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Physicochemical properties of molecules in solution depend on the action of different
motions at several time and length scales, and information on multiscale dynamics can
be gained, in principle, by a variety of spectroscopic techniques. In this work we
review theoretical tools for the investigation of “slow” molecular motions, such as
solvent cage effects in liquids and liquid crystals, global and local dynamics in
proteins, reorientation dynamics, and internal (conformational) degrees of freedom.
Spectroscopic techniques which are most sensitive to such motions are electron spin
resonance and nuclear magnetic resonance and they require ad hoc theoretical
treatment. In particular, we discuss the definition of multidimensional stochastic
models and their treatment to interpret magnetic resonance spectroscopic data of rigid
and flexible molecules in isotropic media, liquid crystals, and biosystems.

12.1 INTRODUCTION

Itis natural for a chemist to consider molecules as dynamical systems. Thermal effects
and interactions with other molecules influence both internal and global molecular
degrees of freedom. Macroscopic chemical and physical properties of molecules
depend on their dynamics to varying degrees, based upon the physical observable
considered. Examples of dynamical physical chemistry are numerous: Collision
theory is based on the assumption that molecules move (in order to collide) to react;
temperature is the macroscopic physical observable which is related to the average
square velocity of particles; osmotic pressure in biological cells is kept at a fixed point
value by the action of Na/K pumps, which are molecular machines that carry out their
function due to internal dynamics; many enzymes can react and transform a substrate
because of change of conformation that occurs in bonding, and this serves to create the
right chemical environment around the substrate.

Thus interpretation of structural properties and dynamic behavior of molecules in
solution is of fundamental importance to understand their stability, chemical reactiv-
ity, and catalytic action. Great interest exists in the development of new materials and
the study of biological macromolecules. In general, one has to treat complex systems
in which motions are present over a wide range of time scales encompassing global
dynamics (microseconds), domain dynamics (nanoseconds), and localized fluctua-
tions involving selected chemical groups (picoseconds to femtoseconds).

Given that a key role of theoretical chemistry is to interpret macroscopic
observations in terms of physicochemical properties of molecules, dynamics is a
fundamental ingredient as well as structure. This is especially true for models
designed to interpret processes occurring in large biomolecules or complex (“soft”)
materials. In this work our main purpose is to review integrated theoretical/
computational approaches for interpreting motions typically in the range
107°-107% s in complex molecular systems. We will refer to this range as slow
molecular motions or just “slow motions”. The main objective is the study of the
dynamics (mobility) of complex systems, mainly of biomolecular interest, by means
of the interpretation of spectroscopic data for obtaining information on their dynamics
[1]. Indeed, information on dynamics can be inferred, in most cases, only indirectly
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from experiments. A theoretical framework is therefore required to link macroscopic
observations to molecular dynamics. A sensible plan of action is then to (i) choose a
reference experimental technique which is particularly sensitive to the type of
motions we are interested in; (ii) set up a framework for describing the dynamics
and its influence on the chosen physical observable; and (iii) select model systems
which serve to build and test theoretical models.

Experimental determination of dynamical properties of molecular systems is
often based on sophisticated spectroscopic techniques. Given that the properties of
molecules in solution result from motions at several time and length scales, insight
on multiscale dynamics can be gained, in principle, by a range of spectroscopic
techniques: magnetic [nuclear magnetic resonance (NMR) and electron spin
resonance (ESR)] and optical [fluorescence polarization anisotropy (FPA),
dynamic light scattering (DLS), and time-resolved Stokes shift (TRSS)]. In this
review we focus on slow molecular motions (e.g., dynamic solvation effects,
reorientation dynamics, conformational dynamics) monitored by magnetic spec-
troscopies, both ESR and NMR. In the case of ESR, this means that slow-motion
processes have characteristic time scales that are comparable to those of electronic
spin relaxation.

This contribution reviews the basic tools which are currently employed for
interpreting ESR and NMR observables in condensed phases, with an emphasis on
stochastic modeling as key for the prediction of continuous-wave ESR (cw-ESR)
lineshapes and NMR relaxation times of proteins. Section 12.2 is therefore devoted to
the definition of reduced (effective) magnetic Hamiltonians and the stochastic
(Liouville) approach to spin/molecular dynamics in order to clarify the basic
stochastic approach to cw-ESR observables. Section 12.3 provides a short overview
of rotational stochastic models for the evaluation of relaxation NMR data in
biomolecules. Conclusions are briefly summarized in Section 12.4.

12.2 MODELING A cw-ESR EXPERIMENT

Magnetic resonance spectroscopies and theoretical chemistry have always been
linked. On the one hand, the rich and detailed information hidden in ESR and NMR
spectra has been a challenge for physicochemical interpretations and computational
models. On the other hand, magnetic resonance spectroscopists have been looking for
better tools to interpret the spectra.

12.2.1 ESR: Modeling and Observables

The intrinsic resolution of ESR spectra together with the unique role played by
paramagnetic probes in providing information on their environment makes ESR one
of the most powerful methods of investigation of electronic distributions in molecules
and the properties of their environments. The theoretical tools needed by ESR
spectroscopists come from quantum chemistry to provide the parameters of the spin
Hamiltonian appropriate for room temperature (experiments usually can supply them
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but for frozen solutions at low temperatures) and from molecular dynamics and
statistical mechanics for the spectral lineshapes.

Because of their favorable time scales, ESR experiments can be very sensitive to
the details of the rotational and internal dynamics. In particular, with the advent of
very high field ESR corresponding to frequencies at and above 140 GHz, the rotational
dynamics of spin-labeled molecules observed by ESR is more commonly found to be
in the so-called slow-motion regime than is the case at conventional ESR frequencies
(e.g., 9.5 GHz) [2]. For this regime, the spectral lineshapes take on a complex form
which is found to be sensitive to the microscopic details of the motional process [2].
This is to be contrasted with the fast-motion regime, where simple Lorentzian
lineshapes are observed, and only estimates of molecular parameters (e.g., diffusion
tensor values) are obtained independently from the microscopic details of the
molecular dynamics. The interpretation of slow-motion spectra requires an analysis
based upon sophisticated theory, as will be emphasized in the next section. ESR
spectroscopy is applied extensively to materials science and to biochemistry. Great
interest is focused particularly on the study of the dynamics of biological molecules,
such as proteins and, in particular, ESR studies of proteins via site-directed spin
labeling (SDSL) with stable nitroxide radicals [3—6]. The wealth of dynamic
information which can be extracted from a cw-ESR or an electron—electron
double-resonance (ELDOR) spectrum with nitroxide labels is at present limited
experimentally by the challenge of obtaining extensive multifrequency data [6] and
theoretically by the necessity of employing computationally efficient dynamic
models [2, 7-9]. The review of Borbat et al. [10] provides a discussion of modern
ESR techniques for studying basic molecular mechanisms in proteins and membranes
by using nitroxide spin labels. These include the direct measurement of distances in
biomolecules and unraveling the details of complex molecular dynamics. These
studies can, for instance, provide information on phospholipid membranes [11-14]
which can be described via augmented stochastic models. Since the relationship
between ESR spectroscopic measurements and most molecular properties can be
obtained only indirectly via modeling and numerical simulations one may utilize the
spectroscopic data as the “target” of a fitting procedure of molecular, mesoscopic, and
macroscopic parameters entering the model.

An intrinsic limitation of this approach is the difficulty of avoiding uncertainties
due to multiple minima in the fitting procedure and the difficulty, in many cases, to
reconcile best-fit parameters with more general approaches or known physical trends
(e.g., temperature dependence).

A more refined methodology is based on an integrated computational approach,
that is, the combination of (i) quantum mechanical (QM) calculations of structural
parameters and magnetic tensors possibly including average interactions with the
environment (by discrete—continuum models) and short-time dynamical effects;
(ii) direct feeding of calculated molecular parameters into dynamic models based
on molecular dynamics and coarse-grain dynamics; and, above all, (iii) stochastic
modeling. Fine tuning of a limited set of molecular or mesoscopic parameters via
limited fitting can still be employed. In particular, ESR measurements are becoming
particularly amenable to an integrated approach, due to increasing experimental
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progress, advancement in computational methods, and refinement of available
dynamical models.

Nitroxide-derived paramagnetic probes allow in principle the detection of several
types of information at once: secondary-structure information, interresidual dis-
tances, if more than one spin probes is present, and large-amplitude protein motions
from the overall ESR spectrum shape [15-19]. An ab initio interpretation of ESR
spectroscopy needs to take into account different aspects regarding the structural,
dynamical, and magnetic properties of the molecular system under investigation, and
it requires, as input parameters, the known basic molecular information and solvent
macroscopic parameters. The application of the stochastic Liouville equation for-
malism integrates the structural and dynamic ingredients to give directly the spectrum
with minimal additional fitting procedures in the presence of internal dynamics,
anisotropic environments, and so on [2, 20-27] Notice that alternative computational
treatments of multifrequency ESR signals are nowadays emerging. In particular,
standard molecular dynamics-based approaches [28] have been employed recently,
and novel augmented treatments are being developed [29].

Properties of liquid crystals as order parameters, dynamics, and cage effects have
been studied by several authors using ESR spectroscopy of dissolved spin probes
and a stochastic Liouville equation (SLE)-based approach for interpretation. For
instance, Sastry and co-workers [7, 8] studied two-dimensional Fourier transform
(2D-FT) ESR of the rigid rodlike cholestane (CSL) spin label in the liquid crystal
solvent butoxy benzylidene octylaniline (40,8) and the small globular spin probe
perdeuterated tempone (PDT) in the same solvent. Experimental spectra were
collected over a wide range of temperatures in such a way as to include isotropic,
nematic, smectic A and B, and crystal phases of 40,8. 2D-FT-ESR was chosen
because it provides greatly enhanced sensitivity to rotational dynamics over cw-ESR
analysis. For both the CSL and PDT spin probes, experimental spectra were interpreted
via the slowly relaxing local structure (SRLS) model [30] in which the dynamic of the
system is described with two coupled relaxing processes which are interpreted as a fast
global tumbling of the probe and a slow relaxation of the solvent cage collective
motions. Zannoni and co-workers [31] used the ESR spin probe technique to study
the changes in phase stability, orientational order, and dynamics of the nematic
5-cyanobiphenyl (SCB) doped with different cis/trans p-azobenzene derivatives. CSL
was again adopted as the spin probe to monitor the order and the dynamics of the liquid
crystal system, owing to its size, rigidity, and rodlike shape analogous to that of the
5CB [32-34]. Interpretation of the experimental spectra was carried out by simulations
with the one-body model implementation by Freed [35] by assuming the probe as a
rigid rotator that reorients under the action of a second-rank potential.

