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XVIII.1. INTRODUCTION TO SATURATION: A SIMPLE LINE]" 2
The well-known result from the steady-state (s.s.) solution of
the Bloch Equations is that the absorption is given by the y-com-

ponent of magnetization ﬁ; in the rotating frame:
Y I
M 2.2

y T 1+ (maw)? 4 YT

M ¢))
o
with Mb the equilibrium magnetization, When we switch to a quantum

mechanical description, we can calculate:

.

~ .+
M, =M +iM = (X i-iMy)e'lwt (2)
statistically from its associated quantum mechanical operator

M = R0y S o (3)

where N is the concentration of electron spins, by taking a trace

of the spin density matrix g(t) with the spin operator S,
M, (£) =y Tr [o(t)s, ] (4)

The trace is invariant to a choice of zero-order basis states. The
equation of motion for g(t) is taken to be the relaxation matrix

form given by Eq. VIII-20, and we shall neglect effects of higher
(2)

order than R
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We have from Eq. VIII-20a, that when %, (t) =0, so R =0,
-iw 1t
= aa
o‘aa,(t) e Sy 1(0) . (5)

Thus if S0 ,(0) # 0, then S0’ (t) will be oscillatory. Now sup-
pose we have only a simple line with wg = U where a and b are
the M = +% and -4 levels, and there are no other spin levels.
Then

(bls_lay = (als,[pb) = 1 (6)

and
Trio(e)S, ] =0(t) S, = Ot)y, (7

with
0, (t) = exp (-1 wba+Rba,ba)t]°ba(°)' (8)

Since ReR is negative, Op, 0 for t > IReRl'l. Thus, there will
be no steady state absorption unless we include effects of the rf
field, So we add to the Hamiltonian:

~iwt

+ S_e-l-1 wt]

he(t) = %hyeBl [s,e 9)

-

which is the interaction of the spin with a rotating field B, =
B, (cos wtf+sinwt§). Then for our simple line the (b|-|a) matrix
element of eq. VIII-20 is :

iwt

Oba @ W *+ R'ba,ba)caba ) id(be'O‘aa)e (10)
where
d =3Y,B, (11)
Now the power absorbed from the rotating field is just:
~ _-wH,1i -iwt iwt
P=ypHM = 1_Me -Me (12)

where from eq. & Mi- o Trc [o(t)Si] and S requires c(t)ba in the

+ab
trace., Thus only the component of G(t)ba oscillating as e Wt will

give a net time-averaged power absorption. So, let

- igwt
Opa = 2€ (13)

and assume Z is time independent to achieve the steady state solu-
tion, which is:
(Aw + lea,ba)Z =d(g,, -0,,) (14)
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where (be -o‘aa) is the population difference in the two states,

Now note that ¢ is Hermitian, so %5 = %a and

% o ok -igt
o, =Z'e . (15)

Thus

PeiImz =2" . (16)

We may begin to suspect that Z plays the role of ﬁ+ (while z* is
M_ ). Also
Rba,ba = -(UUL )ba = -/ )ab -
We are now writing the equation of motion (eq, VIII-20) as
¢ =-ily, + e(t),0] + Ro . (17)
We now need the diagonal spin-density-matrix elements Ouh and O,

which in steady state are not oscillating in time. We get from

eq. 17:
= 1 7% = -
Raa, 2a%2a + Raa’ bb0p = 4122 ) 2dImz (18a)
Rbb, aalaa * Rob, bbby - 2412 - (18b)
Note that
Raa,bb ~ Rbb,aa ~ Zab,ab - "ab - "ba (192)
while
R =2 W . (19b)
aa, aa y#a ay
where Wab is the transition-probability from state b to state a,

which leads to spin relaxation (cf. Eq. VIII.48).
For simplicity let y = b only, (i.e., our simple line). Then
we have
- = 4 .
wab(xa Xb) 2dz (20)

where we have made the ad hoc replacements:

Gaa - Xa - Gaa B Goaa (21&)

" %bb (21p)

etc, is to lead to thermal equili-

%%b ~ Xp ~ %bb
so that the effects of the wab’
brium in the absence of g(t). g, is the equilibrium value of ¢. Now
eq. 14 is rewritten as:
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(Aw - iTg-l)Z + d(xa- xb) =qud (22)

where the high temperature approximation:l’ 2
e'Ea/kT _ e"Eb/kT

“hw
ab _ (23)
o -0, = - = = -qu
oaa obb e E o/kT KTA o
has been used., Here A is the number of spin states (2 in our
example). We now need to solve the coupled equations:
Aw -1 4 z’ quw,d
-l Aw 0 z” = 0 (24)
0 -2d Wab (xa - Xb) 0
This gives:
= AWDZ” (24a)
qdw T,
z" = 20 2, .2 (24b)
L+ Aw T, +4d" T, Ty
where T, = (2We)'1 and
2 LT
(xa- Xl) = qugd 72 . (24¢)

