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A comprehensive theory for interpreting two-dimensional Fourier transform (2D-FT) electron spin 
resonance (ESR) experiments that is based on the stochastic Liouville equation is presented. It 
encompasses the full range of motional rates from fast through very slow motions, and it also 
provides for microscopic as well as macroscopic molecular ordering. In these respects it is as 
sophisticated in its treatment of molecular dynamics as the theory currently employed for analyzing 
cw ESR spectra. The general properties of the pulse propagator superoperator, which describes the 
microwave pulses in Liouville space, are analyzed in terms of the coherence transfer pathways 
appropriate for COSY (correlation spectroscopy), SECSY (spin-echo correlation spectroscopy), and 
2D-ELDOR (electron-electron double resonance) sequences wherein either the free-induction 
decay (FID) or echo decay is sampled. Important distinctions are made among the sources of 
inhomogeneous broadening, which include (a) incomplete spectral averaging in the slow-motional 
regime, (b) unresolved superhyperfine structure and related sources, and (c) microscopic molecular 
ordering but macroscopic disorder (MOMD). The differing effects these sources of inhomogeneous 
broadening have on the two mirror image coherence pathways observed in the dual quadrature 2D 
experiments, as well as on the auto vs crosspeaks of 2D-ELDOR, is described. The theory is applied 
to simulate experiments of n&oxide spin labels in complex fluids such as membrane vesicles, where 
the MOMD model applies and these distinctions are particularly relevant, in order to extract 
dynamic and ordering parameters. The recovery of homogeneous linewidths from FID-based COSY 
experiments on complex fluids with significant inhomogeneous broadening is also described. The 
theory is applied to the ultraslow motional regime, and a simple method is developed to determine 
rotational rates from the broadening of the autopeaks of the 2D-ELDOR spectra as a function of the 
mixing time, which is due to the development of “motional crosspeaks.” The application of this 
method to recent experiments with nitroxide probes illustrates that rotational correlation times as 
slow as milliseconds may be measured. It is shown how 2D-ELDOR can be useful to distinguish 
between the cases of very slow motional (SM) rates with little or no ordering and of very high 
ordering (HO) but substantial motional rates even though the cw ESR spectra are virtually the same. 
The effects of motion and of microscopic ordering on the nuclear modulation patterns in 
2D-IT-ESR are compared, and it is suggested that these effects could be utilized to further 
distinguish between SM and HO cases. Key aspects of the challenging computational problems are 
discussed, and algorithms are described which lead to significant reductions in computation time as 
needed to permit nonlinear least-squares fitting of the theory to experiments. 

1. INTRODUCTION 

Recent developments in digital electronics and micro- 
wave technology have opened the new field of two- 
dimensional Fourier transform (2D-FT) electron spin reso- 
nance (ESR) where the full ESR spectrum is excited by the 
microwave pulses and the full free induction decay (FID) or 
echo decay is sampled. Gorcester and Freed applied COSY 
(correlation spectroscopy), SECSY (spin-echo correlation 
spectroscopy), and 2D-ELDOR (electron-electron double 
resonance) sequences to nitroxides in the fast motional re- 
gime, where the FID is detected, and were able to demon- 
strate the enhanced resolution to spin relaxation 
mechanisms.‘-3 Patyal et al. extended their applicability for 
determining rotational motional rates in the very slow mo- 
tional regime and the (near) rigid limit, wherein the echo 
decay is detected.4’5 Recently, as a result of even shorter 
(-50 ns) spectrometer deadtimes it has been possible to col- 

lect the full FID from spectra obtained in complex fluids 
such as membrane vesicles, despite the very short Tg’s of 
20-30 ns.6T7 These spectra are characterized by significant 
inhomogeneous broadening and motional rates in the incipi- 
ent slow motional regime. These initial studies have demon- 
strated the great potential value of 2D-IT ESR in the study 
of complex fluids, and have indicated the importance of a 
rigorous quantitative theory for their analysis. The original 
analyses of Gorcester and Freed are appropriate mainly for 
the fast motional regime in the absence of significant inho- 
mogeneous broadening. 

Over the years, the quantitative analysis of slow- 
motional cw ESR spectra has mainly depended on computer 
simulations based on the stochastic Liouville equation 
(SLE).8*9 The significant computational challenges in simu- 
lating cw ESR spectra have been successfully dealt with by 
the implementation of the Lanczos algorithm,1411 by the de- 
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velopment of a basis set minimization scheme,” and by non- 
linear least-squares fitting of the simulations to 
experiment. 13*t4 Extensions to more sophisticated models 
have also been made.‘5’16 

Schwartz et al. developed a theoretical framework for 
time domain ESR for very slow rotational motion based on 
the SLE. It focused on spin-echo phenomena.‘7-‘9 and it 
proved useful in initial experiments utilizing magnetic field- 
swept 2D-ESE (electron-spin-echo) methods’t*‘9*20 despite 
its approximate nature (e.g., restriction to axial tensors and 
isotropic fluids). This theory was used in an approximate 
fashion to provide a preliminary analysis of the experiments 
of Patyal et a1.4’5 With the advent of 2D-FT ESR and the 
ability to select a specific coherence transfer pathway of the 
density matrix in a multiple pulse sequence, the quantitative 
analysis of 2D spectra requires a more general and rigorous 
theory, which also encompasses the full range of motional 
rates, and which can include both microscopic and macro- 
scopic molecular ordering. We have now developed such a 
theory of 2D-FT ESR that is applicable over the entire mo- 
tional range. It is equivalent to the most sophisticated cw 
ESR theory in its description of the molecular dynamics but 
it is necessarily considerably more sophisticated with respect 
to the spin dynamics. 

are discussed in Sec. IV After a brief discussion of the gen- 
eral features of relaxation of “off-diagonal” and “diagonal” 
subspaces, we discuss how inhomogeneous broadening af- 
fects differently the two mirror-image coherence transfer 
pathways that are experimentally realized in COSY and 2D- 
ELDOR experiments. Although both are FID-based 2D sig- 
nals, one is seen to be “echolike,” whereas the other is 
simple “FID-like.” When both are obtained in real experi- 
ments they provide complementary information to distin- 
guish the different components that contribute to the inho- 
mogeneous broadening, especially that due to the 
microscopic molecular ordering in complex fluids. These ef- 
fects are illustrated with recent experiments. In addition, it is 
shown how the echolike component of the COSY signal may 
be utilized to provide the homogeneous linewidths across the 
ESR spectrum, and the conditions to optimize sensitivity to 
these widths are analyzed. 

Rigorous simulation of a 2D-FT ESR spectrum by the 
SLE is a challenging problem both in its theoretical and 
computational aspects. In Sec. II we develop the general for- 
mulation which is based on the analysis of the coherence 
transfer pathways for COSY, SECSY, and 2D-ELDOR. 
Within this framework it is possible to partition the matrix 
representation of the SLE into subspaces distinguished by 
their coherence order, that are appropriate for the evolution 
periods when there is no microwave radiation. This greatly 
simplifies the analysis and the computational challenges. 
Fundamental symmetries are introduced to further reduce the 
size of the matrix representations of the SLE. The general 
properties of the pulse propagator superoperator, which de- 
scribes the effects of the microwave pulses in Liouville 
space, are presented. The approach described is sufficiently 
general to be applied to an arbitrary pulse sequence. 

The ultraslow motional regime is considered in some 
detail. The relevant 2D-FT ESR experiments are necessarily 
echo based. It is first shown how these experiments can con- 
veniently provide estimates of the very slow (1 ,us and 
slower) rotational correlation times of viscous fluids (and of 
macromolecules) in accordance with the interpretations of 
Patyal et al. Special emphasis is given to the development of 
“rotational crosspeaks” in the 2D-ELDOR spectrum. Also 
discussed is how to use 2D-FT ESR to distinguish between 
the limiting models of very slow motional (SM) rates with 
little or no ordering vs that of very high ordering (HO) but 
substantial motional rates. Such models are typically virtu- 
ally indistinguishable in cw ESR, but can be readily distin- 
guished by %D-ELDOR. 

Despite the simplifications achieved in Sec. II, the com- 
putational challenge for 2D-FT ESR is much greater than for 
cw ESR. This is due partly to the need to explicitly consider 
both the off-diagonal density matrix elements which describe 
the ESR transitions as well as the diagonal (and pseudodi- 
agonal, cf. below) elements which relate to the spin state 
populations. But it is mainly due to the need to obtain fairly 
complete sets of the eigenvectors of the SLE, not just small 
sets of eigenvalues as in cw ESR. The computational chal- 
lenges that result are therefore much greater than for cw 
ESR, especially if one hopes to have relatively fast algo- 
rithms which can permit nonlinear least-squares (NLLS) fit- 
ting to experiments. Such NLLS fitting often requires the 
computation of several hundred spectra as one iterates to a 
least-squares fit. Our considerable efforts at upgrading and 
adapting the computational algorithms for obtaining accurate 
eigenvalues and eigenvectors of the SLE to meet this chal- 
lenge are described in Sec. III. 