The theoretical approach to the interpretation of ESR spectra is based on the
solution of the SLE. This is essentially a semiclassical approach based on the
Liouville equation for the magnetic probability density of the molecule
augmented by a stochastic operator which describes the relevant relaxation processes
that occur in the system and is responsible for the broadening of the spectral
lines [2]. The SLE approach can be linked profitably to density functional theory
(DFT) evaluation of geometry and magnetic parameters of the radical in its
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environment. Dissipative parameters, such as rotational diffusion tensors, can in turn
be determined at a coarse-grained level by using standard hydrodynamic arguments.
The combination of the evaluation of structural properties, based on quantum
mechanical advanced methods, with hydrodynamic modeling for dissipative proper-
ties and, in the case of multilabeled systems, determination of dipolar interaction
based on the molecular structures beyond the point approximation are the fundamen-
tal ingredients needed by the SLE to provide a fully integrated computational
approach (ICA) that gives the spectral profile. A number of parameters enter in the
definition of the SLE and customarily a multicomponent fitting procedure is em-
ployed. ICA attempts to replace fitting procedures as much as possible with the ab
initio evaluation of parameters in order to give them a sound physical interpretation,
and fitting may be retained as a “refining” step. The calculation of ESR observables
can in principle be based on the complete solution of the Schrodinger equation for the
system made of paramagnetic probe + explicit solvent molecules. The system can be
described by a “complete” Hamiltonian Hr, Ry, q.), Which can be written in the form

H(r;,Re, q,) = Hprobe (T3, Re) + Hprobe-solvent (i, Ri, @) + Hsotvent (4, (12.1)

where probe and solvent terms are separated. The Hamiltonian H(r;, Ry, q.) contains
(i) electronic coordinates r;, of the paramagnetic probe (where index i runs over all
probe electrons), (ii) nuclear coordinates Ry (where index k runs over all rotovibra-
tional nuclear coordinates), and (iii) coordinates q,, in which we include all degrees of
freedom of the solvent molecules, each labeled by index o. The basic object of study,
to which any spectroscopic observable can be linked, is given by the density matrix
p(r; Ry, q,), which in turn is obtained from the Liouville equation

I ra N
% L i,4)=-iks (122)

Solving Eq. 12.2 in time—for instance, via an ab initio molecular dynamics
scheme—allows in principle the direct evaluation of the density matrix and hence
calculation of any molecular property [29]. However, significant approximations are
possible which are basically rooted in time-scale separation. The nuclear coordinates
R =R can be separated into fast-probe vibrational coordinates Rg,; from slow-probe
coordinates, that is, rotational and intramolecular “soft” torsional degrees of freedom,
Q, relaxing at least in a picosecond time scale. Then the probe Hamiltonian is
averaged on (i) femtosecond and subpicosecond dynamics pertaining to probe
electronic coordinates and (ii) picosecond dynamics pertaining to probe internal
vibrational degrees of freedom. The averaging over the electron coordinates is the
usual implicit procedure for obtaining a spin Hamiltonian from the complete
Hamiltonian of the radical. In the frame of a Born—Oppenheimer approximation,
the averaging over the picosecond dynamics of nuclear coordinates allows one to
introduce in the calculation of magnetic parameters the effect of vibrational motion.
In this way a probe Hamiltonian is obtained characterized by magnetic tensors. By
taking into account only the electron Zeeman and the hyperfine interactions, for a
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probe with one unpaired electron and N nuclei, we can define an averaged magnetic
Hamiltonian H(Q, qo):

HQ.q,) = %Bog(Qaqa)§+'yeZinAn(qua)s

+ Hprobe—solvent(Q: qa) + ﬁsolvent(qa) (12'3)

The first term is the Zeeman interaction depending upon the g(Q, q,) tensor, external
magnetic field By, and electron spin operator S; the second term is the hyperfine
interaction of the nth nucleus and the unpaired electron, defined with respect to
hyperfine tensor A,(Q, q.) and nuclear spin operator I,. Additional terms are
Hpmbe_solvem(Q, q.) to account for interactions between the probe and the medium
which do not affect directly the magnetic properties (e.g., solvation energy) and
H solvent(ge) for solvent-related terms. Here tensors g, A;, are diagonal in local
(molecular) frames GF, A,F; operators S, I, are defined in the laboratory or inertial
frame (LF). An explicit dependence is left in the magnetic tensor definition from slow-
probe coordinates (e.g., geometric dependence upon rotation) and solvent coordinates.
The averaged density matrix becomes $(Q,q,,?) = (6(r;, R, q,)) ri Ry, and the
corresponding Liouville equation, in the hypothesis of no residual dynamic effect of
averaging with respect to subpicosecond processes, can be simply written as in Eq. 12.2
with A(Q, q.) instead of H(r; Ry, q,). The next step, that is, the projection or
“elimination” of solvent/bath coordinates to obtain an effective time evolution equation
depending just on the relevant set of coordinates Q, is not a trivial passage and in truth
can be addressed only in terms of a semiphenomenological, albeit very effective,
theoretical approach. In essence, one assumes that averaging the density matrix with
respect to solvent variables is tantamount to (1) redefining the variables as a Markov
stochastic process. A simplified modified time evolution equation for p(Q, 7) is defined
assuming that (2) the stochastic process is not affected by the system (absence of back-
reaction) and therefore that an independent equation for the conditional probability P
(Q, ?) describing the stochastic process is given by OP/8t =—['P, where I is the
stochastic (Fokker-Planck or Smoluchowski) operator modeling the time evolution of
the reduced density matrix on 1relaxing processes described by stochastic coordinates Q,
with an equilibrium solution I'p eq(Q) = 0. A time evolution equation for p(Q, ¢) is then
defined according to  the so-called stochastic Liouville equation (SLE) formalism by the
direct inclusion of I" in the (effective) Liouville equation [2]
9p

2 = [A(Q),5(Q.0)] - 15(Q, 1) =—iLp (12.4)

where the reduced Liouvillian is defined with respect to the effective Hamiltonian

A(Q) = LeBog(@)8 7, Y 1An(Q)8 (12.5)

and g(Q), A,(Q) are now averaged tensors with respect to all solvent coordinates. The
inclusion of relevant variables within a phenomenological semiclassical time evolution
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equation for the reduced density matrix operator of a molecular system is at the basis
of the SLE, originally proposed by Kubo [36, 37] to describe the dynamics of a
quantum system perturbed by a Markovian stochastic process. Formal justification
of the SLE has been proposed by several authors and is reviewd by Schneider and
Freed [2], and it should be clear that in the absence of a coherent theory of stochastic
quantum systems, it remains a phenomenological ansatz (but see, e.g., Wassam and
Freed [38, 39]). A comprehensive review of recent theoretical development of the
SLE formalism is given, for instance, by Tanimura [40]. Here we point out that this is
a general scheme which allows for additional considerations and further approx-
imations. First, the average with respect to picosecond dynamic processes is carried
out, in practice, together with averaging with respect to solvent coordinates to allow
the QM evaluation of magnetic tensors corrected for solvent effects. Second, time
separation techniques can also be applied to treat approximately relatively faster
relaxing coordinates included in the relevant set Q, such as restricted (local)
torsional motions. Third, complex solvent environments (e.g., highly viscous fluids)
can be described by an augmented set of stochastic coordinates, to be included in Q,
which describes slow-relaxing local solvent structures, or in other words to maintain
the generalized Markovian nature of Q.

12.2.2 Setting Up the SLE

From the spin Hamiltonian it is clear that a number of parameters are required, that
is, the g tensors of the unpaired electron and the A hyperfine coupling tensors for all
nuclei. All these quantities are purely quantum mechanical properties and their
evaluation can be carried out via a first-principles treatment (see below). The choice
of the stochastic operator, I, is a basic step in the methodology. Here we comment
on two canonical cases frequently occurring in standard applications: (i) rigid-body
model, where the probe is seen as a rigid rotator diffusing and the stochastic
variables are Q = (), the set of Euler angles which give the relative orientation of the
molecule with respect to the inertial laboratory frame; (ii) “flexible”-body model,
where the molecule is described as a rotator with one internal degree of freedom
represented by a torsional angle, so the stochastic variables, Q = (Q, 6), are the set of
angles  (for the global rotation) and the torsional angle 6. In both models the
stochastic variables are considered as diffusive processes and the stochastic
operator has the general form

I = - VoD(Q)P(Q)VePL (Q) (12.6)

where @Q is the vector operator of partial derivatives over the stochastic variables,
D(Q) is the diffusion tensor of the system (which in general may depend on the
stochastic variables), and P.,(Q) is the Boltzmann equilibrium distribution
probability

exp[ —V(Q)/kT]
(exp[-V(Q) —kT1)

P(Q) = (12.7)
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Here, V(Q) is the potential acting on the stochastic coordinates and ( - ) represents the
integration over Q. Assumptions can be made by requiring that the potential has
separated contributions, for example, an ‘“external” term acting on the global
orientation (e.g., ordering effects in liquid crystals) and an internal term acting on
the torsional angle (if present) which is the torsional potential, that is,

V(Q) = Vext(Q) + Vime (0) + Veoupling (Q) & Vext (Q) + Vine () (12.8)

Mesoscopic parameters, such as the full-diffusion tensor and potential V, are
usually determined phenomenologically or from complementary approaches. For
instance, dissipative properties described by the diffusion tensor can be obtained on
the basis of hydrodynamic modeling (see below). The internal potential can be
evaluated as a potential energy surface scan over the torsional angle 6. For small
molecules this operation can be easily conducted at the DFT level, while for big
molecules such as proteins, mixed quantum mechanical/molecular mechanics
(QM/MM) methodologies can be employed.

12.2.3 Magnetic Tensors

The introduction of the DFT is a turning point for the calculations of the spin
Hamiltonian parameters [41-44]. Before DFT, ab initio calculations of the magnetic
parameters of spin Hamiltonians were either prohibitively expensive already even for
medium-size radicals [45-47] or less reliable than semiempirical methods. These
latter were based on the approaches introduced by McConnell [48, 49] and Stone [50]
for the calculations of the hyperfine coupling and the g tensors, respectively. Based on
semiempirical parameters taking into account separately the spin density on the singly
occupied molecular orbital (SOMO) and that due to spin polarization [51], the method
for the evaluation of hyperfine tensors has been an invaluable tool for understanding
the correlation between the magnetic parameters of the spin Hamiltonian, the spin
distribution, the conformation of radicals, and the molecular properties in general.
However, the reliability of the method was very restricted, as being limited to
predictions within groups of similar radicals for which the same set of semiempirical
parameters were sound, and the parameters to be calculated were only the SOMO spin
densities [51]. Within these limits the calculated hyperfine tensors were quite reliable.
On the other hand, the agreement between calculated and experimental values for g
tensors were in general much worse. To this end, it should be noted that the recently
improved methods of calculating reliable g tensors by DFT on the one hand [52-55]
and to measure them by high-frequency ESR on the other has provided a new largely
unexplored source of information on the molecular properties attainable by
ESR analysis.

Today, the agreement between experimental and calculated parameters of the spin
Hamiltonian by DFT is outstanding [41-44, 52, 56]. Both the vibrational averaging of
the parameters [57-59] and the interactions of the probe with the environment [60-65]
are taken into account, thus providing a set of tailored parameters that can be used
confidently for further calculations. It should be noted that this approach is a step
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forward with respect to the traditional starting point, that is, the use of a set of
experimental hyperfine and g tensors generally obtained for a different system and
extrapolated to the case of interest.

The g tensor can be dissected into three main contributions [52-56],

g = 813 + AgRMC + AgPC + AgOZ/SOC (12.9)

where g, is the free-electron value (g, = 2.002319) and 15 is the 3 unit matrix; AgRMC
and AgSC are first-order contributions which take into account relativistic mass
(RMC) and gauge (GC) corrections, respectively. The last term, Ag0%/S0C, is 2
second-order contribution arising from the coupling of the orbital Zeeman (OZ) and
the spin-orbit coupling (SOC) operators. The SOC term is a true two-electron
operator, but here it will be approximated by a one-electron operator involving
adjusted effective nuclear charges [66]. This approximation has been proven to work
fairly well in the case of light atoms providing results close to those obtained using
more refined expressions for the SOC operator [52-54]. In our general procedure,
spin-unrestricted calculations provide the zero-order Kohn—Sham (KS) orbitals and
the magnetic field dependence is taken into account using the coupled-perturbed KS
formalism described by Neese but including the gauge including/invariant atomic
orbital (GIAO) approach [52-54]. Solution of the coupled-perturbed KS equation
(CP-KS) leads to the determination of the OZ/SOC contribution.

