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Abstract

Wavelet denoising plays a key role in removing noise from signals and is widely used in 

many applications. In denoising, selection of the mother wavelet is desirable for maximizing the 

separation of noise and signal coefficients in the wavelet domain for effective noise thresholding. 

At present, wavelet selection is carried out in a heuristic manner or using a trial-and-error that 

is time consuming and prone to error, including human bias. This paper introduces a universal 

method to select optimal wavelets based on the sparsity of Detail components in the wavelet 

domain, an empirical approach. A mean of sparsity change (μsc) parameter is defined that captures 

the mean variation of noisy Detail components. The efficacy of the presented method is tested 

on simulated and experimental signals from Electron Spin Resonance spectroscopy at various 

SNRs. The results reveal that the μsc values of signal vary abruptly between wavelets, whereas for 

noise it displays similar values for all wavelets. For low Signal-to-Noise Ratio (SNR) data, the 

change in μsc between highest and second highest value is ≈ 8 – 10% and for high SNR data it 

is around 5%. The mean of sparsity change increases with the SNR of the signal, which implies 

that multiple wavelets can be used for denoising a signal, whereas, the signal with low SNR 

can only be efficiently denoised with a few wavelets. Either a single wavelet or a collection of 

optimal wavelets (i.e., top five wavelets) should be selected from the highest μsc values. The code is 

available on GitHub and the signalsciencelab.com website.
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I. INTRODUCTION

Often, experimental signals are weak and are difficult to study due to the presence of 

noise. Wavelet denosing is widely used to improve the Signal-to-Noise Ratio (SNR) without 

distorting the signal [1], [2], [3], [4], [5], [6]. Wavelet denoising is known to have better 

performance over filtering based denoising methods [3], [4] and has been applied to 

many fields such as time series analysis [5], [6], [7], computed tomography [8], [9], [10], 

magnetic resonance imaging [11], [12], [13], fluorescence imaging [14], [15], [16], Raman 

spectroscopy [17], [18], [19], speech recognition [20], [21], [22], traffic volume prediction 

[23], [24], [25] and electron spin resonance (ESR) spectroscopy [1], [26], [27].

The efficacy of denoising depends on several factors like selection of the mother wavelet, 

decomposition level and thresholding criteria [28], [29], [30]. Currently, noise thresholding 

and decomposition level selection for discrete wavelet transforms are well developed. 

However, the mother wavelet for effective denoising has been selected heuristically and/or 

through trial and error. The mother wavelet plays a crucial role in denoising and hence 

needs to be selected carefully. Sub-optimal wavelet selection can lead to signal distortion or 

inadequate noise reduction.

A mother wavelet that maximizes the magnitude of the signal coefficient and minimizes 

the noise coefficient values in the wavelet domain would yield better efficacy in denoising. 

Several methods have previously been developed for optimal wavelet selection using cross 

validation [31], Shannon entropy [32], cross correlation and signal-to-noise-ratio [33], [34], 

[35], degree of energy variation [36], probabilistic neural network [37] and Nash Sutcliffe 

criteria [38]. However, these methods are not universal and focus only on specific types 

of signal [31], [32], [37], [38], [39]. Also, the wavelet and decomposition level selections 

are not performed in the wavelet domain. Instead, they are obtained after comparing the 

denoised data, which makes the method cumbersome, time consuming and difficult to apply 

in real time.

In this paper, a generalized method is presented to select the optimal mother wavelet 

function for denoising. The method uses a sparsity parameter [1], [40] to quantify maximum 

separation between signal and noisy Detail coefficients of the wavelet-transformed data. 

Subsequently, it calculates the mean of sparsity change to identify a wavelet (or a group of 

wavelets) that yields maximum separation across decomposition levels. The sparsity change 

has been reliably used to obtain the highest decomposition level [40], and hence can be 

easily integrated into any wavelet denoising algorithm. Using this sparsity criterion, an 

automated empirical method is developed that selects the optimal wavelet in real time for a 

given noisy signal, without a priori knowledge.

The paper is organized as follows. In section II, we discuss the importance of wavelet 

families and respective wavelets used for this study. In section III, we provide the details 

of effective decomposition level selection, sparsity calculation and its use to select a 

decomposition level that separates noisy and noise-free Detail components. In section IV, we 

describe criteria used to select the optimal wavelets. In section V, we explain the model data, 

including simulated and experimental data, which is used to test and validate our method. 
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Section VI, discusses the results and Section VII summarizes the method and findings in the 

Conclusion.

