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I. INTRODUCTION

Both thermotropic and lyotropic liquid crystals appeal to scientists for their unique
properties of being more or less ordered while at the same time preserving a high degree of
molecular mobility. Furthermore, a number of Iyotropic liquid-crystalline phases show space
structures relevant to biological systems. Not surprisingly, therefore, studies of the molecular
dynamics in mesomorphic states of condensed matter have attracted a sustained interest over
the past several years.'* The most fundamental characteristic of liquid-crystalline states. at
least from a microscopic point of view, is the presence of long-range orientational order.
while positional order is limited or absent altogether.’ A first step towards the understanding
of the relation between molecular properties and the macroscopic structure of mesophases
consists of collecting information about the local behavior of the molecule subject to a mean-
ordering potential. Consequently. the rotational dynamics was vigorously studied in the past.
Studies were facilitated by the existence of several techniques sensitive to molecular reori-
entations in external fields (dielectric relaxation, FIR, Raman, nuclear magnetic resonance
or NMR, electron paramagnetic resonance or EPR, and other spectroscopies). Progress in
translational diffusion measurements was much slower, despite its importance for under-
standing the anisotropy of mass transport, critical phenomena at liquid-crystalline phase
transitions,* and mass transport in model and biomembranes.* It was essentially due to the
lack of reliable experimental techniques enabling such studies in liquid-crystalline materials.

One can divide experiments designed to measure the translational diffusion constant,
D. into two general categories. A *‘macroscopic’’ method involves diffusion over distances,
several orders of magnitude larger than molecular dimensions, whereas a *‘microscopic’’
method measures diffusion over dimensions on the order of molecular lengths. Early efforts
on mesomorphic materials were essentially restricted to the first category and involved
impurity diffusion across the sample. These include chemical,® optical,*? ahd radioactive®®
probes, charge carriers,'® and NMR with puised gradients." In the last decade, there was
a rapid development in experimental techniques which permit the diffusion coefficient to be
measured spectroscopically. Macroscopic diffusion coefficients are directly measured from
NMR field-gradient spin echoes. '*!* Macroscopic techniques employed to measure diffusion
of spin probes and spin labels include that of Sheats and McConnell'*** which requires
selective photobleaching of a sample and that of Ahn'® which applies the capillary-diffusion
method™ to EPR and requires a great deal of measurement time. Recently, EPR imaging
has been intensively applied to study mass transport in liquids, thermotropic liquid crystals,
model membranes, and biologically relevant polymers.2'-¥?

Typical examples of microscopic methods used in the translational dynamics studies are
the measurement of Heisenberg spin exchange (HSE) between colliding radical pairs,3*-%°
the temperature and frequency dependence of T,, T,;,, and T,p in NMR,* and of quasielastic
neutron scattering (QENS).*! ‘

Of course, one should employ a combination of microscopic and Macroscopic mea-
surements 10 better understand the details of molecular motions important for diffusion on
all scales of distance. Moreover, both the magnitude and the anisotropy of macroscopically
measured diffusion coefficents are important both for discriminating between microscopic
models of diffusion in liquid crystals and in models of molecular dynamics near the liquid-
crystalline phase transitions.

Despite the evident applicability of NMR or HSE-EPR and QENS techniqyes in studying
the translational diffusion on macroscopic or microscopic scales. the diffusion data have a
significant amount of uncertainty. and there is a need for other methods for an independent
and reliable verification. For example, in the pulsed-field gradient NMR methods. the
diffusion coefficient is determined from the ratio of the spin-echo amplitude with and without
the gradient pulsc. all other parameters being kept constant. Since the gradient enters into
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the result quadratically """ the absolute accuracy of the diffusion coefficient is mainly limited
by the accuracy with which the magnetic-field gradient can be determined. Next. the use
of NMR relaxation times, HSE-EPR, or QENS techniques gives results which depend heavily
on the particular theoretical models of the molecular dynamics that are utilized in order to
extract D, and systematic errors are difficult to estimate. Additionally, HSE-EPR and NMR
give an average diffusion constant only; therefore, these methods are useless in anisotropy
studies. Thus, there is a constant need for new techniques to study the translational diffusion.
and the use of EPR imaging for this purpose is one of the latest efforts.

There are, indeed. special reasons to have developed EPR-imaging methods. First. there
is HSE-EPR for studying translational diffusion over microscopic dimensions. Second, EPR
is routinely used to obtain information about the rotational dynamics of spin probes.*>** A
convenient technique for measuring macroscopic translational diffusion coefficients for spin
probes, especially in anisotropic media, would enable simultaneous, yet independent. studies
of rotational and translational motions on the same sample. Such studies have been carried
out in the authors’ laboratory. 23437

The use of EPR imaging for **dynamic samples’’ to investigate transport phenomena
has been accomplished in just a few laboratories.?!-2-2426.30- The term ‘*‘dynamic sample"’
is used to describe a sample in which, with the passage of time, this inhomogeneous
distribution will tend toward a homogeneous distribution via translational diffusion. The
first experiments to measure diffusion coefficients required either long experimental
times?!-34-%-31 (several days) or assumed an idealized distribution of the spin-probe concen-
tration profile.”* Quite recently, a significant breakthrough in the development of the tech-
nique of dynamic imaging of diffusion (DID) by EPR (DID-EPR) was made by applying
Fourier-space analysis of the data,™ and, subsequently, the methodology of the experiment
and the numerical analysis of the data was improved.*-*” Thus, at present. it is possible to
measure, within an hour. by DID-EPR diffusion coefficients of the order of 10-"cm?s -
with an accuracy better than a few percent, and of the order of 10-%mZs - with an accuracy
of 10 to 20%. This relatively short experimental time permits one to perform a multiple-
diffusion measurement on the same sample, ¢.g., to perform a series of measurements at
different temperatures.33-34.3?

In the following sections of this chapter, an in-depth review of the authors’ method is
given. The basic theoretical fundamentals are outlined, and experimental details and the
accuracy and precision of DID-EPR are considered. The final sections discuss translational-
diffusion results obtained 10 date and perspectives for further developments in the DID-EPR
technique.

I1. BASIC THEORETICAL CONCEPTS

The time evolution of the concentration profile results from the translational diffusion
of spin probes, as a sample with an inhomogeneous (initial) distribution of spin probes tends
to a state of homogeneous (final) distribution. A diffusion coefficient can then be determined
from changes of the distribution of spin probes in time. The spin probes can be used as
markers for the imaging of diffusion only if the EPR signal is independent of the concen-
tration. It is, therefore, very important that, at any time during the experiment. the concen-
tration of spin probes at any point in a sample is low enough that the line-broadening from
Heisenberg spin-exchange (HSE) can be neglected. The analysis of the concentration profiles
is facilitated if the concentration of spin probes is also low enough for the translational
diffusion to obey Fick's Second Law:**
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aC(x.t ]C(x.t
2 p I
at ox*

where D, is the diffusion constant.

The simplest and most ideal diffusion experiment would be the diffusion of spin probes
from an instantaneous point-source (3-function). If the source is placedatx = Oatt = 0.
then the solution to Equation 1 is:

X

C, :
Cx = VanDi P { (\/Z—ﬁrt) }

X:

C
= —e - 2
V2n - ol(t) exp ( P oi(t)) )

For example, the concentration profile is a Gaussian curve for all time, t > 0, although the
variance of the profile, o3(t) = 2D,1, is constantly changing.

For an arbitrary initial distribution of spin probes, the solution, in the absence of any
boundary effects, can be written as a convolution of the initial distribution C(x,t = 0) with
the Green's function, G(x,t):*

C(x,t) = j_ Cix',t = 0)G(x — x',0dx’

1 * - ,
= —\/-';z---;——D'—--t - C(x'.t = O)e~»*Pudx 3)

Equation 3 may be adapted easily to specific boundaries, such as reflecting walls at x = 0
and L. »

Although determination of the diffusion coefficient for a point source is straightforward
(see Equation 2), an arbitrary initial distribution makes the task more difficult and less
accurate. To facilitate the analysis, therefore, it is advisable to work with simple and well-
defined initial concentration profiles. The preparation of a point source of spin probes is not
feasible experimentally, and the initial distribution always extends over a finite distance in
practice. The simplest model of an extended-source is a square-function of width 2x, centered
atx = O

=0 if x| >x,

C""O’{ C, if|x| = x, “)

Then, from Equation 3 the concentration profile at a later time t is given by*

1 X, — X X, + X
+ = +
Cx.0) §C°{°rf( 4Dlt) “f( 404)} ®)

where erfix) denotes error function. With passing time. Equation 5 more closely resembles
a Gaussian curve and for D,t > x it may be wnitten 1o a good approximation as:

C, 1 x?
Cix,t) = Ving: exp{ -3 (—;} (6)

Therefore. with time. the concentration profile becomes similar to the case of diffusion from
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a point source. Furthermore. the narrower the initial distribution, the shorter the time after
which the concentration profile can be considered Gaussian: this was found to be true for
most of the experimentally prepared narrow initial distributions. '-32-4.3s Since the variance
in Equation 6 might be thought of as having evolved in time from the variance of some
hypothetical Gaussian initial distribution, d:, we can write

o; = 8 + 2Dt N

Although 3, cannot be identified with X,, both quantities are of the same order, as can be
demonstrated from a **best fit"* of the form of Equation 6 to Equation 5 for Dt>xi It
is, therefore, conceptually justified to consider concentration profiles that are well-developed
in time as Gaussian curves. (In the following discussion, the term “‘Gaussian'" is used in
this sense.)