The second term is the hyperfine interaction contribution, which in turn contains
the so-called Fermi contact interaction (an isotropic term), is related to the spin
density at the corresponding nucleus » by [67]

_8ng.

Ano =3->2gnby D _ Py (0,]8(rim) o)) (12.10)

g0
and an anisotropic contribution which can be derived from the classical expression of
interacting dipoles [68],

Ang = fggnﬁ,, S P B, 11 (b — Brimitin, ) |2 (12.11)
By

The A tensor components are usually given in gauss (1 G = 0.1 mT); to convert data
to megahertz one has to multiply by 2.8025.

Magnetic tensors evaluated at this level do not give sufficiently accurate estimates
of experimental values, especially if one considers a molecule in a solvent with high
polarity and/or a solvent that can form hydrogen bonds. Environmental effects (e.g.,
solvent) need to be taken into account and the most promising general approach to the
problem can be based on a system-bath decomposition. Calculations can be per-
formed on the system, including the part of the solute where the essential part of the
process to be investigated is localized together with, possibly, the few solvent
molecules strongly and specifically interacting with it. This part is treated at the
electronic level of resolution and is immersed in a polarizable continuum, mimicking
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the macroscopic properties of the solvent. So, the solution process can then be
dissected into the creation of a cavity in the solute process requiring an energy E.,.,
and the successive switching on of dispersion/repulsion, with energy Egisrep, and
electrostatic, with energy E;, interactions with surrounding solvent molecules. All of
these contributionsm, for both isotropic and anisotropic solutions, are included into
the so-called polarizable continuum model (PCM) [69-72]. Taking into account
solvent effects gives the corrections required in order to predict values of the tensors
very close to the experimental ones (see Tables 2 and 7 of ref. 73).

While in some cases considering the environment is sufficient to reproduce
experimental values of the g and hyperfine tensors, there are molecules presenting
fast motions in the neighborhood of the unpaired electron. Dependence of the
magnetic parameters on these small geometric variations can be very significant [57,
74-76]. These motions are usually too fast with respect to the ESR time scale window
so the effective contribution is a correction that can be calculated as an average over
short-time dynamics calculated at a QM level [77, 78].

12.2.4 Friction and Diffusion Tensors

We review in this section a coarse-grained (hydrodynamic-based) recipe for evalua-
tion of friction and diffusion tensors of flexible molecular systems. Let us consider
a molecule made of N, atoms which has been partitioned into Np fragments. The
ith fragment is composed of N; atoms and its orientation relative to the (i+ 1) th
fragment is defined by the torsional angle 6, We limit our discussion to noncyclic
molecules, so that a generic molecular system is considered in general as a sequence
of Ny fragments, and the total number of torsional angles is Ny = N —1. Notice that
YN N; = N

We define a molecular frame (MF) fixed on a chosen fragment v (hereafter referred
to as the main fragment) which is placed for convenience in the center of mass of
the main fragment itself (see Figures 12.1 and 12.2). The atoms in the main fragment
are characterized by translational and rotational motions, while atoms belonging to
the other fragments have also additional internal motions. We define the set of
generalized coordinates R = [r, Q, 8] for describing the translational and rotational
coordinates of the main fragment and internal torsional motions. Associated with R
is the set of velocities V = [, @, 8] (where the dot stands for time derivative) and
also the total force consists of three contributions F = [ f,,7;] corresponding,
respectively, to the translational force and the global torque and internal torque
moments. Forces and velocities are related by the friction tensor &, which is defined
as a (6 + Np) x (6 + Np) matrix

f v
)| =-¢lo (12.12)
T; 0

or simply F = —&V. If one considers the system without constraints (bonds), that s,
the position of each atom is independent of the positions of the other atoms, the
friction tensor =, of the N, independent atoms is represented as a 3N, x 3N, matrix.
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Figure 12.1 Partitioning of generic molecule into linear chain of three fragments and two
torsional angles; MF is set on second fragment.

If F; and V; are, respectively, the translational force and velocity of the ith atom,
we can write

Fy 4
=-z| : (12.13)

N,

Figure 12.2 Partitioning of generic molecule in branched chain of four fragments and three
torsional angles; MF is set on central fragment.
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or F =—ZEV. Following standard geometric arguments [79], one can show that
F = AF and V = BV, where A and B are (6 + N7) x 3N, and 3N, x (6 + Ny)
matrices which depend on the molecular geometry; additionally, B = A", It follows
that

&r &m E&m
E=B"EB=| & & En (12.14)
&r &r En

where the subscripts stand for 7 = translational, R = rotational, and I = internal. The
diffusion tensor is obtained from Einstein relation as the inverse of &,

D Dg Dg
(12.15)

D=kgT¢'=| Dpr Dgr Dy
Dr Dgr Dy

where kg is the Boltzmann constant and 7 the absolute temperature. The friction
tensors are linked to the diffusion tensors D (constrained spheres) andd (unconstrained
spheres) via the generalized Einstein relations D = kgT¢ ™! and d = kT =1,
It follows that the molecular diffusion tensor for the joint translation, rotation, and
internal conformational motion for the molecule, that is, D, is obtained as

D= (B*a'B)" (12.16)

The main ingredients for the calculation of the diffusion tensor are the geometric
matrix B and the unconstrained diffusion tensor d. Let us first consider the calculation
of the geometric matrix. We define rj': as the vector of the ith atom in the jth fragment,
U, as the unitary vector defining the rotation 6,, taken to be parallel to the nth torsional
angle and pointing away from the main fragment, and rz « the distance vector between
the jth atom of the ith fragment and the atom at the ongm of the unitary vector uy.
Atoms in the main fragment are characterized only by the translational and global
rotational velocity

vy =v+wXxr (12.17)
while for the remaining fragments (i # v) the torsional contributions must be included,

vj‘: =v+w X rj’:-l— Zékuk X "]l:,k (12.18)
k

where the summation is taken over the angles that link the main fragment to the ith
fragment. Equations 12.17 and 12.18 can be rewritten in matrix form as

vl TB‘u+RB'w+Z’ ¢ Ok (12.19)
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where TBJ’: = 13,RBJ‘: = rj’:", and IBJ‘:)k = r}jcuk or 0 depending on k and i and
Top = TCupy, Where Cyp, is the Levi-Civita tensor with «, f, y=1,2,3. For a linear
chain of fragments, numbered sequentially from the first to the last one, the general
form of the B matrix is

( r! X 1 x 0
13 ’ r},lxul e rj)"—l"v_l 0 e O
1 erx r2>< 0 0 0
3 0 e j’v_luv_l e
-1x 0
13 r_]v 0 ’;,v__llxuv-l . 0 0
B= 1 P x 0 0 0
’ y 1 0 rv+1 Xu
IER AR 0 0 v v 0 0
L -t 0 g A u, i mer 0
Lo 070 Pea, i ";I'vﬁ:-x"ivr")
J
(12.20)

The form of the geometric matrix B is dependent on the topology and also on the
numbering scheme chosen for the fragments.

Evaluation of d can be carried out at the simplest possible level assuming the
model of noninteracting spheres in a fluid, or one can include hydrodynamic
interactions, for example, based on the Rotne-Prager (RP) approach [80, 81],
which ensures a satisfactory albeit not too cumbersome treatment of sphere—sphere
hydrodynamic interactions. The resulting elements of D depend upon a purely
geometric tensorial component D and the translational diffusion coefficient for an
isolated sphere Dy, that is,

D = DyD (12.21)
where Do=kgT/CRMm = kgT/Ey: here C is a constant depending upon hydro-

dynamic boundary conditions, R, is the average radius for the spheres, and 7 is the
local viscosity. The RP unconstrained diffusion tensor is given as

kgT
di = : 13

=0

r 2
kgT 3R 2 R .
BO 4'; r§,+§R§ 13+ 1——27" ri ®ry| if ry > 2R,

=

ksT 9 ry 3rQry .
|\ 32R. 2 2 f ry 22
Eo 32R, Is+ 32 ,.5 if r; <2R, (12.22)
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where i and j are two generic atoms, r;=r; — r;, and ® indicates the dyadic product.
Notice that the general methodology reported above can be applied with minor
changes to other types of internal motions, such as stretching of bonds, bending of
bond angles, domain and loop motions.

12.2.5 Solving the SLE

Once magnetic, structural, and dissipative parameters have been estimated, the SLE is
completely defined. At this point, physical properties can be calculated, with the
knowledge of I" and P, either directly from the conditional probability P(X, ) or in
terms of time correlation functions, which are defined, for two correlated observables

AQ, 1) and g(Q, ?), as
G(t) = (£(Q, 1)|exp(~1'7)|g(Q, 1)Peq(Q)) (12.23)

from which it is possible to calculate the spectral density, that is, the Fourier-Laplace
transform of G(t), as

1) =1 [ dw6e ™ = 410,/ F) " ls(@ 0Pu(@) (1220

The formalism for evaluating cw-ESR spectra is now easily interpreted in terms of
spectral densities. In the SLE framework, the stochastic operator I is part of the
generic stochastic Liouvillian £ and the cw-ESR spectrum is given by

I(w— wo) =ER6{<<U vPeq>>} (12.25)

that is, as the real part of the spectral density for the autocorrelation function for the
observable, usually called the starting vector, corresponding to the X component of
the magnetization as well as P,

It is convenient to transform the Liouvillian with the symmetn'zation

7= P—1/2£P1/2 i~ +P—1/2Fp1/2 i1 (12.26)

[i(a) —wo) + Z‘,] )

where the density matrix is 5(Q, ) = p(Q, 1)/ Peq(Q) and the equilibrium probability
density is P.,.,q = Py Y2 The spectral density becomes
-1
uP;{2> > } (12.27)

(e

The definition of the starting vector depends on the radical studied. Consider as an
example the case of a monoradical in which the unpaired electron is coupled to a
nucleus of spin I: The starting vector takes the form

[i(co —wo) +iH + f]

luP;(2>> = @I+1)2|8 x 1; x P;42>> (12.28)
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The cw-ESR spectrum is obtained by numerically evaluating the spectral density
defined in Eq. 12.27, and here we adopt the standard methodology of spanning the
Liouvillian over a proper basis set defined by the direct product

1Z>> = |">> ® 1A> (12.29)

The basis set for the spin coordinates, |o)) is the space of spin transitions and is
defined elsewhere [2, 9, 82]. For the stochastic part we make the standard choice of
employing Wigner rotation matrices for the global rotation and complex exponentials
for the internal torsional angle, that is, |A) = |[LMK) @ |n) with,

LMK) = /2 0k (@) (12.30)
1w
n) = \/Z_ne (12.31)

To obtain the spectral density, usually iterative algorithms such as Lanczos [83, 84] or
conjugate gradients [2] are employed. In particular, we make use of the Lanczos
algorithm, a recursive procedure to generate orthonormal functions which allow a
tridiagonal matrix representation of the system Liouvillian. Assuming as a first
function the normalized zero-average observable, |1)) = IuP;éz)) /{{v]|Peg|v))1/2,
the following functions are obtained recursively:

Busiln+1)) = (£ —an)[n)) — Boln—1)) (12.32)
o = ((n|L]n)) (12.33)
By = ((n|LIn—1)) (12.34)

Coefficients a, and S, actually form the first and second diagonal of the tridiagonal
(complex) symmetric matrix representation of the symmetrized Liouvillian, and the
spectrum can be written in the form of a continued fraction [84]

I(w) = 1

iw—oy —

B;

iw—op —

12.35
B3 (12.35)

iw—o3— -

Evaluation of Egs. 12.32-12.34 is carried on in finite arithmetic by projecting the
symmetrized Liouvillian and the starting vector on the basis set 12.29, defining the
matrix operator and starting vector elements

c={(¥ IZIZ'>> (12.36)
b= <<Z}1>> (12.37)
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so that the matrix—vector counterparts of Egs. 12.32-12.34 become

Bni10n+1= (L —0t)0, — B0n_1 (12.38)
an = vn'L")n (12.39)
Brn=0n-L 051 (12.40)

Symmetry arguments can be employed to significantly reduce the number of basis
function sets required to achieve convergence, together with numerical selection of a
reduced basis set of functions based on “pruning” of basis elements with negligible
contributions to the spectrum [2]. New strategies for reducing matrix dimensions in
densely coupled spin systems are being investigated [85].