II. WAVELET SAMPLE SPACE

We created a sample space of most widely utilized wavelets for denoising. These include 

Biorthogonal, Coiflet, Daubechies, Reverse biorthogonal and Symlet families. Within each 

wavelet family we used bior1.1-bior2.6, coif1-coif5, db2-db11, rbio1.3-rbio2.8 and sym2-

sym7, which have different filter lengths and practical applications. We did not consider db1 

and rbio1.1, as they are the same as bior1.1 and haar, but with different names. Figure 1 

displays mother wavelet families and their respective low and high pass filter coefficients. 

Table 2 displays the list of wavelets used in the sample space. It is worth mentioning that 

other and/or new wavelets can be added to the wavelet sample space.

III. DECOMPOSITION LEVEL SELECTION

A. EFFECTIVE DECOMPOSITION LEVEL

The maximum possible wavelet decomposition level = log2 lengtℎ X , where X is the input 

signal) for any signal is decided by its lengtℎ. Yet, not all of them contain noise or signal. 

The signal coefficients after a certain decomposition level saturates, which suggests that the 

wavelet filter dominates the Detail components instead of the signal or noise coefficients. 

Thus, it can be calculated by taking the ratio of the length of Detail component and the 

length of the wavelet filter as given by;

Rj =
LDj
Lf

(1)

where LDj is the length of Detail component at the jth decomposition level and Lf is the 

length of the wavelet filter. The maximum possible decomposition level is obtained when 

Rj > 1.5 [40]. For instance, Table 3 shows Rj associated with LDj and Lf for different wavelets 

in the Coiflet family at a given signal length of 1024. It can be seen that LDj values are 

different for each wavelet which is also reflected in Rj. The Rj reflects the dominance of the 

wavelet filter in a Detail component. Table 4 exhibits the effective decomposition level and 

corresponding ratio cutoff (> 1.5) for each wavelet in the wavelet sample space. It can be 

seen from Table 4, that the effective decomposition level varies for different wavelets based 

on their filter length.

B. SPARSITY

Sparsity captures the presence of noise in a Detail component, enabling the separation of 

noisy and noise-free Detail components. The Detail components with larger noise has lower 

sparsity values, whereas Dj′s with lower noise has larger sparsity [1], [40]. The presence of 

noise in Detail coefficient decreases with increase in decomposition level, which results in 

increase in sparsity. Sparsity S  of Detail coefficients D  at each level for all wavelets is 

calculated as per the following equation.
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Sj = max Dj

k = 1
qj Dj k , 1 ≤ j ≤ N

(2)

where Sj, Dj and qj are the sparsity, Detail component and length of the Detail component at 

jth decomposition level, respectively. Figure 2a and 2b displays the sparsity plot of sym2 and 

coif2 wavelets, of white Gaussian noise, noise-free and noisy signal at SNR-30, respectively. 

It can be seen that, at a lower decomposition level, the sparsity value of the noisy signal 

is close to that of the sparsity value of only noise, whereas the sparsity value of the noisy 

signal is close to the sparsity value of noise-free data at higher decomposition levels. This 

separation between noisy and noise-free Detail components is highlighted by a vertical line 

in all the sparsity plots shown in Figure 2. This feature is consistent across other simulated 

signals, which can be seen in the sparsity plot of SNR-10 data shown in Figure 2c and 2d for 

sym2 and coif2 wavelets respectively.

C. SPARSITY CHANGE (ΔS)

The sparsity change parameter is used to determine the highest decomposition level that 

contains a noisy Detail component. Sparsity value represents the magnitude of noise present 

in a Detail component, whereas, the sparsity change separates noisy and noise-free Detail 

components by identifying an abrupt change in ΔS value between adjacent decomposition 

levels. The sparsity change ΔS  is calculated as

ΔSj = Sj − Sj − 1

(3)

where ΔSj is the sparsity change at jth decomposition level and Sj, and Sj − 1 are the sparsity 

at jth and j − 1 tℎ decomposition level respectively. ΔS1 = 0 as there is no preceding level.

D. OPTIMAL DECOMPOSITION LEVEL (κ)

The optimal decomposition level κ  that separates noisy and noise free Detail components 

can be calculated subjectively from change in sparsity plot or empirically through a cutoff 

value [40]. In the subjective approach, the optimal decomposition level j = κ  is selected 

where the first abrupt change in the ΔSj plot happens between j and j + 1. Empirically, a 

threshold of 5% with respect to 1 is selected as cutoff between noisy and noise-free Detail 

components. The optimal decomposition level κ = j − 1 is selected where ΔSj > 0.05 in the 

first occurrence [40].

