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in the presence of substantial barriers to internal rota- 
tion the group relaxation would not be expected to be 
independent of the over-all relaxation process. From 
the plot of a' v s .  a"w approximate limiting relaxation 
times may be estimated. I t  is found that the longest 
relaxation time at 20' cannot be shorter than 26 X 

sec. and the shortest relaxation time cannot be 
longer than 12 X 10-lz sec. Due to the long extrapola- 
tion, the arc intercept at infinite frequency, a,, of 
phenylacetonitrile at 60' should be regarded as ap- 
proximate. Still, a, - aD is considerably larger than 
the corresponding difference for anisole and indicates 
a substantial amount of torsional vibration. 

The dielectric constant and loss data for l-naphthal- 
eneacetonitrile and L(chloromethy1)naphthalene fit 
well on Cole-Cole arcs showing only one relaxation 
time for the former and a slight distribution of relaxa- 
tion times for the latter. The relaxation times of the 
rigid a-chloronaphthalene, l8  a-bromonaphthalene, l 9  a -  
nitronaphthalene, zo and a-naphthyl isocyanatez1 mole- 
cules in benzene solution at 20° are, respectively, 15.8 
X lo-'*, 18 X lo-'*, 22.8 X lo-'*, and 31.5 X 10-lz 
sec. The relaxation times found for 1-(chloromethy1)- 
naphthalene and 1-naphthaleneacetonitrile fit in well 
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with the series given above and should, therefore, be 
interpreted as arising from over-all relaxation. The 
effect of the steric repulsion of the 8-hydrogen has 
been observed14 previously in the considerably longer 
relaxation times of the methoxy- and ethoxynaphthal- 
enes with the substituent group in the 1-position as 
compared to those with the group in the 2-position. 

The Stuart-Briegleb molecular models indicate 
strong steric repulsion between the 8-hydrogen and 
the methoxy or ethoxy group in the 1-position, but 
somewhat less hindrance to group rotation than in the 
cases of the CHzCl and CHzCN groups, the complete 
rotation of which appears t o  be impossible without 
great distortion of the bond angles. The absence of 
any detectable contribution from group relaxation 
confirms the existence of the steric blocking indicated 
by the molecular models for the l-naphthaleneaceto- 
nitrile and 1-(chloromethy1)naphthalene molecules, 
but the contributions from hindered group rotation 
found for I-methoxy- and 1 -ethoxynaphthalene show 
a degree of molecular flexibility not inherent in the 
models. The short and practically identical relaxa- 
tion times f o ~ n d * ~ ~ * ~  for the hydroxyl group in the 1- 
and 2-positions are consistent with the smallness of 
steric hindrance to rotation shown by the models for 
the 1-position and its absence for the 2-position. 
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The relaxation-matrix theory of line widths in electron spin resonance spectra has been employed to  analyze 
the line-width effects arising from the motions of methyl groups in 7-electron free radicals. Broadening of the 
lines can result because the methyl-proton hyperfinc splittings are a function of the angle of orientation of the 
methyl group, and thus the splittings fluctuate a s  this angle varies. The motion of the methyl groups is treated 
by a Brownian motion model assuming a free rotatory diffusion about the C-C bond between the methyl group 
and the aromatic system to which it is bonded, and also by a jump model in which the group can undergo transi- 
tions from one to another of three different equilibrium orientations. Radicals with several methyl groups are 
analyzed as having either completely correlated or completely uncurrelated motions. The correlated motions 
are approximated by assuming a gear-like interleaving without slip of the hydrogen atoms on methyl groups 
substituted a t  adjacent positions on an aromatic ring. When the motions of the methyl group cause large 
contributions to  the line width, the central pair of lines from the splittings by one methyl group are predicted 
to be broad and the end lines narrow. When there are two or four methyl groups in the radical, large line- 
width contributions lead to a spectrum in which every third line is narrow while the remaining lines are broad, 
an effect which is analogous to  the alternating line-width phenomenon. For very rapid rotations, nonsecular 
as well as secular line-width contributions are important, and consequently the nondiagonal relaxation matrix 
for the case of one methyl group has been analyzed in detail. Xone of these effects of methyl-group rotations 
has been observed in the e.s.r. spectra of aromatic radicals, and from the negative results it is possible to esti- 
mate that the relaxation time rC for the rotation of the methyl groups is less than 1 0 F  sec. The predicted 
effects are most likely to be found by low-temperature studies 011 radicals which have large methyl-proton 
hyperfine splittings and highly hindered methyl groups. 

I. Introduction that are attributable to modulations of the isotroDic 
hyperfine interactions Some of the effects observed 
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In  a number of recent studies3-" on the electron spin 
resonance spectra of aromatic free radicals in solution, 
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have arisen from the motion of hydroxyl-group pro- 
t ~ n s ~ f ' ~ ;  others from perturbations of the spin-density 
distribution in nitro groups (either because of rotational 
motions or because of fluctuating interactions with the 

and in one case7 the jumping of an 
alkali metal cation between two different positions in 
an anion radical was detected. The  most striking 
width variation discovered is a line-width alternation 
in which every other line in the spectrum is anomalously 
broadened. Some of the radicals investigated, such 
as the dihydroxydurene (1,4-dihydroxy-2,3,5,6-tetra- 
methylbenzene) cation,3 the dinitrodurene ( I  ,4-di- 
nitro-2,3,5,6-tetramethylbenzene) and the 2.6- 
dinitrotoluene anion,* have hindered methyl groups, 
but no line-width effects due specifically to the methyl- 
group motions have been observed.8 In the present 
investigation, we examine the implications of these 
negative results and inquire into the nature of the 
line-width variations that might he expected from the 
motions of methyl groups in aromatic free radicals. 