Finally, the role of nuclear modulation in the presence of 
residual motion is discussed. Given that 2D-FT ESR em- 
ploys “hard” pulses that irradiate all allowed and forbidden 
ESR transitions, nuclear modulation is a characteristic fea- 
ture of the spectra as long as the motion is not fast enough to 
average it out, as Patyal et al. have found. This feature is 
carefully analyzed, and it is also shown that nuclear modu- 
lation will arise even when motional rates are rapid provided 
there is substantial microscopic ordering. The nature of the 
modulation patterns is found to be different in the two cases 
of SM and HO, and this could, in principle, be utilized to 
better distinguish them. 

A brief summary and conclusions appear in Sec. V. 

II. THEORY 

A. General formulation based on the stochastic 
Liouville equation 

Molecules in fluids whose motional degrees of freedom 
may be treated as classical stochastic variables obeying a 
stationary Markov process and whose spin dynamics are 
treated quantum mechanically may be characterized by a 
density operator p(Q,t) satisfying the stochastic Liouville 
equation of motion8’9 

Several applications of the theory and their implications 

& P(M) = - d-~~~,t),P(fkt)l 

-r(Q>b(at)-Po(fl)I, (1) 
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where .k”(Cl,t) is the spin Hamiltonian operator, which de- 
pends on the orientation of the molecule as specified by its 
Euler angles Q, I’(R) is the time-independent relaxation su- 
peroperator representing the motiona processes frequently 
taken to be a Fokker-Planck operator, and po(sZ) is the equi- 
librium density operator. 

In the absence of a microwave pulse, it is more conve- 
nient to use the reduced density operator x(n,t) 
=p(Cl,t)-h,(Q) to describe the relaxation toward thermal 
equilibrium, and Eq. (1) can be written as 

a 
z x(fl,r)= -[i*%?x(n)+r(n)]x(n,t) 

= -Jzqcl)/Y(~,t), (2) 

where .9?“(n) is the commutator superoperator of the 
Hamiltonian and g(0) is the stochastic Liouville operator. 
Then the formal solution of Eq. (2) can be written as 

x(n,t+to)=exp(-~t)x(~,fo) (3) 

and the evolution of the density matrix is fully described by 
the eigenmodes of the stochastic Liouville operator, which 
are obtained by diagonalizing a matrix representation of the 
stochastic Liouville operator. 

In the presence of a microwave pulse, the Hamiltonian 
should include the effect of the pulse in the complete spin 
Hamiltonian as well as the relaxation. If the interaction with 
the pulse is much larger than the spin Hamiltonian terms in 
the appropriate rotating frame, then all the spins are uni- 
formly affected by the pulse regardless of their resonance 
frequencies (i.e., the pulse is strong and nonselective). The 
duration of such an intense pulse is short, and the relaxation 
during the pulse can be ignored. Gorcester and Freed, and 
Patyal ef al. demonstrated 2D-ESR experiments using pulses 
with 5 ns duration and -C 100 MHz nominal coverage, which 
provide good spectral coverage for 14N (or “N) nitroxide 
samples at X band.2’4*5 For simplicity of formulation, we will 
assume ideal nonselective pulses throughout this paper.21 
Then, ignoring the effects of the complete spin Hamiltonian 
and of relaxation during the pulses, the evolution of the den- 
sity matrix can be expressed in terms of the pulse propagator 
superoperator .P as follows: 

P(to+t,)=~t,)p(to)“~~(~o)~-‘. (4) 

The evolution of the density matrix under an arbitrary pulse 
sequence is fully described by the stochastic Liouville opera- 
tor and the pulse propagator as given in Eqs. (3) and (4). 

To properly formulate the quantum mechanical proper- 
ties of the spin Hamiltonian and the pulse propagator, and the 
classical motional processes that appear in the relaxation su- 
peroperator, it is most convenient to use spherical tensor op- 
erator formalism.8’22,23 The formulation of the Liouville op- 
erator and of the pulse propagator is shown in the following 
sections. The explicit expressions will be given mainly for 
the case of a single electron spin and a single nuclear spin 
system, even though the formulation itself is general enough 
to include multiple quantum coherences from more than one 
equivalent spin. 

1. The stochastic Liouville operator: Basis vectors 

The basis states of the spin Hamiltonian for a single 
electron spin with spin quantum number S and magnetic 
quantum number ms, may be written as IS,ms) in Hilbert 
space. The basis for the Hamiltonian superoperator xx con- 
sists of the spin-state transitions, which are characterized by 
the initial and final magnetic quantum numbers, rnk and 
rni , respectively. Each transition can be denoted by /p’,& 
where the two transition quantum numbers ps and 4’ are 
defined as 

pS=mi-mi, qS=mi+mk. (5) 

The transition quantum number ps defines the order of co- 
herence associated with the density matrix element involved 
in the transition, and it plays an important role in distinguish- 
ing and characterizing the properties of the magnetic reso- 
nance signals. Note that we are using the ket form to repre- 
sent the basis vectors in Liouville space, and they should be 
distinguished from the basis vectors in Hilbert space repre- 
sented as rounded kets. This simple ket notation will be con- 
sistently used to specify the basis vectors in Liouville space 
throughout this paper. 

One of the important sources of relaxation is the rota- 
tional diffusion process, which is most conveniently repre- 
sented in terms of the Wigner rotation matrices %bK(fl).24 
Therefore the basis vectors spanning the Liouville space suit- 
able for describing the stochastic Liouville operator for a 
system of one electron spin (S= l/2) and one nuclear spin 
(I), are chosen to be the direct products of the spin transi- 
tions and the normalized Wigner rotation matrices97’6 

=lrnk ,rng ;mj ,m;) 
2L+l 

d- --gq- e&)7 (6) 

where p’, q1 are the transition quantum numbers for the 
nuclear spin defined in a similar manner to Eq. (5). 

The basis vectors with different ps indices are coupled 
only through the S, or S- operators, which appear only in 
the nonsecular terms in the spin Hamiltonian or in the inter- 
action with the irradiating field as represented in the pulse 
propagator discussed in the next section. Therefore, in the 
high field limit where the nonsecular contributions are usu- 
ally negligible (except for very fast motions), and in the ab- 
sence of a pulse, the stochastic Liouville matrix is block 
diagonal in terms of the ps indices, and one can diagonalize 
each ps block separately to obtain the eigenmodes. 

In typical ESR problems (a single electron spin, S = l/2), 
the ps=O basis vectors span the “diagonal subspace” (i.e., 
the collection of diagonal and pseudodiagonal density matrix 
elements for which pl=O and p’f0 respectively), and the 
ps = 2 1 basis vectors span two conjugate “off-diagonal sub- 
spaces.” By solving for the respective sets of eigenvalues for 
the three subspaces, one obtains the eigenmodes that fully 
describe the evolution of the density matrix in the absence of 
any microwave pulse in the high field limit, i.e., 

oy5Y,o,=ll,, o~sooo=Ao, oT,z,o-,=A-,. 
(7) 
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Here the 0 and h matrices are respectively the orthogonal 
transformation matrix composed of the eigenvectors and the 
diagonal matrix of eigenvalues for each subspace with the ps 
values for the subspace specified as a subscript. The detailed 
expressions for 53’ and the properties of 0 and A will be 
discussed later (cf. Sec. II B). 

2. Pulse propagator superoperator 
The general expression for the pulse propagator in Eq. 

(4) can be obtained in terms of the spherical tensor operator 
basis.22*23 The effect of the rotational transformation 
R(a,/3, y) corresponding to the three Euler angles (cu,/3, y) on 
the spherical tensor operator is 

~(‘((y.P,~)T~m=R(cu,P,y)Tr,R-‘(cr,P,r> 

=z L~@,,fn)m(~Ar), (8) 

where T,, is the irreducible tensor operator of rank 1 and 
component m. The rotation operator for the microwave pulse 

I 

lOA lo,- 1) IW 
/ cosq e/2) siI?( e/2) i/2 sin 8 e’$ 

with a tipping angle B and phase 4 can be decomposed into 
three consecutive rotations to achieve the standard phase 
conventions*’ as follows: 

R=e-i~SZe-ieSZei~Si=ei(~t’/2-4)sre-ies,,-i(”2-d)S,. 

(9) 
Then the pulse propagator superoperator can be written as23 

9W4)&,,=~ h,&,,t,,, 
m’ 

-f +qb,e, t-4 

(10) 

For the case of a single electron spin system (S= l/2), 
the density operator can be expanded in terms of the irreduc- 
ible tensor operators T,, of rank 0 and 1. The irreducible 
tensor operator T, merely refers to the population conserva- 
tion (i.e., it is the unit operator), and the irreducible tensor 
operator T,,, specifies the polarization. The irreducible tensor 
operators T, ?, are the two counter-rotating single-transition 
shift operators. Writing the pulse propagator superoperator 9 
in the (ps,qs) basis, we obtain the following expression: 

I- 130) 
-i/2 sin e eei4\ 

Y= 

I 
i/2 sin e eVi4 -i/2 sin 8 e-i4 cosq 812) 

-i/2 sin e ei4 i/2 sin e ei4 sin*( 0/2)ei24 

- I sin*( e/2 ) COS~( e/2 ) -i/2 sin 8 ei4 i/2 sin e ewi4 I 

sin*( 8/2)e-i24 ’ I 

Each element (&,q~l@~,q$) is seen to depend on 
exp( - iAp’+) where Ap’=pf--pi. Therefore, each coher- 
ence transfer pathway has a distinct dependence on the phase 
of the pulse, which enables one to remove unwanted signals 
by phase cycling. Note that the pulse propagator is indepen- 
dent of all quantum numbers which appear in the Liouville 
space representation of Eq. (6) except for ps and qs. 

