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XVIII.!. INTRODUCTION TO SATURATION: A SIMPLE LINE1,2 

The well-known result from the steady-state (s.s.) solution of 

the Bloch Equations is that the absorption is given by the y-com-
~ 

ponent of magnetization M in the rotating frame: y 
y~~ 

(0 

with M the equilibrium magnetization. When we switch to a quantum o 
mechanical description, we can calculate: 

M =M tiM =(M ±iM)e±iwt 
± x y x y 

statistically from its associated quantum mechanical operator 

where !l1 is the concentration of electron spins, by taking a trace 

of the spin density matrix aCt) with the spin operator S±: 

The trace is invariant to a choice of zero-order basis states. The 

equation of motion for aCt) is taken to be the relaxation matrix 

form given by Eq. VIII-20, and we shall neglect effects of higher 
order than R(2). 
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We have from Eq. VIII-20a, that when 'ill (t) = 0, so R = 0, 

-iw It 
C'aa,(t) = e aa C'aa ,(0) (5) 

Thus if C'aa ,(0) i= 0, then C'aa I (t) will be oscillatory. Now sup­

pose we have only a simple line with Wo = Wab where a and bare 

the M = + t and - t levels, and there are no other spin levels. 
s 

Then 

(6) 

and 

(7) 

with 

C'b (t) = exp[(-iW b +R. b )t]C'b (0). a a -oa, a a 
(8) 

Since ReR is negative, C'ba ~ ° for t »IReRI-1. Thus, there will 

be no steady state absorption unless we include effects of the rf 

field. So we add to the Hamiltonian: 

(9) 

which is the interaction of the spin with a rotating field ~ = 

~ (coswd+sinwtj). Then for our simple line the (bl-Ia> matrix 

element of eq. VIII-20 is : 

aba = (i Wo + ~ )0' -
iwt (10) 

a, ba ba id(O"bb-O"aa)e 

where 

d = ~y B 2" e 1 
(11) 

Now the power absorbed from the rotating field is just: 

p = w~M =-wHli [M+e -i wt _ M_ei wt] (12) 
y -2-

where from eq. 4 M+ ~ Tr [C'(t)S+] and S+ b requires C'(t)b in the _ C' _ a a 
trace. Thus only the component of a(t)ba oscillating as e i w twill 

give a net time-averaged power absorption. 

= ze i wt 
C'ba 

So, let 

and assume Z is time independent to achieve the steady state solu­

tion, which is: 

( l\ w + iR. b) z = d (abb - C' ) -oa, a aa (14) 
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where (C'bb -O'aa) is the population difference in the two states. 

Now note that 0' is Hermitian, so O'ab = O'~a and 

Thus 

C'~< = Z*e -i wt 
ab 

p ex 1rnZ == Z" • 

(15) 

We may begin to suspect that Z plays the role of M+ (while Z* is 

M). Also 

~a, ba = - (1/'12 \a = - (1/'12 ) ab • 

We are now writing the equation of motion (eq. V111-20) as 

a = -i fifo + e:(t),a] + Ra • (17) 

We now need the diagonal spin-density-matrix elements C'bb and C'aa' 

which in steady state are not oscillating in time. We get from 

eq. 17: 

Note that 

while 

R C' + R C' = di(Z-Z*) aa,aa aa aa,bb bb -2d1rnZ 

R. 0' + R. C' = 2d1rnZ -ob,aa aa -ob,bb bb 

Raa, bb = ~b, aa 2J = W = W ab,ab ab ba 

R = -~ W • aa, aa J. ay 
Yr a 

(18a) 

(18b) 

(19a) 

(19b) 

where Wab is the transition-probability from state b to state a, 

which leads to spin relaxation (cf. Eq. VIII.48). 

For simplicity let y = b only, (i.e., our simple line). Then 

we have 

Wab (Xa - XJ = 2dZ" 

where we have made the ad hoc replacements: 

C'bb ..... Xb = C'bb - O'obb 

(20) 

so that the effects of the Wab' etc. is to lead to thermal equili­

brium in the absence of e:(t). a is the equilibrium value of 0'. Now 
eq. 14 is rewritten as: 0 
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where the high temperature approximation: 1, 2 

== -qW o 

-Ea/kT -Eb/kT 
e - e !i!!! -h wab 

C'oaa - C'obb ~ 
kTA 

has been used, Here A is the number of spin states (2 in our 

example), We now need to solve the coupled equations: 

b:.w 'fa -1 d Zl 

-'fa -1 b:.w 0 z" 
0 -2d 

This gives: 

Z 1 = b:.w'l2Z" 