1+ awlr 2 +adlT,

These results are very similar to steady state solutions of the

Bloch Eqs. and we can get correspondence if:

hwgy

2Mo TAW, T Ak T Ocaa ~ %obb (25a)
T = (Tl T = (T, (25b)

= - A
v = -y k + 2|d|{fcos wt + jsinwt} (25¢)

B r o= =¥

Z Mx’ Z My’ Z M+ 25d)
Xa™ Xp = 20 M) (25e)

The above treatment, is based on the high field approximation

|B°|>> |Bl |, as well as the fast motional condition |2[1 ITC<< 1,
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It also requires that |YB1|¢C<:< 1 in order that the R matrix is
not significantly affected by the presence of the rf field. This

can be seen as follows., When we have a time-dependent Hamiltonian,
E(t) = M+ e(t)

we must define a new interaction representation:

c#

U(e)o(t)u () (26a)

% (e = vt (U L) (26b)
where the unitary operator U(t) = U(t,0) is a solution of the dif-

ferential equation:

‘f—t U(t, 0) = iU(t, 0)E(L) 27)

with U(to,to) =1 and U(t-T,0) = U(t,0)U(t-T1,t). 1Its solution
is the time-ordered exponential:

t
U(t, 0) = expo(j iE(eHdt ) . (28)
o

Since U is unitary, the differential equation for U-1 is obtained

by taking Hermitian conjugates of Eq. 27. Thus:

vl = -iE@)u! (29)
Then we have in the interaction representation:

. X

G* - -ﬂ%f G# (30)

as before (cf. Eq. VIII-5). Thus, to second order (assuming K =

0, cf. eq. VIII-13a) the cumulant average is, in the long time

limit:
& = [aragt (0% (e-0*y ot )
o
- -U(t)fw{ @ () [0(e-r, )% (=10 (e-1, ) 0)
i x dro”(e) (31)
Then

3 = -1[E(t),0] - [ 4144 (O U7, )% =DV (t=1, ) 1Y o ()
0 (32)
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Now the integral in eq. 32 is non-negligible only for 7 < Ter but

since |e|¢c<<< 1 we can in this interval write
U(e-r) = e HoT + 0le(t) |1, = e HOT (33)

which when substituted into eq. 32 gives the desired result, A
similar analysis applies for the higher order cumulants in the long
time limit yielding R to all orders,

The next most complicated case, is a simple line, coupled by

relaxation to other spin eigenstates:

a W
X
—Z% 4
W
Then we have:
Wy -y.) = 2dImZ (34a)
2067
W, (XpmX) = -2dImZ . (34b)
adb P b o

And, for o #a,b we get A-2 equations:
g}'waa (X(X-XB) =0 B#a . (34c)

In eq. 34c we have assumed all transitions other than a-b are too
far off-resonance to have any appreciable off-diagonal density
matrix elements; i.e. they are not excited by the rf field. The

conservation of probability is:

Trg = Trg =1, or Trx =0 . (35)

This is needed, because the above set of A equations are not all
linearly independent., We can write these A equations in matrix

notation as:

WX=U . (36)
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When the rank of W is A-1, then replacement of any one equation by
eq. 35 yields the matrix V?l, which is now non-singular, and we
have:

i, ~-1-i

x= @)U . (36a)

Proper solutions of this W inversion are crucial in all
saturation and double resonance analyses. It is possibl® to ob-

tain solutions in the form:l’5

(Xa-xb) - Qb::t, bavba [quo - (Xa-xb)] (37)
and from eq. 34

az” = Vpa law, = (X Xy ] : (38)
where

v, = 280,/ (1, 2 ) (39)
and

Qba, ba - 2Cba, ba/C (40)

where C is any cofactor of W, (they are all equal, as may be shown
from the properties of ﬁl); and Cba ba is the double cofactor of
W obtained as the (cigned) determinant resulting when the ath and

bth rows and columns are deleted from W. More generally we write

QWByYé = 2g15’yé/c (40a)

where Cocﬁ Ve is the double cofactor of W obtained by deleting
? —
the ath and Bth rows and the yth and éth columns of W and giving
it the correct sign.
The net result is to obtain our earlier results of eq. 24 but now
T, - 20

=10 (41)

ba, ba ba
where nba is the saturation parameter for the b «a transition. It
is not a simple T,, nor decay time. In fact there are as many as
(A-1) different, non-zero decay constants in the transient solution
(which come from diagonalizing the W matrix).