The easiest way of analyzing a Gaussian concentration profile is to use a semilogarithmic
scale. For example, the logarithm of Equation 2 gives:

-@D ' x? + In{C/V4=D,t)
=(20i()~" - x* + In[C/V2ma¥(1)] 8)

In[C(x,1)]

!

]

2

On the basis of Equation 8 one can easily calculate o(1) for a given t. Since. in practice,
the time of initialization of diffusion is ill-defined, one must repeat the experiment at least
at a second t in order to determine D,.

Analysis of the concentration profile in x-space (the space-domain analysis) depends
heavily on the assumption that the profile has developed from an initial point source, i.e.,
it is Gaussian.*' This arbitrary assumption can be avoided if one analyzes data in the Fourier
domain. Following the convolution theorem.* the Fourier transform (FT) of both sides of
Equation 3 yields:

Ck.t) = Gek.t) - Ctk.t = 0) 9

In C(k,t) In G(k,t) + In Ctk,t = 0)

-4mD¢ - Kk? + In C(k,t = 0)

- 2701 - k* + In Ck,t = 0) (10)

where k is the inverse wavelength and C(x.1) <—FL Ctk.t) and G(x,t) <—FL 6(k.1) are **Fourier
transform pairs’. Recall that, in general. all functions in Fourier-space are complex.

One can then make use of Equation 10 to determine D, in the Fourier-domain analogous
to Equation 8 in the space-domain analysis, for an arbitrary initial concentration profile.

How then does the DID-EPR experiment monitor the evolution of the concentration
protile in time? The simplicity of the DID-EPR experiment is in the fact that we are monitoring
solely the component of diffusion in the direction of the one-dimensional (1-D) magnetic-
field gradient, even though the sample is three-dimensional (3-D). Consider a 1-D inhom-
Ogencous concentration of spin probes along some arbitrary direction x at time t, C(x,t);
Also assume that a uniform magnetic-field gradient parallel to x can be generated, i.c.,
B’ = V B. In the presence of the gradient. x becomes linearly mapped onto B and vice
versa: one may then consider both variables equivalent. For the convenience of further
discussion, a universal variable §€ =x-B" = (B - B,) is introduced in place of x and B,
where B, is a constant and £ is in the same units as B. It is easy to verify by substitution
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that the basic equations of diffusion (i.e.. Equations | through 10) hold also as a function
of £ with D,. o;, and & replaced by D, = D, - B"”. 0{ = ¢} -B'*. and 5} = 5 - B".
respectively. (For consistency, note that § is the same variable as £, introduced before.*)

The absorption-EPR spectrum in the presence of the magnetic-field gradient, I(&,0), is
a superposition of the signals of spin probes at different positions; i.e., L(€,1) is the con-
volution of the absorption spectrum in the absence of magnetic-field gradient. I.(€). with
the normalized concentration profile:*'-**

Lgy = f C(E' DI - §')d§'/f_:C(§')d§' (in

Henceforth, the normalization factor [*, C(£')d&’ will be omitted, assuming that C(§)
is always the normalized concentration profile. To extract the concentration profile, again
take advantage of the convolution theorem.* The FT of both sides of Equation 11 gives:

L(x,t) = C(x,Dl(x) (12)

where L(£,1) ‘_F_r_’ L(x.t), 1(§) «EL I(x), and C(£.1) :1» C(k.t) are **Fourier-transform
pairs’’, and « is the inverse wavelength associated with §. Dividing both sides of Equation
12 by L(x), we obtain C(k.t), which can be analyzed in terms of Equation 10 (Fourier-
domain). or by performing the inverse FT of C(x,1):

T . T e LKD)
Clg) = j- e ¢ Clk )dx = f_ c""“‘-f:(T)dK (13)

one may analyze C(€) with the aid of Equation 8 (space-domain). Note, that. in pninciple.
data analysis in the Fourier-domain should not only be simpler. but also produce significantly
smaller error in Dy, as a result of significantly less data manipulation. i.e., there is no need
for the inverse FT (see Equation 13). However, the Fourier-domain analysis also has its
limitations, and. as is shown later, both methods (Fourier-domain and space-domain) should
be considered complementary rather than competitive.

II1. BASIC EXPERIMENTAL CONSIDERATIONS

As was shown in the preceding section, the basic idea and the mathematics of DID-
EPR are very simple. However, experimental imperfections can introduce limitations, the
most serious of which are addressed below.

A. MAGNETIC-FIELD GRADIENT <

The whole concept of deconvolution of the concentration profile is based on the as-
sumption of linear mapping of x space onto B space. Any deviation of the gradient from
uniformity along x violates this basic assumption and. thereby, at best. reduces the accuracy
of the method.

B. SPATIAL SENSITIVITY OF THE SPECTROMETER
Vanation of resonator sensitivity function, S(x). over spatial dimensions makes the

experiment “‘see’’ an effective concentration profile.

Cadx) = S(x)Cix) (14
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FIGURE 1. Schematic configuration of the sample for determination of diffusion coefficients in the unrestricted
geometry of diffusion: (a) in model membranes (see Reference 34). (b) in liquid crystals. and (c) in the restricied
geometry of diffusion in liquid crystals tsee Reference 35).

and knowledge of S(x) is required. Once S(x) is known, the data can be analyzed in the
space-domain without any problem.*' but use of a Fourier-domain analysis is limited. Since
C.x.t) is not the convolution of C(x,t) and S(x), there is no simple method of extraction
of C(k.t) from C_(k.t) in Fourier-space, even if we know the sensitivity of the cavity.
Therefore, one can make most effective use of the Fourier-space analysis only if DID-EPR
measurements are performed on concentration profiles extending over a distance limited to
the center of the cavity. where S(§) is uniform 32343

The necessity of working over very short distances emphasizes the importance of the
preparation of as narrow initial distributions as possible. Narrow initial distributions have
other virtues discussed below.

C. GEOMETRIES OF DIFFUSION

There are two simple and practical types of samples for the DID-EPR experiment. In
the first one (I), a small amount of the spin-probe-enriched material is initially confined to
the center of a quasi-1-D sample; in the case of liquid materials, the sample is prepared
inside a capillary tube,’'-*? and, in the case of more viscous or solid materials (i.¢., model
membranes), a strip of a thin flat film of the pure material, sandwiched between glass plates,
is used®2-3-37 (see Figure 1). Since, in this geometry, spin probes can diffuse in both directions -
from the source, it will be called the unrestricted geometry of diffusion.

In the second type of sample. (II) the initial distribution of spin probes is located at a
reflective boundary, i.e., at the bottom or at the side-wall of the sample holder, see Figure
1. In this geometry, spin probes can diffuse only in one direction from the boundary, so
we will call this case the restricted geometry for diffusion.

D. ACQUISITION OF SPECTRA

In standard EPR-spectroscopy. the spectrum is recorded by maintaining a constant
microwave frequency and varying (sweeping) the magnetic field over some range. B,, around
the central-field value, B,. This sweep always takes some time. In the preceding discussion.
we have implicity assumed that the spectrometer permits an instantaneous detection of the
EPR spectrum, particularly the I, spectrum. Because the recording time (sweep time) is
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finite. the above assumption is valid only as long as the spectrum can be considered time-
independent over the time of sweep through the spectrum. Unfortunately, under standard
experimental conditions, the sweep time may be sufficiently long to distort C(k,t). Such a
distortion can lead to a significant systematic error in D,.

Let the sweep rate be v, = §/t,, where t, is the sweep time and £, is the sweep range
(= £/2 from the center) in units of the universal variable £. Then, by simple substitution,
we find that the original Gaussian profile (see Equation 6) will be skewed by the recording
procedure:**

ex {-l'————-—-gz }s»;e=e>p ex {—-l- ¢ } (15)
PL728 + 2Dg PL728 + 2Dy + (2Dgv. )

Because £ changes sign. one half of the recorded curve is compressed. while the second
half stretched with respect to the original Gaussian distribution, the degree of the distortion
being inversely proportional to v,. This effect may be thought of as the imaging analogue
of the Doppler effect. If the distortion is not too large. i.e., 2Dy/v, is small, the skewed
profile can be approximated by

{ _l _____i___.}
P17 2630 + (2Dgv)E

gexp{_.l.__gz_}.{]+l_§‘_..2__§+ }
2 00 2 080 v,

- 3

1 g D, ., 3
= exp{ —= —=—} + —— Erexp{ — = ——
ﬂp{ 2 oi(t)} vstri(t)g ﬂp{ 20%(0} * (16)

where o}(1) = 8; + 2D, with t the time lapse since initialization of diffusion. The first
term on the rhs is an even function and the second term an odd function of §. Thus, FT of
Equation 16 would yield the Fourier-image of the first term in the real part and of the second
term in the imaginary part of the transform, so only the real part should be used for analysis
if the distortion of the concentration profile is significant. For small distortions, the variance
of the skewed distribution is:

03 = [8] + (4 In 2)D}v]] + 2D¢t
= [8; + (4 In 2)D}/E]) + 2Dgt {an
as long as
2D, < o} (18)