3. Coherence transfer pathways and the 2D-ESR 
signal 

Given Eqs. (7) and (1 l), it is straightforward to calculate 
the 2D-ESR signal for various types of experiments. The 
initial density matrix is the equilibrium density matrix which 
has nonzero elements only for zeroth-order coherence 
@=O). The spins in the xy plane immediately after a n/2 
pulse are of first-order coherence. They will be represented 
as transition mument vectors Iu t) and Iu -r>, specifying the 
two counter-rotating components of the magnetization which 
are represented by the off-diagonal density matrix elements 
corresponding to ps= 5 1. In simulating the cw ESR spectra, 
the starting vector for the Lanczos or conjugate gradient 
(CG) algorithms is taken as /~r).‘~ During the detection pe- 
riod, only the density matrix elements with ps= - 1 contrib- 
ute to observable magnetization (S,). The 2D-ESR signal for 
the coherence transfer pathway of interest can be written as a 

c0s2( e/2) / 

(11) 

SC. 

/ \ 
‘r 

s CC 

SC. 
/ \ 
% f \ ---- 

SC, 

FIG. 1. Pulse sequences and coherence pathway diagram for the (a) COSY 
sequence and (b) 2D-ELDOR sequence. The solid and the dashed lines in 
the coherence pathway diagram represent the .S,- and the S,, signals, re- 
spectively. SECSY and echo-ELDOR signals are obtained by delaying data 
acquisition by t, and the S,- is the corresponding coherence pathway to 
form the echo. 
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product involving the exponentiated eigenvalue matrix, the 
eigenvector matrix, the pulse propagator matrix, and the 
transition moment vectors as we show in the next para- 
graphs. The pulse sequences and the coherence transfer path- 
ways for the experiments considered in this paper are sum- 
marized in Fig. 1. 

The coherence transfer pathway for a simple FID is 
ps=04- 1. Using Eqs. (3) and (7), the signal can be written 
as 

=(u-lJO-lO!,e -gr’lo-,o’i,Ju-J 

=(u-llO-le --I\-lflOtilJu-*). (12) 

Even though Eq. (3) describes the evolution of the density 
matrix in terms of the reduced density matrix x=p--pe4, the 
interconversion between p and x is not necessary here since 
pbq=O in the off-diagonal space. The orthonormal property of 
the transformation matrix 0 is used in Eq. (12). Note that the 
ith component of the vector O’T, Iu - r) is the projection of 
the ith eigenvector on the transition moment vector Iv-r). 
Therefore the eigenvalues and the “weighting factors” (i.e., 
the squares of the projections) of the eigenmodes determine 
the FID (or alternatively the cw spectrum) completely. The 
weighting factors are readily available without calculating 
eigenvectors explicitly, and this is fully utilized in the simu- 
lation of the cw ESR spectra.9”0”6 

In the COSY sequence, the coherence transfer pathways 
ps = O-, T 1 -t - 1 are responsible for the S,+ and S,- signals 
[which are referred to as “P-type” and “N-type” signals in 
nuclear magnetic resonance (NMR)] defined by Gamliel and 

I 

Freed,25 respectively. Those signals can be written as 

X05,e-““‘~O;lluTI), (13) 

where Pc,;+,f) denotes the pulse propagator that transforms 
the density matrix elements in the pf subspace into the den- 
sity matrix elements in the pi subspace. The pulse propaga- 
tors PC,;+,;) in Eq. (13) are proportional to the unit matrix 
[cf. Eq. (ll)]. 

The coherence transfer pathways for the 2D-ELDOR se- 
quence can be written as ps=O--,il-+O-+--1 for the S,, 
signals. Concentrating only on the portion of the density ma- 
trix that follows this coherence transfer pathway up to and 
just before the third pulse (i.e., p’=O--t? l-+0), we have 

- Peq) + Peq 

= Ooe-A~To’p o (0+r~)07~e-A’Lf10VT11U?~) 

+(l-Ooe-*OTO$peq. (14) 

Note that the equilibrium density matrix peq which arises 
from the interconversion between p and x cannot be ignored 
in the diagonal space of p’=O. Those terms involving peq are 
independent of t, , and appear along w,=O (i.e., they are 
axial M terms).* They are suppressed by phase cycling since 
they do not depend on the phase of the first pulse.25 Then the 
2D-ELDOR signal following the third pulse can be written 
as 

S,E~DoR=(u~1~0-~e~A-~r~0~,P~-l+0~00e~A~TO~P~~+F1~0+1e~A5~t~0~l~u71). (15) 

The pulse propagators between the diagonal space and the off-diagonal space are rectangular matrices [cf. Eq. (1 l)]. Now the 
problem reduces to one of obtaining the eigenvalues and eigenvectors for the stochastic Liouville matrix. 

B. Symmetrization of the stochastic Liouville matrix 

The detailed expression for the spin Hamiltonian superoperator in the basis set of IpS,qS,p’,q’;L,,M,K) as defined in Eq. 
(6) is summarized in Appendix A. It was shown that this stochastic Liouville matrix can be reduced to a complex symmetric 
form by expressing it in a new basis set defined as9,16 

IpS,qS,p’,q’;~,~,K,jK)K=[2(1 + ~~,O~l~“*~jK~“*lpS,qS,~~,q~)~,(I~,~,~)+jK~- l)L+KILM,-K)), 
I 

(16) 

where the K index now has only non-negative values, and The transformation given in Eq. (16) reflects a funda- 
the allowed values for jK are mental symmetry of the basis set, namely the parity of the 

jK= (-l)L 
i 

for K=O basis kets with respect to the C,(y) operator which performs 

?l for K>O ’ (17) a rr rotation about the y axis of the diffusion frame.26 Spe- 
cifically, in the original basis, C,(Yw~x) 

Note that the subscript K is used to specify basis vectors in = (- l)L+K(L,M, - K), which may be substituted into Eq. 
the “K-symmetrized basis.” The matrix elements of the (16) to show that C2(y)(L,M,K,jK)=jKlL,M,K,jK). Thus, 
Liouville operator and its symmetry properties for different each vector in the K-symmetrized basis is an eigenfunction 
types of ESR problems in this K-symmetrized basis set are of the C,(y) operator, and the index jK is its corresponding 
described by Meirovitch et ~1.‘~ eigenvalue, or parity. The additional factor of i for the basis 
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vectors with jK=- 1 is included in Eq. (16) in order to con- 
vert the stochastic Liouville operator to a complex symmet- 
ric form. 

In the high field approximation, and for motions that are 
not extremely fast, we can ignore the contribution of the 
nonsecular terms in the Hamiltonian, which results in a de- 
coupling of the three subspaces as already noted. In this case, 
it is possible to take advantage of additional symmetries in 
both the diagonal and the off-diagonal subspaces. For the 
off-diagonal subspaces, the following symmetrization may 
be used:16 

1 rf: l,O,p’,q’;L,M,K,jK,jM)K~ 

=P(1+ hf,o~p~.o)l -1’2(lt- l,O,p’,qf;L,M,K,jK), 

+j”(- l)L+M[_t l,O,-pf,q’;L,-M,K,jK)K), (18) 

where the M index has only non-negative values (if M =O, 
the index pr is also non-negative), and the allowed values for 
jM are 

.&f- (-llL 
i 

for p’=M=O 
J - +1 otherwise (19) 

The Liouville operator matrix elements in this “M- 
symmetrized” off-diagonal basis, including the nuclear Zee- 
man interaction, are 

I 

=NL(L,,L~)NK(K~,Kz)N~(P:,MI;P:.,M~)(- 1) M~+K~ 
I 

sjy ,jr 2 R,,@, ,K, JF ;L2 X2 if> 
~=gA.l 

x (+ l,O,p: ,q:IA:‘;;‘-P’)XI+ l,O,~:,q:)d~~_~:,~~-~~(~) 
[ i 

Ll 1 L2 

1 M, M*-M, --M* i 

+ jy( - 1)L2+M “(2 l,O,p: ,q:IA;;;‘+p”XI~ l,0,p:,q:)d~~+p:,M,+M2(~) ;I 
i 

’ L2 -id,--M* Iv* 

+( l-Sj~,j~)Sj:,j~~ ’ ‘Ss ‘S ’ 
gt&NBo 

p, .p2 q, .q2 p1 .p;%; &L, J.&f, &‘K, 9% Tp: 
I 

’ 

where 

R,,I(L~ 31 J f ;L2 22 ,.i,“) = 
( 

Ll 1 L2 
K 

1 
K 

2 
_ K 

1 -K2 i 
G,,djf .jt ;KI - K2) 

+jt( - 1 )h+K2 Ll 1 L2 

Kl -K,-K2 K, G,,r(jy ,jF %I+ KJ 

(20) 

(21) 

and the quantities G,*/ are defined as 

G,,r(jf , jf ;K) = ajf ,j: Re{Fjf;~)} 

+ ( 1 - Sjf ,/)jf Im{ Fjf;$}. 