This Qba may be regarded as a steady-state self-impedance

representing the response of the b+ a transition to the application
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of an rf field, TI.e., we rewrite eqs. 37 and 38 as:

(Xa_xb) = Qba. (dz") (42)
and make the electrical circuit analogy by letting (xa- Xb) = E,
G, =R and dz” = I. Thus we see that inducing a resonant transi-
tion is formally equivalent to inducing a current flow, which

causes a voltage drop (Xa -Xb) proportional to the resistance Qba'

XVIII. 2, ELDOR3

Now we introduce a second ESR microwave field. Assume there

are only two transitions of interest,

a — + + b —— + -
U)aaleo wbbl"’w
a_’ - 4 bl - -

Now we have

e(t) = %YeBo [S+exp(-iw°t) + S_exp(+iw°t)]
+ %YeBp [S_I_exp(-i wpt) + S_exp (+iwpt)] . (43)

We are looking to the applied fields to generate s.s, off-diagonal
density matrix elements as a result of the resonance phenomena.

We assume

v B, | lYeBpL Rl << o, r-wyel ~ [a] (44)
so the hyperfine lines always remain well separated. Then we may
have Woar = Wy = AW~ 0, while Iwaa'- wp‘ ~ |a[ and Wy s wp =
Awp ~ 0, while ‘wbb’ - wol ~ |a|. Thus, the important elements

are:

Oata =Xgta ~ za’aexP(lwot)

Op o = Yo = ZprpexP (T )

We obtain from eq. 17:

Zoexp (iwot) (45a)

]

Zpexp (iwpt) (45b)

[Awo ) i/T'e’ o ]ZO + dO(Xa-X a ')=qwaa ’dO = qwedo (463)



SATURATION AND DOUBLE RESONANCE 51
[Awp - 1/T2,p]zp +d (X, - Xp ) = Ay ,dp =quwd (46b)

Also, the analogues of eqs. 34 are now:

_ = ”
ogawaa(xa X = 245% (47a)
Ogaw 1 (Xar ™ X ™ 2420 (47b)
- = ”
a?bwbo‘<xb Xy = 2420 (47¢)
- ”
#b’ b oz(Xb’ Xo) = 2deo . 474)
These equations may be rewritten in matrix form as:
(K + iR)Z = DX + Q (48a)
@ = -2z (48b)
where _ d
Q= qu(,°) (49a)
p
Aw, O
K= <0° du,y > (49b)
Lo
R = < 1> (49c)
_ 4 -4 0 0
5=(° ° %9d)

\0 0 d -d > ‘
P P

W) is a 4 x 4 transition probability matrix in the space of the 4

th row replaced by ones, and DtrJ is

spin eigenstates with the j
the transpose of D with the jth row replaced by zero. 7 is a
vector in the 2 dimensional space of induced transitions. The

formal solution is given by:

7 =wler by (50a)
7! = (-ﬁ'l)i{z’” (50b)
DY = -S2” (50c)
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where
1+ @2+ (v hs (51a)

=21
]

and
2p@dy ptrdy (51b)

s
Suppose dp = 0, One recovers the single-line, simple saturation

result and by comparison, we find
2 2

So,o - doQaa',aa' = doQo,o (52)
One finds more generally:1
S =d,d,0 (53)

i, j i3, ]

where Qi,j is a cross-impedance (cross-saturation parameter) which
is determined solely by the spin relaxation processes and repre-
sents the impedance at transition i from an external disturbance
(e.g., a resonant rf field) on the transition j. [It is obtained
by eq. 40a with o—p being the ith transition and y-g the jth
transition. ]

Thus eq. 50c is a generalization of eq. 42 for the single

resonance case, In fact it gives

- = " "
KaXar) = 49 %o * 4,9, 2, (54a)
XpXp) = 40, 20 +d.Q, Zo - (54b)

with an electrical circuit analogy similar to that of eq. 42. It

follows from eqs. 49-53 that:

2. 2. .2
" 1+ Aone,o + dOTOQO dodEQo: pge,oz (55)
4%, o™, p L+ dwy T, p +d Tl

where we have let Qo,o = Qo and Qp,p = Qp. Then from eq., 50a:

1- go/np,o

77 = qw T2 od
o e ;070 2 2 .2
1+ Awo Te,o +doT2,°<Qo-€o)

(56)

with
2

2,2 .2
4T, p, pr,o/(l"' by, g’p+de2,pr) . (56a)

Ui
o
L[]
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Now consider some special cases. Let us have Aub = 0 (represented

by a superscript r) and very strong saturation of the pump mode:
2
d’T > 1, 57
PPQP (7)

Then:

r, .2 _
@~ e) =0 Q /a (58)

which is just relaxation determined. We now let T, p = Tp, etc,
b

Then @ -0, )9
Zg - qu)eTodo 2 g 2 5
1+T0Awo +d°T°(Q°Qp-Q°’pQP’o)/Qp

If we also introduce the generalized no-saturation condition for

(59

the observing mode:

2
doTo[(Qon - Qo,pr,o)/Qp] <1 (60)
one has the simple result that:
T quw d Q
74 = (] ;Z 1 - ;:P] . (61)
1+Awo T, p

Since QP is always positive,1 it follows from eq. 61 that for
Qo,p > 0 the signal is reduced by the presence of the resonant
pump field, while for Qo,p < 0 the signal is amplified. The
limiting (but not realistic) case for eq. 61 occurs when Wn is
very strong and We is negligible, (Here We and Wn are respectively

the lattice-induced electron-spin flip and nuclear-spin flip rates.

Then the case for the energy levels shown:

‘Wn b
W W
n
a’ b’

is easily understood. Let Pi be the population of the ith state,
Then saturation by wp causes Pb = Pb,; a strong wn causes
Pa = P,_ and Pa’ = Pb, leading to a reduction in intensity of the

b
observed signal. This extreme will be seen to be equivalent to
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There are actually 2 effects that can be seen in ELDOR.

Effect 1. The no-saturation effect discussed above is a
polarization effect (mot unlike an Ovehauser effect in NMR) but
the two transitions involved have no level in common, and this
places special requirements on the relaxation processes in order
to obtain significant effects.

Effect 2. It is important only when Zg is being saturated.
It reflects the fact that the induced absorption mode Zg acts as
an induced transition which, in conjunction with lattice-induced
transitions, can facilitate the rate of energy transferred from
the observing radiation field to the lattice via the spin systems,

Effect 1 is the main effect in ELDOR, while the analogue to
effect 2 is the dominant one in ENDOR.

XVIII. 3. ENDOR]"A’5

We again consider our 4 level system, but now:

e(t) = %Ye B, [S+exp(-iu)et) +S_exp(+iwet)]
;__ - .
+ 5 Yo Bn [I+exp( 1wnt) +1I_exp (+1wnt) ]

+ 2y, B[S exp(-iw t) +5_exp(iwt)]

+ %yn B [T exp(-iw t) +I_exp(iw t)] . (62)
In eq. 62, the microwave field at frequency W, is to induce
electron-spin flips, while the rf field at frequency W, is to
induce nuclear-spin flips. Thus the last term in eq. 62 can be
neglected as being too far off resonance to affect the nuclear
spins. We neglect the 3rd term in eq. 62 for simplicity, even
though it does have a non-trivial effect on the effective transi-
tion moment of the nuclear spins.1 Let us assume the following
four-level system:

Mg M

b + -

b’ - -
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with

A (63a)

e e aa

A =W, - wa,b,NO . (63b)

Il
e
1
e
13

o

Then, for assumptions similar to the ELDOR case, we expect impor-

tant s.s. off-diagonal density-matrix elements:

iwg t iget (64a)

=7 e
e

'Xa, = Z 1y e
iunt iw t
Xb ’a = Zb /a ’elwn = Znelwn . (64b)

We obtain the series of equations:

[Ae-i/Te]Ze+de (Xa- Xa’) + dnzb 1, = qwede (65a)
[An-i/Tn]zn+dn(Xa,-Xb,) - dezb = qw d_ (65b)
[Ae+An-i/Tb 'a]Zb -4z +dz =0 (65¢)
Note the appearance of
X ? ol tetun)t _ ;) fletun)t (66)
a b a® X
This is an overtone term: a 2 quantum effect. Also:
14
ZDWaOL(Xa X = 2eZats (67a)
ofa
2 W (XgrXe) = -2d 27, + 2420, (67b)
W (X=X, ) =0 (67¢)
b ba b Mo
LW, Xy = 72420, (67d)

a#b’
Again we may write these equations in the matrix form given by egs.
48 with the formal solution given by eqs. 50 and 51, Note that the

K or coherence matrix is:

A 0 dn
K = 0 A -de . (68)
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and is no longer diagonal. Also intensities are proportional to

u%de
Q=q| wd , (69)
0
but because 99 ~ _1 for protons, we may usually set
w, 660
wede
Q =q 0 » (698.)
0

which amounts to neglecting the analogue of effect 1 in the ENDOR case.

