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Very often one has to consider the quantum nature of the 

molecular systems whose modulation induces spin relaxation. We 

first consider a "gas-like" model wherein strong collisions ran­

domize the molecular degrees of freedom, more specifically the ro­

tational states. Then we generalize the results to cover more 

general descriptions of the way that the molecular degrees of free­

dom relax through thermal contact. 

IX.l. STRONG COLLISONAL RELAXATIONI 

We start with the density matrix p which refers to the com­

bined spin-molecular degrees of freedom: 
. x 
p = -iJ( P (1) 

where ~is the Hamiltonian for a combined system and is given by 

(2) 

Here h~ and t0VS are the unperturbed Hamiltonians of the molecular 

and spin systems, respectively, while V is the coupling term 

operating on both rotational and spin variables, and U is time inde­

pendent. We often only include the rotational part of UM designated 

by UR. Let us define V and Us such that 
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(3 ) 

where B(R) is the Boltzmann distribution in rotational states: 

In the interaction representation with 

and 

one has 

i(U'R*S)t -iWR*S)t 
e p(t)e 

1 dp*(t) 
i dt 

=1= * - [V (t), p (t)]. 

(3a) 

(4a) 

(4b) 

(5 ) 

Equation 5 may be solved by integrating to successive approximations 

obtaining a series expansion for the dependence of p*(t) on its 

value at some earlier time p*(to ) (or better, by the cumulant expan­

sion approach). 

To proceed further, the following assumptions will be intro­

duced. 

1) pet) is approximately factorable into the product A(t)a(t) 

where A(t) and aCt) are reduced density matrices depending only on 

the rotational and spin degrees of freedom respectively. 

2) Collisions affect only the rotational degrees of freedom 

(i.e., they are perturbations with no matrix elements between spin 

states) . 

3) The collision takes place over an interval of time which 

is short enough that a(t) remains essentially constant. 

4) The collision is strong in the sense that the distribution 

of rotational states just after collision is given by a Boltzmann 

distribution at the kinetic temperature of the molecules and is 

independent of their distribution just before collision, so that 

(6) 

However, in order to be consistent with assumption (2), collisions 

must not change the spin symmetry. Thus, the symmetry of the 
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rotational states will be unchanged and B(R) will be understood as 

normalized only over states R having the symmetry of interest. 

5) The collisions are random with a mean time interval ~. 

The basic nature of this model is that collisions represent a very 

strong perturbation which rapidly restores the rotational states 

to equilibrium, while the spin-rotational interaction, V is a much 

weaker perturbation that slowly tends to bring the spins to 

equilibrium. 

Assuming that a collision occurred at to' expanding Eq. 5 to 

second order, and taking TlR (i.e. a trace over rotational states)gives: 

C(j:f (t, to) . r * *"1 
at -lTrRl [v (t), B(R)a (to)]J-

t 

-TrR{ J dt'[V*(t), [V*(t'),B(R)a*(to )]]} + .... (7) 

to 

If V does not connect states of different nuclear spin symmetry, 

and any change of nuclear spin symmetry resulting from collisions 

is neglected, then all molecules of a particular spin symmetry may 

be treated as a separate sub ensemble represented by a separate 

Eq. 7. It immediately follows from Eqs. 3 and 4 that the first 

term on the left of Eq. 7 vanishes. 

To obtain a*(t) from Eq. 7, a*(t, to) must be integrated over 

all values of to = t-e. Thus 
co 

a*(t) = J a*(t,t-e)~-le-e/~ de. 

o 

Differentiating partially with respect to time gives 
co 

o * J [0 * l -1 -e/~ o t a (t) = at a (t, to) J ~ e de 
o to=t-e 

co 

- J o~a*(t,t-e)~-le-e/~de. 
o 

(8) 