The normalization factors are defined as 

NL(L, ,L,)=(2L* + 1)“2(2L*+ 1)“2, 

NK(KI,K~)=(~ +~K,,o)-~‘~(~+~K~,o)-“~, 

N,(P: ,M, ;P; &f2) =[( 1 + ap; ,ob, ,o) 

x cl+ ap; ,04+f2,0)l-“* 

I 

M-symmetrized basis are given in Appendix B. The starting 
vector, also given in Appendix B, has nonvanishing elements 
only for jK=l and j”=l. 

(22) 
A careful analysis shows that an equivalent symmetriza- 

tion to Eq. (18) exists for the diagonal subspace, which can 
be written as 

(23) =$ (~O,l,p’,q’;L,M,K,jK)~-jM(-l)L+M~O,-l, 

-P1,q%,-M,K,jK)K). (24) 

This symmetrization differs from that used for the off- 
diagonal space in that (i) the linear combinations are taken ” .u 

and all the other quantities are defined in Appendix A. 
The relaxation superoperator is block diagonal with re- 

spect to both jK and j”, and its matrix elements in the 

with respect to q’ as well as M and p’; (ii) the index j‘- can 
be 4 1 regardless of the other indices, and (iii) the index M 
after the symmetrization may be a negative number. How- 

J. Chem. Phys., Vol. 101, No. 7, 1 October 1994 

Downloaded 21 Mar 2008 to 128.253.229.132. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



Lee, Budil, and Freed: Fourier transform electron spin resonance 5535 

ever, we shall still refer to Eq. (24) as “M symmetrization” 
since it has a very close relationship to the M symmetriza- 
tion in the off-diagonal space. 

When p’=O, the basis vectors IO,+ l,O,q’;~~), on the 
right-hand side of Eq. (24) represent the population of the 
spin states with m,=q’/2 and mS= 5 l/2. Then the difference 
between the populations corresponding to the two basis vec- 

tors with qs=+l is proportional to the polarization, which 
relaxes with the characteristic longitudinal relaxation time, 
T, . The sum of these two populations does not change with 
time (i.e., total population is conserved) in the absence of 
cross relaxation. 

The Liouville matrix elements for the M-symmetrized 
basis in the diagonal space are given by 

x(o,l,p; ,q:IAl(;~‘-p”XIO,l,~:,q:)d~:-p:,~,-MI((JI) 
Ll 1 L2 

M, M2-M, --M2 

+( I-SjM jM)S’K ‘KS S SS S SS 1 IS I ~~L,,L~~M,,M~~K,,K, 
I’2 J, vJ2 P,.P2 4,.q2 P,,P2 4,412 (25) 

Unlike the elements for the off-diagonal space, there is no term with pi +pi for the diagonal space, since 

(0,l ,p: ,p;IA:$ +‘:” IO, - 1 ,p{ ,p$ = 0 in the original basis for all interactions (cf. Appendix A). The expressions for the 
relaxation superoperator are given in Appendix B, and they are factored with respect to jM in the diagonal subspace. 

In the M-symmetrized basis, the pulse propagator that converts the off-diagonal basis set into the diagonal basis set can be 
shown to be 

.@~ps=o~+-(~ps~=~~l + l,O,p’,q’;L,M,K,jK,jM)~~ 

= 2 ( 1+ ~p~.obf,o) ~“2{~0,1,p~,qz;L,M,K,jK,jM)~MfjM(-1)LfM~O,l,-p’,q’;L,-M,K,jK,jM)~~}. (26) 

The pulse propagator from the diagonal space to off-diagonal space is 

.4ip+ I)--cpS=O) IO, 1 ,p’,q’;L,M,K,jKJM) 

I 
(1 + s~,~s~~,~)““(] l,O,p’,q’;L,M,K,jK,jM)- I - l,O,p’,qz;L,M,K,jK,jM)) if Ma0 

= j”(-1) L+M(I1,0,-p’,q’;L,-M,K,jK,jM)-I-1,0,-p1,q1;L,-M,K,jK,jM)) if M-CO’ (27) 

The pulse propagator from the ps= 1 space to the ps= - 1 
space, which appears in the COSY experiment, is a unit ma- 
trix. Equations (26) and (27) show that the pulse propagator 
maintains the symmetry defined by the jM index (i.e., jM is 
unchanged when the pulse propagator transforms a diagonal 
basis vector into an off-diagonal basis vector). 

In the absence of the nuclear Zeeman term and for high 
fields, one needs to solve the stochastic Liouville equation in 
the off-diagonal space only for the j”= 1 subspace. This is 
valid since (i) the transition moment vector (i.e., the density 
matrix right after the first pulse) only has nonzero compo- 
nents for j”= 1, (ii) the pulse propagator keeps the jM sym- 
metry, and (iii) the stochastic Liouville matrix is block diag- 
onal with respect to j”. Furthermore, the two off-diagonal 
subspaces are complex conjugates, so that 0- t = 0: , 
A _, = A f . Therefore one needs to diagonalize only one of 
them, which significantly improves the computational effi- 
ciency. 

In cases where the nuclear Zeernan interaction is impor- 

tant, it is necessary to include basis vectors with jM = - 1, 
since the nuclear Zeeman terms appear off-diagonal with re- 
spect to jM [note the terms with 1 - ~j~ ,j~ in Eqs. (20) and 
(25)], in contrast to the other terms in the stochastic Liouville 
operator (g tensor, hypertine tensor, diffusion tensor) and in 
the starting vector. The nuclear Zeeman term also causes the 
eigenvalues and eigenvectors of the two off-diagonal spaces 
to deviate from the simple complex conjugate relations 
(O-r = OT,h-t = hT),whichisthesource,fromamath- 
ematical viewpoint, of the nuclear modulation of the echo. 
Therefore it is necessary to diagonalize both off-diagonal 
spaces separately to calculate the S,- COSY or ELDOR 
spectra. 

III. COMPUTATIONAL ALGORITHMS 

The stochastic Liouville matrix can always be repre- 
sented as a complex symmetric, but not Hermitian, matrix” 
when both the spin Hamiltonian superoperator 3’ and the 
relaxation operator r are included. It is usually a very large 
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and sparse matrix and is diagonalized by a complex orthogo- 
nal transformation as indicated in Eq. (7). Methods for di- 
agonalizing complex symmetric matrices are reviewed by 
Schneider and Freed for simulating the cw ESR spectra.” In 
the calculation of FIDs or cw spectra, weighting factors are 
obtained by monitoring projections of the eigenvectors on 
the transition moment vector [cf. Eq. (12)], and explicit cal- 
culation of the eigenvectors is not necessary. For simulating 
2D-ESR spectra, however, the eigenvectors are usually re- 
quired, as implied in Eqs. (13) and (15), which requires a 
significantly more intensive calculation and larger storage 
space. 

the off-diagonal space [i.e., the P,, i+a,Oa matrix in Eq. 
(15)], because the pulse propagator P,, ico,Oo is a rectan- 
gular matrix of dimension n, X no, where n t , no are the di- 
mensions of the off-diagonal and the diagonal subspaces, 
respectively. One can further reduce the space by storing 
only the eigenvectors that have significant projection on the 
starting vectors. 

The alternative method is an extension of the strategy 
used in the simulation of the cw ESR spectrum. Using Eq. 
(28), the 2D-ELDOR signal in Eq. (15) can be written as 

Simulation of the 2D-ESR spectra becomes more diffi- 
cult when the diagonal subspace is involved in the coherence 
transfer pathway as in the 2D-ELDOR experiment. Without 
taking any symmetry properties into account, the dimension 
of the diagonal subspace is twice that of the off-diagonal 
subspace. The diagonalization of such large matrices is chal- 
lenging even with modem computers, so it is necessary to 
minimize the dimension of the matrix by keeping only the 
relevant basis vectors. 

s ~oR=(~_l(tZ)IOOe-AOTO~I~Tl(tl)). (29) 

This can be regarded as evaluation of the cross correlation of 
lu(t,)) and b(M) f or each set of values of ( tl , t2). Note 
that OJU( t)) is the projection of the eigenvectors on the 
starting vector lu( t)), which may be obtained without calcu- 
lating the eigenvectors explicitly. This approach requires less 
storage space even though the computational efficiency de- 
pends on the algorithm used. 