Neglect of Coherence Effects. The coherence effects arise

from the off-diagonal elements in the K matrix or in other words
the contribution from Zx' Consider the case of exact resonance,
when Ae = An = 0, since this is the condition under which double-

resonance effects will be maximized. Equations 65-67 and 50-51

then yield:
7™ =z% =7 =0 (70a)
e n X
nt _ qwedeTe
2 e T T2 x. 2 (70b)
1+ (Q-EL)T 4T T_
where 2 2
r o_ Tndn(Ti+[Qeznl)
e T . 2 ) (70e)
1+d°Q. T +d°T T
nnn e xXn
Thus from eq. 70b when
1+d%qT >>d’T T (71)
e e e nxe

(and gz b Q)

nr

the coherence effect on Z"_ may be neglected. gz leads to an

enhancement of a saturated ESR signal, since it effectively re-

duces the saturation parameter Qe. Now when
1+ dzanT >> d2T T 72)
n'nn exe

it follows from eq. 70c that the ratio ge/Qe will not be affected
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by de’ and further if

|Qe,n[ >> TX (73)
we may completely neglect the coherence effects.
If there is appreciable saturation and
2 2
de ~ dn (74)

then we can replace eqs. 71-73 with the simpler set of conditions:

Qg Qn,[Qe, 2> T (75)
for the neglect of coherence effects. The inequalities of eq. 75
are fulfilled if the T, 's or saturation parameters are much larger
than the T,'s or inverse linewidths.

Now our solutions for Ad An ~ 0 are:

qud T

z” = ece (76a)
2 2
e L+(AT )"+ (8T d]
2 2
a@ )T
. = n e,2n 2].'1 . (76b)
1+(AnTn) *-dnTnQn

If the ENDOR spectrum is monitored after subtraction of the ESR
signal; then for Ae = 0 and QeTedi >> 1 we have
2

2 d’T
nt nt  _ QM LR 77)
ZENDOR ~ ZESR ~ qwede< 2 > 77

()

2

A 1+(%Tn)2+’:1-0e n ]TnQndi
a0

en

Thus the signal strength is proportional to (Qe n/Qe)2 and the

shape is a Lorentzian of width Tgland (modified) saturation
parameter:
2
Qe n
Qn<1-Q_?2_> . (78)
n''e
The percent enhancement of an ESR line due to ENDOR is then, from
eq., 77,
” R 2 a0 -1
% enh = ZENDOR zESR = ge dn ® [ ne -1} . 79)
=y

- N 2
ZENDOR Qe ge An 0 Qe,n
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XVIII.4., GENERAL APPROACH

One finds that, in general, multiple-resonance, ESR experi-
ments in liquids may be expressed in the matrix form eq. 48 with
formal solution given by egs. 51-53.1 In this formal solution, Z
is a vector in the space of all induced transitions and i is a
vector in the space of all spin eigenstates. The only require-
ment is that a raising convention apply. This is the require-
ment that all induced transitions in the space of 7 are those in
which there is (are) increase(s) in spin quantum number but no
decrease(s) in spin quantum number.5 This requirement is often
met for ENDOR and ELDOR experiments, but it sometimes requires
neglect of some multiple quantum transitions. If it is not met,
then a somewhat more complex form of eqs. 48 and 51-53 could
become necessary, Alsq in summary, the validity of the general
relaxation eq. 17 for well separated hyperfine lines requires,

that,

gyl B vagl r7h > e, [r] (80)

where Te refers to the relevant correlation time(s).

