(Received 25 August 1988; accepted 10 March 1989)

It is shown that the equivalence of the Lanczos and the con_]ugate gradient algorithms can be
used to glve a very powerful method to study linear systems in which complex symmetric
matrices arise. This method is illustrated for electron spin resonance calculations, but is
applicable to a wide class of problems in physics and engineering.

A number of problems in science and engineering can be -

. reduced to the solution of an equation of the type

A'lu) = |v), (1)
- where A’ is a large but sparse N XN matrix that can be
calculated from the basic theoretical models, and |v) is a
known N-dimensional vector. Calculation of the unknown
vector |u) enables one to find various properties of the sys-
tem. The sparsity of 4 ' in many applications arises from the
fact that, in some approximation, a given state is coupled to
very few other states (due to selection rules). Qur own
experience with such equations has been in connection
with electron spin resonance (ESR) calculations and solu-
tions of Fokker-Planck equations, which in general yield
complex matrices 4’. However, matrix equations such as
Eq. (1) arise in different areas when the relevant quantities
are expanded in terms of eigenfunctions of some differen-
tial operator [e.g., the Wigner rotation functions D 4, (Q)
for angular variables']. They also arise when finite differ-
ence’ or finite element® methods are used. Frequently 4’
can be expressed as

A'=iAw 1+ 4, - (2)
where (in the ESR case) Aw = o — w,, @, being the Lar-
mor frequency at the center of the spectrum and & the

angular frequency of the applied radiation field. Here 1 is
the identity matrix and 4 is independent of Aw. Then only

one diagonalization for the entire range in Aw is required to .
solve Eq. (1) instead of inverting this equation for many '

values of Aw. The reason, of course, is that the diagonaliza-
tion by a similarity or orthogonal transformation leaves the
identity matrix unchanged. This saves a very large amount
of computer time in many practical cases where one needs
to know the spectrum at hundreds of values of the frequen-
cy o. In cases such as the finite element method, where
nonorthogonal basis sets are used, one has

A'=iAw C + A, 3)
where C is not a unit matrix. Equation (3) can be recast

into the form of Eq. (2) by first taking the Cholesky de-
composition** of C = LL”. Then

A'=iAol+4 (4)
with ,

A=L—'4L "7, (5)
and Eq. (1) becomes

Ay = o), (6)

where

|y =L "|u) : (7
and

|5 =L o). ; (8)

~ The spectral lineshape in ESR is given by’

I(Aw) = (1/m)Re(v|u(Aw)). ' (9a)

Here the usual Dirac notation for scalar product is used. It
will be clear later that evaluation of Eq. (9a) can be done by
using continued fractions and does not require eigenvalues
of A. Note that even after Cholesky decomposition we have

(D]u) = (v|u). . (%)

Equation (9a) is a prototype for spectra and spectral densi-
ties in general, which are Fourier transforms of correlation
functions. The methods described below yield powerful al-
gorithms for computing correlation functions and spectral
densities.

The more complicated two-dimensional ESR spectra
can be calculated once the eigenvalues of 4 are known, For
example, the signal in two-dimensional electron spin echo

spectroscopy®’ is given by :
(0 —w;)?
AZ

S(w,0' )ozzcj ———Lexp(—
(10a)

1+ &°T3,

where, for the jth dynamic spin packet (i.e., the jth normal
mode solution |¢,) to A corresponding to eigenvalue g; ),
we have T zj = Re(q;) as its Lorentzian width and
w; =Im(a;) as its resonant frequency. The spectrum is
inhomogeneously broadened (with respect to @' sweep
variable) by convolution with a Gaussian distribution of
half width A. The weight factor is given by
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¢ = (¢;|v)>. (10b)

In practical applications very often the dimension N of the
matrix A becomes very large. This is the case in ESR for
slow motion in oriented fluids (e.g., liquid crystals and
model membranes). The usual diagonalization and inver-
sion methods given in software packages such as
EISPACK,® LINPACK,® and IMSL'® become impracti-
cal once N becomes greater than about 200-500. The com-
puter memory and time required become prohibitive. To
overcome such difficulties the Lanczos algorithm (LA)
has been used.*"»'!-!* The LA produces a tridiagonal ma-
trix [cf. Eq. (24) below] of dimension ng, and this can be
used to find eigenvalues of the original matrix, or quantities
such as 7(Aw) can be obtained as a continued fraction [cf.
Eq. (28) below] by using the elements of the tridiagonal
matrix without even having to find the eigenvalues. Advan-
tages of the LA in such problems are that (1) it is almost
always the case that ng €N, i.e., the LA projects out a re-
duced subspace of dimension ng sufficient to represent the
solution, and (2) the sparse matrix 4 is not modified by the
algorithm, so only the nonzero elements need to be stored
and utilized. The computer time required in the previous
methods®'° usually increases as N> whereas in the LA
(and the conjugate gradient method discussed below) it
increases as'? ng Nnz, where ng is the average number of
nonzero matrix elements in a row of 4.