Z" 

where Tl == (2W ) -1 and 
e 

These results are very similar to steady state solutions of the 

Bloch Eqs. and we can get correspondence if: 

hWo 
2Mo = q Wo = AkT = CToaa - C'obb 

'fa = (T2 ) ab' Tl = (T1 ) ab 
..... ..... t. II 

yH = -Wok + 21d I [1COS wt + jsinwt} 

Zl = M z" = M Z = M 
x' y' + 

X -X =2(M -M) abO Z 

(22) 

(24a) 

(24b) 

(24c) 

(25a) 

(25b) 

(25c) 

(25d) 

(25e) 

The above treatment, is based on the high field approximation 

IB I> > I~ I, as well as the fast motional condition 1U'1 l'r « 1. o c 
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It also requires that lyB:t I r < < 1 in order that the R matrix is 
c 
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not significantly affected by the presence of the rf field. This 

can be seen as follows. When we have a time-dependent Hamiltonian, 

E(t) = 'II + e:(t) o 

we must define a new interaction representation: 

a* = U(t)a(t)u-1(t) 

~ (t) = U(t)'III (t)U- l (t) 

(26a) 

(26b) 

where the unitary operator U(t) = U(t,O) is a solution of the dif­

ferential equation: 

d cit U (t, 0) = ill (t, O)E (t) (27 ) 

with U(t ,t ) = 1 and U(t-r,O) = U(t,O)U(t-r,t). Its solution o 0 

is the time-ordered exponential: 
t 

U (t, 0) = expo (J iE (t ')dt ') (28) 
o 

Since U is unitary, the differential equation for U- l is obtained 

by taking Hermitian conjugates of Eq. 27. Thus: 

iI-I = -iE(t)U-l (29) 

Then we have in the interaction representation: 

a* = -WIP a* (30) 

as before (cf. Eq. VIII-5). Thus, to second order (assuming ~ 

0, cf. eq. VIII-13a) the cumu1ant average is, in the long time 
limit: 

Then 

oc: 

a* ~ J dr()f/ (t)x'III* (t-r)x >ca* (t) 
o 

-U(t) l'[ ()fI (t)x [U(t-r, t)'III (t-r)U-l(t-r, t)x >ca} 
o 

-1 
X drU (t) 

• co x -1 x 
a = -i [E(t),a] - J dr()fI (t) [U(t-r, t)'III (t-r)U (t-r, t)] >ca(t) 

(31) 

o (32) 
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Now the integral in eq. 32 is non-negligible only for ~ ~ ~ , but 
c 

since Ie I~ «I we can in this interval write 
c 

U(t-~) = e-DVo~ + 0le(t) I~c ~ e-DVo~ (33) 

which when substituted into eq. 32 gives the desired result. A 

similar analysis applies for the higher order cumulants in the long 

time limit yielding R to all orders. 

The next most complicated case, is a simple line, coupled by 

relaxation to other spin eigenstates: 

-x-
--b -- t--

W 
Then we have: 

6 W (Xa -Xa) 
a;~a a.o: 

2dImZ (34a) 

6W (x -xJ = 
o:~b bet b 

-2dImZ (34b) 

And, for 0: ~ a, b we get A-2 equations: 

6tT <Xa,-X) = 
0: o:f3 f3 ° f3 ~ 0: (34c) 

In eq. 34c we have assumed all transitions other than a -+ b are too 

far off-resonance to have any appreciable off-diagonal density 

matrix elements; i.e. they are not excited by the rf field. The 

conservation of probability is: 

Tra = Tra = I or TrX = 0 
o ' 

(3S) 

This is needed, because the above set of A equations are not all 

linearly independent. We can write these A equations in matrix 

notation as: 

WX=U (36) 
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When the rank of W is A-1, then replacement of anyone equation by 
-i 

eq. 35 yields the matrix W , which is now non-singular, and we 

have: 
- -i -l-i 
X=(W) U (36a) 

Proper solutions of this W inversion are crucial in all 

saturation and double resonance analyses. It is possib1~ to ob-
1 5 tain solutions in the form: ' 

(37) 

and from eq. 34 

(38) 

where 

(39) 

and 

n. = 2e Ie "'ha, ba ba, ba (40) 

where e is any cofactor of~, (they are all equal, as may be shown 
-1 from the properties of W ); and eb b is the double cofactor of _ ~ a 

W obtained as the ~igned) determinant resulting when the ath and 

bth rows and columns are deleted from W. More generally we write 

where e R ~ is the double cofactor of W obtained by deleting afJ,yv 
the a th and 13 th rows and the yth and 6 th columns of Wand giving 

it the correct sign. 

The net result is to obtain our earlier results of eq. 24 but now 

where '1,a is the saturation parameter for the b +> a transition. It 

is not a simple T1 , nor decay time. In fact there are as many as 

(A-I) different, non-zero decay constants in the transient solution 

(which come from diagonalizing the W matrix). 