The term [o~a*(t,to)J in Eq. 9 is just that given by Eq. 7. 
to=t-e 
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The second term in Eq. 9 is shown to be zero by first integrating 

it by parts giving T-1 [a*(t)-a*(t,to=t)] and then by utilizing 

assumptions (3) and (5), which permit Eq. 8 to be written where 

a*(t) on the LHS is replaced by a*(t,to=t), and t-9 on the RHS is 

the time of the collision previous to the one at t=to . This leaves 

the following expression: 

co*(t) 
at 

co 9 
J -1 -9/T J * -TrR T e d9 dx [V (t), 
o o 

[V*(t-x), B(R)a*(t-9)]] + ... (10) 

Equation 10 may be solved using the approximations: a) Replace 

a*(t-9) on the right by a*(t), and b) neglect higher order terms 

in the expansion. These approximations require v2 « T-2 , which 

will lead to T1 ,T2 » T, i.e., the relaxation effects of the pertur­

bation V are much weaker than those of the collisions. 

Equation 10 is evaluated in a basis diagonal in ~ and Hg. 
That is, if $ and ~ are respectively complete sets of eigenfunc-r s 
tions of HR and HS having the correct symmetry for the spin species 

of interest, then the appropriate basis would be the set of pro­

ducts $ ~. The final results (neglecting the second order fre-
r s 

quency shifts) may be expressed in the usual relaxation matrix form: 

aa*(t)oo' 
at 

where for V = z:: K(q)F(q) with K(q) a spin operator and F(q) a 

rotation opera~or: 

- z:: C K (q ')K (q)J. (y_R ') 
at3 t3 'y y:x' qq' I-' 

Y 

(11) 

- z:: /) K (q ')K (q)J. (y_R)] (12) 
a't3 ' ay Yf3 qq , I-' 

Y 
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Here a, ~, etc. label eigenstates of ~S. Equation 12 is formally 

very similar to the Redfield Eq. (cf. eq. VIII-35) but the spectral 

densities j(a-~) are different: 

. [-Erl/kT (q) (q/) T l 
Jqq/(a-~) = Z(R) :6 e Frr, Fr/r 1+(W'+W)2 2 J 

r, r 1 rr a~ '1' 

(13) 

where r, r' etc. label eigenstates of ~R and hw 1 = E -E I, etc. 
, IT r r 

Eq. 13 includes the correction for non-zero (F(q) in case Eq. 3 is 

not fulfilled. 

Equations 12 and 13 require the usual energy restriction that 

E -E = E I-E 1 • a ~ a ~ 
(14) 

As is usually done, the ad hoc assumption that a*(t) relaxes 

to 
-~ /kT 

Z(S)e S Z(S)-l { 
-h~/kTI 

= Trs e J (15) 

is introduced by replacing a*(t) with a*(t)-aT in Eq. 11. 

If, however, we now allow the possibility that V may connect 

states of different nuclear spin symmetry even though the collisions 

do not, we may utilize assumption (1) to write pi(t) = Ai(t)ai(t) 

as that portion of the density matrix which only includes all states 

corresponding to the ith nuclear spin symmetry. 2 Then we may write 

p as the partitioned matrix: 

A iai Aijaij 

p 

ir-j (16) 

where submatrices Aijaij include all off-diagonal elements between 

states belonging to the ith and jth symmetry classes. Terms such 

as Ajiaij or Aijai for i r- j are not allowed, since they violate 
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the Exclusion Principle. Note that the mixed superscripts may not 

be simply permuted. However, the Hermitian property of the density 

matrix and the separability of the two reduced matrices leads to 

where t indicates the Hermitian conjugate. The normalization of 

the density matrices is taken to be 

(18a) 

and 

TrR. (Ai) = TrR.(Aj ) = 1 (18b) 
~ ] 

so that any differences in population of states of different nuclear 

spin symmetries are contained in a. The subscripts Siand Ri limit 

the trace operations to spin states and to rotational states of ith 

symmetry, respectively. 