The conjugate gradient method (CGM) of Hestenes
and Stiefel'® has been also used principally as a linear equa-
tion solver. It is known to mathematicians that the LA and
CGM are in fact equivalent®>'%!? (for a real symmetric
positive definite matrix). In our recent ESR studies we
have found that the CGM can be readily applied to com-
plex symmetric matrices in general and that the equiv-
alence between the LA and the CGM can be successfully
exploited to use the CGM as a very powerful iterative tech-
nique to tridiagonalize matrices, which has significant ad-
vantages over the conventional LA. We like to refer to the
approach we have taken of combining the advantages
of these two algorithms as one of “turbo-charging” the
Lanczos algorithm. Although our experience has been pri-
marily with the ESR spectral calculations, we believe that
this technique can have much wider application in various
areas of science and engineering, e.g., for dissipative sys-
tems in general. It has been shown that many such cases
can be formulated in a manner to produce complex sym-
metric matrices.”'? The purpose of this paper is to make
the physical scientist aware of this technique. Greater de-
tails are given in'Refs. 6 and 7.

" There are various forms of the CG algorithm. The one
we have used is given in the following. We first consider the
CGM as a method of solving Eq. (1) directly.

One starts with a (complex) residual vector

r) = v) — 4 |uy) - (11)
and a conjugate vector
P} = |n), (12)

with |u,) being an initial guess for the solution (see, how-
ever, discussion below).

Successive approximants for |7, and |p, ) are obtained
by '

|7x 1) = |re) — ad |py) (13)
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and

P +1) =7 4 1) + be|pic)s (14)
where the a, and b, are given by

ay = (re|r )/ (i |4 i), - (15)

bk=<’k+1|’k+1)/<f)<|’k)- ~ (16)
Then

|t 1) = |u) + ailpi) (17)

givesthe (k + 1)thapproximant to thesolution vector |u).

At each step, the norm of |7, ) (defined in the following)

gives a measure of the extent of convergence to the final
solution |u).

As we have already mentioned, the original math-
ematical results and applications of both the Lanczos and
the conjugate gradient algorithms involved real symmetric
positive definite (or Hermitian) matrices. In our applica-
tions, the matrices are complex symmetric or else they can
be transformed into complex symmetric forms by choosing
an appropriate basis. For the general non-Hermitian (non-
symmetric) case, the algorithms can be justified by intro-
ducing a biorthonormal set of vectors x, x’ such that

)%, =8, - (18)

Then one can write down both Lanczos and conjugate gra-
dient algorithms for a general complex matrix. Moro and
Freed'? have, however, shown that for the case of nonde-
fective complex symmetric matrices it is possible to let

x = xj‘.“. (19)
With this, Eq. (18) becomes
x¥x; =6, (20)

where tr stands for transposition. Thus both LA and CGM
remain applicable by redefining the norms and the scalar
products. One redefines the bra vectors without the usual
complex conjugation in the Hilbert space. Now the norm
(actually Euclidean pseudonorm)

7> = rir (21)

becomes a complex quantity. All scalar products in the
algorithm are defined in the same manner. Then the algo-
rithm [Egs. (11)-(17)] (and also the corresponding LA)
can be used with complex quantities and it leads to conver-
gence, as will be explained later. More mathematical de-
tails can be found in Refs. 6, 7, and 12.

Since Eq. (21) gives a complex quantity, we found it
convenient to consider other norms for checking the con-
vergence numerically-

ri ,ps — z yk il ’ (223)
Tin = 2 Wi, (22b)
true z lytrue kij | (220)

where the y,; are the components of |7, ) in the original
basis set, and

|rk,true)Elv)_A|uk)' (23)

Any of the three norms can be used to estimate nu-
merical convergence. The second and third norms are



equal in exact arithmetic and also were found to be equal in
finite precision arithmetic to just about the limit of the dou-
ble precision accuracy while Eq. (22a) was always smaller.
The last result can be understood as a consequence of
Holder’s identity in complex analysis. Once the double pre-
cision limit is reached, any further attempt to improve the
calculation by iteration is, of course, unsuccessful. Equa-
tions (22a) and (22b) are readily available during each
iteration. Equation (22¢) requires an extra matrix—vector
multiplication. We have used ¥ = r} y as a good criterion
for convergence.