The bracketed part of the rhs of Equation 17 is time-independent. Thus, as long as the
broadening of the concentration profile due to the finite sweep time is small compared to
the natural breadth of the profile. an artificial broadening caused by the sweep is approxi-
mately time-independent and small and. therefore. would not lead 1o a significant systematic
error in determining D,. Notice, at this point, that since the space available for diffusion is
limited (by the cavity sensitivity) and ¢, is usually fixed, condition Equation 18 sets the
upper limit on the value of the diffusion coefficient one can determine with DID-EPR. as
discussed in Section V. -

Unfortunately, in the presence of a reflective wall. the finite sweep-time always has an
influence on the estimated value of D,. since one gets either the compressed. o7 (1), or the
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stretched. o (1), profile depending on the direction of the sweep, a2 (1) < o2 (1), leading
to under- or overestimation of the diffusion coefficient. respectively. In pninciple, there is
a possibility of repeating the measurement with the reverse direction of the sweep and
averaging both results. but this can pose other technical problems requiring uniformity and
equal sweep-rates in both directions as well as carefully aligned samples (see Section VI).
Additionally, since the two sweeps cannot be performed simultaneously. they will be sep-
arated by the time of at least t, i.e., for the reflective wall in the center of the cavity one
can measure either a2 (t) and 0, (t + 1) or 0% (1) and > (t + t,) depending on the direction
of the first sweep; therefore. the averaging may, in fact, not improve the accuracy in D,
very much. Thus, instead of twin measurements with the sweep direction being changed in
between, we find it preferable to reduce the systematic error of the one-way measurement
to a minimum by shortening the sweep-time.

IV. NUMERICAL ANALYSIS OF THE DATA

The deconvolution of the concentration profile is done numerically via a discrete Fourier-
transform (DFT), or more precisely, with the aid of the fast-Fourier-transform routine (FFT*).¢
When using the DFT, all continuous FT used in the previous section are replaced by discrete
sums. For example, DFT of [ (§) is

Ny -1

Lo = 3 L@ (19)

€=o0

where x is now an integer from the range (0.....N, — 1). DFT of the other functions are
defined in the same manner. The convolution equation (Equation 11) is replaced by the
discrete convolution sum:

Ny2
LED = > CE.OLE - E) (20)
§ = ~Ny2s+i

Itis important to remember that the discrete convolution theorem bears an explicit assumption
that both functions being convoluted are periodic, with the periodicity of N,, so there exists
a possibility of unintentionally imposing a periodicity implied by the used of FFT* routines.

Once I(x.t) and [ (x) are known, the (complex) concentration profile in the Fourier-
domain C(x,t) can be calculated (see Equation 12). Up to this point the numerical manip-
ulation of the data is the same for the space-domain and for Fourier-space, but procedures
differ at a later stage (Section II).

A. SPACE-DOMAIN ANALYSIS

In the space-domain analysis, C(x.t) is subjected next to the inverse fast-Fourier-trans-
form (FFT ~) in order to reconstruct the effective concentration profile C (£.1), see Equations
13 and 14. This has to be done in a special manner, however, to avoid numerical problems
characteristic of the DFT deconvolution. Deconvolution can be unstable mathematically if
the transform of the reference spectrum, (i.e., of I (k) is exactly zero or close to zero for
some value (or values) x, so that we cannot divide by it when calculating C(x.t).

C(x,1) therefore needs some sort of filtering prior to FFT~ in order to remove these
zeros. In the past, the optimal (Wiener) filter concept*” was successfully implemented in
the real-space analysis."!

1 M3

Cnled) = 20 €2mUNC (k1) « W(K) 1)
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FIGURE 2. Effective concentration profiles of TEMPONE spin-probes diffusing
in the nematic phase of 5, 4 at 300 K. along x-axis of the cavity: (-) deconvoluted
using FFT- and (----) the best fit of a Gaussian concentration-profile times the
sensitivity of the cavity. S(£). Experimental profiles were recorded at different
relative times (2) 2.2 % 10*s. (5) 9.7 x 10*s. and () 1.56 % 10°s. Variances
of the fitted Gaussian profiles are (a) 0.186, (b) 0 284, and fc) 1.860 cm’ (see
Reference 31,

where W(x) = |l,(x.t)|1/(|l,(o<,t)|2 + u). is the modified Wiener filtering function. W(x)
effectively removes those regions most corrupted by numerical errors, if the constant u.
which should be small and positive, is chosen properly. Furthermore, the results obtained
using Equation 21 are quite insensitive to the value of u, although the function W(x) cannot
be eliminated altogether.

S(£) must be known in order to recover C(£,t). With the help of Equation 8, by standard
least-square minimization with respect to £, one can calculate the variance of the concen-
tration profile, o}(t),” see Figure 2. To determine D,, the variance has to be known for at
least two different t. However, to enhance the precision with which we determine Dy, it is
advisable to use a series of o3(t) measured for different t. Then, the least-square fit of
o*(t) = 2Dt with respect to 2t yields D,.

B. FOURIER-DOMAIN ANALYSIS

Analysis in the Fouricr-domain does not require any further Fourier transforms, once
I,(x.t) and 1(x) are known and. thus, should be considered not only simpler (recall that it
does not depend on the particular shape of the initial concentration profile) but also faster
and more precise.

Direct use of Equation 10 is not very convenient since it involves complex numbers.
However. it is possible to simplify the analysis by taking advantage of the elementary
properties of the Fourier transform and the properties of the transformed concentration profile.

The case of unrestricted geometry of diffusion is the simpler one. By expressing the
complex concentration profiles C(x.t) in polar form, substituting into Equation 10. and
equating the real parts and the imaginary parts, one gets:

InICik.0] = =27%ai -k + InjCix.t = O (22
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Since any function can be written as the sum of an even and odd one. this can also be done
with the initial concentration profile: C(§) = vICLE + Cu-81 + YICAE) —
C—8&)] = Cy&) + Cig). It is then easy to show from clementary properties of the Fourier
transform that C(k.t) = ‘ReCe(x) - g B« 4 igmCoAK) - €’ mivge = [A() - e
¢ i = [A(k) e TUE| e = IC.(k.le™=". i.e.. all the important information about
the concentration profile is indeed in the amplitude of C(x.t), and ¢(x) = (), where
Cik.t) = | Cx.0)| * &>, i.e., all information about the time-development of the concen-
tration profile is in the amplitude of C(x.1).

In the case of the restricted geometry of diffusion, the situation is different. Let us
assume for simplicity that the (reflective) boundary is at § = 0. Then the solution of Equation

. aC .
1 in the presence of the boundary condition, -a—g lg.o = O, for the case of a point source

placed at the boundary is also given by Equation 2, but with C, now being replaced by 2C,
and £-space restricted to positive values.* Similarly, Equation 3 may also be casily adapted
to this case.

Despite a similarity between Cases [ and 11, Fourier transforms of the concentration
profiles are different, and this is due to the presence of the reflective wall. In principle, the

aC
boundary condition —a—g- l¢=o = O ensures that the concentration profile can be expanded only

in Fourier-cosine series (and not Fourier-sine series) in the positive half of §-space. However,
since the gradient-on spectrum is the convolution of the concentration profile with the
reference spectrum (see Equation 20), the use of the Fourier transform to deconvolute this
profile bears an implicit assumption that the mathematical function describing this profile
is defined from —x to + = (continuous FT) or is periodic (DFT). It was not a probiem for
the unrestricted geometry of diffusion. but, in the case of the reflective boundary. I (x.t)/
I,(x) has to contain information, not only about the concentration profile, but also about the
discontinuity in this profile at § = 0 (or. in the case of DFT, periodically at 0. = N,....).
Mathematically, this discontinuity can be thought of as the product of the even (real) function
Ci(g.) = 'LCED + C(—£,0)] and the unit step function. Conveniently for the Fourer
transform analysis, it can alternatively be written as the sum of the (even and real) function
C:(£,1) and the odd (real) function C°(£,1) = ',[C(E.D) — C(£,1)], so the Fourier transform
of (C* + C°) will have a real part (the Fourier transform of C*) and an imaginary part (the
Fourier transform of C°).* Note, most importantly, that the function C*( — £.1) is expandable
in exactly the same cosine Fourier series as C(£,t) but with  being allowed to also take on
negative values. Therefore, full information about the time-development of the concentration
profile in the presence of the reflective boundary is found in the real part of the recovered
Cix.ty = Lk tV1(x). Equation 10 can then be replaced with

In ReC(x.t) = —2moi(t) -« + In ReCix, t = 0) 23y

In general, there are a number of different ways one can use Equations 22 or 23 to determine
D,.'*-** The two most successful ones are as follows.