The equation of motion for p may be written in terms of each 

submatrix. Thus for example 

-i 1Yf, pet) ]j j (19) 

Note that, while the matrix elements of the commutator itself are 

restricted to states of symmetry j in eq. 19, both U and pet) 

within the commutator could have matrix elements involving states 

of other symmetry. 

After a strong collision we have: 

r *} r I TrR LP (to) = TrR LB(R) X a(to ) J = 

i* a (to) 

o 
(20) 

where B(R) may be partitioned so that 

Bi(R) = Zi(R) [exp(-h~/kT)]i (21) 
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and 

i -1 
[Z (R)] = TrR. [exp(-h~/kT)]. (22) 

1 
. 1 

[Z1(R)]- is the rotational partition function normalized for the 

ith symmetry states. Thus the strong collision is assumed to re­

store each set of rotational states belonging to a particular spin 

symmetry to its respective Boltzmann distribution, while also 

having no effect on aCto)' which includes the relative populations 

of states of different spin symmetry. The disappearance of off­

diagonal submatrices Aij(to ) in Eq. 20 after a strong collision 

does not necessarily require that important nuclear-spin dependent 

intermolecular forces exist. These submatrices contain only off­

diagonal elements between rotational eigenstates, so they are 

relaxed by secular mechanisms which broaden each of the coupled 

rotational states differently and by all nonsecular processes 

involving these levels. A derivation similar to that given above 

yields: 

I :j: l 
6 Ro:.o:/.~.~'.La (t)~.~,. -ao~.~'.J 

~ jW j 1 1 J J J J J J 
(23 ) 

where R I Q. Q.' is again given by Eq. 12 after letting 0: .... 0:., 
O:iO: il-'jl-' j 1 

~ .... ~j' y .... y k' etc. and 

jqq ,(O:i -~ j) = 

[ Zj(R) 6, exp(-Er,./kT) F (q)F (q') '1' 2 2 
r.r'. r'.r. l+(w , + w ) '1' 

r i , r j J 1 J J 1 r i r j O:i~j 

- (F (q) ). (F (q ') ) . '1' 2 2 0 (24 ) 
1 1 l+w Q. '1' ij 

O:il-'j 

We have introduced the ad hoc assumption that a:j:j(t) relaxes to a 

Boltzmann distribution given by: 

(25 ) 
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where 

and 

f. 
J 

L: zi (R) /zj (R) 
i 
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(25a) 

(26) 

which measures the fractional population of rotational levels of 

jth symmetry at thermal equilibrium, is introduced to account for 

the normalization of Bi(R), ai(t) and Ai(t) given respectively by 

Eqs. 22 and 18. Note that 0 ~ also implies 0... The above 
ex'l-'j 1.J 

result assumes (V). is the sa~e for all j. When this is not so, 
J 

the result is a little more complicated and is given in ref. 2. 

IX.2. GENERAL FORMULATION3 

It is now assumed that the equation of motion for p(t) may be 

written as 

i(dp/dt) = W, p] - irp , (27) 

The term rp has been introduced phenomenologically into Eq. 27 to 

describe in a general way the relaxation of the combined system as 

a result of its thermal contact. The fact that only the molecular 

systems (and not the spins) are assumed to be directly coupled to 

the thermal modes means that the "relaxation" matrix rwill only 

affect the molecular systems directly, and the spin relaxation is 

achieved indirectly via the spin-molecular coupling term. Equation 

27 is clearly valid in the limit V=O, since the molecular spin sys­

tems are uncoupled, and it is proper to treat the relaxation of the 

molecular degrees of freedom as independent of the spins. As long 

as 

Irl» V, (28) 

then even as V is introduced, the effects of V will be negligible 

upon the molecular states when compared to their lattice-induced 

widths and relaxation transitions contained in r. 