Another difficulty in dealing with the diagonal subspace 
is the fact that there is no single transition moment vector (or 
“starting vector”) that can be relied on to project out all the 
relevant eigenmodes. For instance, the vector Iv& produced 
by a 7r pulse on the equilibrium density operator lacks any 
projection on the subspace spanned by the pseudodiagonal 
basis vectors, which are introduced through the action of 
xx during the evolution period, and which do play an im- 
portant role in the development of crosspeaks in the 2D- 
ELDOR spectrum. In the off-diagonal space, the density ma- 
trix obtained by applying a rr/2 pulse on the equilibrium 
density matrix defines the magnetization at the start of the 
evolution period, and the eigenmodes that do not have any 
significant projection on that density matrix are unimportant. 
The natural extension of the strategy above would be to de- 
fine a set of starting vectors as a collection of diagonal den- 
sity matrices each of which is the off-diagonal density matrix 
after a particular evolution time t i premultiplied by the pulse 
prqwgator P(o+~I). Note that the vector ]ua) would be one 
of the starting vectors corresponding to t,=O. The starting 
vectors for the diagonal space can be written as 

The following subsections will describe various aspects 
of the algorithms that we have used in simulating 2D-ESR 
spectrum. 

A. The Lanczos algorithm (LA) 

The Lanczos and related algorithms are known to be 
very efficient in dealing with large sparse matrices. They 
take full advantage of the sparsity of the matrices in both 
storage and computation, which has made them ideal for 
calculating cw ESR spectra.9Y” The computational efficiency 
is proportional to lznlns where n, nl , and n, are the dimen- 
sion of the matrix, the number of Lanczos steps, and the 
average number of nonzero elements in a row of the matrix, 
respectively. However, one major drawback of the LA is its 
loss of orthogonality amongst the Lanczos vectors due to 
numerical roundoff errors. Methods to circumvent this prob- 
lem via complete or selective reorthogonalization are de- 
scribed by Golub and references therein.27 

lus:l(tl))=P~ocF1)U?le-“i:I’10YIIU71). (28) 

The implementation of multiple starting vectors for the diag- 
onal space allows two different methods for calculating the 
2D-ELDOR signal. 

The eigenvectors of the tridiagonal matrix produced by 
the LA can be obtained by inverse iteration or by QR 
factorization.28 They can be transformed to the eigenvectors 
expressed in the basis of the original matrix using the set of 
Lanczos vectors obtained in the process of tridiagonalization. 
However, a more preferable method based on the conjugate 
gradient method is described below (cf. Sec. III B). 

The explicit calculation of the eigenvectors followed by 
spectral simulation using Eq. (15) is the most obvious and 
general way. This method has the advantage that one can 
simulate 2D-ESR spectra from any pulse sequence since all 
the relevant eigenvalues and eigenvectors are already known. 
If the coherence transfer pathway before and after the diag- 
onal subspace are either 1 or - 1 as in the 2D-ELDOR se- 
quence, and one is interested in the final spectrum instead of 
the eigenvectors themselves, the storage space for the eigen- 
vectors of the diagonal space can be reduced by about a 
factor of 2 by storing the product of the eigenvectors and the 
pulse propagator that transforms the diagonal subspace into 

The Lanczos and related algorithms inherently require a 
starting vector. Given a physically relevant starting vector, 
the LA projects out very rapidly those eigenmodes with a 
significant projection on the starting vector. This has been 
one of the main advantages of the LA. It was pointed out 
above [cf. Eq. (28)] that one really has multiple starting vec- 
tors for the diagonal space. We find, however, that a single 
linear combination of starting vectors generated by Eq. (28) 
for the first five steps in t i used in the experiment constitutes 
a satisfactory starting vector. 

Unlike cw ESR cases, 2D-ESR simulations can require a 
fairly complete set of good eigenvalues. In such cases, the 
Lanczos projections can be continued for as much as 2-5 
times the dimension of the original matrix in order to achieve 
this, but then one has to deal with removing spurious and 
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duplicate eigenvalues. Cullum and Willoughby suggested a 
method of identifying spurious eigenvflues by comparing the 
eigenvalues of the tridiagonal matrix T,,, of dimension m and 
those of another tridiagonal matrix obtained from T, by de- 
leting the first row and the first column of T,,, .28 This works 
fairly well if the eigenvalues are well separated, which is the 
case in the fast motional regime. As the motion slows down, 
the eigenvalues get closer to each other, and the number of 
eigenmodes with significant projection on the starting vector 
increases. Near the rigid limit where the eigenvalues are al- 
most continuous, it is difficult to discern small but real dif- 
ferences from differences due to numerical roundoff error. 
Thus it becomes extremely difficult to adjust the tolerance 
needed to identify the duplicate and spurious eigenvalues 
without eliminating some good eigenvalues. This happens 
more often in the diagonal subspace where many important 
eigenvalues are closely located along the real axis. 

One general and objective test to determine how good is 
the set of eigenvalues and eigenvectors in the diagonal sub- 
space is the fact that the %D-ELDOR spectrum at zero mix- 
ing time is equivalent to the COSY spectrum as implied in 
Eqs. (13) and (15). This is the test for the equality O,Ot=l, 
which ensures the orthogonality between eigenvectors. How- 
ever, this criterion may be too stringent considering that (i) 
the eigenmodes with large real parts (fast decaying compo- 
nents) remain important only for small mixing times, and (ii) 
the spectrum for mixing times less than 40 ns cannot be 
obtained in the laboratory due to spectrometer dead times. 
But we find this conservative criterion guarantees the reli- 
ability of the eigenvectors of the diagonal space. 

Numerical experiments show that the plain LA without 
the spurious eigenvalue test or reortbogonalization produces 
good eigenvalues and eigenvectors (by inverse iteration) 
when the rotational diffusion coefficient is RZ107 s-i for 
nitroxides at conventional X-band frequencies. Using the 
spurious eigenvalue test makes the procedure more stable 
and the method can be used up to R>106 s-t. For motional 
rates slower than R= lo6 s-i, the test in its present form 
becomes uncertain and other methods that enforce the or- 
thogonality need to be introduced. 

B. The conjugate gradient (CG) algorithm and 
projection of the eigenvectors 

The CG algorithm designed for solving linear equations 
has actually been shown to provide a diagonalization method 
that is equivalent to the LA.1’827 It has the advantage that an 
objective criterion for convergence in the number of Lanczos 
steps can be monitored with a small amount of extra compu- 
tational work. Our most successful version for simulating 
2D-FT ESR spectra that is based on the LA, actually uses the 
CG version, as described by Vasavada et aZ.i2 for calculating 
eigenvalues. One can then use the inverse iteration approach 
to obtain eigenvectors as in the LA. In this mode, we find the 
spectral simulations are at least an order of magnitude faster 
than more conventional procedures, such as the Rutishauser 
algorithm (cf. Sec. III C), but it is restricted to Rk106 s-l for 
nitroxides (at X band) as we have noted. That is, the CG 
algorithm also suffers from the loss of orthogonality between 
Lanczos vectors. 

There is an important variation of the CG algorithm 
which can be utilized for calculating each eigenvector corre- 
sponding to a known eigenvalue. The basic CG algorithm is 
an iterative method that solves a linear equation A.x=b for a 
square matrix A of dimension n and a vector b.29 The CG 
algorithm can be applied to solve the following linear equa- 
tion: 

A’.x’=b’, where A’=A-XI+sI, b’=sb. (30) 

The new matrix A’ is obtained by subtracting (X-s) multi- 
plied by a unit matrix I, where X is one of the eigenvalues of 
A, and s is a small shift parameter added so as not to divide 
by zero [cf. Eq. (31)]. Notice that Eq. (30) reduces to the 
eigenvalue equation (A-hI)x=O in the limit of s-+0. We 
will show that the new solution vector x’ is the eigenvector 
corresponding to the eigenvalue X when certain conditions 
are satisfied. The solution vector x’ depends on both A and s 
and may be written formally as 

Xr=(s-h;I+A b=o &+A ‘% (31) 

where A and 0 are the matrices that contain the eigenvalues 
and eigenvectors of A, respectively. The eigenvector matrix 
is a collection of eigenvectors and may be written as 
(q1,q2,...,qn) where qj represents the jth eigenvector of A. 
Expanding the matrix multiplication in Eq. (31), the ith ele- 
ment of x’ can be shown to be 

txr)icjl is+ (x”,- h)i (qYnb)(%)i 
(xj-x)*s 

for all Xj#:X 

- (&b)(qx)i . (3% 

Choosing the shift parameter s much smaller than the sepa- 
ration between the eigenvalues, the summation is dominated 
by the eigenvector qh corresponding to that eigenvalue Aj-A 
for which I Ai- A] 6s. Therefore the solution vector x’ is 
proportional to qA as long as the starting vector b has a 
non-negligible projection on qx. Once the approximate ei- 
genvector is obtained, the whole procedure may be repeated 
using the solution vector as the starting vector if a more 
accurate eigenvector is desired. We find that this method 
proves to be very stable, and it retains all the merits of the 
LA for large sparse matrices. (One should use as b the linear 
combination starting vector referred to in Sec. III A.) It can 
also be easily parallelized to improve the computational ef- 
ficiency since the eigenvector calculations are completely in- 
dependent. This should be the method of choice when the 
eigenvalues are known (e.g., from the LA or Rutishauser 
algorithm) and the eigenvectors are required. We find it is 
more reliable than the more conventional approaches of in- 
verse iteration or QR factorization following the Lanczos 
tridiagonalization procedure.28730 This becomes important for 
cases where R510m6 s-’ (for nitroxides at X band). 
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C. The Rutishauser algorithm (RA) 