The concentration profiles recorded at different times are paired and then In[C(x).t.)
Cix.t)} are calculated. For convenience the authors continue to use C(x,t) although, in
practice, it will be appropriately replaced by IC(x,0)| or ReC(x,t). From Equation 10 it
follows that

C(x.t) . 2 s .
ln[m] = —-2wdAok’ = — 4D AyK- (24)

where Aa? = og(t) — o3(t) and Ay, =4 — 1, Then, in principle, a single least-square fit
with respect to At;x? of Equation 24 to experimental values of In{C(x.t,/C(x,1,)] gives De.
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Data analysis in Fourier-space becomes even more convenient if one works with initial
distributions that are narrow and quickly develop into a Gaussian. so it can safely be assumed
at the time of measurement that the initial distribution was Gaussian with some variance.
8! and maximum value, C,. Then from Equations 12, 10, and 7, we have

ln[l’(K't)]

In C(x.t) ™)

]

=28} + 2D -k’ + In C,

-2t eoi) k' + InC, 25

Thus. the least-square fit with respect to k* of Equation 25 to experimental values of
In C(x.1) yields o(t). and the diffusion coefficient can then be calculated from the slope of
a3(1) vs. 2t. Note that since pairing is unnecessary in this case, this method should give
better precision in the determination of D,.

Propagation of experimental and numerical round-off errors introduces limitations to the
Fourier-space analysis. These errors limit the number of « values which are useful for
analysis.”> First, for sufficiently high «, the magnitudes of the C(x,t) become very small
(see Equation 25) and drop below the noise level. When these small numbers are the argument
of the (natural) log, spurious values are obtained (see Equations 22 through 25). Cleary et
al.’ showed, by analysis of simulated concentration profiles with just numerical round-off
errors due to single-precision FFT, that above a certain « value the data becomes meaningless
(see Figure 3). Second, because of experimental errors in C(.t). the values of In[C(k.t)"
Cix.1)] are also corrupted at low enough k such that differences between Cix.t,) and C(x.t)
are of the order of the random noise, especially when (t, — 1) is small.™* As a result of
Cix.t)
Cix.t)
only a limited range of K, Kpy < K < Kp,,. Estimation of D, has. therefore, some degree
of arbitrariness associated with the choices of k., and K,,,. To reduce this arbitrariness.
the following simple procedure was proposed.* The diffusion coefficient is calculated from
the data with different ranges of consecutive x values taken into account. The calculated
diffusion coefficient (Dy,p.) is then a function of the range of « that is taken into account,
(Kouns Kenaa)- THat iS, Dygpe = Diysope(Kpuins Kenar). However, these authors found®* that if «,,
is small, D, is rather insensitive to its value. Then Ky, is set to a fixed small value, so
D, .. becomes just a function of K. For small values of K, (Z Kq,), Do Should initially
have ematically scattered values. However, as K., increases it should go through a plateau
corresponding to D,. On further increase in x,,,. the scatter of data points at higher « should
force the D,,,,. to deviate (decrease) significantly again. Clearly, immediate advantages of
such an analysis of calculated values of D, are (1) the removal of the aforementioned
arbitrariness in choosing the cut-off limits for x and (2) an instant read out of the D value
from the plot.

One can estimate the uncertainty in D, (K..,) as a function of k,, in the following
manner. One plots Equation 24 (up to ,,,) for the data from one pair of times ¢, and t,.
This is repeated for all N/2 pairs. Then the plot D, . (x,.,) is averaged over all pairs {i.j}. >
with standard deviation determined for each x,.,,. The result is illustrated in Figure 4. D,
goes through a plateau only over a limited range of -values, and. furthermore, the scatter
of D,,,. values is a minimum in that region. It is a significant advantage of the Founer-
domain vs. the space-domain analysis that D, can be accurately determined even for a limited
number of x values.

these limitations, linearity of In{ ). with respect to either k* or At,k?, is observed over
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values are useful for further calculations, corruption of the re-
maining x values being due to the limited precision of the
computer (single-precision).

V. LIMITS OF THE METHOD

In Table | the estimated limits of the DID-EPR experiment in different geometries are
shown.*'s There are numerous potential sources of errors and limitations in the DID-EPR
experiment, but, in what follows, attention is restricted to the most influential ones. The
authors concentrate only on those effects which cannot be eliminated by careful tuning of
the equipment and. therefore, are inherent to the experiment. Some of these effects are
characteristic of EPR-spectroscopy in general, while the other can be associated with par-
ticular features of the DID-EPR experiment. The first group includes such obvious effects
as the noise, nonuniform sensitivity of the cavity, or inhomogeneous static magnetic field.
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FIGURE 4. Average behavior of the Ducee as a function of x,,, for CSL diffusing in I}
POPC'DMPC (Reference 37). Nine pairs of {tx.1) were used in the calculations. Error bars
correspond to the standard deviation of the average of nine points. Note that the plateau is
also distinguished by a significant decrease in the random errors over the range.

To the second group belong such effects as a nonuniform magnetic-field gradient, finijte
sweep-time, poorly defined initial-concentration profile, or nonideal boundary conditions
for diffusion. Some of these effects are mainly responsible for systematic errors: others
cause random errors in D, . This section will begin with the potential sources of the systematic
errors, since they determine, first of all, the credibility of the DID-EPR technique.

Systematic errors manifest their presence predominantly in nonlinear behavior of ex-
Cix,t)
Cix,t)
of systematic errors are (1) nonuniformity of the field gradient, (2) position-dependent
sensitivity of the cavity, and (3) finite sweep-time. These problems have already been
mentioned in Section II so only the main conclusions will be reiterated here.

Since the cavity sensitivity S(£) varies with position, the effective concentration-profile
"*seen’’ by the DID-EPR technique is the product S(&) - C(£,1). In the space-domain, this
is not a big problem although it adds uncertainty to D,;*' however, in Fourier-space this
leads to difficulty in the determination of D,. In the latter case. a strongly inhomogeneous
sensitivity would essentially exclude the possibility of a precise measurement of D, altogether.
If the variation of S(£) is small, one has to expect a small, but systematic, deviation of the
estimated value from the “‘true’” one. The deviation can. to some extent, be compensated
if the dependence of the sensitivity on position in the cavity is known:*s however. the analysis
is not an easy task and increases the uncertainty of D,. Our experience with the narrow-
flange TE,,. X-band microwave-resonance cavity shows that the sensitivity of the cavity
did not significantly influence results as long as the concentration profile was confined to
X = %35 mm around the center of cavity. N

Similarly. the effect of a nonuniform gradient is extremely difficult to compensale or
account for. Such a gradient would produce 1 nonhnear mapping of x-space onto B-space.
violating the basic assumptions of the method (!tnear mapping). and. thereby . reduce the

perimental values of Inf ] as a function of ? (see Equation 24). The principal sources



TABLE 1
Range of D, Measurable by DID-EPR

Fourier-domain

D, [cmis ™'} Space-domain Rapid measurement Delayed measurement
Lower limit* ~1{-10"* ~2-10" ~2-107"
Upper limit ~ 110" ~1-10"" ~1-10"*
Relative error 5—10% 1—10% 1—2%

+ Canonical ** 1-h experiment””. Lower values of D, would require proportionally longer times.
accuracy of the method when distortions are small. Therefore, it is essential to frequently
perform test measurements of the uniformity of the gradient.

The next substantial limitation resuits from the finite sweep time (see Section II1.D).
This has been shown to be significant in the case of restricted diffusion. However, the
systematic errors caused by a finite sweep-time for restricted diffusion can be minimized
by careful choice of sweep time. For example, if one wants sweep-related errors smaller
than 2%. for an initial distribution width of 0.02 cm and D, of order of 107* cm’s ™', the
sweep-time should be faster than 0.05 s for a measurement performed shortly after initial-
ization of the diffusion (rapid measurement) and faster than 50 s for a measurement with a
concentration profile significantly broadened by the diffusion (delayed measurement). The
FT-EPR technique discussed in Section VI would be very useful in removing any effects
due to finite sweep times. ‘

At this point, the authors must emphasize that a combination of the restricted space
available for diffusion and restrictions due to the finite sweep-time, set the upper limit on
the measurable diffusion coefficient under given experimental conditions (see Equation 18).
This limit was estimated (Table 1) from the broadest concentration-profile measurable, since
such a profile guarantees the minimum error associated with the sweep-time under any
circumstances. The maximum measurable breadth of the concentration profile is solely
defined by the extent of the working region. These authors® suggested that the choice of
the maximum measurable variance should be of the order of (x?y./9). For concentration
profiles with such variance, distortions from the sweep would be avoided if the diffusion
coefficient obeys the inequality 2D,t, < (x*.,/9) (see Equation 18) which, for example, for
60 s sweep-time gives D, € 2 10-* cm?s~'. It may then be anticipated that it should be
possible to measure diffusion as fast as 10-* cmis~' with the unrestricted geometry of
diffusion and with an initial distribution placed in the center of the cavity. However, when
the reflecting wall is present, as a result of compressing or stretching the profile by the
sweep, the maximum measurable diffusion-coefficients are smaller than this estimated limit.
Note again the FT-EPR methods could be very helpful in eliminating this problem.

Even larger values of D, canbe measured in the space-domain experiment. In the practical
realization of this experiment for measurements of fast diffusion, spin probes diffuse from
a source placed just outside the cavity.’' Again. because a standard EPR spectrometer is
suitable for the measurements only over a limited distance around the center of cavity,
favorable experimental conditions occur when a significant portion of the spin probes reach
the central regions of the cavity. This happens when the variance of the concentration profile
becomes of the order of the halfwidth of the cavity. For a narrow flange TE,o; X-band
cavity, this dimension is approximately 1.1 and 0.5 cm. in the X- and Z-directions, re-
spectively. (These authors use X as the vertical axis. which is equivalent to the Y axis in
Figure | of Chapter 3). With a sweep time of 60 s. the maximum measurable D, in the
space-domain experiment was estimated from Equation 18 to be of the order of 10~ Yem?s~!.