This '1,a may be regarded as a steady-state self-impedance 

representing the response of the b +> a transition to the application 
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of an rf field. I.e., we rewrite eqs. 37 and 38 as: 

(Xa-Xb) = (1,a' (dZ") (42) 

and make the electrical circuit analogy by letting (X a - Xb) = E, 

~ = Rand dZ" = I. Thus we see that inducing a resonant transi-
""ba ' 
tion is formally equivalent to inducing a current flow, which 

causes a voltage drop (X a -Xb) proportional to the resistance ~a' 

XVIII. 2. ELDOR3 

Now we introduce a second ESR microwave field. Assume there 

are only two transitions of interest. 
MS~ 

a b ---+ -

tWbb:~WP 
a ' b ' 

Now we have 

e(t) = ty B [S+exp(-iw t) + S exp(+iw t)] 
e 0 0 - 0 

+ ty B [S+exp(-iw t) + S exp(+iw t)] 
e p p - p 

(43) 

We are looking to the applied fields to generate s,s. off-diagonal 

density matrix elements as a result of the resonance phenomena. 

We assume 

Iy B I, Iy B I, IR I «Iw ,- UJ. b I I '" la I eo ep aa --0 
(44) 

so the hyperfine lines always remain well separated. Then we may 

have W 1- W = b.w '" 0, while Iw ,- wi", lal and UJ.b, - W aa 0 0 aa p --0 p 
b. w p '" 0, while lU1,b I - Wo I '" la ,. Thus, the important elements 

are: 

C'a/a = Y 'a = Z I exp(iw t) := Z exp(iw t) "a aa 0 0 0 

We obtain from eq, 17: 

[b.w - i/'.I:,3 o]z + d <X -X I)=qW Id == qw d o -, 0 0 a a aa 0 e. 0 

(45a) 

(45b) 

(46a) 
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[l~w - i/'12 p]Z + d (Xb - Xb ,) = qUl. b ,d ~q w d p ,p p --0 p ep 

Also, the analogues of eqs. 34 are now: 

~W (X -v ) = 2d Z" 
.J. aa a"-(t 00 

O:r- a 

"W ( ) -2d Z" L..J a '0: Xa, - Xo: - 0 0 
O:fa 

~ W1..N(Xb-X ) = 2d Z" 
O:fb vu; a p 0 

~ Wb I ('~ ,-Xd = -2d z" 
o:fb' 0: p 0 

These equations may be rewritten in matrix form as: 

where 

(K + iR)Z = DX + Q 

cW"j)(X) = -2ntrjz" 

K = C~wo 0 ) 
o L'lWp 

('12 '00 
-1 

o \ 
-R -1) 

'12, p 

(~o 
-d 0 0 

-D = 0 
-d ) • 0 d p p 

511 

(46b) 

(47a) 

(47b) 

(47c) 

(47d) 

(48a) 

(48b) 

(49a) 

(49b) 

(49c) 

(49d) 

wj is a 4 x 4 transition probability matrix in the space of the 4 

spin eigenstates with the jth row replaced by ones, and ntrj is 

the transpose of D with the jth row replaced by zero. Z is a 

vector in the 2 dimensional space of induced transitions. The 

formal solution is given by: 

-" --1 --1-
Z = M (-R )Q 

Z, = (-R:-l)KZ" 

DX=-SZ" 

(50a) 

(SOb) 

(SOc) 
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where 

(Sla) 

and 

(SIb) 

Suppose d = O. One recovers the single-line, simple saturation 
P 

result and by comparison, we find 

S = d2
r"\ = d20 0,0 o~~a',aa' 0 0,0 

One finds more generally:l 

S .. = d.d.O. j 
~, ] ~ ] ~, 

where ~ . is a cross-impedance (cross-saturation parameter) which , ] 
is determined solely by the spin relaxation processes and repre-

sents the impedance at transition i from an external disturbance 

(e.g., a resonant rf field) on the transition j. [It is obtained 

by eq. 40a with a .... t3 being the ith transition and y .... a the jth 

transition. ] 

Thus eq. SOc is a generalization of eq. 42 for the single 

resonance case. In fact it gives 

( ) = d 0 Zll + d 0 Zll Xa-X a ' 00,00 p O,p P 

= d ° Z" + d ° Z" P p,p P 0 p,O 0 

(S4a) 

(S4b) 

with an electrical circuit analogy similar to that of eq. 42. It 

follows from eqs. 49-S3 that: 

M = (1 + ~W!Ta,02 + d!ToOo dod~Oo,pTa,o ) (SS) 
dpdoOp, oTa, p 1 + ~Wp Ta, p 2 + d~~pOp , 

where we have let 0 00 and 0 = O. Then from eq. SOa: 0,0 p, p p 

Z" '1' d o= qWe""2,Oo 
1 + 

with 

d 2Ta pO ° / (1 + W 2T.2p+ d 2Ta pO ) p , o,p p,o p ~ p' p (S6a) 
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Now consider some special cases. Let us have ~~ = 0 (represented 

by a superscript r) and very strong saturation of the pump mode: 