The RA, a variant of the Givens method was introduced 
to the magnetic resonance community by the work of Gor- 
don and Messenger.3’ Unlike the Lanczos-based iterative 
methods, the Rutishauser tridiagonalization-QR decomposi- 
tion method is a procedure to diagonalize the whole matrix. 
It produces exact eigenvalues and eigenvectors within the 
numerical error of the computer. It utilizes the complex sym- 
metric banded structure of the stochastic Liouville matrix, 
but it does not take advantage of the sparsity of the matrix as 
do the Lanczos or CG algorithms. This is our method of 
choice when R 5 10e6 s-’ for nitroxides, although it unfortu- 
nately leads to substantial computation times. 

approach over the explicit calculation of the eigenvectors 
(when utilizing the RA) becomes more significant as the ma- 
trix dimension increases and/or as the number of points 
along tl and t2 axes decreases. Note that the eigenvectors of 
the off-diagonal space are still needed to determine the 
Iuc l(t)) starting vectors [cf. Eq. (29)] and to simulate 
SECSY or S,- COSY spectra [cf. Eq. (13)]. But the diagonal 
space is the more demanding. 

D. Minimum truncation scheme (MTS) and basis set 
pruning 

The projections of the eigenvectors of a matrix onto a 
given vector may be obtained by keeping track of the effect 
that the Jacobi rotations which annihilate the off-diagonal 
matrix elements have on that vector. In the simulation of cw 
spectrum where one needs only the eigenvalues and the 
weighting factors, which are the projections of the eigenvec- 
tors on the starting vector, it is only necessary to monitor the 
effect of the Jacobi rotations on the starting vectoc3’ Using 
the (l,O,...,O) vector instead of the starting vector projects out 
the first element of each of the eigenvectors. Thus all the 
eigenvectors are obtained by monitoring the Jacobi rotations 
on the unit matrix of dimension n.32 This makes the eigen- 
vector calculation substantially more computation-intensive 
than the eigenvalue calculation. The CPU time is roughly 
proportional to n2nb, where nb is the bandwidth of the ma- 
trix. For n = 122, nb = 34, the eigenvalue and eigenvector cal- 
culation took 11 s, whereas the eigenvalue and weighting 
factor calculations took 2.5 s on an IBM RS6000/355 work- 
station in double precision complex arithmetic. For n =372, 
nb=53, the corresponding CPU times are 311 and 23 s. This 
example shows that the dimension of the matrix is critical for 
computational efficiency. Practical application of this method 
would be quite difficult for matrix dimensions over 3000 (for 
eigenvalue calculations) or 2000 (for the full analysis) even 
using a supercomputer. A scheme to minimize the dimension 
of the matrix is described in Sec. III D. But for such large 
matrices we prefer to use the RA to obtain just the eigenval- 
ues, coupled with the CG algorithm for projecting the eigen- 
vectors. 

The dimension of the matrix is very important for com- 
putational efficiency, but it is necessary to obtain a minimum 
basis set that represents the spectrum without distortion. It is 
crucial for the Rutishauser method since it does not take full 
advantage of the sparsity of the matrix, but it is also impor- 
tant for the Lanczos-based methods. 

A general and objective way of determining a minimum 
set of basis vectors necessary to represent the accurate cw 
spectrum has been studied using the CG method by Vasavada 
et al., which is called the field-swept CG method.12 It utilizes 
the fact that each element in the solution vector of the CG 
method is proportional to the importance of the correspond- 
ing basis vector in representing the cw ESR spectrum at the 
sweep position. It was found that by repeating the conjugate 
gradient calculation for IO-20 sweep positions one can 
safely determine the importance of each basis vector, and 
that it is sufficient to keep only basis vectors which have a 
projection greater than 0.03 onto the normalized solution 
vector for at least one sweep position in order to obtain an 
accurate cw ESR spectrum. We refer to this analysis whereby 
we remove the unimportant basis vectors as “pruning” the 
basis set and to the resultant basis set as the minimum trun- 
cation scheme (MTS).” Thus, the MTS just described is re- 
ferred to as one based on a 3% pruning tolerance. As the 
additiona inhomogeneous broadening contribution in- 
creases, the number of important basis vectors for a given 
pruning tolerance decreases, since the fine details of the 
spectrum would be blurred by large inhomogeneous broad- 
ening anyway. 

Spectral simulation based on calculation of the cross- 
correlation function in Eq. (29) is particularly useful for the 
Rutishauser algorithm. As shown in Eq. (29), simulating 2D- 
ELDOR spectra requires the eigenvalues of the diagonal sub- 
space and the Ot/~~~(t)) vector, which is the projection of 
the diagonal eigenvectors on the multiple starting vectors of 
the diagonal subspace defined in Eq. (28). This can be easily 
achieved by monitoring the effect of the Jacobi rotations on 
the multiple starting vectors of the diagonal subspace. If the 
number of starting vectors Otl u e I(t)) to be used (i.e., the 
number of distinct values of t, and r2 in the experiment) is 
smaller than the dimension of the diagonal subspace, the 
correlation function approach is more efficient. The total 
number of distinct values of tl and t2 necessary to represent 
a 2D-ELDOR spectrum does not depend on the dimension of 
the matrix n, and we find 128 points along t 1 and t2 axes are 
sufficient. The relative advantage of the correlation function 

The same principle can also be applied to the simulation 
of the COSY or SECSY spectrum, which involves the off- 
diagonal space. Rather than specifying the range of the indi- 
ces of the basis vectors or using case-dependent truncation 
rules,12 it is desirable to construct the pruned basis set by 
explicitly examining the contribution of each basis vector at 
all the field positions. We find that repeating the field-swept 
CG calculation at 50 sweep positions with a pruning toler- 
ance of 3% and 0.5 G of inhomogeneous broadening width is 
a conservative way of obtaining the pruned basis set for cal- 
culating an absolute-value 2D-ESR spectrum (i.e., showing 
the magnitude of the complex signal intensity). 

Obtaining the MTS for the diagonal space becomes more 
complicated than for the off-diagonal space, due to the prob- 
lem of multiple starting vectors (although a convenient 
choice would be the linear combination noted in Sec. III A). 
Repeating field-swept CG for multiple starting vectors would 
be costly, but we found an alternative way. Once we obtain 
the pruned basis set for the off-diagonal space, we can con- 
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TABLE I. MTS and the effect of pruning as a function of motional rates. 

R (s-l) L,” L,b Kb Mb nnoC fhd nod nie he 4” 
f 

t,,c w ?,?.I wh 

104 66 21 22 2 2313 912 1552 5955 66 499 2737 163 
IO” 34 17 14 2 798 372 570 2454 53 219 311 23 
IO” 16 9 6 2 204 122 188 708 34 76 11 2.5 
IO’ 6 3 2 2 42 34 50 134 22 24 0.7 
10s 2 0 2 1 13 9 11 13 7 3 

‘Parameters used for obtaining the pruning indices: &=3200 G, g,,=2.0092, g,,=2.0059, g,,=2.0021, A,=A,,=4.9, A,,=34.2. Additional linewidth of 
0.5 G was added. Field-swept CG was performed at 51 field positions with 245 G range. The tolerance for terminating the CG iteration was 10M4. A pruning 
tolerance of 370 was used. 

bL, .L, .K,M are the maximum number of the corresponding indices found in the pruned basis set. The subscript e, and o means even and odd L values, 
respectively. 

% 
d “’ 

: dimension of the off-diagonal basis set when all the basis vectors within the specified L, .L,, ,K,M range are included. 
n, ,nO : dimensions of the off-diagonal and the diagonal subspaces, respectively after pruning. 

%, : the number of nonzero elements in the off-diagonal subspace of the stochastic Liouville matrix; nb : the bandwidth of the matrix in the off-diagonal 
subspace with the pruned basis set. 

f nev ; number of eigenvectors that have significant projection on the starring vector in the off-diagonal subspace. 
st,, : CPU time for calculating eigenvalues and eigenvectors. An IBM RS6000 was used. 
ht Val ; CPU time for just calculating eigenvalues and weighting factors using the RA. For RZ lo6 SK’ the LA leads to significantly reduced tVal and I,, . 

struct the corresponding basis set for the diagonal space us- 
ing the pulse propagator in Eq. (26). The dimension of the 
diagonal space is approximately twice that of the off- 
diagonal space since each basis vector in the off-diagonal 
space is transformed to two basis vectors in the diagonal 
space (except for pl= M =O). A careful numerical test shows 
that this diagonal basis set represents all the important eigen- 
modes without distortion. This approach has three distinct 
advantages: (i) One field-swept CG calculation in the off- 
diagonal space generates the basis set for both off-diagonal 
and diagonal spaces. (ii) The eigenvectors in the diagonal 
space can be transformed into the off-diagonal space using 
the pulse propagator in Eq. (27) to reduce the storage space 
by half. (iii) There is a simple correspondence between the 
basis sets in the diagonal and off-diagonal spaces. 