Due to the authors’ interest in studying translational diffusion in liquid crystals and
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mode! membranes, where typical diffusion coefficients are of the order of 107° to 10~ "
cm’s~!,'*'* the primary concern was the lower limit of measurable D, values. Until this
point, all limitations mentioned arise from systematic errors inherent in the DID-EPR method.
Random experimental errors, which are unavoidable in EPR spectra, are propagated by
numerical manipulations, thereby introducing additional numerical round-off errors which
limit the range of «-values useful for analysis (sce Section 11I). As a result, there is a limit
on the minimum D, which can be measured in a limited period of time. t,. In Reference 6
we have shown that the lower and upper limits of the x-range are estimated by

2 In €,
MAX 2w A + (g3t + 2Dtp)]

(26)

and

1
2 ==
N T o6 Dty — 03D — A2

27

respectively. A} is the variance of the EPR line (i.¢.. the rms width of a Gaussian EPR line
in the absence of a field gradient), e, is the signal-to-noise ratio in the Fourier-domain. and
(1) is the variance of the concentration profile at the beginning of the measurement. Equation
27 is physically meaningful as long as the denominator is positive, i.e.. when:

A} + of(t)
Dy, > =—— (28)

One can analyze concentration profiles in the Fourier-domain in terms of Equation 24 only
if K*\yax > Kwin- From Equations 26 and 27, one gets

A + o) 1 +1Ine,
Ine, — 2e

Dy, > (29)

L3 L3 L

Again, the denominator of the second factor of rhs of Equation 29 has to be positive, i.e..
€ In¢ > 2, or ¢, > 2.4. Since under this condition the second factor is always greater
than one, Equation 29 guarantees simultaneously the fulfillment of Equation 28.

Therefore, Equation 29 sets the lower limit for D,t,. For €, > 2.4 and using variables
in x and B space, Equation 29 becomes:

AYB"™? + oi(t <
Dytp > —-"-—TL(—) (1 + Une) 30)

Equation 30 sets the lower limit on the diffusion coefficient, which can be estimated in
a given experimental time. A reasonable choice for a single measurement is an hour. t,, ~
1 h. The authors’ spectrometer, with usual ‘*dynamic samples™’, yields an €, of the order
of 50. but the variance of the distribution can be anywhere between o, (0) = 0.02 cm and
u,(t) = (X_,,/3). where the lower limit is defined by the breadth of a narrow initial distri-
bution, and the upper limit corresponds to the size of the sensitive region in the center of cav-
ity."*" These limits correspond to two principal applications of the DID-EPR experiment.
The first one is for a rapid DID-EPR measurement, which, for best results. should be
performed as soon as possible after initialization of the diffusion. The varance of the
concentration profile is then essentially equal to that of the initial distribution. The second
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type of application is in a multiple measurement on the same sample. e.g., temperature-
dependent studies, when the last measurement is usually performed on a very broad sample.
Usually the EPR lines are narrow. say 24, = 0.5 G, so the term 4%/B’? in Equation 30
can be omitted. Then. for a [-h measurement. (1, = 4000 s) performed in these two limiting
cases, Equation 30 yields D, > 2+ 10~ cm’s "' for the rapid measurement and only D, >
2-107"cm?s ™! for a delayed one. The latter limit restricts, therefore, a multiple measurement
to cases when the diffusion coefficient is of the order of 10~7 cm*s "' or higher. The situation
worsens, however, if the EPR line is broader. For Ay = 2G and B' = 100 Gem ™' (rapid
measurement), D, > 4 - 1077 cm’s~' is obtained, and for B’ = 10 Gem™' (delayed
measurement), D, >4 - 10~7 cm’s "' is expected.* Therefore. it is crucial to use spin probes
with very narrow EPR lines for studying very slow diffusion processes.

In summary, the **1-h’" space-domain experiment is particularly suitable for measuring
diffusion coefficients in the range 10~% cm?s~' < D, < 1072 cm’ "', while the **1-h"
Fourier-domain experiment should be used to study diffusion coefficients in the range 10-°
010" cm*s~!' < D, < 10~ cm3s ™!,

The precision of the DID-EPR experiment is also important. Detailed discussion of the
propagation of random errors is given elsewhere.> It was found that for a typical signal-to-
noise ratio of €, = 50 and standard experimental conditions (see Section VI for details), the
standard deviation for D, should be of the order of 10~ '° cm?s ~'. This corresponds to relative
errors in D, to be 10 to 20% for diffusion coefficients of the order of 10-° cm ™', but
below 1% for 10~7 cm?s~'. For fast diffusion-processes, errors arising from uncertainties
in B" and B, give a substantial contribution to the error in D,.

Although the estimated error in D, is valid in both unrestricted and restricted geometries,
the reader must be aware of additional errors resulting from imperfections of the reflective-
wall surface (nonuniform boundary conditions at the wall).*s It was estimated that the errors
due to the roughness of the reflective wall increase the uncertainty of D, from below 1%
to a few percent in the presence of the wall. To minimize the uncertainty of D, in this case,
it is very important to use very good quality (flat) reflecting-wall surfaces, perfectly oriented
with respect to the direction of the gradient. )

As a conclusion to this section. the authors note that since the working region is limited,
the total number of measurements which can be done on the same sample depends heavily
on the diffusion coefficient. For example, it was found® that for D, of the order of 10~’
cm’s ', it should be possible to perform n = 6 measurements on the same sample, but for
10-*cm?s ™!, n =~ 2. This prediction is in good agreement with our experimental findings
during temperature-dependent studies of the translational (and rotational) diffusion in model
membranes. -3’

V1. NUTS AND BOLTS OF THE DID-EPR EXPERIMENT

The present section is primarily devoted to a description of the essential components of
the instrumentation and of experimental and numerical procedures of standard DID-EPR
experiments, as the authors have implemented them in their laboratory.

A. INSTRUMENTAL

In this paragraph, the main components and parameters for the experimental arrangement

are reviewed.*?*” The DID-EPR experiments are carried out on a standard EPR spectrometer.

These measurements have been performed at X-band in either a Varian model E12 or Bruker

model ER-200D spectrometer,*-* with a TE,,, narrow-flange microwave cavity. The stan-

dard first-derivative mode—with 100 kHz modulation and microwave powers of about 5

‘mW (Fourier-domain) and 10 mW (space-domain)—is used for recording spectra. The
modulation amplitude is kept the same for the gradient-on and gradient-off spectra. A typical
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signal-to-noise ratio during DID-EPR experiments is approximately 50. A convenient sweep
range (B,) is 100 G.

The most important part of the DID-EPR experiment is a system generating a linear
magnetic-field gradient across the cavity. In the past, homemade® ™ and commercia}?2 ¥’
coils, as well as a pair of matched ferromagnetic wedges,* were used. Currently, a pair of
George Associates Lewis Coils, model 502, are employed. Each of the Lewis Coils consists
of a figure-eight coil. By appropriate connections between the electric terminals of each half
of the figure-eight coils, the coils can provide uniform field gradients either paraliel or
perpendicular to the main static field, with gradient uniformity better than 0.2% over 1.0
cm in the center of the cavity. The magnitude of the field gradient can be continuously
changed by varying the current through the coils.

The Lewis Coils are currently driven by a Sorensen DC Power Supply, either model
DCR150-10A or SRL20-25. Typically, when connected for the parallel-field gradient, the
Lewis Coils produce a gradient of 200 G/cm at a current of about 10 A. For the perpendicular
arrangement, the gradient is 100 G/cm at a current of 15 A.

Data from the Varian E12 are collected on a Leading Edge model D PC interfaced to
an HP 3457 multimeter. The multimeter monitors the analog signal going to the XY-recorder
of the EPR spectrometer. All spectra are digitized to 1024 points. (On the Bruker ER-200D,
the spectra are collected on an IBM 9000 via a Data Precision waveform analyzer model
Data 6000.)

To image along the x axis of the cavity, one utilizes standard sample mounts and a
temperature controlling Dewar for the cavity. For imaging along the z axis, some modifi-
cations are required. The space-domain experiment requires special modification of the side-
walls of the TE,,, cavity to contain two chimneys.*' The Fourier-domain experiment in the
unrestricted geometry requires the use of a TM cavity; however, in the restricted geometry
of diffusion, the standard sample mounts, and a temperature-controlling system can be used
with a TE,q, cavity.

B. EXPERIMENTAL PROCEDURE (FOURIER-DOMAIN)

Typical samples for the space-domain and Fourier-domain experiments are shown sche-
matically in Figure 1. Preparation of a sample for 1-D diffusion depends on the nature of
the material in which spin probes are going to diffuse; the reader should refer to References
31 to 34 for details.

A detailed description of the experimental procedure in the space-domain and in the
Fourier-domain can be found in References 31 and 32. Since they are very similar, for
simplicity the concentration here is on the case of the Fourier-domain experiment which,
the authors believe, will be in more frequent use in the future.