The  hyperfine splitting from the protons of a methyl 
group tha t  is substituted in an aromatic free radical 
is expected to be a function of the orientation of the 
group with respect to the r-electron : 
minimum splitting is predicted for a proton which 
lies in the plane of the n-electron system, and maxiniuni 
splitting for a proton rotated by 90" out of the plane. 
The fluctuations in the splittings from a rapidly ro- 
tating methyl group cannot be detected by measuring 
the positions of the hyperfine lines in the spectrum, 
however, because the positions are determined by the 
time-average value of the splittings. Rut the fluctua- 
tions do alter the spectrum since, through a second- 
order perturbation, they contribute to the line widths. 
We shall examine the effects of the methyl-group 
motions by means of the recently developed theory of 
e.s.r. line widths.I0 This theory is formulated in 
terms of a relaxation matrix which determines the time 
dependence of the density matrix of the spin system. 

For free radicals in solution, two types of motion 
have to be specified iri  order to determine the relaxation 
matrix: the over-all tumbling of the radical as a whole 
and the rotation of the methyl groups relative to the 
rest of the molecule. hIolecular tumbling motions 
were first treated as a Brownian motion rotatory dif- 
fusion by Debye in his classic work on dielectric ab- 
sorption and relaxation in polar liquids. These 
developments were reviewed and summarized in his 
book "Polar Molecules,"17 first published in 1929. 
The Debye theory was carried over by Bloembergen, 
Purcell, and PoundI8 in formulating a theory of relaxa- 
tion i r i  the n.1n.r. spectra of liquids, and his ideas have 
been used since with little change.'"-22 The motions 
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of methyl groups have been examined in a number of 
studies, and in particular there is an extensive series 
of investigations on solids using t1.m.r. methods by 
Gutowsky and co-workers.23 Both classical reorieiita- 
tions of the methyl group arid quantuiii-inechanical 
tunneling were considered by these authors. A quari- 
tum-mechanical treatment is required for analyzing 
internal rotations in gaseous molecules and is probably 
also satisfactory for the motions of methyl groups in 
solids,23 hut a classical stochastic diffusion model is 
likely to be reasonably suitable for liquids because of 
the strong influence of the solvent interactions and the 
low potential barriers for methyl-group r ~ t a t i o n s . ? ~  
We therefore treat both the over-all tumbling motion 
of the radical and the methyl-group rotations as a 
Brownian motion rotatory diffusion. The quanti- 
tative details of such a model are not expected to be 
correct, but the form of the results should be indicative 
of the main factors of importance. We also use a jump 
model in which the orientation of the methyl group is 
limited to three conformations in dynamic equilibrium 
with each other. This model has the virtue of being 
quite simple and in a sense it possesses soiiie of the 
features of a quantum-mechanical tunneling process. 
A number of the radicals of interest contain several 
methyl groups, and we treat these on the assumption 
that the motions of the different groups are either un- 
correlated or locked together in a conipletely correlated 
manner. 

11. Calculation of the Spectral Densities 
The spin Hamiltonian of a free radical with fluctuat- 

ing isotropic hyperfine interactions contains the term"' 

( 2 . 1 )  
1 

where a f ( t )  is the instantaneous value of the isotropic 
hyperfine splitting (in gauss) and I t  is the nuclear 
spin angular momentum operator for the i th  iiucleus. 
The spin-angular momentum operator for the electron 
is S, and its rnagiietogyric ratio is ye. The splittings 
of the lines in the e.s.r. spectrum (for rnolecules tumbling 
rapidly in solution) are determined by the tinwaverage 
values of the hyperfine interactions. i r i  = (a(([)), 
while line broadening comes about because of the 
time dependence of the u t ( [ ) .  The contribution to 
the line broadening and relaxation which arises froiii 
modulation of the isotropic hyperfine iriteractioii is 
quantitatively determined by the second-order effects 
of the perturbing Ha~ni l ton ian '~  

and the time-dependent quantities needed to calculate 
the line widths are the correlation functions ~ ~ ~ " ' ( 7 )  

for two nuclei i and-j. 

The line widths are related to the eigenvalues of the 
relaxation xnatrix.In arid the elements of this matrix 
are linear cornbinations of the sllectral densities j t , ( " (u)  
These spectral densities are the Fourier transiornis oi 
the correlation functions 
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where w/2a is the frequency of the transition induced 
by the perturbation. In  the high-field approximation 
which is applicable to most experiments on free radicals, 
i t  is permissable to approximatelo the frequencies w 
by either w = 0 or w = wO, where wO/2a is the Larmor 
frequency of the e.s.r. experiment. Since the other 
interactions which can cause line broadening are 
neglected in the present calculations, we will normally 
suppress the superscript (I) referring to modulation of 
the “isotropic” interaction in equations for the cor- 
relation functions and spectral densities. 

Both the time dependence of the angle of orientation 
of the methyl groups and the relation between the 
methyl-proton hyperfine splitting and this angle affect 
the values of the correlation functions. We next turn 
to a consideration of the dependence of the hyperfine 
splittings on the angle of orientation and then proceed 
to a detailed specification of the motion using the models 
described in the Introduction. It will be assumed 
tha t  the motions of the methyl groups are independent 
of the over-all tumbling of the molecule. 