12.2.6 Case Study: Interpretation of cw-ESR Spectra
of Tempo-Palmitate in SCB

In the following we perform a complete a priori simulation of the ESR spectra of the
prototypical nitroxide probe 4-(hexadecanoyloxy)-2,2,6,6-tetramethylpiperidine-1-
oxy (usually referred to as Tempo-palmitate, TP) in isotropic and nematic phases of
5CB, for which detailed cw-ESR data are available in the literature [86]. The system is
described as a flexible body reorienting under the influence of an external field, which
favors its orientation along the nematic director, which is assumed parallel to the
external magnetic field along the Z axis of the inertial laboratory frame (LF). We shall
adopt a number of simplifying hypotheses aimed at keeping the required computa-
tional effort at a reasonable level. The molecule is considered as split into two
fragments, the alkyl chain and the paramagnetic probe (Tempo) (Figure 12.3).
Geometry and dynamics are described by two stochastic variables: (i) the set of
Euler angles () which describes the orientation between the LF and a molecule fixed
frame (MF) and (ii) an internal angle (f) which defines the relative orientation
between the Tempo fragment and the alkyl chain.

Structural properties were obtained by means of quantum mechanical calculations
performed to find the minimum energy geometry of the molecule, evaluate the
magnetic tensors, and calculate the internal potential [44]. On the basis of a previous
study [87], the alkyl chain of TP was replaced by an ethyl group. Internal torsional
potentials and magnetic tensors were then evaluated by the PBEO hybrid function-
al [88] and the purposely tailored NO6 basis set. Solvent effects were taken into
account by our anisotropic version of the polarizable continuum model [87].

PO e
o

Figure 12.3 Molecular structure of Tempo-palmitate.
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Of course, the diffusion tensor was evaluated for the true TP radical using the
geometry optimized for the all-trans conformer.

The MF is fixed on the alkyl chain, which is considered as a rigid entity in the all-
trans conformation; the MF is chosen in such a way that the rotational part of the
diffusion tensor (see below) is diagonal. Magnetic tensors are diagonal in the same
reference frame (uF) fixed on paramagnetic probe. The total potential energy of
the system is defined according to Eq. 12.8, that is, we neglect potential coupling
terms Veoup (€2, 6) between internal () and external (Q) variables (Figure 12.5). The
external potential is chosen according to the simple Maier-Saupe form [89-91]

Ve
Uet = kB——"TE = — €Dy (Q) (12.41)

This is the simplest potential which assures the presence of an energy minimum
when the alkyl chain is parallel to the nematic director.

An accurate evaluation of the internal deg potential is obtained directly by QM
calculations. An energetic barrier is observed corresponding to 6 = 180°. In general,
we may define the potential via the expansion Vi /kzT = —3" y,e~, where
Xn = X, ensure that the potential is real. In practice terms up to #» = 1 have been
retained to fit the potential to the shifted cosine form

Vint

Uit = T ~ A(1 —cos 6) (12.42)

To summarize, energetics is defined by the simplified expression
U = Uext + Uit = —€Dpy(Q) +A(1 — cos 6) (12.43)

defined by parameters € and A.

In the case under investigations, which includes nematic (anisotropic) phase
environments, we shall assume the usual approximation of considering isotropic
local friction, and the macroscopic local viscosity is taken equal to half of the fourth
Leslie-Ericksen coefficient 4 [92-95]. The diffusion tensor of the system is obtained,
neglecting translational contributions, as a 4 x 4 matrix, that is,

Drr Dy
D= 12.44
(DIR Dy ) ( )

where the 3 x 3 Dgg block is the purely rotational contribution, the Djp = Dg, blocks
describe the rotoconformational interaction, and Dy, is the conformational diffusion
coefficient. The general outcome of the elements of the 4 x 4 diffusion tensor shows,
as expected, a weak dependence upon the internal angles. We express the tensor as

D(T)=D(T)d (12.45)

in order to separate the purely geometric tensorial component d and the translational
diffusion coefficient for an isolated sphere D(T), that is, D(T) = kpT/CR.,(T): Here
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Figure12.4 Values of TrDgg x 107 s (full line), |Dgs| x 107 s (dashed line), and Dy x 10~ s

(dotted line) for T=316.09K plotted vs. conformation angle 6.

C is a constant depending on hydrodynamic boundary conditions, R is the average
radius for the spheres, and # is the local viscosity.

Selected tensor functions of the diffusion tensor, namely Tr{Dgr}, | Dg;|, and Dy,
are shown for T=316.92K in Figure 12.4 as function of #: Variation is indeed
minimal; therefore we assume the diffusion tensor calculated for the minimum energy
configuration (6 =0).

Next we need to define the form of the time evolution operator (Liouvillian) for the
density matrix described by the SLE. The molecule being partitioned in two
fragments, as described above, we have (i) two local frames respectively fixed on
the palmitate chain (CF) and on the tempo probe (PB): these are chosen with their
respective z axes directed along the rotating bond, for convenience; (ii) the molecular
frame (MF), fixed on the palmitate chain: this is the frame which diagonalizes the

Z

LF

Figure 12.5 Relevant stochastic coordinates.
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LF

Figure 12.6 Molecular frames and Euler angle sets employed in the model.

rotational part of the diffusion tensor D gg; the magnetic frame, fixed on the probe (uF)
where magnetic tensors are diagonal (Figure 12.6). Several sets of Euler angles are
defined: Quc is the set of Euler angles that transforms MF to CF, which has the z axis
parallel to the rotating bond, Q,, is the set of Euler angles that transforms from PF to
UF; the set (0, 0, 0) is the rotation from CF to PF; finally Q transforms from the
laboratory frame LF to MF. Following the established methodology [2, 30, 82, 84] the
general form of the spin super-Hamiltonian is cast in the contracted tensorial form

/
B =Y 0,3 3 Flmsglm (12.46)

u 1=02m=-1

where u = g, A runs over the magnetic interactions, that is, the Zeeman interaction
between the electron and the external field (g) and the hyperfine interaction between
the electron and the N nucleus (4). Parameters o w With 4 = g, A are defined as 8B,
Tr g/3h and y.Tr A/3, respectively. Notice that for the generic irreducible spherical
tensor F one can write

Fiid* = 3" DL, (Q)e "Gl ) (12.47)
ml,mll
with
G =D, (Qmc) > DLy (Qu) (12.48)
"?”

Explicit forms for F,E{;‘";)* and superoperators flg;}) * are provided in the

literature [82].
Finally, we define the form of the diffusion operator. In a symmetrized form (vide
supra) we write

M\ " M
o (%) DP,, ((_%) PL? = e+ Tp+Tn (12.49)
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where I"actson X = (Q, 0), the set of relevant variables; M s the infinitesimal rotation
operator. Finally, for the explicit evaluation of matrix elements, it is convenient to
define

Trr= —P/ M DpgPog MPZ?

. 1pd 8
Iy = —D”Peql/Z%PeqégP;il/z
fr = —pPg!? (MHDR,ch-(,% + %D,RP,QM) J (12.50)

The detailed forms of the rotational, internal, and rotational-internal operators are
reported elsewhere [2, 30, 82, 84]. Although rather cumbersome, the whole algebraic
derivation is straightforward. The numerical solution is based on the standard
methodology described above.

Let us first report on the calculated set of parameters obtained from the QM
calculations for structural and magnetic properties and the hydrodynamic modeling
for diffusion properties. The principal values of the magnetic tensors minus the
isotropic part are g, = 0.00221, g,, = 0.00020, g.,=—0.00240, A,,=—9.19 G,
Ay, =—8.98G,and A, = 18.18 G. The orientations of the internal frames of reference
are specified by angles Qyc = (90, 35, 0) degrees and Q, = (0, 55, 180) degrees. The
isotropic values of the hyperfine and gyromagnetic tensors are significantly different
for different phases and are taken from experiment (see Table 12.1). A comparison
with QM computed values is discussed in the next section. The computed torsional
barrier of 1.8 kcal/mol ™" for the 6 angle leads to a potential parameter A =453 K/T.
The diffusion tensor is expressed by Eq. 12.45 with

2.387 x 1073 0.0 0.0 1.560 x 102
il 0.0 2.989 x 1073 0.0 1.313 x 1072 2
0.0 0.0 4513 x 1072 —3.071 x 102
1.560 x 1072 1.313x 1072  —-3.071 x 102 5.884 x 102
(12.51)

Table 12.1 Parameters Employed in Simulations

/K A;so/Gauss Ziso € n/mPas
316.09 15.5 2.00615 0.0 18.89
309.03 15.5 2.00629 0.0 23.80
308.72 15.7 2.00659 0.0 25.78
307.88 14.7 2.00679 0.9 26.80

299.02 13.5 2.00706 1.0 31.70
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and

n(To) T

D(r) = DTy TR -

where D(Tp) is the translational diffusion coefficient for a sphere of radius R at
reference temperature T, given by

T
DlTo) = Rznﬂ(;o)

Choosing R = 2.0 A, C = 6, Ty = 316.92 K (as reference temperature), and,
n(To) = 18.89 x 1072 Pa s, one gets D(Tp) = 6.12 x 10°Hz.

We can now simulate the cw-ESR spectra of the Tempo-palmitate in 5-cyanobi-
phenyl in the range of temperatures from 316.92 K (isotropic phase) to 299.02 K
(nematic phase). In Figure 12.7 simulated spectra are reported superimposed on
experimental spectra taken from the literature [86]. The spectra at different tem-
peratures and in different phases are reproduced with a very limited number of fitting
parameters (ordering potential and isotropic parts of the magnetic tensors).

316 09K

V, ‘%/ |
_"/f\ /’///\ 309.03K

R P S R
3180 3190 3200 3210 3220 3230 3240
B(G)

Figure 12.7 Experimental (full line) and simulated (dashed line) cw-ESR spectra of Tempo-
palmitate in 5-cianobiphenyl at 316.09, 309.03 K (isotropic phase), 308.72 K (isotropic—
nematic transition) and 307.88, 299.02 K (nematic phase).
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12.3 INTERPRETING NMR RELAXATION DATA
IN MACROMOLECULES

Spectroscopic techniques, both magnetic and optical, are widely used in structural and
dynamical investigation of microscopic parameters of biomolecules [96], and, in
particular, nuclear magnetic resonance (NMR) spectroscopy showed to be an
important and powerful experimental technique in the interpretation of the micro-
dynamics of proteins. The macroscopic physical observables are the T}, T, and NOE
relaxations of 1N, 2H, and 1*C nuclei, which have been found to be very sensitive to
dynamics. The interpretative potential of the methodology comes from the fact that
isotopic enrichment can be targeted to single residues of the protein, leading to the
possibility of understanding localized dynamics (e.g., studying conformational
motions specifically in the active site of the protein) and, moreover, comparison of
data coming from different residues of the same protein permits us to make spatial
(structural) considerations.