The relaxation transitions of the molecular-spin systems are 

described by 
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(rp) = 6 (W p -w p ) nn nn' n 'n' n 'n nn ' 
n' 

(29 ) 

where W ,is the transition probability from state n' to nand p 
nn nn 

is the diagonal density-matrix element for the nth molecular state 

but is still an operator on spin states. The assumption of detailed 

balance yields 

W ,= W ,exp(hw ,/kT). nn n n nn 
(30 ) 

However, no restriction is placed on the nature of the intermolecu­

lar interactions leading to the W ,. The n diagonal elements p nn nn 
will, in general, relax in a coupled fashion requiring a normal 

modes solution for the eigenvalues. The off-diagonal density-matrix 

elements, whose relaxation is associated with the transition 1ine­

widths, are assumed to obey 

where 

(rp) = -6 r p nn ' nn 'nnn' nnn' , m,m' 
(31) 

-1 (w ,-w ,)r «1. 
nn nnn 

(3la) 

Equation 31 implies that the off-diagonal elements may be 

coupled, but the "adiabatic assumption" which allows only off­

diagonal elements between pairs of states with nearly the same 

energy differences to be coupled, is introduced by Eq. 3la. Any 

coupling via r between diagonal and off-diagonal elements of Pnn' 

is being neglected. In the absence of any couplings of P I Eq. 31 nn 
becomes: 

(rp ) = -r p = -r p nn I nn 'nn' nn' - nn I nn' , 

where r ,is the "linewidth" for the n ... n' transition. nn 
general, composed of secular and non-secular effects. 

(32) 

It is, in 

It is useful to obtain a basis for r corresponding to the nor-

mal modes of relaxation of the molecular part of pet). First pet) 

is partitioned into the distinct non-coupling components each distin­

guished by a different value for the subscript A. The distinction 

between the normal modes for matrix elements of pet) which are 

diagonal and off-diagonal in molecular states is represented by A-6 
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and A~V, respectively. It is further useful to distinguish the 

normal modes in terms of the sets of molecular states whose diagonal 

density-matrix elements relax independently of one another (e.g., 

states of different 

components such as: 

spin symmetry). This leads to density-matrix 

p~ (t) == p. (t) -diagonal in the ith set of 
u. 1. 

1. 

molecular states, p (t) --off-diagonal, involving 
Vi 

only the i th 

set, p (t) --off-diagonal, involving both the ith 
Vij 

d .th an J set. 

Each such component is generally written as PA(t). 

Now r may be partitioned in the same manner to give the dif-

ferent component r A. Letting TA be the similarity transformation 

which diagonalizes r A, one has 

(32a) 

and 

(33 ) 

where riA 
a 

is the eigenvalue for the A th normal mode represented 
a 

by XA (t). 
a 

Thus the relaxation of the diagonal density-matrix ele-

ments of the ith set 

given by Eq. 29 

of molecular states, represented by r., is 
1. 

replacing nand n' by n. and n. '. For the ith 
1. 1. 

group of states there will be a zero root, r/. = 0, corresponding 
1.1 

to the conservation of probability in such states. 

In the interaction representation Eq. 27 becomes 

(34) 

We now look at the evolution of Eq. 34 for times of the order 

of t such that 

lrlt»I »lVlt; (35 ) 

that is, for times long compared to the damping time of the molecular 

systems given formally by Irl-1 but short enough that the effect of 

V is small enough to be expanded as a perturbation. Over this time 

domain an iterative expansion given by 

Pi-. :j:(0) (t) (36a) 
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PA*(l)(t) = -rAPA*(l) - i[V*(t), p*(O)(t)]A' (36b) 

P *(n)(t) = -r p *(n)(t) - i[V*(t) p*(n-l)(t)] (36c) 
A A A ' A 

is employed. The commutator on the right corresponds to the Ath 

normal mode although p*(t) within need not. One obtains the relax­

ation matrix expression Eq. 23 where now 

with 

k (AI ') L: (F (q» (F (q/» B (M) 
qq I .... j -0: i = At njn ' j A m 'J.m1. m 'j A, n, n'm,m' 

x [~(~'.a'.+Wm/.m.)n/.n.m'.m.] 
J 1 J 1 J 1 J 1 

(38a) 

and 

L: (F (q» (F (q ') ) B (M) 
, I I A m m' At n' n m' 
1\, n, n ,m, m i j j i j 

X [A.(waR+w mm )nn'mm'] 
r... j .... j i j I i j i j 

(38b) 