Availability of 72 during iterations is a major advan-
tage of CGM over the ordinary LA. Although 7 can be
obtained from the LA also, it requires, however, many
more computations in addition to the basic algorithm. Soin
the LA one normally checks the spectrum with different
values of ng in an effort to verify convergence. Sometimes
such comparisons are misleading, and one may be led to
terminate the calculation before convergence is truly

- achieved. In the CGM one can readily terminate the pro-
gram as soon as 7 2 falls below some tolerance level, and this
is readily automated. In fact, by monitoring 7 %, the process
can be seen to converge before one’s eyes on the computer
terminal.

In addition to giving control over the required number
of recursive steps ng, the equivalence between the CGM
and the LA readily gives the Lanczos tridiagonal matrix,
utilizing the quantities already generated during each iter-
ation. The elements a, , B, of the tridiagonal Lanczos ma-
trix

a, B,
B, a By
— 2
T B as B, (24)

By a;

are gii'en by

a, = (pi |4 |px)/pi + (P/Pr-1)Pr_114 lPk_E%ss)

Bi= — (Pk/Pi_l )(pk—llA lpk-—l)7 . (26)
and /

172
pks(zyi,j) S _ (27)
J

So after ng iterations in the CGM, one has all the
information one gets from the LA plus 7 > with virtually the
same computation time. This is our “turbo-Lanczos” pro-
cedure. Although the algorithm will work with any ran-
dom starting value of |u,), one must start with |r;) = [v)
corresponding to |#,) = 0, so that the first Lanczos vector
|#:) = |v) (normalized to unity). This is required to estab-
lish the equivalence between the CGM and the LA. (The
CGM with initial residual 7, is equivalent to the LA with

starting vector 7,/||7,||. This choice is particularly useful,
because we are interested in the projection of the final vec-
tor |u) on the starting vector |v) [cf. Eq. (9) ]). The utiliza-
tion of this physically relevant starting vector has the effect
of biasing the Lanczos projections, generating Lanczos
vectors, |@, ) « |7, ) to approximate what we call the ‘“‘opti-
mal reduced space” to represent the physical problem. This
guarantees very rapid convergence tothe spectrum.

It should be emphasized that by convergence we mean
numerical convergence for the physical problem at hand
and not necessarily strict mathematical convergence.
When the spectral quantity, which we calculate, does not
change appreciably by increasing the number of iterative
steps ng or by decreasing the tolerance on the residual 7 2
significantly, then the calculation is accepted as having
converged. In the literature, mathematicians have dis-
cussed various problems that the Lanczos method runs
into. These arise from round-off errors, which lead to loss
of orthogonality of Lanczos vectors, spurious eigenvalues,
and multiple copies of eigenvalues. There are also pro-
grams® available to extract “good” eigenvalues. The CGM
would have similar problems. However, for the physical
systems we have considered, such difficulties either do not
arise or do not have a measurable effect on the computed
physical observables such as the spectra given by Eq. (9a)
or (10a). The spectra converge long before any problems
arise. As we have already mentioned, this seems to us to be
a consequence of our choosing the first Lanczos vector
|#,) = |v) = |r) (ie., |u;) =0). We recommend this
choice for |u,) which is based upon the physical nature of
the problem instead of a random vector in spite of the fact
that, in the strict mathematical sense, the algorithm should
work for any random choice of |u,). In fact, any spurious
“eigenvectors” which may remain after spectral conver-
gence has been achieved have negligible projections along
|v) so [by Eq. (10b)] they will not influence the result.

We ran into only one problem with the CGM in com-
parison with the LA. If some diagonal elements of A are
zero, a division by zero can occur in the CGM unlike the
LA. A simple remedy is to add a small but finite real con-
stant to the diagonal entries (““an intrinsic linewidth” in
ESR calculations). Such an intrinsic linewidth is added
anyway for physical reasons that have to do with inhomo-
genity of the magnetic field. But, in case it is not desired, it
can simply be subtracted from all the eigenvalues after they
are computed. Since we are calculating experimentally
measurable quantities, we do not expect singular matrices!
Any singularity must be a consequence of some unrealistic
approximations. In any case we have checked that such a
procedure is numerically stable and equivalence between
the CGM and the LA is maintained.