NMR relaxation data depend on dipolar (N and !3C) and quadrupolar
(*H) interactions on chemical shift anisotropy and cross-correlation effects. It
is well known that the NMR relaxations can be written as functions of the
spectral densities of the magnetic interactions, and this is the intersecting
point between macroscopic and microscopic descriptions: The spectral densi-
ties are calculated within the theoretical framework describing the dynamics
of the system.

The most challenging part of the work is the introduction of the theoretical model.
An early approach was proposed by Lipari and Szabo [97, 98] with their “model free”
(MF) analysis. This approach is based on considering the presence of two uncoupled
motions in the system: the global tumbling of the protein and the local motion of the
probe. The assumption of decoupling leads to an easy formulation for the spectral
density as the sum of spectral densities calculated from the two different motions.
Simple mathematical expressions and fast calculations come from this approach, but
also a number of limitations, leading to a restricted range of validity. The two most
important limitations of their approach are: (i) MF considers isotropic global tumbling
of the protein so that it works well with globular proteins but not with other molecules
the geometry of which is not well approximated by a sphere (in later versions
anisotropy was introduced); (ii) it fails to reproduce NMR data when the time scales
of the motions are similar, that is, where the decoupling approximation cannot be
assumed a priori.

An advanced approach to the modeling of two coupled dynamical processes was
introduced by Polimeno and Freed [9, 30], originally in the interpretation of the
electron spin resonance (ESR) of probes in ordered phases such as liquid cystals and
glasses [8, 99]. The model is known as the slowly relaxing local structure (SRLS)
model, which is a two-body Smoluchowski equation describig the coupled motion of
two rigid rotors. This model has been applied by Meirovitch et al. [100-102] to the
interpretation of NMR data. Due to the fact that coupled relaxation is taken into
account rigorously and because the interaction potential can be interpreted in terms of
local ordering imposed by the protein to the probe, the SRLS model has been shown to
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be useful, yielding good fitting to experiment even in cases that are out of the range of
validity of the MF approach.

12.3.1 Two-Body Stochastic Modeling

Magnetic relaxation times T3, T, and NOE of N, 13C, and 2H nuclei depend on
dipolar (*N and *C) and quadrupolar (*H) interactions, chemical shift anisotropy,
and cross-correlation effects. In particular, we consider here as a spin probe the
'N—'H bond for which, following standard theory [103], it is possible to express
the NMR relaxation times as functions of the spectral densities J°(w) (dipolar
interaction) and Jc(cu) (chemical shift anisotropy):

Tll = d’[J°(wn — o) +37° (- ox) + 6/° (or—on)] + (- wx)

= PUAIP(0) + P (o) + 3P(-ax) + 3P (0m) + 677 (r—on)]

T,
+ %cz [37¢(~an) +47€(0)]
NOE = 1+ d? %H T [6J° (w0 + on)—J° (0n — on)] (12.52)
N

where d = pyyuAn/4nrig, ¢ = \/2/150N/8csa, Ocsa is the anisotropy of the chem-
ical shift tensor, and w, is the Larmor frequency of nucleus A.

Spectral densities are calculated within the framework of the theoretical model
for the dynamical evolution of the system. In the SRLS approach a two-body
Smoluchowski equation describes the time evolution of the density probability of
two relaxation processes (at different time scales) coupled by an interaction potential.
In the application of this model to the description of protein dynamics, the two
relaxing processes are interpreted as the slow global tumbling of the whole protein and
the relatively fast local motion of the spin probe, the local motion of the '>N—~'H bond
in our case. Both processes are described as rigid rotators the motion of which is
coupled by a potential correlating their reorientation, and it is interpreted as providing
the local ordering that the molecule imposes on the probe.

Figure 12.8 gives a complete overview of the relevant coordinates and frames
which are invoked in the model:

LF is the fixed inertial laboratory frame.

M;F is the protein fixed frame where the diffusion tensor of the protein, ! D, is
diagonal.

M,F is the protein fixed frame where the diffusion tensor of the probe, 2D, is
diagonal.

VF is the protein fixed frame having the z axis aligned with the director of the
orienting potential.
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Figure 12.8 Definition of frames and Euler angles in SRLS model applied to NMR.

OF is the probe fixed frame the z axis of which tends to be aligned to the director of
the potential.

DF is the probe fixed frame where the dipolar interaction is diagonal.
CF is the probe fixed frame where the chemical shift tensor is diagonal.

To complete the picture, we have to define the set of Euler angles that transform
among the different frames:

Q; transform from LF to VF, while Q;,, transform from LF to OF.
Q) tranform from VF to OF.

Qy tranform from M;F to VF.

Qo transform from M,F to OF.

Q¢ transform from OF to DF, while Q¢ tranform from OF to DF.
Qc transform from CF to DF.

The system is fully described with two sets of stochastic Euler angles, and in
particular our choice is on the set of Euler angles ;, giving the orientation of the
protein relative to the laboratory frame, and Q, which represents the relative
orientation of the probe and the protein. Using this set of stochastic variables,
Q=(Q, ), the diffusion operator describing the time evolution of the density
probability of the system is

(Q) = 23 (Q)°DP(X) %3 (@)PZ(Q)
+[VIQ) - "3 ()] VD, Poy(Q)[VI(Q) - VI (Q)]PZ1 Q) (12.53)
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where D, is the diffusion tensor of the probe in OF, "D is the diffusion tensor of the
protein in VE, and the equilibrium distribution P.q (X) is given by

(12.54)

P.(Q) =Nexp[_K(_g’_QL)}

ksT

We may assume that the protein is immersed in an isotropic medium, so the
equilibrium distribution is independent of €, and the total potential is just the
interaction potential between the two processes for which we take the following
expansion over Wigner matrices:

v

T c6D50(Q) +G[D)_,(Q) + D, (Q)] + ¢4 Dg ()

+ (D) 2(Q) + DG, (] + D5 _o(Q) +D3,(@)]  (12.55)

Observables are expressed as spectral densities, that is, Fourier-Laplace trans-
forms of correlation functions of Wigner functions of the absolute probe Euler angles,
QLO =0 + QL

Jek (@) = (D3 (Qu0)Peg (Quo)| (i — ) 7 DL (Quo)Pu(@uo))  (12.56)

Considering the symmetry of the magnetic interactions (dipolar and chemical shift
anisotropy) contributing to the spin Hamiltonian of the system for the >N~!H probe,
only physical observables with j=; =2 and m =m' =0 have to be considered.

From these spectral densities it is possible to calculate the spectral densities for
every magnetic interaction, u (dipolar, CSA), as

2
o)=Y [Dha(@)Dho(@)] kK (@) (12.57)

kk'=-2

where Q, is the set of Euler of angles transforming from OF to the frame where the pth
magnetic tensor is diagonal.

Calculation of spectral densities ji » () is achieved by spanning the diffusive
operator over a proper basis set, as usual. An obvious choice is the direct product
’A) = M]) ® Mz) = |L1M1K1> ® !LzMgKg), where

2L +1
LM Ky) = \/—ﬁ—vg,{l Q) (12.58)

2 1
LoMaKs) = [ 22D, () (12.59)
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It is simpler to work with autocorrelation functions so instead of directly

calculating spectral densities in Eq. 12.56, we define the function 2Ckr =
D}y + D3, and calculate the symmetrized spectral densities

131(©) = (Ciope (Q0)Peq(Q10)| (10 = T) 7 |Crose (Qro)Pog (o)) (12.60)

and then obtain the ji » (w) functions as linear combinations of the symmetrized
spectral densities:

Sk (@) = 75 [201+ 81k V(@) ~E4(@) ~ @) (12.61)

Using the closure relation for the basis |A), the integral in Eq. 12.60 can now be
rewritten in matrix form as

Jig =V (io1 =T) "1y (12.62)

where
(D), = (AT|A;) (12.63)
(»); = (AilC (Q10) Peg Qo)) (12.64)

Details on the evaluation of egs. 12.63 and 12.64 are reported elsewhere
[100].

12.3.2 Case Study: AKeko Protein

A set of residues of the Escherichia coli adenylate kinase (AKeco) protein has been
selected in order to illustrate and test the application of the methodology to real
experimental data. In Figure 12.9 are highlighted the chosen residues with different
colors. The color scheme is: yellow for the AMPbd domain, red for the CORE domain,
blue for the LID domain, and green for the small P-loop. We followed the standard
definition in dividing the protein into those domains [100]. For the experimental
values see the supporting information in Shapiro et al. [100].

The diffusion tensor of the protein, in water, was evaluated with slip boundary
conditions, effective radius of the spheres of 2.0 A, and room temperature and
viscosity of 0.9cP. With this parameters we obtained !Dyy = 1.11 x 10”Hz,
'Dyy = 1.20 x 10" Hz, and !Dz; = 1.65 x 107 Hz. Because of the near axiality of
the tensor, in the calculations we assumed the average values !Dyy = !Dyy =
1.15 x 107 Hz. We imposed an axial orienting potential coupling the two bodies.

As outlined above, the first body describes the motion of the protein, while
we interpret the second body as the (collective) local motions in the neighborhood of
the magnetic probe, the >N-'H bond. In this picture we assume, for the second
body, a diffusion tensor which is diagonal in a frame having the Z axis parallel to the
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Figure 12.9 Pictorial overview of distribution of residues chosen for calculations.

'>N-"H bond and the X axis perpendicular to the peptide bond plane. Moreover, we
consider the tensor to be axially symmetric in such a frame. To interpret data, we
make the simplifying assumption that the coupling potential tends to align the Z
axis of the second body (i.e., of the OF frame), parallel to the direction containing
the ’N="H bond in the equilibrium geometry of the protein. This is reproduced
by defining a frame VF having the Z axis parallel to the 'SN-'H bond, which in
general is tilted from the M F, where the diffusion tensor of the protein is diagonal.
So, for every residue, we extracted from the geometry of the protein the set of
Euler angles that transform from M;F to VF, Q,. We assume that the magnetic
tensors are diagonal in the same frame, that is, Q¢ =(0.0, 0.0, 0.0) degrees, and a
constant tilt with respect to the OF, Qp = (0.0, 18.0, 90.0) degrees, following
Meirovitch et al. [101].

A set of four parameters were considered adjustable and obtained via fitting: the
parallel and perpendicular components of the diffusion tensor of the second body, °D;
and OD” , the strength of the axial potential, c3, and a parameter called rate of exchange,
Rex, which gives a correction due to a very slow change in configuration of the
protein [101]. Table 12.2 summarizes the values obtained for the 37 residues considered.