Angular Dependence of the Hyperfine Split- 
tings.-The instantaneous isotropic hyperfine splitting 
from the i th  proton in a rotating methyl group that is 
bonded to a planar a-electron system can be represented 
by a Fourier series in the angle of orientation O 1 .  We 
define Bi  as the dihedral angle between the plane of the 
aromatic. system and the plane determined by the zth 
proton, the methyl carbon atom, and the contiguous 
carbon atom of the aromatic system (the C-C-Hf 
plane). If, except for the methyl group, the molecule 
is planar, the splitting ut(&) is an even function of 
O i ;  and if the threefold symmetry axis of the methyl 
group is also a twofold axis of the rest of the molecule, 
there can only be even harmonics in the Fourier series. 
The splitting can then be written as a Fourier cosine 
series in 2nOi 

A. 

ai.@,) = A i  + B ~ ; ~  COS 2net (2.5) 
1 = 1  

Even if the aromatic system is not strictly planar, or if 
the methyl-group Ca axis is not a C p  axis for the rest 
of the molecule, the methyl-proton splitting is still 
probably determined to a good first approximation by 
the a-electron spin density on the contiguous atom of 
the aromatic system; and thus, departures from eq. 
2.5 are likely to be small. Valence-bond c a l c ~ l a t i o n s ~ ~  
indicate that the variation of the hyperfine splitting 
with angle is rather well represented by a cos 20t  de- 
pendence, and for this reason, and also to keep the 
ensuing formulas as simple as possible, terms with n > 1 
will be omitted. The orientations of the three protons 
in a single methyl group are necessarily interrelated 
if bending motions are excluded, and therefore we can 
write 

B t  = B + C Y ,  (2 .6a)  

with 

 CY^ = O,CY? = 2a/3 , (~3  = -2a/3 (2.6b) 

for the orientation of the individual protons. If the 
motion is one in which the average of cos 28 is zero. 
(a,(Oi)) = - I i :  and since the A i  and Btil are inde- 

(24) M. Rarplus, private communication 

pendent of i, the expression for the splitting becomes 
(approximately) 

(2.7) ui(ef) = a - b COS 20, 

where a is the (average) methyl-group proton hyper- 
fine splitting. Since the minimum splitting, cor- 
responding to the p!anar conformation, is undoubtedly 
quite small, the magnitude of 0 is probably close to 
that of 6, b E a. 

When two methyl groups are substituted a t  adjacent 
positions on an aromatic ring, there is crowding and 
partial interleaving of the hydrogen atoms. Thus, 
studies of hexaniethylbenzene2j are consistent with the 
picture that a t  low temperatures (cu. llO°K.) the 
methyl-group carbon atoms lie in the plane of the 
benzene ring and the hydrogen atoms are interleaved 
with each other in a gear-like manner. As the tempera- 
ture is increased, the methyl groups tend to rotate 
without any slipping of gears, but at higher tempera- 
tures slipping takes place.26 We first consider the 
limit of completely interlocked methyl groups. 

When there is no slipping, the turning of one methyl 
group in a clockwise direction causes the  adjacent group 
to turn in a counterclockwise direction. Let the 
protons of the first methyl group be numbered 1,2, 
and 3 in the clockwise direction, and those in  the second 
group 4, 5 ,  and 6 i n  the counterclockwise direction. 
Then if the two methyl groups are rigidly locked to- 
gether, the orientations of the protons are interrelated 
by 8i  + = -8,) and since,by eq. 2.7 ai(B,) is an even 
function of O i ,  ai + , (e)  = a,(O), where 8 = 8,. The 
perturbing Hamiltonian, eq. 2.2,  is therefore invariant 
to an interchange of protons (i + 3) and z ,  so tha t  
protons ( z  + 3)  and i are completely equivalent (see 
section I11 below and I , l0 section IV.B. l ) .  I t  follows’0 
that for i , j  = 1, 2, or 3 

j t , ( w )  = ji + 3,j(w) = j ,  -C 3 . j  + 3 ( ~ )  

The six protons may conveniently be collected into 
three completely equivalent subgroups : protons 1 and 
4 are placed in subgroup 1, protons 2 and 5 in subgroup 
2,  and protons 3 and G in subgroup 3. Then i f  u,tl 
( =  I, 2, 3) refer to the subgroups and i,j ( =  1, 2. 3 )  to 
the protons in a single inethyl group, the spectral 
densities for the subgroups ( j ) , , )  are equal to the cor- 
responding spectral densities for the protons of a single 
methyl group ( . j i j ) ,  i.e., j,, = j,j. The spectral densi- 
ties j , ,  based on completely equivalent subgroups are 
useful in setting up the relaxation matrix in  terms of 
the coupled representation (see below, section 111, 
and I ,  section IV.B.2). Correlated motions may also 
take place in a radical like the dinitrodurene anion 
because the nitro groups can cause the methyl groups 
on one side of the ring to rotate in synchronism with 
those on the other side. If all the methyl groups are 
rigidly locked together, there are again three sets of 
completely equivalent subgroups ; but now each sub- 
group contains four completely equivalent protons 
instead of two. 