Then: 

d2T 0 »1 p p p 

!{ (d2 ..... ex» = 0 0 /0. o p o,p p,o -~ 

(57) 

(58) 

which is just relaxation determined. We now let 12,p T , etc. 
p 

Then 

Zll = qw T d 
o e 0 0 

(59) 
1+T2~W 2+d2T (00-0 0 )/0 

o 0 0 0 0 p 0, p p, 0 P 

If we also introduce the generalized no-saturation condition for 

the observing mode: 

d2T [(0 0 - 00 pOp 0)/0 ] « 1 o 0 0 p , , p 
( 60) 

one has the simple result that: 

Zll 
o 

T qw d o e 0 

1+~w2T2 
o 0 

~ [1 - '\, ] (61) 

Since '\, is always positive, 1 it follows from eq. 61 that for 

0o,p > 0 the signal is reduced by the presence of the resonant 

pump field, while for 0 < 0 the signal is amplified. The o,p 
limiting (but not realistic) case for eq. 

very strong and W is negligible. (Here W 
e e 

61 occurs when W is 
n 

and Ware respectively 
n 

the lattice-induced electron-spin flip and nuclear-spin flip rates.) 

Then the case for the energy levels shown: 

W 
b a n -two W lwp 

n 

--;r- -- ~ 
is easily understood. Let P. be the population of the ith state. 

1 

Then saturation by wp causes Pb = Pb I; a strong Wn causes 

Pa = Pb and Pa , Pb , leading to a reduction in intensity of the 

observed signal. This extreme will be seen to be equivalent to 
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o =0 =0. 
0, pop 

There are actually 2 effects that can be seen in ELDOR. 

Effect 1. The no-saturation effect discussed above is a 

polarization effect (not unlike an Ovehauser effect in NMR) but 

the two transitions involved have no level in common, and this 

places special requirements on the relaxation processes in order 

to obtain significant effects. 

Effect 2. It is important only when ZU is being saturated. 
o 

It reflects the fact that the induced absorption mode ZU acts as 
p 

an induced transition which, in conjunction with lattice-induced 

transitions, can facilitate the rate of energy transferred from 

the observing radiation field to the lattice via the spin systems. 

Effect 1 is the main effect in ELDOR, while the analogue to 

effect 2 is the dominant one in ENDOR. 

3 ENDOR1,4,5 
XVIII. • 

We again consider our 4 level system, but now: 

e(t) ~y B [S+exp (-iw t) + S exp (+iw t)] e e e - e 
+ ~y B [I+exp(-iw t) +1 exp(+iw t)] n n n - n 
+ ~y B [S+exp(-iw t)+S exp(iw t)] e n n - n 
+ tv B [I+exp(-iw t)+I exp(iw t)] nee - e 

In eq. 62, the microwave field at frequency W is to induce 
e 

electron-spin flips, while the rf field at frequency W is to 
n 

(62) 

induce nuclear-spin flips. Thus the last term in eq. 62 can be 

neglected as being too far off resonance to affect the nuclear 

spins. We neglect the 3rd term in eq. 62 for simplicity, even 

though it does have a non-trivial effect on the effective transi­

tion moment of the nuclear spins. 1 Let us assume the following 

four-level system: 

a + + 

.,1::.._+ ---b ' - -
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with 

tJ. ==W - W ,~O e e aa 
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(63a) 

(63b) 

Then, for assumptions similar to the ELDOR case, we expect impor­

tant s.s. off-diagonal density-matrix elements: 

iWnt iWn,t 
'Xf, 'a I = Zb 'a Ie ==Zne 

We obtain the series of equations: 

[tJ.e -ifTe]Ze + de <Xa- Xa/) + dnZb 'a = qWede 

[II -ifT ]Z +d <X '-Xb / ) - d Zb l = qw d '"""n n n n a e a nn 

[tJ. +tJ. -ifTb I ]Zb I - d Z + d Z = 0 en a a en ne 

Note the appearance of 

= Z ei<We+Uln)t == Z ei(We+Uln)t 
Xb/a b 'a x 

This is an overtone term: a 2 quantum effect. Also: 

"W < ) 2d Z" :t aa Xa-Xa = e a'a 
ar a 

a~ IWb la<Xb/-xJ = -2dn Zb 'a I • 

(64a) 

(64b) 

(6Sa) 

(6Sb) 

(6Sc) 

(66) 

(67a) 

(67b) 

(67c) 

(67d) 

Again we may write these equations in the matrix form given by eqs. 

48 with the formal solution given by eqs. SO and Sl. Note that the 

K or coherence matrix is: 

K = (68 ) 
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and is no longer diagonal. Also intensities are proportional to 

but because We ~ 1 for protons, we may usually set 
Wn 660 

(69) 

(69a) 

which amounts to neglecting the analogue of effect 1 in the ENDOR case. 