XVIII.5., TRANSITION PROBABILITIES
Consider now the general 4-level system with all types of

spin-lattice relaxation transitions:

W

We can solve for Cii and C the cofactors and double cofactors

> 13, k1

of the W matrix to obtain all the Q.. .
1j, k1

A. ELDOR— Generalized No Saturation of Observing Mode.

We have from eq. 61 that the signal reduction is given by:
2
R = L reduction _ qo,p - Y VW (81)
100 Q, W e(zwn+wxl +w,xe )+(wn4JwXl ) (Wn”’xe )
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Clearly if Wﬁ >W WX_2 one has a reduction in signal, while if
wi <:Wx W_ there will be an enhancement,
1
a. Let th = Wx2 = 0 (i.e., only pseudosecular dipolar terms

important). Then

=
=

= n - _b =1
R= W 7+ p vhere b =g
e n e
or a reduction,
b, LetWwW_ = W, o= 0 (i.e., isotropic hyperfine modulation).
Then R = 0 i,e., no effect.
c. LetW_  =4W , W =2W_ (dipolar, extreme narrowing).
P nox n
Then
_ b
R = %+

or an enhancement,
In the case of solids, one can also examine ELDOR enhance-
ments for forbidden ESR transitionms,
B, ENDOR—Limiting Enhancements,
We have from eq. 79 that the 7 enhancement E is given by:
1+E-1=gn&z =

e,n
[wn(zwe+wxl +wX2 )+(we+’wXl ) (we+1wxz )] x

[we (2wn+wxl +wXg )+ (wn+wXl ) (wn+wXe )] x

-2
[wx:2 (we+t«1n+wxl W] . (82)
a. Let wx1 = wx_2 = 0 (i.e., only pseudo-secular dipolar
terms important). Then
1 "1
b>1_ s5b
1 b<<l_%b
E = =T —=
2[2+b + b L] bel 1
8
b. Let wx = wn =0 (i.e., isotropic hyperfine modulation).
1
Then

Ve
E=w
e
This would theoretically be a most effective ENDOR mechanism if W

were large.
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c. Case b but now the a»b ENDOR transition is saturated.
Then E = 0,

d, LetW_ =4&w_, W_ =2w
Xg n Xl n

(dipolar, extreme narrowing).
b>>1 (8/3)b

b1 3.75b

—_

b=1 1,53

This is also a very effective ENDOR mechanism if b>l,

_ b[22.5 + 60b + 40b°]
6 + b[25 + 34b + 15b%]

e, Case d but now the asb ENDOR transition is saturated
b>>1 2/9

b1 (5/12)b

b=1 1/8

b[2.5 + 10b + 10b%]
T 6 + b[45 + 84b + 45b2]

E

C. Expressions for Transition Probabilities.1

We assume a single set of completely equivalent nuclei with
total nuclear spin quantum number J and total z component M., (We
do not explitly indicate the distinction between degenerate states
of the same values of J and M. Note that there will often be
degenerate states for a given set of values of J and M, However,
it is possible for dipolar terms (but not quadrupolar terms) to
order the degenerate states according to a parameter K or J(K)
such that the values of J and K are preserved.1 We do not explicitly
indicate ¥ in the equations below.)

i. Nuclear-Spin Transitions
a. Dipolar:

W
(MM, 1) — (e, M41)

where the electron-nuclear dipolar spectral density jD(O) is:

.D 1. 2 2 2
500 =< v,y hzngml o (84)

= £ 31%0) [7(F+1)-MM£1) ] (83)

with TR the rotational correlation time, and it is assumed

|wnTR‘<< 1. The dipolar coefficients are:7
m) _ (67T\% -3
G N i ANCIEDITS (85)

where 6/, and @' and r’ are spherical polar co-ordinates which

define the position of the unpaired electron with respect to a
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nucleus in the molecular co-ordinate frame.
b. Quadrupolar. (For this case only we consider a single

nucleus of Spin I):

-, _ 2
W oy M) (i, ML) 237(0) [T(T+1) - MQM1)][2M1 ] (86a)
W(M ,M)—+(MS,Mi2) = ZJ (0) [T(T+1) - M(MEL)JI(T+1) - (M+1) (M£2) ]
(86b)
where
20 = & —2—°~— 2 lvet™|? (87)
h I (21- 1)
with electric-field-gradient irreducible-tensor components:7
0 3\%
1 - B el
v e iy vl st Jy) (88b)
ve ™) = gy i v 200/ [y (88¢)
ii, Electron-Spin Transitions
(0G;)
W (e an= 20O +450%) @ )
+ 2j(G2)(wo)Bo+weSR +X . (89)
Here
.D 2 2.-1
i) =] D0y [1+w 0 (90)
The g-tensor spectral density is:
T
R
. (Gg) -1 —_—s
i W) = 5B {2 (g)% - 382} TR (91)
The g-tensor-dipolar cross-term spectral density is:
T
1+w TR
with g(o) = 6-5[2g; - (g; + g;)] and g(~2) = %(gé - 8;). The

spin-rotational contribution to We is in a semi-classical
treatment: SR _ IkTCz/ TJ
W = (93)
e 32 \1 2 2
t UWpTy
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where I is the moment of inertia, C is the spin-rotational constant
of the radical (and we have assumed both to be isotropic), and Ty
is the correlation time for the angular momentum, (cf. Atkins,