In a radical containing two sterically independent 
methyl groups as, for example, in the p-xylene or 3,5- 
dimethylnitrobenzene anions, the motions of the two 
groups are probably completely uncorrelatvtl. The 

( 2 . 8 )  

(2.5) 0 Schnepp, J Chem. P k y s  , 1 9 ,  56 (19581 
(26) C. A .  Coulson and  D.  Stocker, .Mol. I’iiyi , 2,  :397 (195Y) 
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spectral densities j c j ( w )  referring to nuclei i and j in 
different methyl groups are then zero. 

These two models for radicals with more than one 
methyl group represent the extreme possibilities of 
completely coupled and uncoupled motions Our 
calculation for the rigidly locked-together motions is 
inadequate to  the extent tha t  quantum-mechanical 
tunneling acts as a decouplirig mechanism even when 
there is no slipping of gears. Ordinarily, however. the 
uncorrelated-motion model is probably inore suitable 
because slipping seems to occur, as indicated by hexa- 
m e t h y l b e n ~ e n e , ~ ~ ? ~ ~  except at very low teniperatures. 

B. Brownian Motion Model.--The Brownian mo- 
tion for free rotational diffusion is described by the 
Langevin equation 

d 2e 
~ + pe = .3 ( t )  dt2 

where A ( t )  is a random acceleration, and p1 is the ro- 
tational friction constant, with 1 being the moment of 
inertia of the rotor. DebyeI7 suggested that often 
rotating solute molecules could be approximated 
as spheres and that  Stoke's relation PI = 87r9a3 could 
be used as an estimate of the friction constant. Here 
u is the radius of the sphere and the (effective) 
viscosity of the fluid. The probability of finding the 
rotor at ally orientation On (0 5 Po 5 2 ~ )  is independent 
of eo and is just 

W(8o)dBo = (1: '2~)d& (2.10) 

while the conditional probability that  the orientation 
is 0 a t  the time T if it was Bo at the time T = 0 is" 

P(e,le,T)de = ( ~ D T ) - " *  exp[-(O - B o ) ?  4D~ldO 
( 2 1 1 )  

Here D is the rotatory diffusion constant and is given 
in terms of the friction constant by the Einstein rela- 
tion 

D = k l '  (61) (2 .1%)  

where k is the Boltzniann constant and 7 '  the absolute 
temperature. Equation 2.1 I only holds for long times, 
i . e . ,  T >> $ - I .  Since the rotatinx group can make 
many complete revolutions during the time T ,  the angle 
0 in eq. 2.1 I can be anywhere in the range -a i - (0 - 

The applicability o f  these Brownian motion equations 
to the rotation of a inethyl group is of course open to 
question. Certainly the formulation of the friction 
constant i n  terms of the radius, moment of inertia. and 
viscosity is not quantitatively correct, and the Langevin 
equation itself may be invalid fnr this problem Sever-  
theless, eq. 2.1 1 is a reasonable and simple type of 
distribution function to represent the motion and in 
effect we are assuining that the classical niotioii of 
macroscopic bodies is an adequate first approximation 
to the motion of the methyl groti1). As indicated in 
thc Intraduction. quaiituin mechanical models which 
neglect intermolecular iiiteractions arc not good de- 
scriptions of the inethyl group motion in liquids. 
.A free rotatory diffusioii has  been usetl ra thcr  than one 

60) I w 
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A n d  1, 5 Orn.it?in, I ' i i y ?  R,,z' 36, X2. i  : l ! l ' i l , ) ,  \I C !\'aril: .<n,I C, b; 
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corresponding to a hindered internal rotation because 
to our knowledge the difficult detailed solutions of the 
appropriate Brownian motion equations for this 
problem have not been carried out.2a Since the barrier 
to internal rotat im of methyl groups is small, however, 
the free rotatory diffusion should represent a reasonable 
first approximation except a t  very low temperatures. 

The correlation functions (eq. 2.:3) for a single methyl 
group undergoing free rotational diffusion are readily 
computed from eq. 2.10 and 2.11 for the distribution 
functions. If the hyperfine splittings vary with angle 
according to eq.  2.7, we have 

g $ j ( T )  = y , ~ ( c o s  2er ( t )  cos 20,(t + 7 ) )  

= ye2b2 soz" d e t o w ( e l o )  COS Beto  x 
J:m dOjP(Bro,Ojr) cos 28, 

= ( y e 2 b 2 ; 2 n )  so"" dOo cos [2(& + ai)] X 

cos [2(& + a J ]  J-: dOP(Bo~07) cos[2(O - B o ) ]  

= ( I ,  2)ye2b2 cos  CY, - a,) J exp( - ~ D T )  
(2.13) 

where the a,  are defined by eq. 2.Cib. The spectral 
densities, eq. 2.4, are therefore 

jil(C0) = j $ i ( U )  = (':2)ye2b2To(l + w27o')-' (2.l4a) 

j n ( ~ )  = j r j ( ~ )  2 - ( " ? ) j i i ( ~ ) ,  i # j (2.14b) 

where 

7o-l = 4D (2.142) 

Here D is the rotatory "diffusion constant" of the 
methyl group. 

C. Three-jump Model.--lVe assume the methyl 
group can have only three orientations (.\, R ,  C) which 
differ from each other by rotations through 120". 
These three orientations are in dynamic equilibrium 
according to the equations 

kl  k l  ki 

k ,  ki kl 
. - I s  B C I- A (2.15) 

where k ,  is a "rate constant," anti we assume that  the 
time between jumps from one orientation to another 
is long compared to the duration of a jump. This is 
perhaps a inore reasonable picture than Brownian 
motion diffusion in case there is an appreciable energy 
barrier to reorientation The "rate constant" k l  
can include the effects of quantum-mechanical tunnel- 
ing as well as passage over a classical activation barrier. 