Figures 12.10-12.12 show the experimental and theoretical values of the T}, T,
and NOE at 600.0 MHz. The overall agreement is good: All the relative errors
between theoretical and experimental values are within 5%. Figure 12.13 plots the
values of the order parameters obtained with the standard formula

§ = (D} 0(Q0)Peq(Q0)) (12.65)
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Table 12.2 Values of Model Parameters Obtained from Fitting

Domain  Residue  °D, (10'Hz) D, (10"°Hz) Ry (Hz) c2 S
" AMPbd 32 1.69 10.5 2.95 264 055
33 2.04 13.0 1.51 365  0.68
36 1.55 12.7 1.38 282 058
41 2.56 542 0.277 481 077
42 2.54 4.23 0.873 480 077
46 2.09 7.02 1.16 432 074
48 1.38 7.27 1.30 250 053
50 2.23 6.84 1.09 469  0.76
52 2.12 7.09 0.118 434 074
53 1.93 5.34 0.882 406 072
55 2.36 6.55 1.01 513 078
56 2.25 6.29 0.427 440 074
60 2.29 5.27 0.196 501 078
CORE 2 1.29 17.7 1.60 177 039
3 1.40 35.1 1.24 224 049
16 1.83 114 4.21 340  0.65
77 1.32 20.9 175 206 045
86 1.69 15.6 2.38 270 056
97 1.72 19.5 0.54 400 071
107 1.33 28.1 2.14 183 041
117 1.42 315 2.36 237 051
170 1.63 8.95 0.898 347 066
191 2.20 5.21 0.000 427 073
210 1.35 25.4 1.51 315 062
LID 122 1.70 254 6.05 416 072
123 1.70 12.4 2.90 358  0.67
126 1.84 15.4 0.000 428 073
132 2.58 6.59 0.000 538  0.80
136 2.05 6.87 1.54 506 0.78
137 2.25 6.77 0.000 573 081
145 1.64 9.07 1.42 353 067
151 1.35 14.7 1.20 3.09  0.62
158 2.30 3.96 1.49 437 074
159 1.79 8.82 0.458 428 073
P loop 8 1.84 15.4 0.161 433 0.74
11 1.46 13.5 2.30 296  0.60

Analysis of NMR relaxation data applied to the investigation of microscopic
dynamics is very promising, and a wealth of experimental measures are just waiting
for advanced interpretative tools. The SRLS model is a first somewhat primitive but
systematic approach which attempts to combine simplified but clearly defined
physical hypotheses with a reliable physical interpretation of both dynamical and
structural (through the interaction potential) properties.
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124 CONCLUSIONS

Stochastic models are a comprehensive and mature tool for interpreting molecular
relaxation phenomena observed from magnetic resonance spectroscopies. Modern
implementations [104, 105] allow one to exploit the modularity of numerical
algorithms to obtain highly efficient software tools which can tackle diverse
molecular systems, especially in connection with QM determination of structural
and dynamical properties of complex molecular systems. The future of stochastic
approaches can be thought of in connection with the proper development of
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Figure 12.11 Experimental (thombi) and theoretical (circles) T, values at 600.0 MHz.
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multiscale approaches. Indeed, in the near future one can envision integrated
mesoscopic-atomistic methods which combine stochastic modeling of slow, or
“soft,” variables and appropriate treatment (at a molecular dynamics level) for fast,
or “hard,” degrees of freedom. This methodology would be ideal to treat large
flexible biomolecules, allowing an economical computational treatment. Moreover,
foundations of stochastic many-body approaches can be based on atomistic-derived
descriptions, rendering these augmented treatments predictive in nature; data fitting
could then be seen as a refining step geared toward overcoming errors in parameter
evaluation implied by the approximations inherent in the various components of
the protocol.
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Figure 12.13 Order parameters obtained from fitting.
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Fermi resonances, 326
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potential energy surface (PES), 324
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IR intensities, 328
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Atom centered density matrix propagation
(ADMP), 520
Atomic axial tensor (magnetic dipole moment
gradient) (AAT), 117, 317
Atomic polar tensors (dipole moment
gradients) (APT), 117, 317
Auger emission, 139, 162
Auger spectra
correlation effects, 165, 186
independent-particle methods, 166
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molecules, 163
semi-internal CI (SEMICI), 165
Average frequency, 396

Basis sets
complete basis set (CBS) limit, 279
computation accuracy of
anharmonic VPT2 corrections, 333
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electronic continuum, 140
harmonic frequencies, 320-321
IR intensities, 322
magnetic resonance parameters, 226
Raman band intensities, 322
Raman optical activity (ROA), 122
two-photon spectra, 113, 116
VCD rotational strengths, 323,
332-333
vertical electronic excitation (VEE), 53,
55, 69
VROA activities, 323
correlation-consistent basis sets, 279
locally dense basis set, 220
NO7D basis set, 320
Beer-Lambert law (equation), 88, 314
Bethe—Salpeter equation, 169
Body-fixed (BF) frame, 365. See also
Molecule-fixed coordinate system
Bohr magneton, 212
Boltzmann population, 369, 393-394, 396,
412, 452, 479, 496, 556
Born—-Oppenheimer, approximation, 87,
315, 365, 481, 523, 554
Bremsstrahlung-isochromat (BIS)
intensities, 172
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Brillouin condition, 167
Broadening, 89
homogeneous, 89
inhomogeneous, 89
Buckingham model, for solvent effects on IR
intensities, 339

Car-Parrinello ab initio dynamics, 520
CARS. See Coherent anti-Stokes—Raman
scattering (CARS)
CBS. See Complete basis set (CBS)
cc-VSCF. See Correlation-corrected VSCF
(cc-VSCF)
Center of gravity (CoG) of the spectrum,
396. See also Spectral moments
Centrifugal-distortion constants, 269
Chebyshev method, 484
CIE. See Color coordinates defined by the
International Commission on
Ilumination (Commission
internationale de 1’éclairage, CIE)
CIPSI. See Configuration interaction by
perturbation with
multiconfigurational zero-order
wavefunction selected by iterative
process (CIPST)
Circular dichroism, 88, 91
electronic one-photon CD, 88, 109,
369-370
electronic two-photon CD, 96,99, 112, 378
ellipticity, specific, molar, 95
Class-based prescreening approach,
409-419. See also Electronic
spectroscopies, prescreening of
vibronic transitions
generalization for vibrational resonance
Raman, 413
spectra convergence, 414-419
Classical time-dependent approaches,
507-510, 518-543
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configurational averaging, 519
electronic spectra, 523
time correlation functions, 519
vibrational spectra, 521
normal-mode-like analysis from ab
initio dynamics, 522



INDEX

Clausius Mossotti equations, 257
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scheme, 279
gradient extrapolation scheme, 279
Complex polarization propagator (CPP), 86,
112, 144
X-ray spectroscopy, 144
Configuration interaction by perturbation
with multiconfigurational zero-
order wavefunction selected by
iterative process (CIPSI), 185
Continuum orbitals 179
Coordinate systems
Eckart conditions, 366
Euler angles, 365, 565
generalized coordinates, 559
Jacobi coordinates, 366
laboratory-fixed (LF) coordinate system
(laboratory frame), 365, 565
molecule-fixed coordinate system, 266,
365. See also Body-fixed (BF) frame
normal modes, 311
potential energy surface (PES), 324
space-fixed (SF) coordinate system, 266,
365
Coriolis
coupling, between vibrational and
rotational angular momenta,
325
zeta matrix, 271
Correlation-corrected VSCF (cc-VSCF),
324. See also Vibrational
Mgller—Plesset perturbation theory
(VMP)
Coupled perturbed Hartree~Fock procedure
(CPHF), 314
CPHF. See Coupled perturbed Hartree~Fock
procedure (CPHF)
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CPP. See Complex polarization propagator
(CPP)
Crude-adiabatic approximation, 367
Herzberg-Teller effect, 367

Damped response theory (DRT), 86
Decadic molar extinction coefficient (molar
absorptivity), 89
magnetic field-induced circular dichroism
(MCD), 104
one-photon absorption (OPA), 89
Density functionals, computation accuracy of
anharmonic VPT2 corrections, 329-332
core ionization, 146
electronic circular dichroism (ECD), 109
harmonic frequencies, 320-321
IR intensities, 322
Raman band intensities, 322
two-photon spectra, 113, 116
VCD rotational strengths, 323, 332-333
vertical electronic excitation
(VEE), 53-54, 58, 69
vibronic energy levels, 430-435
VROA activities, 323
Density functional tight-binding
(DFTB), 252
DFT. See Density functionals (DFT)
DFTB. See Density functional tight-binding
(DFTB)
Diabatic states, 368, 482
block-diagonalization of the electronic
Hamiltonian, 368, 428429
Differential scattering intensities, 318
Diffusion tensor, 559
coarse-grained evaluation of, 559
molecular frame (MF), 559
Dipole—dipole correlation function, 480
Dirac-Frenkel TD variational principle, 482,
489
Dirac-HF ansatz, relativistic effects, 281
Discrete variable representation (DVR), 296
Dissipative properties, 557
Doorway state, 481
Doppler-limited rotational spectrum, 284
Double harmonic approximation, 311, 314
Douglas—Kroll-Hess transformation,
relativistic effects, 281
DRT. See Damped response theory (DRT)
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Duration time, concept, 192

Duschinsky matrix, 382, 496

DVR. See Discrete variable representation
(DVR)

DVR-QAK, quasi-analytic treatment of
kinetic energy, 296

ECD. See Electronic circular dichroism
(ECD)
Eckart conditions, 366
Ehrenfest framework, 81
Einstein relation, 561
ELDOR. See Electron—electron double-
resonance (ELDOR)
Electron—electron double-resonance
(ELDOR), 552
Electronic absorption, 88
one-photon (OPA), 88, 369-370
two-photon (TPA), 96, 112, 370, 378
Electronic angular momentum (L), 298

Electronic circular dichroism (ECD), 88, 96,

99, 109, 112, 369-370, 378

electronic two-photon CD, 96,99, 112,378

one—photon CD, 88, 109, 369-370
Electronic emission, one-photon
(OPE), 369-370
Electronic spectroscopies
dipole-forbidden transitions, 375
FCHT approximation, 375
Franck—Condon (FC)
approximation, 375
Duschinsky mixing, 382
Duschinsky matrix, 382, 496
shift vector (K), 382, 496
integral, 376. (See also overlap
integrals)
principle, 375, 522