Ch, XI). 1In liquids, usually Ty << Tps wo-l. One has for a

Stokes~Einstein model

T 4rrma /3kT (94a)

[6TkTe, 1™ 94b)

]

Ty

More generally (Atkins Ch. XI) c 25-2KA§ where A is the inverse
moment of inertia tensor and AE = g - 2.00231, Then we have (for

axially symmetric A):

G 2 2 2
W, _PiD (g;-8,) /407, (for w “m " >>1) (95a)
SR 2

W, = EiD(gi - g,) /187, . (95b)

If these are the dominant terms in We, then:

-1
W, < T (96a)
or

W, =AT/n (96b)

Usually TR > wo-l for free radicals in liquids below room tempera-

-11
s

ture since at X-band ub-l =1,7x%x 10 ec. Then pseudo-secular

dipolar terms dominate in ELDOR or ENDOR. So, from eqs. 83 and 84:

Wn = rrR
or
W =B n/'T
Then
= (B)(m\2
o= QE - o)
If we let
M = Tew/kT W>0

we get b increasing significantly with decreasing T. This usually
leads to better ELDOR and ENDOR signals at reduced temperatures.
iii. Combined Electron-Spin-Nuclear-Spin Transitionms,
(Cross-Relaxation)

. 1P )+t | x 13+ -MeED 1. (98)

=11
M ,MoM+l, MFL [3
s S
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W - 2, (D) () [(31) -MOED)] (99)

M ,MoM 1, M+l
) S

The isotropic dipolar spectral density is:

Te

jI(wo) = Yi[(a(t)a(t+T)>-§2] (100)

1+()Jo Te
Note that tror jD(ub) << jD(O)(and small jI(ub)) Wx << Wn and

pseudo-secular terms dominate as noted above.

XVIII.6. HEISENBERG SPIN EXCHANGE AND CHEMICAL EXCHANGE

Heisenberg spin exchange is a very important radical-concen-
tration dependent relaxation mechanism in normal liquids. It is
probably the dominant one for S = %, It may be analyzed by a
simple model which also serves as a simple example of the stochastic
Liouville approach.8 We assume radicals exist either as well separated
"monomers" or as interacting pairs or '"dimers' each with mean
lifetimes 1, and 7 respectively, and with density matrices p and

G respectively, The equations of motion are then:

o WY 2 Si2
ip }L[T p+ i T TrSO’ i sz (101)
ig = 6, %+, P 41 e - 1n Temox o) (102)

where %&(1)

is the spin Hamiltonian and Tr @ = 3(Tr; 0 + Tr,0) is a
symmetrized trace over each of the two components of the inter-
acting dimer., Also

Hy =3 s, 5@ (103)
where J is twice the exchange integral. One obtains a steady-
state solution for ¢ in the rotating frame. It is then possible

to show that when:

130w > fay [, w (104)

Eq. 101 is well approximated by:
ib = g[T(l)Xp + lwg [TrS (Pp x pP) - pl (105)

where 2
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is the Heisenberg exchange frequency. 1In eq. 105 we have neglected
a frequency shift term which is readily shown to be zero in the
high temperature approximation, (i.e., Ap =1+ p‘ with |p’| << 1,
cf. eq. 23). Here P is the operator which permutes electron spins.
The derivation of eq. 105 is based on the fact that for spins S = g:

X

H = $p* (107)
For simple Brownian diffusion of the radicals in solution we have:
o " = 4rDEN (108a)
T, b = (6p/d%)fe” (108b)

where f is the density of radicals, the diffusion coefficient is
D = kT/6mamn, and d is the interaction distance for exchange. The
factors f and fe' are introduced for charged radicals to take
account of Coulombic and ionic atmosphere effects.s’9
The result, eq. 105 means that Heisenberg exchange appears

as a simple exchange process analogous to chemical exchange pro-
cesses for which the well-known Kaplan-Alexanderlo method applies.
We let

G0 = wy [Tr (Po x o) - 0] (109)
and add this relaxation term to eq. 17. One then finds that for

well separated hyperfine lines the T, contributions are:

-1 _ [A-2D

Ty 1 ESR N = ( - x>mHE (110)
-1 o

Tz,HE(NMR) = By (111)

Here Dl is the degeneracy of the xth transition, and the Tél(NMR)
is the width contribution to a well-resolved ENDOR line. The
diagonal elements of eq. 109 yield:
BE [z ™ Xge) + Xg - X)) (112)
where 2
X4 = KZXYi- (113a)
and Y
Xyet X = 0 (113b)
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The notation o0+ in eqs. 112 and 113 refers to the ath nuclear-
spin configuration and Ms = =,

The steady-state solution of eq. 112 in eq. 17 is:

Xgt = Xg - =2X+ (114)
i.e., differences in population between all pairs of levels dif-
fering only in MS are equal. The unlinearézed rate equations
yield the s.s. result that all the ratios 61: are equal,

If in chemical exchange (CE) (i.e., efzgkron transfer), the
predominant NMR relaxation of the diamagnetic radical precursors
is the CE process, then CE appears to be just like HE in magnetic
resonance experiments on the radicals.4

We now consider the W matrix including eq. 112, Note first

that
(G5 OO0 It + [ G 0O Yyar = wHE{[%o(oc' " X T X1

Bt~ Xy ) F X1} 0 (115)
so that each pair of rows of W labeled oot and o~ are linearly
dependent., Thus, while ﬁHE is an A x A matrix, it is of rank A/2,
i.e., HE does not act to change (Xo* + Xof) but rather to equate
all (Xy+ - xa-). One must add W or wX terms to reduce this high
order singularity.

One may alternatively employ another method. Sufficient con-
ditions for this method are:

1. All spin-flip relaxation transitions are of We, W, or
wHE-type (i.e., no WX).

2.8 Wit wyma(=, M) = V(e M) (4, M)

B Mo, 151) W (=, M) (-, ML)
Then we may define a $A dimensional square matrix W (which is
usually non-singular or readily separated into non-singular com-
ponents) according to

A A
WXl = WXL, - WxL_ . (116)

A
This reduced eigenstate space is found to include only the )(1 =
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- , which are closely related to pure ESR transitionms.

Then if only ESR transitions are induced, we find

Aol
= d = . 17
Sx, n Adk n(w ))\, n d)\dnﬂx, n (1

(This method can also be generalized for ENDOR). Using this method

one can then prove:

9 1+ D.b”
Q == ’ (118)
A D 1 + zA
+ _ YE
b7 = Zﬁ; (118a)
with
=1
Ty, = 2,0 (119)
and ) y .
9 5 W1+ % pr LEI . (120)

Equation 118 illustrates the "shorting-out" effect spin exchange
has in coupling the ditferent hyperfine lines (ct. eq. 114) without
directly leading to electron-spin flips. It tollows from eqs. 56
and 118-120 that

7. -z
R = ESE ELDOR (121)
ESR
is (for Auh = 0 and the no-saturation condition of eq. 60):
-1 22 -2
R = + 1+ T T d 122
Qp/Qo,p [( Aw, T, )/ on,p] P (122)
and
Rl =q/0
®© P O,pP
1 + D_b” 1
— = "
= pr_ (pr ) T4+ 1 ., (123)

Here R is defined in the same manner as the asymptotic R of Eq. 81.
Eauation 123 shows how Heisenberg spin exchange is effective in
enabling significant ELDOR reduction factors.

Now for ENDOR, and a single nucleus of spin I = 5, with

W_= 0 one has
x
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1 2w+ W 4w ./2)]
Qe T € nHE (124a)
e W+ (W + f_ﬂz_g_)
[2w_ + (W +w,./2)]
q - L T ehm (124b)
_ Wg -1
Oe,n = e ¥ Wy + 30 (124e)
and W
Td - ) = wHEn ™ (125)
ge n o= E
[2Wn+ We+—2-][we+wn+——2—-]

In general if Wn = 0 and wx =0, g:(dn - o) = 0 even for more than
one magnetic nucleus, Thus Heisenberg exchange is not an effective
ENDOR mechanism, i.e, it is ENDOR "inactive', although it is ELDOR
"active".

In conclusion, we note that the characteristic behavior of
the various relaxation mechanisms as differently manifested in line
width, saturation, ELDOR, and ENDOR is a potentially useful approach
to separate out the many possible components of relaxation in a par-
ticular paramagnetic system,

We present in the Table a summary of these characteristics,

This summary should, however, be used with caution.
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