The effect of explicit pruning in various cases is summa- 
rized in Table I in terms of the dimension of the matrix, the 
number of nonzero elements, and CPU time (for the RA). 
Obtaining the MTS is a fast procedure since (i) it uses the 
CG algorithm which utilizes the sparsity of the matrix; (ii) it 
depends on the weighting factors which are obtained without 
calculating the eigenvectors explicitly; and (iii) this depen- 
dence on weighting factors makes it insensitive to the spuri- 
ous effects arising from roundoff error.” 

When the motional rate is relatively fast (R?106 s-‘), 
the spectral simulations are reasonably fast, especially when 
the LA is utilized, SO that one can fit the experimental spectra 
with an automated NLLS procedure. Since NLLS fitting is 
an iterative process that requires many spectral simulations, 
it is absolutely essential to work with the pruned basis set. 
However, NLLS fitting of multidimensional spectra presents 
little additional computational burden, since 2D spectra such 
as the S,, COSY, and 3D data sets such as a 2D-ELDOR 
spectrum measured at different mixing times may be simu- 
lated using a single set of eigenvalues and eigenvectors, and 
one needs to diagonalize the stochastic Liouville matrix only 
once to fit all spectra. Fitting multiple spectra also enhances 
the resolution and sensitivity to the motional and structural 
parameters obtained by NLLS minimization. 

IV. RESULTS AND DISCUSSION 

The applicability of 2D techniques depends on the ho- 
mogeneous and inhomogeneous linewidths of the spectrum. 
The overall linewidth, which is the sum of the homogeneous 
linewidth Ty ’ and the inhomogeneous linewidth Ti- ‘, is 
represented by the characteristic decay constant Tf ; i.e., 
T”-’ = T,l + T;-’ . Another important decay constant is the 
T: relaxation that governs the decay of magnetization in the 
diagonal subspace. In actuality, the decay rates (i.e., the re- 
laxation constants) must reflect the complicated nature of the 
spin and motional dynamics. Therefore lineshape analyses 
and relaxation studies are required to provide important in- 
sights into the details of the dynamics. 

We first examine the dependence of the T2 type of relax- 
ation on the motional rate. The SECSY experiment yields the 
homogeneous linewidths (i.e., T;‘) across the spectrum. The 
homogeneous linewidths are merely the real parts of the ei- 
genvalues in the off-diagonal space with ps= - 1, which axe 
shown in Fig. 2(a) as a function of the motional rate for a 
typical 14N nitroxide. Brownian motion is assumed in the 
calculation, and the rotational correlation time 7R is 1/(6R), 
where R represents the isotropic rotational rate. In the fast 
motional regime (R>108 s-‘), one needs only three eigen- 
values, which represent the three hyperfine lines. As the mo- 
tion slows down below the rate of R- lo7 s-‘, the number of 
significant eigenmodes (n,, in Table I) increases. The eigen- 
values of four typical slowly decaying modes (i.e., narrow 
lines) are shown in Fig. 2(a) to illustrate the dependence on 
the motional rate, even though there exist many other impor- 
tant eigenmodes. Note that the log-log plot produces a linear 
dependence in this motional regime, and it can be modeled 
as T~l~r~c. Linear fits of the plot yield values for the ex- 
ponent c ranging from 0.55 to 0.70.17 

Typical decay rates of the eigenvectors in the diagonal 
subspace are shown in Fig. 2(b). To examine the contribution 
of the rotational motion to the relaxation, the role of the 
rotationally independent electron spin flip rate W, in the di- 
agonal subspace is suppressed and the rotationally indepen- 
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FIG. 2. Linewidths as a function of the motional rate for Brownian motion. 
(a) Re{A-,} vs R (or T,), (b) Re(&,} vs R (or 7,). The value of 2 W, is fixed 
at IO+ 7;’ to minimize the role of 2W, in the relaxation. In the fast 
motional regime, all the important eigenmodes (except 2 W,) in the diagonal 
subspace are shown. In the motional range slower than R=107 s-‘, only 
four of the important eigenmodes corresponding to slow decay rates are 
shown (except 2 W,). The parameters used for the simulation are: En=3200 
G, g,, ,g,,y=2.0075, g,,=2.0021, A,,=A,,=4.9 G, A,,=34.0 G. The 
pruned basis sets obtained with a 1% tolerance and inhomogeneous broad- 
ening of 0.5 G are used for all motional rates. Axial tensors are assumed to 
reduce the dimension of the matrix. 

dent nuclear spin flip rate W, is set to zero. The general trend 
is similar to that of the off-diagonal subspace, and the num- 
ber of significant eigenvectors are comparable to the off- 
diagonal case. Four typical slowly relaxing eigenmodes are 
shown in the plot for motional rates of R<107 s-‘, and an 
equivalent analysis to that for the off-diagonal space yields 
an exponent of 1. Note that there is much less scatter in the 
slope in the diagonal subspace than in the off-diagonal sub- 
space. Schwartz’* previously found that these modes have a 
simple correspondence to the fast-motional eigenmodes, viz. 
they correspond approximately to relaxation rates of 2W, 
[not shown in Fig. 2(b)], 2W, + 3 Wr’, and 2 We+ ~-17 ‘, 
where Wp is the rotationally induced nuclear spin-flip rate 
discussed in Sec. IV D below. Our present results are in 
agreement with such an assignment, although we find more 
than one mode with nearly the same relaxation rates. 

With a current spectrometer deadtime of -50 ns and 
time resolution of 1 ns in our laboratory, it is difficult to 
observe a signal whose T2 (for echoes) or Tz (for FIDs) is 
shorter than -15-30 ns. Since the homogeneous linewidth 
itself is large in the motional range of -106<R<--107 s-t 
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for nitroxides, most of the examples given below will con- 
centrate on the two motional ranges where the FID or the 
echo signal can be acquired experimentally-viz. the rela- 
tively fast motional regime and the very slow motional re- 
gime. 

A. The S,, vs SC- signal 

Simulation of the relatively fast motional regime is a 
fairly easy problem for the following reasons. (i) The dimen- 
sion of the matrix becomes small since only small L values 
are needed in the basis set as indicated in Table I. (ii) One 
can ignore the contribution of the nuclear Zeeman term for 
14N or i5N when the motion is sufficiently fast to average out 
the nuclear modulation.17 Under these conditions, one needs 
to diagonalize only one of the off-diagonal spaces because 
the relations 0-i = 0: , A-i = AT , are valid. (iii) One can 
use virtually any diagonalization routine since the eigenval- 
ues are well separated. The Lanczos algorithm is just as re- 
liable as the Rutishauser algorithm in this motional range and 
is significantly faster. 

Two mirror image coherence transfer pathways with re- 
spect to tl are responsible for the COSY or the 2D-ELDOR 
signals as indicated in Fig. 1. Since the matrix A-, (eigen- 
values of the ps= - 1 subspace) is complex conjugate to the 
matrix A, (eigenvalues of the ps= 1 subspace) in the absence 
of the nuclear Zeeman term, the cancellation of the imagi- 
nary part in the S,- signal leads to the formation of an echo 
at tl = t2, whereas the S,, signal has no echolike property. If 
the nuclear Zeeman contribution is not negligible, as in the 
very slow motional regime, the imperfect cancellation results 
in modulation of the echo envelope [i.e., electron spin echo 
envelope modulation (ESEEM)]. 

The differences between the S,, signal and the S,- sig- 
nal in Eqs. (13) and (15) depend on the motional rate, since 
slow motions lead to inhomogeneous broadening, and on 
other sources of inhomogeneous broadening; the latter are 
not explicitly included in the stochastic Liouville equation. 
Assuming the inhomogeneous broadening to be given by a 
Gaussian distribution, the two signals can be written as33 

sG’B - c~ -s,+ e-2~2&v~2)2, (33) 

where SyF is the broadened signal and A, is the Gaussian 
inhomogeneous broadening parameter in frequency units. 
Unresolved superhypetline interactions with protons is a 
typical source of Gaussian inhomogeneous broadening in ni- 
troxide spectra. 

To examine the difference between the S,, signal and 
the S,- signal due to the motional rate, it is convenient to 
rewrite the COSY signal given in Eq. (13) in the absence of 
the nuclear Zeeman term as 

(34) 

id 

where wi is the projection of the ith eigenvector on the start- 
ing vector. 0 and Xi denote the matrix of eigenvectors and 
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the ith eigenvalue of the ps=-1 off-diagonal subspace. 
Note that w’ corresponds to the weighting factor of the ith 
eigenvector. 