Herzberg-Teller (HT) approximation, 375

dipole-forbidden transitions, 375

ECD, 380

weakly-allowed transitions, 375

multistate approaches, 419

linear vibronic coupling model
(LVCM), 420

multiconfigurational time-dependent
Hartree (MCTDH), 421, 470,
482-491

multimode vibronic coupling model
(MVCM), 420, 422424

INDEX

quadratic vibronic coupling model
(QVCM), 420
Renner—Teller interactions, 419
overlap integrals, 376. (See also FC
integrals)
analytical evaluation, 382
perturbative evaluation, 383
prescreening techniques, 403-419.
(See also prescreening of vibronic
transitions)
recursive evaluation, 382
Ruhoff approach, 382
sharp and Rosenstock functions,
382
spectra convergence, 414-419
prescreening of vibronic
transitions, 403419
block diagonalization, 408
class-based approach, 409
coherent-state representation, 408
energy window, 404
interlocked algorithm, 404
a priori schemes, 406-419
storage of FC integrals, 403
transition probability, 405-406
single-states approaches, 374
adiabatic models, 383
adiabatic Hessian (AH), 384,
387-388, 392-394
adiabatic shift (AS), 387-388,
392-394
vertical models, 383
linear coupling method (LCM),
383
vertical gradient (VG), 383,
385-388, 392-394, 436
vertical hessian (VH), 383, 388
spectral moments, 394
average frequency, first moment, 396.
(See also center of gravity (CoG) of
the spectrum)
center of gravity (CoG) of the
spectrum, 396. (See also average
frequency)
spectrum maximum E,,,, 399
total intensity, Oth moment, 396
width of the spectrum, second
moment, 399
strongly allowed transitions, 375
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transition dipole moment, 375
aproximation
FCHT, 375, 379, 387-388, 497
Franck—-Condon (FC), 375, 379,
387-388, 497
Herzberg-Teller (HT), 375,
379-380, 387-388, 497
electric, 375
integral, 375
magnetic, 375
weakly-allowed transitions, 375
Electronic spin angular momentum S, 298
Electronic structure computations
cw-ESR spectra line-shape, 565-570
density functional tight-binding
(DFTB), 252
electron-density-based methods, DFT,
TD-DFT, 42, 44
atomic polar tensors (APTs)/dipole
moment gradient, 118
harmonic frequencies, 320-321
hybrid models, 330-331, 334
IR intensities, 322
long-range charge transfer (CT)
transitions, 47
magnetic resonance spectroscopic
parameters, 5, 221, 557-558
MCD spectroscopy, 111
Raman band intensities, 322
transition potential DFT, 146
VCD rotational strengths, 323-324,
332-333
vertical electronic excitation
(VEE), 53-54, 58, 69, 108
vibrational frequencies, 312
vibrational Raman optical activity
(VROA), 318
anharmonic frequencies, 329-332
vibronic energy levels, 430435
VROA activities, 323-324
time-dependent tight-binding approach
(TD-DFTB), 259
wavefunction-based methods, 42, 108
analytical excited-state energy
gradients, 41, 46
anharmonic force field, 280
anharmonic frequencies, 329-330
hybrid models, 330-331, 334
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atomic polar tensors (APTs)/dipole
moment gradient, 118
complete active-space (CAS)
methods, 160
core hole states, 145
dipole moment, 281
electronic g tensor, 301
equilibrium structure, 278-280
harmonic frequencies, 320
hyperfine coupling constants, 301
IR intensities, 322
MCD spectroscopy, 111
multiphoton transition moments, 113
NMR chemical shifts, 219
nuclear quadrupole coupling, 281, 295
Raman band intensities, 322
relativistic effects, 281
restricted active-space (RAS)
methods, 160
rotational parameters, 278
complete basis set (CBS)
extrapolation, 279
composite scheme, 285
core-valence correlation effects,
295
Coriolis contribution, 292
high-order electronic
contributions, 285
vibrational corrections, 291
spin—rotation interaction, 282
spin-spin coupling constants, 220
VCD rotational strengths, 323
vertical electronic excitation
(VEE), 108
vibronic energy levels, 430-432
VROA activities, 323

Electron spectroscopy for chemical analysis

(ESCA)
effective polarizability, 153
potential models, 146-148
solvation effects, 149

Equation-of-motion phase-matching

approach (EOM-PMA), 448

ESCA. See Electron spectroscopy for

chemical analysis (ESCA)

Euler angles, 365, 565
EXAFS. See Extended-edge X-ray absorption

fine-structure (EXAFS)
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Extended-edge X-ray absorption fine-
structure (EXAFS), 187
Extended-Lagrangian formalism, 520
atom centered density matrix propagation
(ADMP), 520

FCHT approximation, 375
FC integrals, 403
Fermi resonances
contact operator, 213, 558
contact shift, 216
Hougen’s theory, 426-429
VPT2, 326
FID. See Free induction decay (FID)
Filinov smoothing technique, 504
Fock matrix, 312
Fock operator, 312
Fokker—Planck quantum equation, 470, 554.
See also Smoluchowski equation
Fourier-Laplace transform, 563
Fourier transform of the dipole time
correlation function, 480, 495
Franck-Condon (FC), 375,379,387-388,497
approximation, 375
Duschinsky mixing, 382
Duschinsky matrix, 382, 496
shift vector (K), 382, 496
integral, 376. See also Overlap integrals
principle, 375, 522
Franck—-Condon (FC) analysis
adiabatic approaches, 155
autocorrelation functions, 156
generating function methods, 155
recurrence relations, 155
transition dipole moment integrals, 369
vertical approaches, 155
vertical first-order coupling constants, 155
X-ray spectroscopy, 155
Free induction decay (FID), 229
Friction tensor, 559
Frozen-nuclei approximation, 509

Gauge corrections (GC), 558. See also EPR
parameters
Gauge including/invariant atomic orbitals
(GIAO), 214, 317, 319, 558
Gauge-origin-independent approaches
gauge including/invariant atomic orbitals
(GIAO), 214, 317, 319, 558

INDEX

individual gauge for localized orbitals
(IGLO), 214
localized orbital/local origin (LORG), 214
London atomic orbitals (LAOs), 85, 99,
109, 111, 319
Gaussian function, 89
GC. See Gauge corrections (GC)
Generalized coordinates, 559
GIAO. See Gauge including/invariant atomic
orbitals (GIAO)
GLOB model, 509, 520, 521, 524-528
Green’s function methods, 168
Auger spectra, 165
X-ray spectra, 161

Hamiltonian, 210
BF molecular Hamiltonian, 365
electronic Hamiltonian, Herzberg-Teller
expression of, 376
EPR effective spin Hamiltonian, 212
zero-field splitting term, 212
field-free Hamiltonian, 479
full rovibronic Carter-Handy
Hamiltonian, 419, 426-429
mean-field Hamiltonian, 486
model vibronic Hamiltonian, 493
molecular Hamiltonian, 365
NMR spin Hamiltonian, 210
paramagnetic probe/explicit solvent
“complete” Hamiltonian, 554
perturbed Hamiltonian, response function
theory, 81
photoionization process, continuum
eigenstate, 178
rotational Hamiltonian, 267, 269
centrifugal-distortion constants, 269
dipole moment, 294
electric properties, 281
hyperfine-structure Hamiltonian, 300
magnetic properties, 281-283
non-rigid-rotor, 269
nuclear quadrupole coupling, 271
rigid-rotor, 267
asymmetric-top molecules, 268
diatomic and linear molecules, 267
spherical-top molecules, 269
symmetric-top molecules, 267
selection rules, 273-274, 301
simulation of rotational spectra, 283-284
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spin-spin interactions, 272
indirect contributions, 272
vibrational corrections, 291
second-order perturbation theory (VPT2)
Hamiltonian, 325
Coriolis coupling, 325, 327
self-consistent charge (SCC)
Hamiltonian, 252
semi-internal CI (SCI), 167
solute-solvent Hamiltonian, 400
spin-spin Hamiltonian, 272
spin super-Hamiltonian, 568
static exchange (STEX), 141-142, 185
surrogate Hamiltonian approach, 470
tight-binding Hamiltonian, 251
time-dependent system Hamiltonian, 450
rotating-wave approximation
(RWA), 451
two-pulse interaction Hamiltonian, 455
vibrational exciton Hamiltonian, 334
Harmonic approximation
double harmonic approximation,
311, 314
electronic spectra, 381
Hessian, 311
normal modes, 311
scaling factors, 319
HCC. See Hyperfine coupling constant (HCC)
Heaviside step function, 454
Herman—Kluk approach, 504
Herzberg-Teller (HT), 375, 379-380,
387-388, 497
Herzberg-Teller (HT) approximation, 367,
375, 380, ECD
dipole-forbidden transitions, 375
weakly-allowed transitions, 375
Herzberg-Teller effect, 367
Hessian, 311
Hessian matrix reconstruction (HMR)
model, 335
Hole-mixing states, 162
Hougen’s theory of the Fermi
resonances, 426-429
Hund’s coupling cases, 299
Hydrodynamic interactions, 562
Rotne—Prager (RP) approach, 562
Hyperfine coupling constant (HCC), 215
Hyperfine structure, rotational spectra, 271
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IMDHO. See Independent-mode displaced
harmonic oscillator model
(IMDHO)

Independent-mode displaced harmonic
oscillator model IMDHO),

390

Independent particle states, 162

Indirect spin-spin coupling constants, 212

Individual gauge for localized orbitals
(IGLO), 214

Jacobi coordinates, 366
Jahn-Teller effect, 367, 422-424, 482

K-matrix technique, 177
Kramers-Heisenberg formula, 190

Laboratory-fixed (LF) coordinate
system, 365
Lamb-dip technique, 284, 296
Lamb-dip technique, hyperfine structure of
the rotational spectrum, 296
Lanczos method, 484
LAO:s. See London atomic orbitals (ILAOs)
Larmor frequency, 229
Leslie—Ericksen coefficient, 566
Levi—Civita tensor, 562
Lindblad, master equation, 470
Linear response function (LRF), 83
Linear vibronic coupling model
(LVCM), 420
Liouville, stochastic equation (SLE), 470,
553-555, 563-565
flexible-body model, 556
rigid-body model, 556
Localized orbital/local origin (LORG), 214
Local viscosity, 562
London atomic orbitals (LAOs), 85, 109,
111, 319
frequency-dependent, 85
Lorentzian function, 89
Lorenz-Lorentz, equation for solution,
338
LORG. See Localized orbital/local origin
(LORG)
LRF. See Linear response function (LRF)
LVCM. See Linear vibronic coupling model
(LVCM)
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Magnetic circular dichroism, 104
magnetic field-frequency dispersion
(MORD), 104
magnetic field-induced circular dichroism
(MCD), 104
magnetic field-induced optical rotation
(MOR), 104
Verdet constant, 111, 112
Maier-Saupe form, 566
Mallard-Straley and Person, equation for
solution, 338
Marcus solvent broadening, 402
Markov stochastic process, 554
Maxwell field, 342
MCTDH. See Multiconfigurational time-
dependent Hartree (MCTDH)
Mesoscopic parameters, 557
dissipative properties, 557
full-diffusion tensor, 557
Molecular beam gas-phase experiments, 26
Molecular polarizability tensor, 315
Molecule-fixed (MF) coordinate system,
266, 559. See also Body-fixed (BF)
frame
Multiconfigurational time-dependent Hartree
(MCTDH), 421, 470, 482,
485-491
multilayer MCTDH method, 487
Multimode vibronic coupling model
(MVCM), 420, 422-424
Multiphoton processes, 15-17, 96
gradient approximation, 390
TPCD two-photon CD, 370-372
rotatory strength, 102
TPCLD two-photon linear-circular
dichroism, 102
two-photon absorption, 370-372
TPA cross section, 99
vibrational resonance Raman (VRR), 370,
372-374, 378
independent-mode displaced harmonic
oscillator (IMDHO) model, 390
transform theory, 390
AS and VG models, 390, 436
MVCM. See Multimode vibronic coupling
model (MVCM)

Near-edge X-ray absorption fine-structure
spectra (NEXAFS), 184

INDEX

NEXAFS. See Near-edge X-ray absorption
fine-structure spectra (NEXAFS)
NMR. See Nuclear magnetic resonance
(NMR)
Nonadiabatic effects
coupling terms, 366
diabatic states, 368, 482
block-diagonalization of the electronic
Hamiltonian, 368, 428-429
Herzberg-Teller effect, 367
Jahn-Teller effect, 367, 422-424, 482
nonadiabatic coupling terms, 366
quasi-diabatic states, 368
Renner-Teller effect, 367, 419, 426-430
NpT ensemble, 526
Nuclear magnetic resonance (NMR)
“effective” spin Hamiltonians, 210, 217,
557
environmental effects, 227
indirect spin-spin coupling constants, 212
NMR chemical shift, 216
nuclear Overhauser effects (NOEs), 241,
571
PNMR, nuclear magnetic resonance
spectroscopy of paramagnetic
species, 216
powder pattern, 229
shielding constants, 212, 217, 228
slowly relaxing local structure model
(SRLS), 571
solid-state NMR spectra, 238
stochastic modeling, 551
two-body stochastic modeling, 572
vibrationally averaged parameters, 226,
328
Nuclear magnetic resonance spectroscopy
of paramagnetic species
(PNMR), 216
NVT ensemble, 526