Immediately after preparation, the sample is located in the center of the cavity. Since
random errors present in the EPR spectra limit the range of x values for analysis, prior to
recording the gradient-on spectra the magnetic-field gradient must be optimized for the
maximum range of x. We optimize the measurement by maximizing the difference
(%%wax = %*win). There are two independent variables in Equations 26 and 27 (sce Section
V). tp and B2, so one can either optimize t,, for a single measurement (fixed magnetic-field
gradient) or optimize the magnetic-field gradient during multiple measurements since then
tp is essentially fixed. In the latter case. using the usual criterion for the extrema of (K pax
= &%\un). One gets with the help of Equations 26 and 27

where a = €.Dt, - ol(t) and B = 2Dy, + o). Note that Equation 31 has a physical
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solution only if @ > 0, ie., D, > a(t)/(€1,). This condition is already guaranteed by
Equation 30. For ¢, = 50, b =4000s. D, = 10"*cm’s ™’ and ai(t = 0) = (0.0t cm?)
(initial concentration profile), one obtains from Equation 31 the optimum B'Y/A} = 40 cm-*
which is in fairly good agreement with the gradients used in practice (80 to 100 G/cm).

Once the optimum gradient is set, the progress of the diffusion is monitored in the
following manner. A series of N consccutive gradient-on spectra, L&D, (N ~ 10) are
collected as frequently as possible, effectively every 100 to 200 s: later, the concentration
profile is allowed to develop over a period of t, = 2000 to 4000 s, and the series of N
measurements is repeated again. Thus, the whole set consists of 2N spectra.

The next step after obtaining the gradient-on spectra depends on the geometry of the
expeniment. In the unrestricted geomerry of diffusion. since only the amplitudes of C(x.t)
are needed (see Equation 22), it is easy to show that in Equation 24 C(«x,t) can be replaced
by |1, (x.0)]. i.e., knowledge of the gradient-off spectrum is unnecessary.*?*S The case of the
restricted geometry of diffusion situation is more complicated, since we need ReC(x, 1) in
Equation 24, and to compute these numbers, the reference spectrum is required. However,
an additional problem arises, since usually the reflecting wall and/or the reference spectrum
are displaced along £ as a result of switching the gradient on and off. To understand this
difficulty, first consider the fact that the EPR spectrum is recorded only over limited sweep

range (i.e., :%‘) around the center value of £ Thus, the particular position of the EPR

spectrum inside this **window"’ depends on the value of £&,. The spectrum recorded in the
absence of the gradient is the reference one (I.). and we may consider £, as the reference
point of this spectrum (origin) on the §-scale. (Recall that £, corresponds to the value of
main static field.)

When the magnetic-field gradient is switched-on. the static magnetic field at the position
of the reflecting wall will, in general, change because of the gradient (i.e., by an amount
of £). so there is a mismatch between the position of the reflective wall (£, + £’) and the
reference point (£,) on the £-scale. Consequently, the gradient-on spectrum is the convolution
of the concentration profile and the shifted reference spectrum. Therefore, the corresponding
Fourier transform contains a x-dependent phase-factor contributing to the real and imaginary
parts of If(x,t): I3(x,1) = C(k,t) - I (k)e2"*=, €' is the displacement between C(&.t) and I (),
and the superscript d refers to the displaced functions. Thus, to extract ReC(x,t) both real
and imaginary parts of C* have to be taken into account, and Equation 24 takes the form
of

ln{cosx& * ReCU(x.t) + sinké’ - 3mC‘(x.t,)} = —4mDa? 32)

cosk§’ + ReC¥k,t) + sinké’ - ImCi(x,t)

where CY(x,t) = I%x,t)/I (x). Since &' is the relative mismatch between the positions of the
wall and of the center of the reference spectrum, the phase-factor can be interpreted as
resulting from either shifting the reflective wall or the reference spectrum. Experimentally
accounting for &' through Equation 32 cannot be accomplished easily, so alignment of the
reflecting wall with the reference spectrum is advisable. 2%

To perform a successful deconvolution of the concentration profile one has to check
for, and, ultimately, counteract the mismatch prior to FFT*. These corrections can be
performed by adjustments in x-, B-, and §-spaces, since they are formally equivalent. To
make a proper adjustment, we need a reliable method of controlling *‘alignment’’. The
principles of monitoring the alignment of the spectra are described in Reference 31. Most
frequently, an EPR spectrum is detected as the first derivative of the absorption, which can
be written as’s:
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dl J" dC(§)
= = ——— - f' ! 3
1® = G = COM® + || —0 14 = £t (33)

where it is assumed that the reflective wall is present at £ = 0. Assume for a moment that
1,(£) is a singlet. Then, because dC/d€ is either zero or very small (negative) in value in the

. oC
vicinity of the reflecting wall (recall the boundary condition, BE le-o = 0). the first term

on the rhs, which is just the absorption line scaled by the factor C(0), dominates the spectrum
around ¢ = 0. Therefore, this (sharp) maximum corresponds to the position of the reflective
wall on the §-scale. Similarly, for a double- or triple-line reference spectrum. like I*N or
14N nitroxide spin-labels, as a result of the presence of the reflective boundary, I' () should
feature maxima uniquely corresponding to the reference spectrum lines. To eliminate the
phase factor in Fourier-space, both spectra, I', and I, have to be aligned in a such way that
positions of sharp maxima in I’ coincide with the crossover points in I',.

This alignment can be achieved in x-space by varying the position of the reflective wall
inside the cavity,’ or in B-space by changing the static magnetic-field between recording
I',and I',, or, finally, in §-space by numerical shifting of the spectra.’® The first-derivative
spectra of gradient-on and gradient-off should first be recorded, and their positions on the
recording chart compared. If they do not match, adjustment is necessary. First, one can
repetitively move the position of the reflective wall inside the cavity, record I',. and then
recheck if satisfactory alignment has been achieved. Altemnatively, one can obtain alignment
by just varying the position of I', through changes of the static magnetic-field. It is. however,
very difficult to judge when the alignment is satisfactory. At this point, the D vs. k..
plot comes to our rescue. In the case of a perfect match between the spectra. D, goes
through a plateau over the (Kyn. Kmax) range. the D, value at the plateau corresponding
to D,, the same way it does for the unrestricted diffusion experiment, Figure 4. In the
presence of a mismatch between spectra, a k-dependent phase factor appears in C(k.1). and
the plateau disappears even for a very slight displacement, see Figure Sa.

If the recorded I' (k) spectrum does not produce a reliable plateau, further adjustments
are possible by a careful numerical shift of the I’ (€) spectrum along the &-axis. The results
of such manipulations of the experimental data from Figure Sa are shown in Figure 5b.
Clearly, it was possible to adjust all reference spectra and to obtain essentially the same
plateau. (Notice fluctuations in Dy, resulting from a nonideal boundary at the wall.)

C. NUMERICAL CALCULATIONS

Various numerical procedures for data analysis were investigated in the past.’*’ Nu-
merical procedures for the space-domain experiment can be found in the work of Homak
et al.,* while those for the Fourier-domain experiment were discussed in full in References
32 through 35. Below, an outline of the algorithm the authors find the most reliable and’
universal in Fourier-space is presented. The procedure is based on the pairing of concentration
profiles and subsequent use of Equation 24. The typical procedure is as follows: (1) All
1,(€.t) and 1,(§) spectra are subjected to FFT* to obtain 1(x.t) and I(x). (To avoid the
wraparound problems of FFT,*” each spectrum prior to FFT was zero-padded beyond the
last point to a total of 2048 points). (2) 1,(x.t,) spectra are paired: N2 + j}l.j = ...
N/2. so there are N/2 pairs. (3) Each data pair is analyzed in terms of a linecar least-square
fit 1o Equation 22 (unrestricted geometry) or Equation 23 (restricted geometry) with respect
to Atx* over a variable range of x values, with K, fixed _and K. Vared, see Section
IV.B. As a result, D,,,.. averaged over N/2 pairs, is calculated as a function of x,,,. This
averaging can be done in two slightly different manners which lead to the same result; either
the linear least-square fit i1s performed on all pairs of data simultaneousty.'* or cach pair is
analvzed independently and only then are all D, (k,,,) curves averaged.”” A typical result
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adjustment. dotted straight line indicates the average value of Dy, at the plateau.

of the latter analysis is shown in Figure 4. (4) The value of D, is determined as the value
of D,p. at the plateau, and D, is calculated by rescaling £-space back to x-space: D, =
DyB’2.

VII. APPLICATION OF DID-EPR TO LIQUID CRYSTALS AND
MODEL MEMBRANES

In the course of the development of the DID-EPR technique, the authors have performed
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TABLE 2
Translational Diffusion Constants Measured by DID-EPR*
Host material Probe Temperature (K) D{cm% ")
H.0 TEMPONE 298 1.7 x 10°°
C.H.OH 2.5-DTBSQ 95 2.7 x 10
5.4 (is0) TEMPONE KR&} 25 x 10°°
$4 (nem) DL TEMPONE 300 90 x 10
5.4 (nem)Djj TEMPONE 300 6.4 x 107
MBBA (nem)D L SN-PDT 293 28 x 10°°
MBBA (nem)Dj; SN-PDT 293 3.7 x 10-°
Phase V (nem)D L TEMPONE 294 1.28 x 10’
Phase V (nem)D .1 OBSL 294 0.48 x 10~

Note: TEMPONE = 2,2.6,6-tetramethylpiperidine- 1-oxyl: 2.5-DTBSQ = 2.5-
di-tertiary-butyl-para-benzosemiquinone; 5,4 = p-pentyibenzylidene-p-
butylaniline; MBBA = p-methoxybenzylidene-p-butylaniline:
“N-PDT = PD-TEMPONE ("'N-labeled); Phase V = nematic mixture;
OBSL = octylbenzoy! spin label.