Neglect of Coherence Effects. The coherence effects arise 

from the off-diagonal elements in the K matrix or in other words 

the contribution from Z • 
x 

Consider the case of exact resonance, 

when 6 = 6 = 0, since this is the condition under which doub1e-e n 
resonance effects will be maximized. Equations 65-67 and 50-51 

then yield: 

where 

Z ,r = Z ,r = Z "r = 0 
e n x 

qw d T 
Z"r e e e 

e 1+d2 (0 _;r)T +d2T T 
e e e e n x e 

T d 2 (T + 10 j) 2 
Sr = n n x e,n 
e 1+d20 T +d2T T nnn exn 

Thus from eq. 70b when 

(70b) 

(70c) 

1+d20 T »d2T T (71) eee nxe 

(and S: ~ 0e) 
the coherence effect on Z"r may be neglected. Sr leads to an 

e e 
enhancement of a saturated ESR signal, since it effectively re-

duces the saturation parameter 0e' Now when 

1 + d2() T »d2T T 
n""n. n e x e 

(72) 

it follows from eq. 70c that the ratio S /0 will not be affected 
e e 
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by d , and further if 
e 

IOe nl »Tx , 
we may completely neglect the coherence effects. 

If there is appreciable saturation and 
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(73) 

d2 ~ d2 (74) 
e n 

then we can replace eqs. 71-73 with the simpler set of conditions: 

0e' 0n,loe n I » Tx (75) , 
for the neglect of coherence effects. The inequalities of eq. 75 

are fulfilled if the T1's or saturation parameters are much larger 

than the 12 's or inverse linewidths. 

Now our solutions for 1:::., I:::. F:;; 0 are: e n 

Zll 
e 

qw d T e e e 

1+(1:::. T )2+ (0 -S )T d2 
e e e e e e 

(76a) 

(76b) 

If the ENDOR spectrum is monitored after subtraction of the ESR 

signal; then for I:::. = 0 and 0 T d2 » 1 we have e e e e 

(77) 

Thus the signal strength is proportional to (Oe n/Oe)2 and the 

shape is a Lorentzian of width T-land (modified) sat~ration 
n 

parameter: 
o 2 

(1 (l-~) 
n 00 n e 

(78) 

The percent enhancement of an ESR line due to ENDOR is then, from 

eq. 77, 

% enh = Z~NDOR - Z~SR 
/I 

ZENDOR 

2 S d->oo e n 
~A .... ~ e e '"1.1. 

(79) 
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XVIII.4. GENERAL APPROACH 

One finds that, in general, multiple-resonance/ESR experi­

ments in liquids may be expressed in the matrix form eq. 48 with 
1 formal solution given by eqs. 51-53 In this formal solution, Z 

is a vector in the space of all induced transitions and X is a 

vector in the space of all spin eigenstates. The only require­

ment is that a raising convention apply. This is the require­

ment that all induced transitions in the space of Z are those in 

which there is (are) increase(s) in spin quantum number but no 
5 decrease(s) in spin quantum number. This requirement is often 

met for ENDOR and ELDOR experiments, but it sometimes requires 

neglect of some multiple quantum transitions. If it is not met, 

then a somewhat more complex form of eqs. 48 and 51-53 could 

become necessary. Alsq in summary, the validity of the general 

relaxation eq. 17 for well separated hyperfine lines requires, 

that, 

where ~ refers to the relevant correlation time(s). 
c 

XVIII.5. TRANSITION PROBABILITIES 

Consider now the general 4-level system with all types of 

spin-lattice relaxation transitions: 

a---
W 

n .. ---b 

b ' 

(80 ) 

We can solve for C .. and C .. kl the cofactors and double cofactors 
~~ ~J, 

of the W matrix to obtain all the 0 .. kl' 
~J, 

A. ELDOR--Generalized No Saturation of Observing Mode. 

We have from eq. 61 that the signal reduction is given by: 

% reduction = ~ 
R - 100 Op 

2 
Wn - W~ Wx.a 

(81 ) 
W (2W +w +w )+(W +w ) (W +w ) 

e n~ x.a n~ nx.a 
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Clearly if W2 >W W one has a reduction in signal, while if 
2 n ~ x.a 

W < W W there will be an enhancement. 
n ~ x.a 

a. Let W = W = 0 (i.e., only pseudosecular dipolar terms 
~ x.a 

important). Then 

R = 

or a reduction. 