A (W)n ' n m' m = 
-V ji ji 

(39) 

-1 A. (W) = [(r.+wlL)] - [B. (M) /iw] 
1 nn,mm 1 nnmm 1 nn (40) 

Note that m. and m'. must constitute one of the Ath set of transitions, 
1 J 

while in the A tth set the pairs of states are transposed. Also 

n. is the unit matrix. A particularly simple case exists when 

r ' = ~ -1 , ~. r 0 
, I , I\a i 1 1 , • = 
I\a c 11 

(41) 
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otherwise independent of A. Then, one obtains the "strong­
a 

collision" approximation of Eq. 24. 

When r is just a lxl matrix (uncoupled molecular width), Eq. 
V 

39 shows that the relaxation effects of off-diagonal matrix ele-

ments of (F (q» involve the lattice-induced molecular linewidths 
V 

for the vth transition. Equation 40 shows that the relaxation 

effects of the diagonal-matrix elements of (F. (q» involve just the 
l. 

lattice-induced transition probabilities amongst the ith set of 

molecular states. 

IX.3. APPLICATIONS 

A. Gas-Phase Relaxation 

In applying the formalism to gas-phase relaxation, the rota­

tional wave functions * must be reasonably well known so that the r 
spectral density, Eq. 13 may be calculated. In cases where there 

are internal rotational degrees of freedom, * should include them 
r 

as well. In this context it is important to recognize a difference 

that exists between the semiclassical theory of relaxation (cf. Ch. 

VIII) and the basically quantum mechanical formulation of the theory 

presented here. Internal and over-all rotations, as treated classic­

ally, will tend to average out anisotropic terms such as dipole­

dipole interactions and will lead to spin relaxation effects which 

are dependent in part on the effective reorientation rates of the 

motions. However, in the quantum mechanical model, when collisions 

and related interactions are neglected, the molecule will be in a 

definite rotational quantum state and no significant spin relaxation 

is to be expected. Significant relaxation is introduced by the ef­

fect of collisions which themselves change the molecular rotational 

states and also broaden them so that V can be effective in energy 

transfers. Thus, in the present formulation the relaxation will 

depend directly upon the effective collision times causing reorien­

tation and only indirectly on the quantum mechanical rotational 

frequencies. 
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One is free to make various assumptions about the reorienta­

tional collision times, or more precisely the r matrix. The sim­

plest is, as we have seen, a strong-collision assumption. The 

strong collision assumption can be modified somewhat by assigning 

a separate "effective collision time" 'I" for each sub-ensemble of 

molecules which can be approximately treated as isolated from the 

rotational states accessible to the rest of the ensemble. Such a 

separation into sub-ensembles is appropriate for molecules of dif­

ferent nuclear-spin symmetry provided V has no matrix elements be-
l tween them (e.g. ortho-hydrogen). It is also possible, as has 

been discussed for ortho-hydrogen, to assume that for small mole­

cules, because of the large energy differences between J levels, 

that collisions primarily redistribute molecules among the mJ mag­

netic substates of a given J and V is too weak to couple statl!S of 

different J. Then Eq. 13 should be rewritten for each set of J 

states as: 