IV. WAVELET SELECTION

Selection of wavelets is done using the sparsity of the Detail coefficients. The mean of ΔS
between adjacent levels is used as the quantitative parameter to select optimal wavelet.
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A. MEAN OF SPARSITY CHANGE μSC

The mean of ΔS for each wavelet is calculated between level-2 to one level after the optimal 

decomposition level κ + 1 . ΔS1 = 0 as there is no preceding level. Hence, the mean of ΔS
for each wavelet is calculated between levels 2 to κ + 1 using equation 4. Now, μsc can be 

expressed as the ratio of difference in sparsity between level κ + 1 and level 1 to κ − 1 . The 

plot of μsc of white Gaussian noise, noise-free signal and noisy signal of SNR-30 displayed 

in Figure 3 demonstrates the variation of μsc among wavelets. From the Figure 3, it can 

be seen that the μsc of noise is lower, whereas, μsc for noise-free signal and noisy signal 

are comparable. Such behavior demonstrates the efficacy of the method to reduce effect of 

noise while selecting optimal wavelet. It should be noted that the mean of sparsity for noise 

is calculated between the decomposition level 2 and optimal decomposition level obtained 

corresponding to the noisy signal.

μsc = j = 2
κ + 1 ΔSj

κ + 1 − 2
= ΔS2 + ΔS3 + … + ΔSκ + 1

κ − 1
= S2 − S1 + S3 − S2 + … + Sκ + 1 − Sκ

κ − 1
= Sκ + 1 − S1

κ − 1

(4)

B. WAVELET SELECTION CRITERIA

Optimal wavelets are selected utilizing the mean of sparsity change. From Figure 3, it can 

be seen that μsc of only noise has similar values for all wavelets. On the other hand, μsc of 

noise-free signal for bior2.2 wavelet has higher value compared to other wavelets. For a 

noisy signal few wavelets have higher μsc value than others. Such behavior demonstrates that, 

there can be only one or two optimal wavelets for high SNR signal whereas for low SNR 

signal there can be a few optimal wavelets. The wavelet corresponding to the highest μsc is 

selected as the optimal wavelet. Additionally, we have selected five wavelets corresponding 

to highest μsc values. Mathematically, the optimal wavelet and five optimal wavelets can be 

selected as

Optimal wavelet = wavelet max μsc
1 , μsc

2 , ⋯, μsc
n

Five optimal wavelets =
i = 1

5
wavelet max μsc

1 , μsc
2 , ⋯,

μsc
n + 1 − i

(5)

where wavelet is the list of wavelets in the sample space, n is the total number of wavelets, 

μsc
n  is the mean of sparsity corresponding to nth wavelet.
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V. DATA COLLECTION

A. SIMULATED DATA

Simulated ESR data is obtained using the Lorentz function written in MATLAB. The data 

generated has length of 1024 having identical peaks of height approximately 0.2753 with 

separation between the peaks of around 185 index values and the space between positive and 

negative peaks is 13 index values. The amplitude of the signals are symmetric and oscillates 

between positive and negative values with zero mean. Noise-free (red line) and noisy (blue 

line) simulated signal of SNR-10 are displayed in Figure 4. To generate signals of various 

SNRs, additive white Gaussian noise is added to the signal. Signals of SNRs 5, 10, 30, and 

50 are generated through this method and the SNR is calculated utilizing the formula given 

in equation 6. Noiserms is calculated from the first 200 index values of the input signal and the 

region is highlighted inside the rectangle in Figure 4.

SNR = Signalpeak
Noiserms

(6)

B. EXPERIMENTAL DATA COLLECTION

The results obtained from simulated data are tested on an experimental signal recorded 

through continuous wave-Electron Spin Resonance (cw-ESR) spectroscopy experiments. 

CW-ESR is used extensively to study unpaired electrons to understand the dynamics and 

structure of biomolecules, and is the most commonly used ESR technique [41]. The cw-

ESR spectrum is acquired in the magnetic field B0  domain, which is linearly swept, i.e. 