By setting up the rate equations for the populations 
i i i  the three states, it is readily shown that the condi- 
tional probabilities are 

r>(.i . I T )  = ( I  R ) [ l  + 2 exp(-3kli)]  

P ( . i  R T )  = P(.i C T )  = ( '  a ) [ l  - exp(-3kl.r)] 

(2,lGa) 

( 2  10b) 

with similar relations if, the rotor is in orientation R or 
C a t  T = 0 instead of state ?i. The u prior2 probahili- 
ties arc, of course. TV(-\) = It'(B) = [ { ' (C)  = ( ' / , d .  
i2utowsky, i ~ t  ~ l , , ~ :  have obtained similar equations. 
Coxnputatioti oi the correlation functions and sjxctral 

281 R u t  i e c  \I i:r,ldbtein, J ( ' i ipna P h > <  , 3 9 ,  243 1 Q t i . l i .  w h e i e  s o m e  
p l r l im lna ry  r e b u l t s  a r e  d i s c n s s e d  
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densities gives results identical with eq. 2.14 when eq. 
2.7 is assumed except that  now 

T 0 - l  = 3kl (2.17) 

More generally, if eq. 2.7 is not used, 1 / 2 b 2  in eq. 2.14 
is replaced by 

[(‘/3)(ui2 + uz2 4- ~ 3 ~ )  - 6’1 (2.18) 

where al, a2, and u3 are the hyperfine splittings from the 
different protons in one of the three allowed orienta- 
tions and 6 is the average of these splittings. 

111. Secular Contributions to the Line Widths 
In  this section we shall determine the line widths 

when the only spectral densities of importance are those 
for which w = 0. These are called the secular contri- 
butions and correspond to terms which do not result 
from energy interchange between the spin system and 
its surroundings. The modulation of the isotropic 
interaction gives a secular part which arises from the 
Iiz.Sz term and a nonsecular part from the If*.SF 
terms. For a Debye-type dispersion as in eq. 2.14, 
the nonsecular terms can be neglected when the cor- 
relation time T O  is long enough so tha t  ( ~ 0 ~ 0 ) ~  >> 1 
( w o / 2 n  is the Larmor frequency of the e.s.r. experiment). 
Secular terms contribute only diagonal elements to the 
relaxation matrix, and therefore the determination of 
the line widths is particularly simple if they are the 
only terms which make a major contribution to the 
line broadening. Tt is important to note, however, 
tha t  other significant interactions (particularly the 
anisotropic intramolecular dipolar interaction between 
the unpaired electron and the nuclear magnetic mo- 
ments) may cause appreciable line-broadening effects 
that  are not entirely secular,1°~2g and in such circuni- 
stances the results of the present section may require 
generalization. Nonsecular isotropic contributions 
will be discussed in section IV.  

The transverse relaxation time T2, ,  and the width 
(in gauss) [ I Y ~ ; T ~ , , ] - ~  of the pth transition in the e.s.r. 
spectrum are determined from the eigenvalues A, of 
the relaxation matrix byl0 [-X,]-l = T2,,. Each 
transition is of Lorentzian shape, but since the different 
transitions in a degenerate line may have different 
widths, the over-all shape of such a line may not be Lor- 
entzian. 10,31 The secular (sec.) contribution of modula- 
tions of the isotropic hyperfine splittings to the width 
of the pth component of the kth line in the spectrum is 
given by eq. 4.46 of I 

[T,,, (k ) ( I ;  set.)]-' = jlj(r’(0)mtmj (3.1) 
i d  

where ml is the z component of the spin angular momen- 
turn of the i th  nucleus. For a single methyl group with 
spectral densities given by eq. 2.14 

[T2(‘v)(1; set.)]-' = (1/8)jll(0) [9 - 4M2]  (3.2) 

where .If is the sum of the z coniponents of the proton 
nuclear spin angular momenta [ M  = + ( 3 / 2 ) ,  * (l/2)]. 

(29) n. Kivelson, J .  C h o n .  P h y s ,  97, 1087 (1957);  39, 1094 (1960). 
(30) T h e  pseudo-secular par t  of t he  anisotropic intramolecular dipolar 

interaction is comparahle in magnitude t o  the  secular pa r t  and gives rise t o  
off-diagonal elements in the  relaxation matrix When these contributions 
a re  sufficiently large, the entire relaxation matrix must  be considered inde- 
pendent  of whether or no t  the nonsecular par ts  from modulation of t he  iso- 
tropic splittings are  important .  

(31)  J Gendell, J .  H. Freed,  and G. K .  Fraenkel, 3. Chpm. Phyr. ,  in press 

The width contributions from eq. 3.2 are listed in 
Table I. 

TABLE I 
SECULAR LINE WIDTH CONTRIBUTIONS, CORRELATED METHYL 

GROUPS 
No. of 
methyl  
groups 

1 

2 

4 

3/2 

l/2 

3 
2 
1 

0 

6 
5 
4 

3 

2 

1 

0 

[T*,,(M) 
Degeneracy, ( I ;  set.)]-*/ 

D, jn‘’’(0) 

1 0 
3 1 

1 0 
6 1 

12 1 
3 4 
8 0 

12 3 

1 0 
12 1 
48 1 
18 4 
64 0 

144 3 
12 9 

288 1 
108 4 
96 7 
3 16 

432 1 
192 4 
144 7 
24 13 

216 0 
576 3 
96 9 
36 12 

a M, is the sum of the z components of the nuclear spin angular 
momenta of the zth completely equivalent subgroup, and M = 
ZM, The widths for positive and negative M are the same. 