* [Added in proof: Extensive measurements as a function of temperature have
been made of D, and D, for both PDT and CSL in a smectic liquid crystal
called™ S2 (Moscicki. J. K., Shin, Y. K.. and Freed. J. H.. to be published)).

several measurements on some isotropic liquids and thermotropic nematic liquid-crys-
tals***** at or near room temperature.

A summary of translational diffusion coefficients that the authors have measured by
DID-EPR appears in Table 2. It is interesting to note, that p-methoxybenzylidene-p-buty-
laniline (MBBA) and p-pentylbenzylidene-p-butylaniline (5.4) show opposite types of dif-
fusional anisotropy. Whereas. for MBBA D, > D, which is typical behavior for the nematic
phase,'* the result that D, < D, for 5,4 suggests some smectic-like character of the nematic
phase of this compound, an interesting finding in the light of studies of molecular dynamics
at the smectic-nematic phase transition currently underway in the authors’ laboratory.*8

An excellent example of the applicability of DID-EPR to detailed studies of molecular
dynamics is offered by the authors’ investigations of the effects of cholestero! on the dynamics
and the structural properties of two different spin probes, the sterol-type CSL and the
phospholipid-type 16-PC in phospholipid/cholesterol (POPC/cholesterol or DMPC/POPC/
cholesterol; POPC refers to I-palmitoyl-2-oleoyl-sn-glycero-phosphatidylcholine and DMPC
to 1,2-dimyristoyl-sn-glycero-phosphatidylcholine)-oriented multilayer model-mem-
branes.***-" Due to the relatively small translational diffusion-constants of these spin labels

-in the model membranes (~ 10~* cm?~'), multiple measurements of the translational
diffusion coefficient, D, on a single sample were performed (see Figure 6). Furthermore.
by analyzing the gradient-off spectra collected in the course of the DID-EPR experiment,
the order parameter, S, and the rotational diffusion constant, R, utilizing EPR spectral-
stimulation methods. were also simultancously obtained.**** Since spin probes were chosen
purposely to mimic either cholesterol (CSL) or (16-PC) behavior, this enabled in-depth
considerations of the effects of the membrane composition and temperature on the dynamic
molecular structure of the membranes. Remarkable correlations for both types of molecules
(viz. lipid and cholesterol) were found. In each case one obtains the form D, = D
expl - E,(x. TYRT] where the activation energy is E(x.T) = a(T)S¥x.T) + 8 and aT =
a + b/T (see Figure 7). Similar correlations were found between R and S both as a function
of the mole fraction of cholesterol x and temperature T in the liquid-crystalline phase. This
provides clear demonstration that the model membranes are simple nonideal solutions, ' 4 ¥
In POPC.cholesterol solutions. very substantial variations of D.R . and S for CSL (as » is
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and () 0 (+), 10 (x), and 20 mol% ().

increased from zero) were observed, whereas only modest changes were observed for 16-
PC.%-* These authors’ results demonstrate the preferential association of cholesterol mol-
ecules (including CSL) with each other in POPC solvent. As a result, the environment of
CSL changes significantly as a function of x. from that of flexible POPC molecules, to the
more rigid cholesterol molecules, which is manifested by a decrease of both D and R, with
increasing x. On the other hand, the tendency of cholesterol to aggregate means that the
POPC-rich regions are less influenced by cholesterol molecules than would otherwise be
expected. This is consistent with the rather modest effect of cholesterol on the lateral diffusion
of 16-PC. Experiments with CSL spin-label in DMPC/POPC/cholesterol ternary mixtures
show a weaker effect of cholesterol on D, indicating that addition of the saturated lipid
DMPC to the unsaturated lipid POPC enhances the mixing of cholesterol in PC model
membranes. >’

Aside from liquid-crystal and model-membrane studies, one may expect to investigate
polymers, e.g., rod:like lyotropic polymer liquid crystals, which demonstrate unique mo-
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lecular dynamics.*> > Existing data on rotational molecular dynamics in these systems suggest
that one should expect very strong coupling between the rotational and translational motions
of rod-like macromolecules. Theories of molecular dynamics in semidiluted solutions of
rods predict a very strong dependence of diffusion constants on the elongation of macro-
molecules and their concentration.®>* In particular, dramatic changes can be anticipated at
the nematic-isotropic phase transition. DID-EPR of spin-labeled macromolecules together
with EPR rotational-dynamics studies would help to verify such theories. Additionally, by
using small spin probes, it is possible to study the interactions between the solvent and
solute molecules, interactions which play an important role in the formation of the liquid-
crystalline state.* The authors anticipate the translational diffusion to be sufficiently siow
(approximately ~ 10-7 to 10~ cm?s~") to enable multiple use of a single sample.

Another potential application of the DID-EPR method is to the measurement of rates of
reduction of spin probes if lineshape does not change at different positions. Detection and
monitoring of inhomogencous concentration profiles of spin probes undergoing diffusion
and reduction at the same time might be especially important in medicine and technology.
for example, for studying areas of altered physiology (which would be expected to exhibit
different types of metabolic rates and processes), or reaction of tissues to different drugs
(spin labeled), on the one hand, and for studying oxidative degradation of polymers through
monitoring diffusion of the O, from the surface into bulk polymer, on the other hand.

Schara and coworkers® first used the EPR-imaging method to study diffusion in the
presence of reduction of nitroxides in biological tissues. not by deconvolution of the con-
centration profile. but by simulation of the spectrum from an idealized concentration profile.
They suggest that reduction of nitroxides by cells follows first-order kinetics, i.c.. the
concentration of the spin probes is controlled by:

aC(x,t) a*Cix.t)
: = D—
at Gx°

- ,Cix,t) (34
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where r, is the first-order reduction constant. However, at the inital stages, the reduction of
spin labels proceeds very rapidly compared with the diffusion process. and local equilibrium
* can be assumed to exist between free and reduced spin-labels. They found that at the initial
stages the equation of diffusion becomes:

aC(x.1) a*Cix.ty  ar,C(x.1)
D o at 63
due 10 the local equilibrium, i.e., concentrations of reduced and free spin-labels are pro-
portional to each other. C, = r,C.

Note that the DID-EPR technique offers. in principal, a much more convenient way of
measuring both D and the reduction-rate constants. It follows directly from Equation 35
that, in the case of the rapid reduction of spin probes, the diffusion constant would be
lowered by just the factor 1/(1 + r,). If first-order reduction is involved, our basic equation,
Equation 24, takes the form:

C(x,
ln[ C—-——(x,:;] = —4m¥(D? + r)Ag (36)
C(k,t)
Clx.t)
diffusion constant, while the intercept —4mw°r, At,. only depends on the rate of reduction.
Thus, both quantities are easily determined by respectively plotting the slope and the intercept
as a function of At,.

Therefore. if one plots In[ ] vs. x°. the slope —4m’Dx’At, depends only on the

VIII. RECENT AND FUTURE DEVELOPMENTS IN EPR
IMAGING OF DIFFUSION

Despite the fact that the DID-EPR technique developed substantially, one should be
able to improve it further. For example, there are several ways one can enhance the signal-
to-noise ratio, S/N. These include the use of a low-noise microwave GaAsFET preamplifier
such as is commonly employed in modern time-domain EPR spectrometers.®* A loop-gap
resonator, which has a very high filling factor and very good spatial homogeneity of the
sensitivity, could also be used.* Once this is accomplished, the sweep time could be reduced
and higher gradients applied, thus improving the precision (by increasing kK’ yax — Kum)
and shortening the overall experimental time (see Equations 26, 27, and 30). Next. one
could work with narrower and better-defined initial distributions. To work with better initial
distributions, new techniques of preparing the initial distribution must be explored. One
possible way of generating a fine initial profile is to use spin-label photoproduction by either -
photodissociation (pd) or photoionization (pi)*” or their photoreduction (pr).** Photoreduction
was once used by Sheats,'® although not in an imaging experiment, and it has been proven
a useful technique for producing an inhomogeneous gradient of spin probes.

The EPR imaging of dynamic samples has been studied in other laboratories.?*** Berliner
and his colleagues® are developing a technique for studying diffusional processes in bio-
logical tissue. Their method is based on the reconstruction of a two-dimensional (2-D) image
of the concentration profile from the spectra recorded with the aid of a flat-loop surface coil
at L-band (1.6 GHz). A model study of translational diffusion of 4-hydroxy-2,2,6,6-tetra-
methylpiperidine-l-oxyl (TEMPOL) spin-probe into a cylindrical polyacrylamide gel con-
taining lossy electrolyte solution was performed. and the diffusion coefficient calculated.
This is important for potential application of EPR imaging to biological samples, i.¢., their
result suggests that it should be feasible to apply this method to real “‘lossy’’ biological
samples from which one may obtain in vivo diffusion coefficients.
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The Eatons and their co-workers®®** have shown how the complete EPR spectrum may
be obtained as a function of location in a sample in which the spin probe is undergoing
transport. This method is referred to as spectral-spatial EPR imaging. This method expands
the range of cases for which EPR imaging can yield diffusion and other transport information.
For example, in principle, one can study the microscopic diffusion coefficients from HSE
broadening™ and the macroscopic diffusion coefficients from DID-EPR simultaneously.
[Added in proof: This has now been realized (Shin, Y. K.. Ewent, U., Budil, D., and Freed.
J. H.. Biophys. J., in press. 1991)].