B0 = B0 t , increasing in magnetic field over time. The samples are irradiated continuously 

with microwave frequency radiation till a resonance condition is achieved, where the energy 

supplied by the microwave radiation is sufficient for the unpaired electron to switch its spin 

state from aligned to anti-parallel, generating the signal at the detector. In cw-ESR, a number 

of parameters are optimized simultaneously, to increase SNR without distorting the signal. 

Magnetic field sweep time, the time constant/ spectrometer response time (which filters 

out noise, at the risk of broadening or filtering out the signal), and the number of scans 

are few such parameters. An additional oscillating magnetic field is superimposed which 

oscillates with a ΔB of a few Gauss at 100kHz. This ‘modulation frequency’ is responsible 

for improving the SNR by ensuring phase-sensitive detection, where only the 100kHz 

oscillations are captured by the lock-in amplifier. Depending on the applied amplitude of 

this modulating field, a range of signals are detected in the spectrum, and resulting in 

a first derivative mode spectrum. If the modulation amplitude is too high relative to the 

signal linewidth, it will broaden the signal. The microwave power is adjusted such that the 

signal is generated without saturating the signal, which also causes broadening effects. Also 

present in cw-ESR is a baseline signal, which varies depending on the spectrometer and 

resonator used, and in the case of nitroxide spectra, it represents a small fraction of the 

signal measured.
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The ESR experiments were carried out at 20°C using a commercial spectrometer (BRUKER 

ELEXYS-II E500) operated at a microwave frequency of 9.4 GHz corresponding to a static 

magnetic field of 0.34 Tesla. The sample consists of 4 μL of a 100 μM aqueous solution of 

the commonly used spin-probe molecule Tempol (4-Hydroxy-2,2,6,6-Tetramethylpiperdine 

1-oxyl) [41], [42], [43], [44], which helps form a stable but ESR-active adduct. The 

magnetic field was then swept over a range of 60 G corresponding to the resonant spectral 

range which took 2 minutes, and a 82 ms time constant was used. The spectral data 

consisted of 4096 points along the magnetic field sweep. In addition, small coils placed 

at the sides of the resonator provided a small magnetic field modulation of ±0.02 G at a 

frequency of 100 kHz. The first derivative of absorption signal was recorded using a lock-in 

detector locked at 100 kHz frequency [41]. Low power (0.2 mW) microwave radiation was 

used to avoid saturating the ESR signal. Multi-scan experiments were performed with a 

delay of 4 s between scans. The results of these scans were then averaged. For reference, 

ESR data collected from the spectrometer averaged at 500 scans is shown in Figure 5a. The 

characteristic three-line spectrum arises from the interaction between the electrons and the 

nitrogen-14 nucleus of the nitroxide sample.

In another set of experiments, an ESR signal was acquired from a sample prepared in 

a different environment to obtain a complex spectrum. It was obtained on a home-built 

(ACERT) 95 GHz ESR spectrometer [44] with a DC magnetic field of 3.3 Tesla at 

25°C. The sample here contained ca. 5 μL of phospholipid vesicles doped with 0.5% 

of a lipid spin label: 16–PC (1-acyl-2-[16-(4,4-dimethyloxazolidine-N-oxyl)stearoyl]-sn-

glycero-3-phosphocholine) in the fluid phase that has been suspended in water. It was 

placed in a disc-like sample holder utilized for millimeter-wave ESR methodology [44]. 

This nitroxide sample contains the same three-line spectrum, however it has it’s motion 

restricted in the lipid vesicle, revealing the orientation dependence of the spectrum, and 

this is further resolved by measuring at a high magnetic field. The acquisition parameters 

were: sweep width of 250 G, sweep time of 2 minutes with a time constant of 100 ms. 

The millimeter-wave power was 16 mW and the spectrum consists of 512 points. The field 

modulation parameters were: 6 G modulation amplitude and 100 kHz modulation frequency. 

The time between scans was 3 seconds. Reference ESR signal recorded from the in-house 

built spectrometer is displayed in Figure 5b.

VI. RESULTS AND DISCUSSION

A. SIGNAL WITH VARIABLE NOISE

Sparsity, sparsity change and mean of sparsity change are used for optimal wavelet selection. 