Brackets indicate that permutations of (MI, ?n,, .W3] are included 
as well as the particular order of values listed 

When the radical contains several methyl groups all 
with the same average proton hyperfine splitting, and 
thus forming a set of equivalent protons,’O i t  is con- 
venient to collect the protons into completely equiva- 
lent subgroups. Two equivalent protons are com- 
pletely equivalent if the perturbing Hamiltonian, eq. 
2.2, is invariant to an interchange of their positions. 
If protons i and j are in the same completely equivalent 
subgroup u,  the spectral densities satisfy the relations 
(see I ,  section JV.B. l )  jll = j,, = j ,] = j,,, and for 
nuclei within the same equivalent group but different 
completely equivalent subgroups, j , ,  = j o o ,  If u 
and u are different completely equivalent subgroups, 
j,, # j u u .  We write 

:Vu = C m, (3.3)  
i i n  u 

for the sum of the z components of the nuclear spin 
angular momenta m, in the uth completely equivalent 
subgroup, with a similar expression for M,, the nuclei 
in the vth completely equivalent subgroup Equa- 
tion 3 l can then be rewritten as 

[ T , , , ‘ ~ ’ ( I ,  sec ) 1-1 = jll(I)(~))~~~2 + 
buD(”(~)) - j11(’)(0) ] M J J ~  ( 3  4) 

U Z Z  
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where 

M = E M ,  = E m ,  
U i 

is the surn of the z components of the nuclear spin 
angular momenta of all the methyl-group protons. 
For interleaved, correlated, rotating methyl groups 
there are three different completely equivalent sub- 
groups (u = 1, 2, 3), jll(0) is given by  eq. 2.14a, and 
j U n ( O )  = -(1/2)j~l(0) for u # v ,  as in eq. 2.14b. If the 
radical contains two interleaved correlated methyl 
groups, there are two protons in each completely 
equivalent subgroup, and if i t  contains four, there are 
four protons in each subgroup, so tha t  the  possible 
values of M ,  are M ,  = j=l, 0 and M ,  = *2, *l, 0, 
respectively, and the statistical weights are 1 : 2 : 1 
arid 1 : 4 : 6 : 4 :  1. The  line widths of the components 
are given in Table I for these two cases. 

If there are several methyl groups undergoing un- 
correlated motions, eq. 3.1 reduces to 

where jll(0) is given by  eq. 2.14a and M t  is the surn of 
the z components of the angular momenta of the pro- 
tons in the i t h  methyl group (;Mi = + ( 3 / z ) ,  * ( l / ~ )  

with statistical weights 1 : 3 : 3 : 1). The widths from 
this equation are given in Table I1 for two and four 
uncorrelated methyl groups. 

TABLE I1 
SECULAR LINE WIDTH COKTRIBUTIONS, UNCORRELATED 

METHYL GROUPS 
No. of 
methyl 
groups Ma 

2 3  
2 
1 

0 

4 6  
5 
4 

3 

2 

1 

0 

Degen [ T * . @ ( M )  
eracy ,  ( I ;  sec.11 - I /  

D, j I z ( l ) ( o )  

1 0 
6 1 
6 1 
9 2 
2 0 

18 2 

1 0 
12 1 
12 1 
54 2 
4 0 

108 2 
108 3 
36 1 
54 2 

324 3 
81 4 
36 1 

108 2 
324 3 
324 4 

6 0 
216 2 
216 3 
486 4 

a M ,  is the sum of the z components of the nuclear spin angular 
momenta of the i th  methyl group, and M = ZM,. The widths 
for positive and negative ,$f are the same. I ,  Brackets indicate 
pertnutations of [:VII, M 2 ]  or [ M 1 ,  M2, M3, M 4 ]  are included as 
well as the particular order of values listed. 

The  results in Table I show that for a single methyl 
group the motional modulation of the isotropic splitting 
makes no contribution to the secular part of the line 

width for the M = j=(3/2) lines, and adds jll(0) to 
the width of the -M = lines. If this modula- 
tion contributes significantly to the total line width, 
the central pair of lines will thus be broader than the 
outer pair. 

When there are either two or four methyl groups, 
either with correlated or uncorrelated motions, the 
line-width pattern is rather complex, but in the limit 
of very large jll(0) every third line is narrow and all 
other lines broad. For the correlated motions of two 
methyl groups, the narrow lines correspond to .\I' = 

3, 0, -3 with' statistical weights 1 : 8 :  1, while for the 
uncorrelated motion the statistical weights are 1 : 2 : 1. 
For four methyl groups, the narrow lines have quantum 
numbers M = 6, 3,  0, - 3, - 6 with statistical weights 
1 :64:216:64:1  or 1 :4 :6 :4 :1 ,  respectively, for cor- 
related or uncorrelated motions. When jlL(0) is not 
very large compared to the other line-broadening mech- 
anisms, numerical calculations of the over-all absorp- 
tion curve resulting from the superposition of individual 
Lorentzian-shaped components of different widths 
are required to obtain the predicted widths. One 
example of such a calculation is given in Table I11 for 