Another potentially significant improvement would be to use a time-dependent gradient
since this method gives the concentration profile in x-space directly. The method of re-
covering the concentration profile is conceptually similar to the sequential plane method in
NMR imaging and was first used in EPR imaging by Herrling and coworkers.*®

The use of pulsed-field gradients with the electron spin-echo (ESE) technique would be
more promising. ESE-EPR imaging of the static concentration-profile with pulsed-field
gradient was first executed by Milov et al.® The spin echo is observed after a (*/; — 1 =
m — 1) sequence, and a pulse of the spatially uniform magnetic-ficld gradient is generated
between either ™/, and 7 pulses or 7 pulse and the echo. Considering the amplitude of the
spin echo after the ("/, — T — 7 — 7) sequence in the presence of the pulsed-field gradient,
A(1,q), and in the absence of the pulsed-field gradient A(7,0), they showed that A(7.k)/
A(1,0) does not depend on T, being only a function of k:

A(1.k)VA(1,0) ~ J C(x)e ~mirdx (37

-

N d’B . . .
where k = yb,,q/2m; v is the magnetogync ratio. b;, = Ui is the gradient of the magnetic

induction due to a unit current through the field-gradient coils, and q is the net electnc
charge which has flowed through the field-gradient coils during the pulse, i.e.. ¢ =
T Jus(odt, s(t) = 1 fort < 7and s(t) = -1 fort > 1, and J(1) is the current in field-
gradient coils. Therefore, A(7,k)/A(7,0) is the value of the Fourier-space concentration profile
at k; A(t,k)/A(1,0) = C(k). Thus, repeating the measurement of A(7,q) over a wide range
of q values, in principle, one should be able to recover the Fourier-space image of the
concentration profile. On collecting the Fourier-space concentration profiles at different
times t, one can then make use of the Fourier-space analysis described in Section IV in
order to obtain the diffusion constant.

Fourier-transform (FT) EPR spectroscopy has recently become available.* Even though
the principles of FT-EPR spectroscopy are identical to those of FT-NMR, it was a challenge
to overcome the technical difficulties arising in the past from the shorter time scales, but
the authors believe that in the near future it should be possible to extend of FT-EPR
spectroscopy to FT-EPR imaging. [Added in proof: This has now been realized (Ewert, U..
Crepeau, R. H., Lee, S., Xu, D., Dunham, C., and Freed, J. H., to be published). This
also includes spectral-spatial ESR Imaging by FT methods utilizing short (ca. 100 nsec)
pulsed field gradients as well as two-dimensional electron-electron double resonance as a
function of spatial dimension, also by FT methods].

Now the authors wish to discuss a possible application of FT-EPR to the determination
of the diffusion coefficient of spin probes in a solution (i.e., FT-DID) which would be
comparable to the continuous wave (CW) EPR imaging of diffusion technique. Because of
the speed of data collection (a single free induction decay or FID in a microsecond with
successive averaging over a period of a millisecond). the errors originating from the finite
sweep time in the CW-EPR method would be eliminated.

It is well-known that the FID in the time domain is a Fourier transform of the CW'
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spectrum in the frequency domain. For example. a simple exponential decay with transverse
relaxation time T, in the time domain corresponds to a Lorentzian with width T, ' in the
frequency domain and vice versa.® Suppose. for simplicity, that the spins in a sample yield
a Lorentzian line of width T; ' resonant at an angular frequency w,. The spectrum also has
an inhomogeneous broadening h(w) due to the static local fields. Then, one will obtain a
CW-EPR spectrum from this sample in the form of a convolution of the Lorentzian with
h(w):

T
[© - (@, + o)l + T; dw, 38)

S(w) = f hw,) x
Upon Fourier transformation with respect to w we obtain the FID signal after a m/2 pulse
in the time domain 1:

s(1) = H(7) e~ ™r"e¢~ "2 (39)

where H(7) is the Fourier transform of h(w). Below, H(7) shall have a characteristic decay
constant T} and T;'=T;' + T3 ™",

Now, suppose that the sample has an inhomogencous 1-D spin-probe distribution C(x)
and the static magnetic-field gradient (B') is applied along x. (In principle, pulsed-field
gradients can be utilized for FT-EPR imaging as is the case of NMR imaging. In practice,
however. it would not be trivial to achieve a pulsed-field gradient in 20 to 50 nsec.®>*)
{Added in proof: It is now possible to achieve pulsed field gradients lasting ca. 100 nsec
with B, 80 G/cm (cf. Ewert, U., Crepeau. R. H., Lee, S.. Xu. D.. Dunham. C.. and
Freed. J. H.. to be published)]. Then, the resonant frequency w, of the spins at x would be
w, = w, + ©" (' = yB'x). Thus, the resultant time domain signal would be:

se:(T) = f C(w"H(1)e e "dw" (40)
This can be written as:
sg(1) = H(r)e =1e~ "2 - j_ Clo"e  “"dw” 41)

It follows from Equation 41 that the FID signal in the presence of a field gradient is the
product of the FID signal in the absence of the field gradient and the Fourier transform of
the normalized concentration profile in the frequency domain:

sg.(1) = s(7) - C(7) (42)

Since the concentration profile in Equation 42 is expressed in the time domain (t-domain,
an inverse of the frequency domain), for consistency with the notation used through this
chapter, time-space must be converted to x-space (which is an inverse of the §-domain).
The angular frequency is related to § by w = yB = y£B’, so 7 is related to k by T = 27w/
(yB').

Thus. the Fourier transformed (normalized) concentration profile can be obtained by
dividing the gradient-on FID by the gradient-oft FID:

Cap) = -;—— “3)
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or. equivalently,

SB'(K,t)

C(x,b) = 00

(44)

where x = (TyB')/27. This analysis has been based on the assumption that the time-scales
of relevance (i.e., 7 < T,. T3, see Equation 39) are short enough that the EPR signal is
unaffected by the diffusion (i.¢.. 2DT}*y*B’* < 1). which is valid in EPR for D < 10!
cm’s !> This means that the time-scale of a single FID relates to a static concentration
profile. A longer time (t > 7) was introduced to measure the times over which significant
diffusion occurs.

Once one collects Fourier-transformed concentration profiles at different times t, one
can readily utilize the Fourier-space analysis method described in Section IV to obtain the
diffusion coefficient. From Equation 44 one finds that the FIDs from a dynamic sample
with diffusion coefficient D at two different times ¢, and ¢, are related by

Sa(K,t)

= —417%DAL
S ) wk’DAY, 45)

which is equivalent to Equation 24, see Section V. Note that here, also. the gradient-off
FID is cancelled out in the ths of Equation 45 (see Equation 24).

The main advantage of the FT-DID method over CW-DID would be that the FID signal
in the presence of a field gradient can be directly used to obtain D without any Fourier
transform procedure. For static FT-EPR imaging. C(x) would be obtained directly from the
Fourier transformation of Equation 44. One initial Fourier transform, however, is needed
to obtain C(k) in CW-EPR imaging. Consequently, the possible numerical errors involved
in the Fourier transform (which is inevitable in the CW-EPR method) can be reduced.
Furthermore, since a single FID can be collected over a period of the order of a microsecond
(with successive averaging requiring only a millisecond), it should be possible to greatly
reduce the errors inherent in the finite sweep-times in the CW method, see Section III.

One of the main technical problems in performing this FID experiment is the inhomo-
geneous broadening of the EPR linewidth due partly to the static field gradient B’. Suppose
the linewidth of the EPR spectrum in the presence of B’ is 1 to 4 G. (For example, a typical
linewidth for the ESR spectrum of a nitroxide spin-label in model membranes is 0.5 to 2
G. Assume the linewidth is doubled by the appropriate B’.) This inhomogeneous broadening
corresponds to 66 to 15 nsec in the time domain. This would mean that most of the FID
signal will decay away during the dead time, since at present the FID-EPR spectrometer
has >50 nsec dead time after the microwave pulse. [Added in proof: At present, since B’
can now be puised, it is applied only during the regular dead-time of the FID-EPR spec-
trometer, and the FID is detected only after B’ is on (cf. Ewent, U., Crepeau. R. H., Lee.
S., Xu, D., Dunham, C., and Freed, J. H., to published)]. A way of avoiding this problem
is to collect the FID signal after an echo gencrated by w/2 — 7, —  pulse. Then, one can
climinate the dead time effect in the well-known fashion. That is, the complete FID signal
is recovered from the echo according to

se(27, + 1) = H(7)exp(—iw,7)exp| ~ (1 + 21,/T,)] - C(7) (46)

However, a disadvantage of this technique is a decrease of the FID amplitude due to the
homogencous T,. On comparing with Equation 41, the signal-to-noise ratio is reduced by
a factor of exp(21,/T,). Thus. for spin labels having short T,. it would still be difficult o
perform the FT-DID EPR experithent and would require extensive signal-averaging. How-
ever. 1t is the recommended tme-domain approach when T, 2> Ts.
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