1 
2J+l 

'l"J 
z::; IF (q) 12 2 2 

m .lllJ I 1+ (w +wrvA ) 'l"J mJ, mJ1 J mf1J I '-'1-' 
(42 ) 

and a separate relaxation equation (12 and 14) may be written for 

each sub-ensemble of molecules differing in their J value. One can 

then calculate the macroscopic magnetization MJ(t) for each J state 

and appropriate Tl J and T2 Jvalues are obtained. Now, provided colli­

sional transition ~ates bet~een J levels (TJ J,-l) are much smaller 

than Tl J-1 and T2 J-1 one can introduce such transitions into a , , 
form reminiscent of the modified Bloch equations for chemical ex-

change, except that the differences in Larmor frequencies of mole­

cules in states having different values of J may be negligible, 1 

the only differences being in their relaxation properties. One 

finds that if 'l"J J,-l is much larger than differences in Tl J-1 and 

T2 J-1 between J'levels, one still obtains a macroscopic ma~neti-
, -1 B 1 

zation characterized by a single T. = Z::;.-l. , where B J is the 
1 J Ti , J 

Boltzmann factor for the Jth rotational state. 
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However, even a modified strong collision approach cannot 

deal with selection rul~s for changes in magnetic sublevels mJ . 

This would require specifying the detailed W(J,m)~(J,m') in r.3 

For heavier molecules, characterized by a closer spacing of the non­

degenerate rotational energy levels, one would expect that colli­

sions will be more effective in causing transitions between them, 

thus allowing for some significant changes in J. This may be 

treated in the strong collision approximation, or by introducing 

W , terms into r. (J, m)~(J', m ) 
A detailed discussion for the case of NMR of ortho-hydrogen is 

given elsewhere. 1 In general for NMR, the perturbation V should 

consist primarily of the dipole-dipole interactions of the nuclear 

spins, nuclear quadrupole interactions, and the nuclear spin-rota­

tional magnetic coupling. 

In the case of ESR, the electron spin-rotational magnetic 

coupling, the unquenched spin-orbit coupling, and electron-nuclear 

dipolar interactions should be the dominant terms to which the 

theory applies. One should, of course, also add to a relaxation 

equation (cf. Eq. 11) a Heisenberg spin-exchange term such as Eq. 

XVIII-IDS. Now, however, WffE of Eq. XVIII-106 should be calculated 

from the appropriate gas-phase collision theory rather than from 

liquid diffusion theory as is done in Ch. XVIII. The validity of 

uncorrelated R-matrix and WffE terms as employed in Ch. XVIII would 

probably require an experimental situation in which there is a 

dominant buffer gas present such that most collisions of radicals 

are with diamagnetic buffer molecules. Unless the pressure is high 

enough, it will not necessarily be true that the condition for the 

validity of the present theory (i.e. Eq. 28) is fulfilled; then an 

approach more like that of Ch. XIV would be required, i.e. Eq. 27 

is solved explicitly without perturbation theory. 

B. Quantum Effects of Methyl Group Tunneling2 

This is an interesting case where V couples states of different 

nuclear-spin symmetry, so that a relaxation equation like Eqs. 23 
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and 24 is required. We illustrate with the ESR case where the 

dominant term in V usually (but not always) is the isotropic hyper­

fine interactions of the three methyl protons: 

8 3 ........ 
(-3) mfy y L: 6(r-r. )S' 1. 

e Pi=l 1 1 
(43 ) 

One calculates the hyperfine interaction by assuming hyper-conjuga­

tive mixing of hydrogenic Is orbitals and the methyl carbon orbitals 

with the unpaired electron in the carbon 2pz orbital to which Ithe 

methyl group is attached. Only the ~type symmetry linear combi­

nation of hydrogenic orbitals has the proper symmetry. One then 

obtains the hyperfine term as a function of the angle ~ which is 

the angle of rotation of the methyl group. The result is: 

(44) 

3 .... .... 
where I = L: 1., € = exp (2rri/3). In a classical average, only the 

i=l 1 

first term of Eq. 44 remains. Quantum mechanically one must con-

sider the permutation symmetry of the three protons, but the sub­

group: E, (123), and (321) is sufficient. It is isomorphous with 

point group Cs with irreducible representations A, Ea, and Eb . The 

last two terms in Eq. 44 are of symmetry Ea and Eb in the rotational 

(e±2i~) and nuclear spin parts, although they are of overall A sym­

metry. Thus they lead to transitions between internal rotational 

(or tunneling states) of different nuclear-spin symmetry. 