W 
n 

2W +W 
e n 

b Wn 
= 2 + b where b = W­

e 

b. Let W = W = 0 (i.e., isotropic hyperfine modulation). 
~ n 

Then R = 0 i.e., no effect. 

c. Let W = 4w W = 1!W (dipolar, extreme narrowing). 
x.a n' ~ 3 n 

Then 

or an enhancement. 

b 
R = - 4+Sb 

In the case of solids, one can also examine ELDOR enhance­

ments for forbidden ESR transitions. 6 

B. ENDOR--Limiting Enhancements. 

We have from eq. 79 that the % enhancement E is given by: 
nn 

1 + E- l = ~ = 
ne n , 

[Wn (2W e +W~ +Wx.a )+(W e +W~ )(W e +Wx.a )] X 

[We(2Wn+W~ +Wx.a )+(Wn+W~ ) (Wn+Wx.a )] X 

[W (W +W +W )+W W r 2 
x.a en x,. en 

a. Let W x,. =W o (i.e., only pseudo-secular dipolar 

(82) 

terms important). 
x.a 

Then 

E 
1 

2 [2 + b + b-q 

b»l. ib-1 

b«l, ib 

b=l ~ 
-8 

b. Let W = W = 0 (i.e., isotropic hyperfine modulation). 
Xl n 

Then 
W 

E = 22 
W e 

This would theoretically be a most effective ENDOR mechanism if W 
x.a 

were large. 
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c. Case b but now the a~b ENDOR transition is saturated. 

Then E II O. 

d. Let W = 4W W = ~ W (d ipo lar, extreme narrowing). xa n' X:t 3 n 

E b [22.5 + 60b + 40b2] 
6 + b[25 + 34b + l5b2] 

b»l 

b<<1 
) 

(8/3)b 

3.75b 

b=l .. 1.53 
This is also a very effective ENDOR mechanism if b>l. 

e. Case d but now the a~b ENDOR transition is saturated 

b [2.5 + lOb + lOb2] 

E = 6 + b[45 + 84b + 45b2] 

b»l. 

b<<1 ~ 

b=l • 

2/9 

(5/l2)b 

1/8 

C. Expressions for Transition Probabilities. 1 

We assume a single set of completely equivalent nuclei with 

total nuclear spin quantum number J and total z component M. (We 

do not explitly indicate the distinction between degenerate states 

of the same values of J and M. Note that there will often be 

degenerate states for a given set of values of J and M. However, 

it is possible for dipolar terms (but not quadrupolar terms) to 

order the degenerate states according to a parameter K: or J{K:) 

such that the values of J and K are preserved. l We do not explicitly 

indicate K: in the equations below.) 

i. Nuclear-Spin Transitions 
a. Dipolar: 
W(M M) -+ (M M+l) = i jD(O) [J(J+l)-M(M±l)] (83) 

s' s' -
where the electron-nuclear dipolar spectral density jD(O) is: 

with ~R the rotational correlation time, and it is assumed 

IWn~RI« 1. The dipolar coefficients are: 7 

D(m) = (65TT )i <ve lr,-3Y2,m(a',cp') lve ) 

where a', and cp' and r' are spherical polar co-ordinates which 

define the position of the unpaired electron with respect to a 

(84) 

(85) 
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nucleus in the molecular co-ordinate frame. 

b. Quadrupolar. (For this case only we consider a single 

nucleus of Spin I): 

521 

W = 2jQ(0) [I(Hl) - M(M±1)][2M±1]2 (86a) 
(MS' M) -> (MS' M±l) 

W = 2jQ(0) [I(Hl) - M(M±l)][I(Hl) - (Mtl)(M±2)] 
(MS' M) -> (MS' M±2) 

where 

7 with electric-field-gradient irreducible-tensor components: 

Here 

~e(O) = -(~)t<*elv~zl*e> 

~e(±l)= ±<*eIV~z±iV~zl*e> 

ve(±2) = -t<*eIV~-V~±2iV~yl*e> 
ii. Electron-Spin Transitions 

W (T, M) -> (±, M) = 2jD (O)i + 4j (D~) (Wo)BoM 

+ 2j(G,a)(w )B2 +W SR +x 
o 0 e 

.D( ) = .D(O) [1+ 22]-1 
J Wo J Wo'TR 

The g-tensor spectral density is: 

3 'TR 
.(Ga)(w) = l B2h-2 {6 ( )2 -3 2, 2 2 
J 0 20 0 X k=l gk gsf l+Wo'TR 

The g-tensor-dipolar cross-term spectral density is: 

j(DGa)(wo) = -foYeBoYn 6 D(m)g(m) 'TR22 
m 1 + Wo'TR 

(0) -.l. (+2) wi th g = 6 2 [2&3' - (g' + g ')] and g -
x y = t(g' - g '). 

x y 
spin-rotational contribution to W is 

e 
in a semi-classical 

W SR = IkTC2( 'TJ ) 

e h2 1 + ~'T~ 

treatment: 

The 

(86b) 

(87) 

(88a) 

(88b) 

(88c) 

(89 ) 

(90) 

(92) 

