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Further Experimental Details: 

 

DEER experiments were conducted at the working frequency of 17.4 GHz in the Ku band on a 

modified pulsed ESR spectrometer (Ref. 7 of main text).  A second TWT amplifier and independent 

pulse forming channels were added.  The output pulse of the second TWTA has been combined with 

the main pulse output using a directional coupler.  4-pulse DEER has been used in all cases shown 

with pulse widths of 16/32/32 ns in the detection mode and 32 ns in the pump mode, respectively.  The 

frequency separation between the two modes was set at 65 MHz with the pump pulse applied at the 

center peak of the ESR spectrum.the  

The time domain DEER signals and the extracted inter-nitroxide distances for all 13 double 

mutants studied are shown in Figures S1 to S12 and Tables S1 and S2 below.  Note that maxima are 

offset from average distance in few cases and that the flexibility of nitroxide side-chain adds to width of 

the distance distribution originating from the conformational space of the protein itself.  However the 

effect on average distances in this range is usually small to moderate and the distances between 

nitroxides have been shown to correlate with Cα-Cα distances (ref 6c in main text and ref SM1 below).  
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To evaluate the possibility of inter-molecular contributions to our distance measurements we 

performed experiments using singly spin-labeled αS (labeled at position S42).  Data from this single 

mutant (not shown) fall onto a straight line in a log plot vs. time with a slope that is consistent with a 

uniform spin distribution corresponding to the protein concentration used in this control experiment (100 

µM). This indicates that the concentration of any oligomeric protein fraction was below the detection 

limit.  In addition, the good agreement between the measured and expected distances in the 

H50C/T72C control sample argues strongly against any contribution from inter-molecular distances. 

This is as expected, because we were careful to work at protein concentrations which were significantly 

lower than the micelle concentrations (estimated based on aggregation numbers of ~60 for SDS and 

~120 for LPPG), effectively limiting the number of protein molecules per micelle to one.  Also notably, 

at the protein to detergent ratio used here, previous NMR and ultracentrifugation data confirmed that 

the protein remains monomeric. 

Our choice of LPPG as an alternative to SDS was guided by the fact that LPPG is an authentic 

phospholipids with a biologically relevant headgroup, is not considered a protein denaturant, and has 

been shown to be effective in maintaining membrane protein structure (ref SM2).  A negatively charged 

headgroup was chosen because αS exhibits a strong preference for anionic lipids, binding only weakly 

to zwitterionic headgroups (refs SM3 and SM4).  The C-terminal tail of αS is highly negatively charged 

(net charge for residues 103-140 of -14), and does not contribute to the lipid binding of the protein, 

which is mediated entirely by the positively charged N-terminal lipid-binding domain (net charge of 

residues 1-102 of +5).  The sequence of the full length protein, with charged residues highlighted, is 

shown in Figure S13 below. 
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Figures S1-S12: Time domain DEER signals, with the background removed by subtraction of the linear 

part of decay in log plots, and respective distance distributions produced by Tikhonov regularization as 

described in Ref. 8 of main text.  Data for LPPG are shown in blue and for SDS in red.   
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Figure S1. 
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Figure S2. 
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   Figure S3. 
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    Figure S4. 
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Figure S5. 
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Figure S6. 
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Figure S7. 
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Figure S8. 
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Figure S9. 
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Figure S10. 
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Figure S11. 
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Figures S13: Amino acid sequence of full length human αS.  Lysines are highlighted in cyan and 

aspartates and glutamates in red. 

 

1          11         21         31         41         51         61 
↓          ↓          ↓          ↓          ↓          ↓          ↓ 
MDVFMKGLSK AKEGVVAAAE KTKQGVAEAA GKTKEGVLYV GSKTKEGVVH GVATVAEKTK EQVTNVGGAV  
 
VTGVTAVAQK TVEGAGSIAA ATGFVKKDQL GKNEEGAPQE GILEDMPVDP DNEAYEMPSE EGYQDYEPEA 
↑          ↑          ↑          ↑          ↑          ↑          ↑ 
71         81         91         101        111        121        131 
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Figure S12. 
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Tables: 
 
Table S1: Distances between nitroxide spin-labels in α-Synuclein in LPPG. 
 

Mutant Rav, Å 2)( avRr − , Å Maximum, Å 

H50C/T72C(b). 35 6.1 37.7 
E35C/H50C(a). 23.8 5.1 24.3 
Q24C/E61C(a). 42.6 11 42.6 
E13C/T72C(a). 44 11 47.5 
V3C/E83C(a). 34.6 10.5 29.3 & 34 
Q24C/T72C(a). 46 9.7 49.6 
Q24C/E83C(a). 43.5 9.6 42 
V3C/E61C(a). 44.8 11.4 44.7 
V3C/H50C(a). 45 13 49.2 
E13C/H50C(a). 42.7 10.5 43.3 
G31C/H50C(b). 30.2 5.7 30 
E20C/S42C(b). 31.6 8 29.8 
S42C/E61C(b). 29.8 6.1 31.2 

(a) – Full-length 
(b) – 103 stop 
 
 
Table S2: Distances between nitroxide spin-labels in α-Synuclein in SDS. 
 

Mutant Rav, Å 2)( avRr − , Å Rmax, Å 

H50C/T72C(b).    36 9.4 33.3 
E35C/H50C(b). 24.7 7.3 28.5 
Q24C/E61C(b). 40.5 9 37 
E13C/T72C(b).  37 9.3 38.2 
V3C/E83C(b). 28.1 7.9 26.3 
Q24C/T72C(a). 42.7 11.4 40.5 
Q24C/E83C(a). 36.1 10.4 37.7 
V3C/E61C(a). 36 10.2 32 & 43 
V3C/H50C(a). 43 15.3 48.9 
E13C/H50C(a). 45 11.3 39 & 51.7 
G31C/H50C(b). 32.8 8.2 31.9 
E20C/S42C(b). 30 5.0 31 
S42C/E61C(b). 34.4 8.5 32.1 

(a) – Full-length 
(b) – 103 stop 
 
 
 