Interesting effects may be observed at low temperatures in 

solids when only the lowest torsional level is appreciably populated. 

In the limit when Irl>>a, the first term of Eq. 44 yields a 

four line hyperfine pattern of intensity ratio: 1:3:3:1. Each of 

the 3-fold degenerate lines are coupled to one another by the last 

two terms in Eq. 44, and if the torsional splitting ~ between 

ground-state A and E sub-levels obeys I~rl«l then the two central 
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lines are predicted to broaden. However, for l~/rl»l, the A and 

E sub-levels are well enough separated, so that the A component is 

not broadened, and one predicts four sharp lines in the ratio 

1:1:1:1 with doubly degenerate components of the two center lines 

broadened out. In the static limit for 6»a»r the E lines 

reappear between the A lines leading to a 7 line spectrum with 

intensity ratio: 1:1:1:2:1:1:1, which has been observed. If, how­

ever, a»~r, the usual four line spectrum is observed. Detailed 

line-shape calculations have been made using a strong collision 

approximation, 2 but such features as differences of the widths and 

relaxation of the A and E symmetry torsional sub-levels would 

require the more general approach. Eq. 27. 

C. Spin-Relaxation via Vibronic Relaxation 

Another application of Eq. 27 is to the problem of spin­

relaxation via excited electronic states. Various spin-orbit mech­

anisms in liquids were outlined in Ch. VI~I which involved calcu­

lations from the appropriate terms in R(4). Orbach-type processes 

involving combined orbit-lattic (O-L) and spin-orbit (8-0) mech­

anisms can readily be calculated in the manner outlined for classical 

models of the dynamics of the O-L interaction. However, recent 

experimental work on degenerate ground-state free radicals4 has 

strongly suggested that, while the anomalously large relaxation is 

spin-orbit in nature, it is essentially an intramolecular process. 

This suggests a vibronic-spin-orbit mechanism which takes advantage 

of the molecular vibronic relaxation. Thus r in Eq. 27 must include 

the vibronic relaxation, and one may deduce the spin relaxation from 

steady-state solutions to Eq. 27 utilizing a generalized form of 

time-independent perturbation theory (cf. Ch. XIV, discussion leading 

to Eqs. XIV-49 and 50).5 

D. Non-Resonant Effects 

It has been pointed out that the theory given here is for 
3 resonance-type effects. That is, spin relaxation occurs by a 

resonant (within the appropriate linewidth of the molecular states) 
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transfer of energy to the molecular systems. These widths are 

represented as Lorentzians by Eqs. 27-32. When, however, energy 

differences are large in the spectral densities of Eqs. 38 and 39, 

e.g. for 

1~/.al. + wm/jm.I» rm/ .m. 
J J 1 J 1 

where r I is assumed to be a simple width, one may be looking 
m .m. 

too far iJdj the "wings" of the line shape of the molecular tran-

sitions for the Lorentzian approximation to be valid. That is, the 

short time behavior of the intermolecular interactions, which deter­

mine the molecular line shapes in the wings may now be important. 

This is really no different than the short-time non-diffusive 

effects discussed in Ch. VIII with regard to classical Brownian­

type diffusive reorientation. Quantum mechanically, we can speak 

of non-resonant or higher-order processes in this limit. And, as we 

shall note, the spectral densities of Eq. 38 and 39 given in this 

limit by terms of type 

'Fmm II:a Ka eK@a 
2 

(We a + Wm/m) 