μsc is used as a quantitative parameter to select the optimal wavelets. The method is first 

tested on simulated signals with variable SNR of 5, 10, 30 and 50. Figure 6a and 6b displays 

the white Gaussian noise generated to achieve signal SNR of 5 and 30 respectively. The 

difference in noise level is clearly visible in Figure 6c and 6d which exhibits the simulated 

signal of SNR 5 and 30 respectively. The sparsity plot of simulated white Gaussian noise 

(generated to achieve SNR-5), noise-free signal and noisy signal of SNR-5 for bior1.1 is 

shown in Figure 6e. Bior1.1 is obtained as the optimal wavelet that maximizes the difference 

between noisy and noise-free Detail components for the simulated signal of SNR-5. It can 
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be seen from the sparsity plot in Figure 6e that the sparsity values of noise-free and noisy 

signals are converging at a higher decomposition level, which demonstrates that the noise 

in the signal is represented by the first few Detail components and the signal by the next 

few Detail components. Also the sparsity values at decomposition level 8 are similar for 

all three cases, which demonstrates that, at higher decomposition level the filters dominate 

the Detail components instead of the signal. The optimal decomposition level for wavelet 

bior1.1, when applied to the signal of SNR-5 is found to be 3, which is indicated by a 

vertical line between level 3 and 4 in Figure 6e. The sparsity values for noise and a noisy 

signal at decomposition level 3 are similar, whereas the sparsity value at level 4 for a 

noisy signal is higher and is also close to the sparsity value of a noise-free signal. This 

demonstrates the optimal decomposition level obtained for the selected wavelet maximizes 

separation between noisy and noise-free Detail components. For a signal of SNR-30 the 

optimal wavelet from our method is found to be bior2.6. The optimal decomposition level 

obtained using the bior2.6 wavelet for a signal of SNR-30 is 2. Again similar behavior is 

observed in the case of signal of SNR-30 and wavelet bior2.6 as illustrated previously. From 

Figure 6f, it can be seen that, the sparsity values after optimal decomposition level (κ = 2) 

are closer to the sparsity value of a noise-free signal and are similar ti the sparsity value 

of noise before level-2. This reiterates the fact that the optimal decomposition level for the 

selected wavelet effectively distinguishes noisy and noise-free Detail components. It should 

be noted that a similar trend in sparsity is observed for all other simulated and experimental 

signals.

The mean of sparsity change of noise-free signal shown in Figure 3 displays abrupt variation 

for different wavelets. However, the μsc of only noise have similar values. Such behavior 

demonstrates that the analysis with few wavelets perform better in separating noise and 

signal in the wavelet domain. The stem plot of the μsc of all the wavelets for simulated data 

of SNR-5, 10 and 30 shown in the Figure 6g manifests an overall increase in the μsc value 

with increase in SNR of the data. The increase in the μsc value for higher SNR data can be 

be attributed to the decrease in κ, that separates noisy and noise-free Detail coefficients. The 

mean of ΔS calculated across levels averages out the sparsity of noisy and noise-free Detail 

components between decomposition levels. This can be confirmed from Table 5, which 

demonstrates the decrease in κ of wavelets with an increase in SNR of the data, barring a 

few outliers. Wavelets with the highest μsc values are chosen as the optimal wavelets because 

it magnifies the separation between noisy and noise-free Detail components at a lower 

decomposition level. Consequently, noise-free components will represent the maximum 

signal and have the minimal effect of the filter function. Here, we have selected five wavelets 

corresponding to the highest μsc as our optimal wavelets. Table 5 displays the selected 

wavelets based on the highest μsc values and corresponding decomposition level and the μsc

values.

B. EXPERIMENTAL DATA

The method developed for wavelet selection is validated on averaged ESR signals at 

different scans recorded through commercial and in-house built spectrometers. Signals of 

varying SNR collected from the commercial spectrometer are averaged at 1 scan, 4 scans 
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and 500 scans and in-house built spectrometer averaged at 1 scan, 4 scans and 18 scans are 

shown in Figure 5a and 5b respectively. It can be seen from the Figure that the SNR of the 

signal increases when averaged at higher scans. μsc plots of all three signals recorded from 

the commercial spectrometer shown in Figure 7c exhibits an increase in μsc with the signal 

averaged at higher scans. Figure 7d displays the stem plot of μsc for signals averaged at 1 

scan, 4 scans and 18 scans collected using the in-house built spectrometer. The trends for μsc

seen in the simulated data are also visible here. Similar to simulated data, this increase in μsc

can be attributed to the increase in SNR of the averaged signal.

The optimal wavelets, corresponding κ and normalized μsc obtained from each experimental 

signal are shown in Table 6 and 7 for data collected from the commercial and in-house built 

spectrometer, respectively. Again, the higher μsc values for high SNR signal can be due to the 

averaging over too few levels.