One-photon absorption (OPA), 88,
369-370

One-photon emission (OPE), 369-370

Onsager model, 337, 340

OPA. See One-photon absorption (OPA)

OPE. See One-photon emission (OPE)

Optical dephasing operator, 463

Overlap integrals, 376. See also FC
integrals
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analytical evaluation, 382
perturbative evaluation, 383
prescreening techniques, 403-419.
See also Prescreening of vibronic
transitions
recursive evaluation, 382
Ruhoff approach, 382
sharp and Rosenstock functions, 382
spectra convergence, 414419

PCM. See Polarizable continuum model
(PCM)

Person (and Mallard-Straley) model, for
solvent effects on IR
intensities, 338

PES. See Potential energy surface (PES)

Placzek’s approach, 315

PNMR. See Nuclear magnetic resonance
spectroscopy of paramagnetic
species (PNMR)

Polarizable continuum model (PCM), 48,
336-347

Polo-Wilson equation for solution, 338

Potential energy surface (PES), 324

Prescreening of vibronic
transitions, 403-419

block diagonalization, 408

class-based approach, 409

coherent-state representation, 408

energy window, 404

interlocked algorithm, 404

a priori schemes, 406-419

storage of FC integrals, 403

transition probability, 405406
Principal moments of inertia, 266

QREF. See Quadratic response function (QRF)

Quadratic response function (QRF), 83

Quadratic vibronic coupling model
(QVCM), 420

Quantum confinement (QC) effect, 250

Quasi-diabatic states, 368

QVCM. See Quadratic vibronic coupling
model (QVCM)

Ramsey
expressions, 213
formulation, spin-rotation interaction,
296
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diamagnetic contribution, 296
paramagnetic contribution, 296
Random phase approximation (RPA), 143

Redfield, multilevel theory, 463
Relativistic mass corrections (RMC), 558.
See also EPR parameters
Renner-Teller effect, 367, 419, 426430
Response function theory, 78
AO-based formulations of response
theory, 85
complex polarization propagator
(CPP), 86, 112, 144
X-ray spectroscopy, 144
damped response theory (DRT), 86
Ehrenfest framework, 81
linear response function (LRF), 83
sum-over-states (SOS) expression, 83
London atomic orbitals (LAOs),
frequency-dependent, 85
quadratic response function (QRF), 83
scalar rotational strength, 109
length-gauge, 109
velocity-gauge, 109
SCF and MCSCF wavefunctions,
implementations for, 82
vibrational (and vibronic) response
theory, 87
Rigid-body model, 556
RMC. See Relativistic mass corrections (RMC)
Rotating-wave approximation (RWA), 451
Rotational spectra, 266
Doppler-limited rotational spectrum, 284
hyperfine structure, 271
nuclear quadrupole coupling, 294
parameters, computation of, 276
selection rules, 273
spin-rotation interaction, 273, 296
sub-Doppler resolution, 296. See also
Lamb-dip technique
vibrational corrections, 297
“Rotational” symmetry, 266
asymmetric-top, 266
linear (and diatomic), 266
spherical-top, 266
symmetric-top, 266
Rotne—Prager (RP) approach, 562
Ruhoff approach, 382. See FC integrals
RWA. See Rotating-wave approximation
(RWA)
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SCRE. See Self consistent reaction field
model (SCRF)
Second-order vibrational perturbation theory
(VPT2), 280, 311, 324-329
anharmonic force field, 280
cubic and (semidiagonal) quartic force
constants, evaluation, 280, 324
energy levels, 327
excited electronic states, 421422, 431,
434
Fermi resonances, 326
IR intensities, 328
propetties, vibrationally averaged, 327
solvent effects, 342
Self consistent reaction field model
(SCRF), 337
Semiconductor nanocrystals, 253
absorption cross section, 255
Semiempirical tight-binding, 251
SE (spontaneous emission) TFG (time- and
frequency-gated), 452
Sharp and Rosenstock matrices, 382-383.
See FC integrals
Shielding constants, 212, 217
Shift vector K, 382, 384
Site energies, 334
Slater—-Condon rules, 159
SLE. See Liouville, stochastic equation (SLE)
Slowly relaxing local structure model
(SRLS), 571
Smoluchowski equation, 470, 554. See also
Fokker-Planck equation
slowly relaxing local structure (SRLS)
model, 571
Solvation time scales, 49-52, 57, 346,
402
equilibrium solvent regime, 49-52, 57,
346, 402
nonequilibrium solvent regime, 49-52,
57, 346, 402
Solvent effects
anharmonic effects, 342
classical approaches, 337-340
IR spectra, 337-339
Raman intensities, 339
electronic circular dichroism (ECD), 110
cavity field effects, 110
electronic transition, 48
dynamical solvent effect, 48, 49

INDEX

linear response (LR) approaches, 48,
52, 56
state-specific (SS), 48-49, 57, 69
GLOB model, 509, 520, 521, 524-528
“cavity field,” 344
IR intensity, 343
local field, 342
Raman intensities, 343
VCD and VROA intensities, 344-345
Marcus solvent broadening, 402
Maxwell field, 342
nonequilibrium effect, 341, 402
Onsager model, 337, 340
polarizable continuum model (PCM), 48,
336-347
reaction field effects, 341
self consistent reaction field (SCRF)
model, 337
solvation time scales, 49-52, 57, 346, 402
equilibrium solvent regime, 49-52, 57,
346, 402
nonequilibrium solvent regime, 49-52,
57, 346, 402
solvent broadening, 400, 460
inhomogeneous broadening of the 3PPE
transients, 460
specific/explicit effects (solute-solute and
solute-solvent), 56, 347
two-photon spectra, 116
vibrational spectroscopy, 336-347
IR spectra, 337, 346, 348
Raman intensities, 339, 346, 350
Raman optical activity (ROA), 122
vibrational circular dichroism, 119,
346, 350
SOS. See Sum-over-states expression (SOS)
Space-fixed (SF) coordinate system, 266, 365
Specfic/explicit effects (solute-solute and
solute-solvent), 56, 347
Spectral moments, 394
Spin-orbit coupling, 298, 366,419, 426-429,
558
Spin-rovibronic wavefunction, 427
Stark effect, 294
Static exchange (STEX) technique,
141-142, 185
STEX. See Static exchange (STEX) technique
Stieltjes imaging (SI), 173
Stokes scattering, 315
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Sum-over-states expression (SOS), 83

Tamn-Dancoff approximation, 143, 169
TCSPC. See Time-correlated single-photon
counting (TCSPC)
TDM. See Transition dipole moment (TDM)
TFG (time- and frequency-gated)
spontaneous emission (SE),
452
Time-correlated single-photon counting
(TCSPC), 18
Time-dependent mixed quantum classical
approaches, 503
Time-dependent Schrodinger equation, 470,
477
Time-dependent semiclassical
approaches, 503
initial-value representation (IVR), 504
Time-resolved spectroscopies, 447471
fifth-order spectroscopies, 471
femtosecond stimulated Raman
scattering, 471
four-six-wave-mixing interference
spectroscopy, 471
heterodyned 3D IR, 471
multiple quantum coherence
spectroscopy, 471
polarizability response
spectroscopy, 471
resonant-pump third-order Raman-
probe spectroscopy, 471
transient 2D IR, 471
four-wave-mixing (4WM) signal, 460
third-order four-wave-mixing
signals, 458, 460
coherent anti-Stokes—Raman scattering
(CARS), 18, 123, 448
homodyne/heterodyne three-pulse
photon echo, 458
time-correlated single-photon counting
(TCSPC), 18
transient grating (TG), 18
three-pulse spectroscopies, 459
three-pulse-induced third-order
polarization, 459
three-pulse photon echo (3PPE), 19,
459
two-dimensional 3PPE (2D 3PPE),
465-470
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three-time third-order infrared response
functions, 462
three-time third-order optical response
function, 462
two-pulse time- and frequency-resolved
spectra
fluorescence up-conversion, 15, 18,448
pump-probe (PP), 18-19, 21, 455457
spontaneous emission (SE), 452, 464
time- and frequency-gated (TFG),
452, 465
two-pulse photon echo (PE), 18,
457-458
two-time fifth-order nonresonant Raman
response functions, 462
Total angular momentum J, 298
TPA. See Two-photon absorption (TPA)
TPCLD. See Two-photon linear-circular
dichroism (TPCLD)
Transition dipole coupling (TDC)
model, 334-335
Transition dipole moment (TDM), 375
aproximation
electric, 375
integral, 375
magnetic, 375
Transition dipole moment integrals, 369
Two-dimensional IR (2D-IR), 334
Hessian matrix reconstruction (HMR)
model, 335
transition dipole coupling (TDC)
model, 334-335
vibrational exciton Hamiltonian, 334
Two-photon absorption (TPA), 96, 112,
370, 378
Two-photon CD (TPCD), 370-372
Two-photon linear-circular dichroism

(TPCLD), 102

Van Vleck-Gutziller amplitude, 504

Variational self-consistent-field
(VSCF), 311, 324

VCC. See Vibrational coupled
cluster (VCC)

VCI. See Vibrational configuration
interaction (VCI)

Velocity gauge formulations, 96

Vertical gradient (VG), 383, 385-388,
392-394, 436
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VG. See Vertical gradient (VG)
Vibrational configuration interaction
(VCI), 324
Vibrational coupled cluster (VCC), 324
Vibrational exciton Hamiltonian, 334
Hessian matrix reconstruction (HMR)
model, 335
local-mode basis states, 334. See also Site
energies
transition dipole coupling (TDC)
model, 334-335
Vibrational Mgller-Plesset perturbation
theory (VMP), 324
Vibrational resonance Raman (vRR), 370,
372-374, 378
Vibrational spectroscopies
atomic axial tensor (AAT akaMA)/magnetic
dipole moment gradient, 117, 317
atomic polar tensors (APTs)/dipole
moment gradient, 117, 317
chiroptical and nonlinear vibrational
spectroscopies, 116
coherent anti-Stokes—Raman scattering
(CARS), 18, 123, 448
Raman activities, 314
Raman optical activity (ROA), 119
vibrational circular dichroism
(VCD), 117, 315
vibrational Raman optical activity
(VROA), 318
vibrational Raman scattering, 315
IR intensities, 313
coupled perturbed Hartree—Fock
(CPHF) procedure, 314, 318
density matrix, 314
two-dimensional IR (2D-IR), 334
VMP. See Vibrational Mgller—Plesset
perturbation theory (VMP)
VPT2. See Second-order vibrational
perturbation theory (VPT2)
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VSCEF. See Variational self-consistent-field
(VSCF)

Wavefunction propagation, 482, 484
Chebyshev method, 484
Lanczos method, 484
time split method, 484

Wigner distribution, 510

Wigner transforms, 452

X-ray spectroscopy, 138

Auger emission, 139, 162

breakdown of MO theory states, 162

circular dichroism (XCD), 188

hole-mixing states, 162

independent particle states, 162

inner—inner valence states, breakdown of
MO theory states, 162

inner—outer valence states, 162. (See also
hole-mixing states)

multiple-scattering X, method, 186

near-edge X-ray absorption fine-structure
spectra (NEXAFS), 184

outer-outer valence states, 162. (See also
independent particle states)

photoabsorption, 139

photoelectron shift, 147

photoemission, 139

resonant X-ray spectra (RXS), 190

shake-up/off, 139, 156

intensity, of the shake-up, 158
spectra calculations, 160

vibronic analysis, 154

X-ray emission or fluorescence,
139, 171

X-ray free-electron lasers (XFELs), 194

Zeeman interaction, 212