( 45) 

are essentially of this non-resonant form. That is one reduces the molecu­

lar relaxation parameter r I by the mixing coefficient squared ora2 
mm 

which measures the degree to which the perturbation mixes molecular 

and spin states. However, one must exercise some caution in the 

proper interpretation of r I as we have just noted. mm 
It should be possible to introduce the idea of short time 

behavior of r by analogy to the generalized Langevin equation6 such 

that Eq. 27 is generalized to: 
t 

ip = ~xp - if r(t-t/)p(t/)dt ' ( 46) 

to 
where, as in Eq. 27 we have not included the random force (see 

Deutch Ch. VII). A proper analysis of Eq. 46, including the random 

force, may be written as a hierarchy of continued fractions, fol­

lowing Mori. 7 That is, we write the ESR spectrum as being given by: 
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where r 1 (w) and 61 (W) are respectively the "frequency-dependent" 

width and shift of the ESR line. These widths and shifts come 

from the spectral densities of Eqs. 38 and 39. That is, next in 

the hierarchy of continued fractions we have 

IFmm,la IKla 

cc:: (w-wmm,)+ira (w)-te (w) 

where the terms ra(w) and 6a(w) give the real and imaginary parts 

of the one-sided Fourier transform of ret) in eq. 46. The frequency 

shift 6 a (0) due to intermolecular interactions has been implicitly 

included in the zero-order molecular energy states. 

The next stage in the hierarchy would be to calculate ra(w) 

in terms of the intermolecular interactions, utilizing a form like 

Eq. 48. However, one can terminate the hierarchy to a good approxi­

mation, whenever rn+l»rn. This was the basis of our analysis 

utilizing Eq. 28 such that r1<<la(0), and frequency-independent ESR 

widths and shifts are obtained in the central portion of the spectrum. 

The form Eq. 48 suggests that the non-resonant terms may be 

reasonably approximated by replacing the r A in Eqs. 39 and 40 by 

r(w) [=ra(w)]. We illustrate this with a simple example. 

Suppose we have a spin S (spin system) which relaxes by its 

coupling to another spin I (considered here as the molecular sys­

tem) due to a simple perturbation of type 

v = AI [S+ + S ] z - 2 IB I 'rc 
-1 with I rapidly relaxing according to (2T1 ) = W = 2 a 

I l+wI 'rc 

where B is an appropriate perturbation matrix element. WI in Eq. 

49a belongs in ra and 'r is, in principle, calculable from the 
c 

intermolecular interactions (i.e. r s )' The usual, or resonant-type 

approach would yield: A2 WI 
W = 2 2 (50) 

S Ws +4WI 
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where Ws belongs in r1 • 

In the non-resonant-type calculation, one first uses Eq. 49 to 

correct the zero order wave-functions, so that to first order 

and 

I~±)' = I~±) + aIT,±) 

I:l;T)' = I±, T) - a IT T) 

(5la) 

(5lb) 

a = 2~' and where the notation is IMs,MI ), and primes indicate cor-
S 

rected wave functions. Now the unspecified calculation which lead 

to Eq. 49a, (i.e., a transition probability calculation from R(2) 

between states 1+,+) H 1+,-) and 1-,+) H 1-, -») is repeated for cor­

rected states: 1+,+)' H 1-, -)' and 1+, -) H 1-,+)' [for matrix ele­

ments of type B(t)(I+ + I_)] and when averaged over a high tempera­

ture Boltzmann distribution in I , yields: z 
l.A2 

Ws =:a [WI(WS) + WI(-wS) ] (52) 
s 

where WI(±WS) is just WI of Eq. 49a, but with WI~I±WS' 

If WI>>WS' then only the resonant form, Eq. 50 is appropriate. 

If, however, WI<<WS then Eq. 50 becomes: 

A2 
W =--:aw 

S Ws I 
(50a) 

2 2 
Eq. 53 predicts the same result as Eq. 50a only when (~±Ws) fc ~ 

WI2 f c 2 • If ws;o, WI then this requires Ws 2 f / <<1 or very short cor­

relation times; or else if wS<<WI ' this is fulfilled. 
I 12 2 2 2 

Whe~ however, WI<<WS and WI±WS fc f wI fc ' then the non-

resonant expression, Eq. 53, should be utilized. That is, the 

nature of r for Eqs. 38 and 39 has been changed. 
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