TABLE I11 
LINE WIDTHS AND SHAPES, FOUR CORRELATED METHYL 

GROUPS" 
Reduced 

Degen- Width ,c  Amplitude,d ampl i tude ,  Shape  factor ,  
M b  eracy ,  D M  6.v A M A M I D  ,\r S.hi 

6 1 1 . 1 5  0 413 0.413 0 743 
5 12 2 . 3 1  1 24 103 743 
4 66 2 . 3 6  5 16 078 660 
3 220 1 . 2 0  28 1 128 429 
2 495 2 37 3 1 . 2  063 595 
1 792 2 .38  47 .2  060 581 
0 924 1 . 2 1  96 1 104 390 

a Calculated for four equivalent correlated methyl groups 
from results in Table I taking 1ye,-Ij l l(I)(O) = Iye,-'X = 1.0 
gauss. Here X is the contribution to [T2,p(~w)] from line- 
broadening mechanisms other than modulations of the isotropic 
hyperfine splitting, and is taken to be a constant for all com- 
ponent transitions. b M is the sum of the z components of the 
nuclear spin angular momenta of all 12 protons. 1Vidth 
between extrema of the first derivative of the spectrum. Peak- 
to-peak amplitude of the first derivative of the spectrum. The 
area of the absorption for unit statistical weight and half half- 
width of 1 .0  gauss is normalized to unity. 

the case of four equivalent correlated methyl groups. 
The numerical values used are 1+yei-ijll(') = ! + y e ;  ' -'X = 

1.0 gauss where X is the contribution to [2'2,,,('M)]-1 

from other line-broadening effects and is assumed to be 
a constant for all components. The computation was 
performed on an IBM 7090 computer using a program 
developed by Dr. S. GoodmaIi. Each component was 
taken to  be of Lorentzian shape and with the line 
width given by  the values in Table I ( e . g . ,  for *If = 3,  
two lines were superimposed with widths of 2.0 and 
5.0 gauss and with statistical weights of 38 and 18, 
respectively), The amplitudes and widths were ob- 
tained by interpolation from the computed numerical 
tabulations of the first derivative of the over-all super- 
imposed spectrum as a function of magnetic field. 
The  results show the characteristic narrowness of 
every third line, and the last column indicates the 
departures from Lorentzian shape. The shape factor 
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tabulated in this column is a constant for lines of the 
same shape and has the value 0.743 for an appropriately 
normalized Lorentzian. 21 

The narrowness of every third line predicted for the 
spectra from two and four methyl groups, as well as 
the broadening of the two central lines for a single 
methyl group, is analogous to the alternating line- 
width phenomena. 3-g The line-width variations pre- 
dicted here for methyl groups, however, have not been 
observed.8 The experimental situations most likely 
to show these effects are discussed briefly in section V, 
but their absence implies that  the nonsecular contribu- 
tions may also be important. These are considered 
in the next section. 

IV. Nonsecular Contributions to the Line Width 
The importance of the nonsecular contributions 

2 3 4 
bb’ cc’ ab’ 

0 0 C 
bb’ 0 A + B  0 C 

0 A + B  0 
C C 0 B 

ba’ , *C# C 0 0 

__ 
~1 I au’ 

I 

aa’ I A + B  
cc’ ~ 0 

bc’ 1 0 c C 0 
ca‘ I C 0 C 0 
cb‘ 1 0 c C c 

2 ~ c 0 C C 

arising from modulations of the methyl-proton splittings 
by rotational motions depends on the correlation time 
T~ for the motion. We can use the fact tha t  no effects 
attributable to methyl-group rotations have been ob- 
served8 in order to set a n  upper limit for T~ employing, 
for comparison, the magnitude of the secular contri- 
butions alone. Assuming b E d in eq. 2 . 7 ,  and using 
eq. 2.14and3.1, we find 

C 8.8 X 1O6a27o gauss (4.1) 

where d is in gauss and 7O in seconds. The experimental 
data,  although fragmentary,8 indicate that the con- 
tributions from eq. 4.1 are probably less than 0.1 
gauss, and since typical splittings are a few gauss in 
magnitude, T~ is probably of the order of lo-* or less, 
Thus. U O T O  might be comparable to or less than unity, 
and the nonsecular contributions are not necessarily 
negligible. In this section we therefore examine the 
nonsecular line-width effects for a single methyl group. 

Straightforward calculation shows tha t  the motional 
modulation of the isotropic splitting contributes 

to the tionsecular (nonsec ) part of the width of the M = 
=t (3/z) lines The relaxation matrix for the -If = =k (I/*) 
lines is not diagonal, however, and requires detailed in- 
vestigation Let us designate the wave functions for 
the spin states of the .IT = line by 

in the notation 1-y) = lms; m,, mz, ms) where m, is 
the z component of the electron spin angular momen- 
tum and m< is the z component of spin angular inomen- 
tuin of the i th  proton. A complete treatment would 
include the anisotropic intramolecular dipolar and 
g-tensor interactions, but for simplicity we shall only 
calculate the matrix for the isotropic hyperfine inter- 
action. These other terms are readily included. From 
eq. 4.46, 4.48, and 4.53 of I ,  the appropriate part  of 
the relaxation matrix is found to be that shown in eq. 4.4 

5 6 7 8 9 
ac’ ba’ bc’ cu’ cb’ 