(93 ) 
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where I is the moment of inertia, C is the spin-rotational constant 

of the radical (and we have assumed both to be isotropic), and ~J 

is the correlation time for the angular momentum, (d. Atkins, 
-1 

Ch. XI). In liquids, usually ~J «~R' Wo One has for a 

Stokes-Einstein model 

(94a) 

(94b) 

More generally (Atkins Ch. XI) C ~ -2A6g where A is the inverse 

moment of inertia tensor and ~ = g - 2.00231. Then we have (for 

axially symmetric A): 

G 2 
W ~ ~ (g. -g ) /40'rR 

e i ~ s 
2 2 

(for Wo ~R »1) 

SR 2 
W ~ ~ (g. - g ) /18'rR e . ~ e 

~ 

If these are the dominant terms in We' then: 

We cc: ~R 
-1 

or 

(95a) 

(95b) 

(96a) 

(96b) 

Usually ~R > Wo- 1 for free radicals in liquids below room tempera-
-1 -11 

ture since at X-band W ~ 1.7 x 10 sec. Then pseudo-secular o 
dipolar terms dominate in ELDOR or ENDOR. So, from eqs. 83 and 84: 

or 

Then 

If we let 

W cc: ~R n 

W == B 11fT n 

b = (l)(~Y . 
T W/kT 

11 cc: e W>O 

(97) 

we get b increasing significantly with decreasing T. This usually 

leads to better ELDOR and ENDOR signals at reduced temperatures. 

iii. Combined E1ectron-Spin-Nuc1ear-Spin Transitions. 

(Cross-Relaxation) 

W = [1,.j (D) (W ) + ~j I (W ) ] x [J(J+1) - M(MTl) ]. (98) 
M ,M-> M ±1, MTl 3 0 0 

S S 
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W M+1 = 2. (D) (w ) [J(J+1) - M(M±l)] 
M ,M .... M :!:1, _ J 0 

s s 

The isotropic dipolar spectral density is: 
'I" 

I 2 ~ c 
j (w) = y [(a(t)a(t+r»-a ] 1+ 2 2 

o e ~ ~ 

Note that tor jD(w ) « jD(O) (and small jI(w » w «Wand 
o 0 x n 

pseudo-secular terms dominate as noted above. 

XVII I. 6. HE ISENBERG S PIN EXCHANGE AND CHEMICAL EXCHANGE 
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(99) 

(100) 

Heisenberg spin exchange is a very important radical-concen­

tration dependent relaxation mechanism in normal liquids. It is 

probably the dominant one for S = ,. It may be analyzed by a 

simple model which also serves as a simple example of the stochastic 
8 Liouville approach. We assume radicals exist either as well separated 

"monomers" or as interacting pairs or "dimers" each with mean 

lifetimes r2 and '1"1 respectively, and with density matrices p and 

a respectively. The equations of motion are then: 

• • ~I' (1))( +. 2 T • 2 
1.p = 1'(., P 1. - r a - 1. - P 

T '1'"2 s 7"2 
(101) 

• (1)"; (2)x )( -1 
ia = WT + U'T + U'J )0' - hI (a-px p) (102) 

where U'T(l) is the spin Hamiltonian and Trsa = *(Tr1 0' + Tr2a) is a 

symmetrized trace over each of the two components of the inter-

acting dimer. Also 
H = J s(1). s(2) (103) 

J 
where J is twice the exchange integral. One obtains a steady-

state solution for a in the rotating frame. It is then possible 

to show that when: 
-1 IJI, '1'"1 »Iai I, Wl 

Eq. 101 is well approximated by: 

ip = U'T (l»)(p + ium:[Trs(pp x pP) - p] (105) 

where 

(106) 
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is the Heisenberg exchange frequency. In eq. 105 we have neglected 

a frequency shift term which is readily shown to be zero in the 

high temperature approximation, (i. e., Ap == 1 + P I with I p 'I « 1, 

cf. eq. 23). Here P is the operator which permutes electron spins. 

The derivation of eq. 105 is based on the fact that for spins S = t: 
H )( = .l.Jpx 

J 2 
(10n 

For simple Brownian diffusion of the radicals in solution we have: 

-1 
'1"2 = 4nDf91 

'1"1- 1 = (6D/d2)feu 

(l08a) 

(108b) 

where 91 is the density of radicals, the diffusion coefficient is 

D = kT/6na~, and d is the interaction distance for exchange. The 

factors f and feU are introduced for charged radicals to take 
8 9 account of Cou1ombic and ionic atmosphere effects. ' 

The result, eq. 105 means that Heisenberg exchange appears 

as a simple exchange process analogous to chemical exchange pro­

cesses for which the well-known Kap1an-A1exander10 method applies. 