VII. CONCLUSION

In this work, we present a sparsity based method for the optimal wavelet selection of 

noisy data. The algorithm uses the mean of sparsity change (μsc) as a quantitative parameter 

and facilitates the selection of optimal wavelets for effective denoising. The following 

conclusions are drawn from this work:

• The mean of sparsity change of noise has similar values for all wavelets, whereas 

the μsc for signal displays a larger value for one wavelet compared to others in the 

wavelet sample space.

• The mean of sparsity change increases with increase in SNR of the signal which 

can be attributed to the decrease in optimal decomposition level that separates 

noisy and noise-free Detail components.

• For low SNR signal, Biorthogonal wavelets perform better in separating noise 

and signal in the wavelet domain.

The technique presented here is advantageous over time consuming standard trial-and-error 

practice of wavelet selection. We have tested the method on simulated data and validated 

over experimental signals. The technique can be integrated to any wavelet based algorithms 

as a preprocessing tool for the selection of wavelets.
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FIGURE 1. 
Plot of the wavelet function and corresponding High-pass and Low-pass filters of (a, f) 

bior1.3, (b, g) coif2, (c, h) db2, (d, i) rbio1.3 and (e, j) sym3 wavelets.
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FIGURE 2. 
The sparsity plot of wavelets (a, c) sym2, (b, d) coif 2 for white Gaussian noise, noise-free 

signal and noisy signal of (a, b) SNR 30 and (c, d) SNR 10. The vertical line denote the 

optimal decomposition level that separates noisy and noise-free Detail coefficients.
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FIGURE 3. 
Stem plot of the mean of sparsity change of white Gaussian noise, noise-free and noisy 

simulated signals of SNR-30.
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FIGURE 4. 
Plot of the simulated noise-free and noisy signal of SNR-10. The region inside rectangle is 

used for calculation of Noiserms.
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FIGURE 5. 
ESR signals obtained from (a) a Bruker X Band (9.4 GHz) spectrometer averaged at 500 

scans and (b) in-house built (ACERT) W Band (95 GHz) spectrometer averaged at 18 scans.
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FIGURE 6. 
Generated Gaussian noise to achieve (a) SNR-5 and (b) SNR-30. Signal of (c) SNR-5 and 

(d) SNR-30 after addition of noise. The sparsity plot of noise, noise-free signal and noisy 

signal of (e) SNR-5 and bior1.1 and (f) SNR-30 and bior2.6 wavelets. Red vertical line in 

the sparsity plot indicates the separation between noisy and noise-free Detail components. 

(g) Stem plot of the μsc of the simulated data for SNR-5, 10 and 30. Top five selected 

wavelets are highlighted corresponding to their number inside circles.
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FIGURE 7. 
Signals averaged at various scans collected from (a) the commercial spectrometer, (b) 

in-house built spectrometer. Stem plot of the μsc of all scans for signals recorded from (c) the 

commercial spectrometer and (d) in-house built spectrometer. Top five selected wavelets are 

highlighted corresponding to their number inside circles.
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TABLE 1.

Description of symbols used.

Symbol Description

X Input signal.

LDj Length of Detail component at jth decomposition level.

Lf Length of wavelet filter.

Rj Ratio of length of Detail component to the length of wavelet filter.

Dj Detail component at decomposition level j.

Dj[k] Detail component at index k for decomposition level j.

Sj Sparsity at level j.

qj Length of the Detail component at decomposition level j.

N Maximum possible decomposition level.

Δ S Sparsity change between adjacent levels.

Δ Sj Sparsity change at jth level.

κ Optimal decomposition level that separates noisy and noise-free Detail coefficients.

μSC Mean of sparsity change.

std Standard deviation.

Noiserms Root mean square of noise.

Signalpeak Maximum value of the signal.

SNR Signal to noise ratio.
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TABLE 2.

Wavelet sample space used for the optimal wavelet selection.

Biorthogonal Coiflet Daubechies Reverse biorthogonal Symlet

bior1.1 coif1 db2 rbio1.3 sym2

bior1.3 coif2 db3 rbio1.5 sym3

bior1.5 coif3 db4 rbio2.2 sym4

bior2.2 coif4 db5 rbio2.4 sym5

bior2.4 coif5 db6 rbio2.6 sym6

bior2.6 db7 rbio2.8 sym7

db8

db9

db10

db11
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