‘Now it can be shown”'2 that I(Aw) [Eq. (9a) ] canbe
obtained as a continued fraction from the elements of the
tridiagonal matrix [Eq. (24)]:

I(Aw) =L Reliro+a,—
T

(28)

iAo+ a,—

iAo+a,—B3 -
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Thus to calculate I(Aw), diagonalization of T, is not
necessary. For two-dimensional spectral quantities like
S(w,0’) [Eq. (10a)], however, eigenvalues and eigenvec-
tors (actually only components of the eigenvectors along
|#,) = |v)) are required. We use a version of the QR algo-
rithm® which is useful for complex symmetric matrices and
takes advantage of the bandedness.'® Note that the dimen-
sions of the matrix T, are much smaller than those of the
original matrix 4. .

Numerical details of our application of the CGM are
given in Ref. 6. In one application we found that for a ma-
trix with N=28196 and 667965 nonzero elements,

2=10"?and r? = 107 !° required ng = 57 and 143, re-
spectively.: The former value was entirely adequate for
computing a continuous wave (CW) ESR spectrum
I(Aw). The 2-D ESR spectrum S(@,@’), which is more
sensitive to the eigenvalues; required smaller values of 72
and hence a larger ng as expected. The computer times
required depended on the computer used. However, both
the LA and the CGM resulted in savings of orders of mag-
nitudes in CPU times as compared to the previous meth-
0ds,®'° even in the case when core memory was enough to
use these latter methods. Very often (e.g., slow motional
studies in ESR) core memory is generally not enough to
employ the previous methods. In addition, in the direct
methods®!° a large portion of the effort is expended in
calculating irrelevant eigenvalues whose corresponding ei-
genvectors have negligible overlap with the starting vector
|v) and hence they are very wasteful for our purpose.

We find that another important advantage of the
CGM is that it very conveniently enables one to study
schemes for basis set truncation. This is, in general, a diffi-
cult but important problem with very large basis sets. In
ESR, when the motion becomes slow, a very large number
of basis states (with “quantum numbers” such as L, K, M
when using Wigner rotation functions) enter the calcula-
tions. However, not all the basis states contribute apprecia-
bly. This is true even if one can guess the maximum values
of L, K, M needed for convergence, which is very often not
the case. To estimate the contribution of each state, we
found that one need only solve Eq. (1) for |u(Aw)) over
the range of Aw by utilizing Eqs. (11)-(17), since

x;|u Aw) was shown® to be 4measure of the i importance of
the jth basis vector |x; ). We could then eliminate the states
which contributed less than some cutoff percentage (say
3% for CW ESR or 0.03% for 2-D ESR) to the value of
I(Aw) in the whole range. This “after the fact” elimination
was found to be very useful for ESR, since in such studies
one varies a number of parameters repeatedly to fit the
experimental spectrum. Thus by establishing a minimal
sufficient set one can save substantial time for subsequent
calculations. Starting with an’ initial set, where one first
makes an intelligent guess as to the maximum values of the
quantum numbers, L, K, M, etc., we found a large reduc-
tion by a factor of at least 2 or 3 in the size of the basis set
(sometimes even a factor of 10 for spectra in oriented me-
dia with lower symmetry). We suggest that such a trunca-
tion analysis may be of considerable use in other areas. In
addition, we find that it is possible to first study cases where
the convergence is more rapid (i.e., relatively small basis
sets), in order to establish general truncation rules that can
then be extrapolated to the more difficult cases involving
slower convergence, hence enormous basis sets.
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As we have mentioned before, our experience has been
in connection with ESR. However, the mathematical
structure of Eqs. (1)—(3) is very similar in different areas
of physics. Therefore, we expect that the CGM (using the
equivalence with Lanczos) will be found to be a surprising-
ly more powerful alternative to the usual application of
Lanczos methods. Computer programs using the Lanczos
and the conjugate gradient methods for simulating electron
spin resonance spectra will be given in a forthcoming
book!® in the form of a diskette, which can be used on an
IBM-PC. With some changes, these programs can be used
on a mainframe computer or a supercomputer.
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