We let 

(l09) 

and add this relaxation term to eq. 17. One then finds that for 

well separated hyperfine lines the 12 contributions are: 

-1 = (A-2D,)w._ T 2 HE (ESR, A) I'.tlli 
, A 

(110) 

-1 
T2 HE(NMR) = ~E (111) , 

Here D" is the degeneracy of the "th transition, and the T;l(NMR) 

is the width contribution to a well-resolved ENDOR line. The 

diagonal elements of eq. 109 yield: 

~ [(XCX=f - Xa:±) + (X+ - X_)] (112) 

where 
(l13a) 

and 

(113b) 
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The notation ex ± in eqs. 112 and 113 refers to the exth nuclear­

spin configuration and M = ±. 
s 

The steady-state solution of eq. 112 in eq. 17 is: 

525 

Xex+ - Xex _ = 2X+ (114) 

i.e., differences in population between all pairs of levels dif-

fering only in M are equal. 
s 

yield the s.s. result that all the 

The unlinearized rate equations 
0' 

ratios ~ are equal. 
ex+ 

If in chemical exchange (CE) (i.e., electron transfer), the 

predominant NMR relaxation of the diamagnetic radical precursors 

is the CE process, then CE appears to be just like HE in magnetic 

resonance experiments on the radicals. 4 

We now consider the W matrix including eq. 112. Note first 

that 

[~m (X) ]ex+cx+ + [clim (X) ]ex-ex- = um {[M<ex- - \x+) + ~l 

+ [t(Xcx+ - Xex -) + xJ} = 0 (U5) 

so that each pair of rows of W labeled ex + and ex - are linearly 

dependent. Thus, while ~ is an A x A matrix, it is of rank A/2, 

i.e., HE does not act to change (Xcx+ + Xcx-) but rather to equate 

all (xa+ - Xcx-)· One must add Wn or Wx terms to reduce this high 

order singularity. 

One may alternatively employ another method. Sufficient con­

ditions for this method are: 

1. All spin-flip relaxation transitions are of We' Wn or 

WsE-type (i.e., no Wx ). 

2.a. W(+,M)-+(_,M) = W(-,M)-+(+,M) 

b.W(+,M)-+(+,M±l) = W(-,M)-+(-,M±l) 

Then we may define a ~A dimensional square matrix W (which is 

usually non-singular or readily separated into non-singular com­

ponents) according to 

" " [WX];.. == [WX ]:\+ - [Wx ]:\_ (116) 

" This reduced eigenstate space is found to include only the X A == 
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X", + - X", _, which are closely related to pure ESR transitions. 

Then if only ESR transitions are induced, we find 

"-1 S,\ = 4d,\ d (W),\ = d,\ d 0.. 
1\, " 1\ " 1\, " 1\ ,,-A, " 

(117) 

(This method can also be generalized for ENDOR). 
8 

Using this method 

one can then prove: 

(118) 

(118a) 

with 

(119) 

and 

i :f j (120) 

Equation 118 illustrates the "shorting-out" effect spin exchange 

has in coupling the ditferent hyperfine lines (ct. eq. 114) without 

directly leading to electron-spin flips. It to11ows from eqs. 56 

and 118-120 that 

Z~SR - Z~LDOR 
R - II 

ZESR 

is (for 6w = 0 and the no-saturation condition of eq. 60): o 

(121) 

R-1 = n In + [(1 + 6w 2T 2)/T (1 ]dp -2 (122) 
-1> 0, p P P P 0, P 

and 

= (D b,,)-l + 1 
p 

(123) 

Here R is defined in the same manner as the asymptotic R of Eq. 81. 
00 

Eauation 123 shows how Heisenberg spin exchange is effective in 

enabling significant ELDOR reduction factors. 

Now for ENDOR, and a single nucleus of spin I = t, with 

W = 0 one has x 



SATURATION AND DOUBLE RESONANCE 527 

°e 
= 1 [2W + (W +~/2)] e n 

W W + (W + l%E) e 
e n -2-

(124a) 

° 
1 [2Wn + (We+UHE/2)] 

(124b) 
n W ~ + W ] n [W + 

e 2 n 

°e n 
(W + W + ~)-1 

, e n 2 (124c) 

and W n r S (d .... co) 
+ ~ ][W +W + t11m] e n [2W + W n e 2 e n 2 

(125) 

In general if W = 0 and W = 0, Sr(d .... co) = 0 even for more than 
n x e n 

one magnetic nucleus. Thus Heisenberg exchange is not an effective 

ENDOR mechanism, i.e. it is ENDOR "inactive", although it is ELDOR 

"active". 

In conclusion, we note that the characteristic behavior of 

the various relaxation mechanisms as differently manifested in line 

width, saturation, ELDOR, and ENDOR is a potentially useful approach 

to separate out the many possible components of relaxation in a par­

ticular paramagnetic system. 

We present in the Table a summary of these characteristics. 

This summary should, however, be used with caution. 
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