C C 0 C 0 
0 C C 0 C 
C 0 C c C 
C 0 0 0 C 
B 0 C 0 0 (4.4) 
0 B C C 0 
C C B 0 0 
0 C 0 B C 
0 0 0 C B 

where, for the special case of isotropic splitting only 
using eq. 2.14 

A = - (3 /d j~~(1 ) (0 )  (4.5a) 

The relaxation matrix relates the matrix elements of 
the x component of the electron spin angular momentum 
in the interaction representation, (plS,’(t) Ib’), to the 
time derivatives, (d/dt)((a/S,*(t)/cu’)) [eq. 2.15 of I ]  

Denoting the (aiSzf(t)1a’) matrix element by Sl(t), 
the (b ,S ,* ( t ) [b ’ )  element by Sz(t), etc., according to 
the numbering of the columns in eq. 4 4,  and using the 
rules obtained in  I ,  section VII,  it  is readily shown that 
Sl( t )  = &(t )  = & ( t )  and that & ( t )  = & ( t )  = & ( t )  = 
&(t )  = SR(t) = S9(t) .  Using the procedures in I ,  
section V I I ,  the 9 X 9 matrix in eq 3 1 can thus be 
reduced to a 2 X 2 matrix, and the two related dif- 
ferential equations are 

dSiu) __-  - (.1 + B)S, ( t )  + 4C‘.S,(t) 

dS4(t) = 2CSl(t) + (U + %C).Y,(t)  

dt 
(4 7 )  

dt 
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The solution for Sl( t ) ,  the only matrix element which 
determines the spectrum, is 

Sl(t) = Sl(o)(1/2D)[(D + A - 2C)exp(X+t) + 
( D  - A + 2C)exp(X-t)] (4.8) 

where 

= ( ' / z ) (A  + 2B + 2C f -0) = 

The spectrum, eq. 2.13 and 3.5 of I ,  is thus 

I ( w )  = 

1 z,+ (3/'%7rD) ( D  + '4 - 2C) ___-___ -+  1 1 + [T2,+'1 /1)]2(w - u1,,)2 

and consists of two superimposed Lorentzian-shaped 
lines with transverse relaxation times T2, and 
statistical weights 3(D f .4 =F 2C)/2D. The line 
for M = has the same shape function and 
width as the line for M = ( I / & ,  but  its center is of 
course a t  a different frequency, and if interactions 
other than modulation of the isotropic interaction 
were included this symmetry would not necessarily 
hold. In  the limit tha t  the nonsecular contributions 
can be neglected, C = 0, B = (l/3).4, and a single 
Lorentzian-shaped line is obtained of width jl1('j(0), 
as in Table I .  In the extreme narrowing limit, w o ~ o  
<< 1,  we havejl,")(wo) = jlI(')(O), the widths become 
[T2,*('12)]-1 = (5/4) [l  f (1/6)v%]jll(1)(0), and the 
statistical weights are (3/2)  [l * ( 2 / 3 ) ' / ' ] .  

In general, numerical calculations of the spectrum 
(eq. 4.11) as a superposition of Lorentzian-shaped 
lines must be performed as in section I11 in order to 
obtain the widths and amplitudes. Under conditions 
that the modulation of the isotropic interaction for 
a single methyl group would be large enough to be 
detectable, and in the absence of complications from 
other line-broadening mechanisms, the non-Lorentzian 
shape resulting from the nonsecular contributions could 
be distinguished from the Lorentzian shape predicted 

for the secular contribution by studies of the line-shape 
factor S,q, eq. 3.6.31 

V. Conclusions 
Our calculations show tha t  modulation of the methyl- 

proton hyperfine splittings by rotational motion of the 
methyl groups can cause several interesting line-width 
effects. For a single methyl group, the central pair 
of lines is predicted to be broader than the outer pair, 
and if the rotational motion is fast ( W ~ S O  7 l ) ,  so that 
nonsecular contributions are important, the central 
lines are non-Lorentzian in shape. The presence of 
large secular line-width effects of this type causes every 
third line in the spectra from radicals with either two 
or four equivalent methyl groups to be sharp compared 
to the other lines, and thus an effect analogous to the 
alternating line-width phenomenon is predicted. The 
variation of the widths from line to line if the motions 
of the several methyl groups are uncorrelated with 
each other is different in detail from tha t  found if 
they are interlocked so as to move in a completely 
correlated manner. 

None of the predicted effects has yet been observed, 
and although good quantitative experimental estimates 
of the upper limits of the line-width variations are not 
available, eq. 4.1 and the experimental datas indicate 
tha t  in the compounds studied the correlation times 
T~ for the rotation of methyl groups are no larger than 
about l0V8 sec. Since the line-width effects vary 
approximately as the square of the hyperfine splitting 
(6) and linearly with the correlation time ( T O ) ,  radicals 
with methyl groups that have large methyl-proton 
splittings and are highly hindered should be studied 
at low temperatures if the predicted line-width anoma- 
lies are to be observed. 

Throughout the calculations, the line-broadening 
effects of such important mechanisms as the aniso- 
tropic intramolecular dipolar and g-tensor interactions 
have been neglected. Their inclusion would not be 
expected to alter the qualitative nature of the predic- 
tions, but if relevant experimental data become 
available, it would probably become necessary to in- 
clude these effects in the calculations. The present 
discussion has also neglected the contributions from 
spin-density modulations" such as those that can arise 
from the motions of other substituents in the radical 
or from solvent perturbations. Effects of this type 
are important in radicals like the dihydroxydurene 
cation. 