In the fast-motional regime (R>108 s-l), the eigenvec- 
tors of the off-diagonal space become real, so 
0’0 * = 0’0 = 1 and wf = Wi . Then the only difference be- 
tween the S,+ and S,- signals in Eq. (34) is that the S,+ 
signal evolves with Ai and the S,- signal evolves with A: 
during the r, period, which means the magnetization is rotat- 
ing in opposite directions. If the isotropic part of the (Gauss- 
ian) inhomogeneous broadening is negligible (the anisotropic 
part, if present, is averaged out by the rapid rotational mo- 
tion), then the refocusing property of the S,- signal does not 
matter, and the S,- signal becomes the mirror image of the 
S,, signal along the axis w,=O. Then the sum of the two 
signals is proportional to eiwti + eeiori = 2 cos(wtJ, which is 
a pure absorption with respect to t i . Therefore, if both co- 
herence transfer pathways are kept in the phase cycling, one 
can obtain the pure absorption spectrum by cosine Fourier 
transform23 

As the motion slows down below the rate of R - lo8 s-‘, 
averaging of hyperfine and g tensors is incomplete for a 
typical 14N nitroxide at X band, and this is a source of inho- 
mogeneous broadening. Also the magnetic tensors appear in 
the imaginary part of the stochastic Liouville matrix, and 
their incomplete averaging causes the eigenvectors to deviate 
from being purely real. Fig. 3 shows the decay of the real 
part of the S,, and S,- signals in the time domain for the 
case of R = lo8 s-’ and no Gaussian inhomogeneous broad- 
ening. The S,, and S,- signals are no longer equivalent. 
The complex nature of the eigenvectors introduces a phase 
change in the S,- signal [i.e., O&O* in Eq. (34) is a complex 
matrix] and allows for mixing (or “beating”) of different 
eigenmodes in S,- [cf. Eq. (34)]. Therefore the S,- signal 
loses its coherence in phase whereas the S,+ signal does not. 
This loss of phase coherence appears as the interference pat- 
tern near the t, = t2 axis in the S,- signal. The S,+ signal 
propagates like a coherent wave, maintaining its phase co- 
herence throughout the decay in tI and t2. The overall decay 
rates of the two signals are similar if the motion is faster than 
R--IO6 s-‘. But for R5106 s-’ the S c+ signal does decay 
significantly faster than the S,- signal in a fashion more 
typical of the effect of ordinary inhomogeneous broadening, 
as a result of the nearly continuous eigenvalue spectrum (cf. 
Sec. III A). 

The inhomogeneous broadening due to incomplete aver- 
aging of the proton superhyperhne tensor also becomes sig- 
nificant as the motion slows. Eq. (33) implies that the inten- 
sities of the two signals are affected in different ways due to 
Gaussian inhomogeneous broadening. Whereas both signals 
are multiplied by the same exponentially decaying function 
along the t, =0 or t,=O axes, only the S,, signal is multi- 
plied by the decaying function along the tt = t2 axis. Thus, 
the S,+ signal decays with Tz and the S,- signal decays 
with T2 along the t, = t2 axis because the inhomogeneous 
broadening is completely canceled in the S,- signal. There- 
fore the S,- signal will be more intense than the S,, signal 
after the finite deadtime. The case where there is Gaussian 
inbomogeneous broadening, but the motion is fast enough to 

average the magnetic tensors, is illustrated in Fig. 4 and it 
shows this feature. Also, the line shape of the S,- signal in 
the frequency domain tends to be elongated along the diag- 
onal through the autopeaks, whereas the S,, signal keeps its 
symmetric shape. 

As the motion slows sufficiently, the inhomogeneous 
broadening will dominate the decay ( T2 % Tz), and it is im- 
possible to observe the S,, signal after the finite deadtime, 
since it decays with Tz . However since the homogeneous 
linewidth decreases as the motion approaches the*rigid limit 
[cf. Fig. 2(a)], one is able to detect the S,- signal in the form 
of an echo provided the T, decay is not too fast compared to 
the spectrometer deadtime. 

Due to the phase change resulting from the complex 
eigenvectors, and the intensity change from the inhomoge- 
neous broadening and finite deadtime, it is not possible to 
obtain a pure absorption spectrum simply by combining two 
experiments from the mirror image coherence transfer path- 
ways. Furthermore, to avoid the need for phase corrections 
arising from experimental limitations, the absolute-value (or 
magnitude) spectrum is typically utilized.4-7 Therefore the 
absolute-value spectrum will be displayed throughout most 
of this paper. 

We show in Fig. 5 an experimental realization of these 
various effects taken from Lee et a1.6 for the case of 2D- 
ELDOR in a complex fluid where there is substantial inho- 
mogeneous broadening resulting from unresolved proton su- 
perhyperfine interactions and from another source discussed 
in Sec. IV C below. Note first of all the refocusing property 
of the S,- signal along the t t = t2 diagonal, whereas this is 
not the case for the S,+ signal [cf. Fig. 5(b) vs Fig. 5(a)]. 
Note that the S,+ signal, which is more affected by inhomo- 
geneous broadening, decays more rapidly during the finite 
deadtime, causing it to be weaker than the S,- signal after 
FT [cf. Fig. 5(c) vs Fig. 5(d)]. In this ELDOR case we see 
that the ratio of the crosspeak heights relative to the autopeak 
heights is smaller for the S,- signal compared to the S,, 
signal. This is because only the autopeaks in the S,- signal 
can experience an exact cancellation of the inhomogeneous 
broadening along t , = t2, so they are sharper than the S,- 
crosspeaks. These experimental spectra have been fitted to 
the present theory, and the relevant dynamic and ordering 
parameters found appear in the caption to Fig. 5. 

8. Homogeneous linewidth from the S,- COSY 

Standard two pulse sequences (rrl2-rr or ~rl2--rr/2) can 
be used to obtain the homogeneous linewidth when T2 
9 T;. The SECSY experiment with a hard pulse has the 
advantage over the conventional Hahn echo method with a 
soft pulse in that the linewidths across the spectrum are ob- 
tained from a single experiment (multiplex advantage). One 
gets interference from the FID signal if T, and Tz are not 
much different as in the incipient slow motional regime. One 
obvious remedy for the problem has been to apply an exter- 
nal field gradient to force the FID signal to decay faster (i.e., 
Tf gets shorter). Whereas the external inhomogeneous field 
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FIG. 3. The effect of incomplete averaging of hype&e and g tensors. The COSY spectra in the time domain are shown for (a) the S,- signal and (b) the S,+ 
signal. The parameters used for the simulation are: II,=3200 G, g,, ,g,, ,g,,=2.0092, 2.0059, 2.0021, A,, 
R,,=l.OX 108 s-1, L,, 

=Ay,=4.9 G, A,,=34.2 G, R,=l.OXlO* s-‘, 
=4. No Gaussian inhomogeneous broadening is added (i.e., A,=0 G). 

does not affect the Hahn echo method, it broadens the 
SECSY spectrum along the ~2 direction, resulting in the loss 
of resolution. 

An alternative way is to realize that the S,- signal is the 
term responsible for the echo. Even though the S,- COSY 
signal looks like a FID signal in the incipient slow motional 
regime, it is really the same signal that would generate an 
echo at tl = t2. This can be seen in Fig. 4(a). Following the 
t,=O axis, the signal looks like a FID. Following the tt=ZOO 
ns axis, the signal looks like a perfect echo. This implies that 
the S,- COSY signal can be transformed into a SECSY-like 
format to generate the homogeneous linewidth across the 
spectrum without applying an external magnetic field. 

From Eq. (13), the S,- COSY signal can be written as 

S~y(t* ,t2)CC~ Cye-~j’)‘le-Aj-‘)‘2, (35) 
1.i 

where At” and Xj-” are the eigenvalues of the ps= 1 and 
ps=- 1 subspaces, respectively. The coefficients cij are 
given by 

Clj= C (~-l)i(“-*)ij(o-~)kj(O~)kl(o*)ml(UI)m~ 

i,k,m 
(36) 

The SECSY signal, ignoring the contribution of the nuclear 
Zeeman term, is obtained by replacing t2 with t r + t2. Using 
the complex conjugate relations 0 - t = 0 T , A-, = AT (i.e., 
X5-‘) = Al”*), and dropping the super- and subscripts denot- 
iig the ps values, the SECSY signal is 

s;pytl ,t,)ccC clje-(~‘+“T)‘le-Xff~, 
1.j 

(37) 
clj= 2 vio~o~ok~o~~v~ 1 

i.k,m 

The autopeaks appear when clj= S,j, and they can be written 
as 

autopeaks of S~ECSY(tl ,t2)“C e-(hi+A,*)‘le-XTrz 
i 

= c .-2 Re(Xj)f,e-X;f2. (38) 
j 

This shows that the linewidth appears along the o, direction 
and the cw-equivalent spectrum appears along the w2 direc- 
tion in the SECSY spectrum. The inhomogeneous linewidth 
broadens the spectrum only along the o2 direction, but one 
still recovers the homogeneous linewidth in the w, direction 
due to cancellation of the imaginary part. 

Now we will show how one can achieve the same result 
by dividing the S,- COSY spectrum into two parts and per- 
forming a shearing transformation. Defining t2 = tl + ta for 
the region t2>t, and following the same algebra as for 
SECSY [cf. Eq. (38)], Eq. (35) can be rewritten as 

autopeaks of S,c_Osy( t, ,ta) 

CCC ~-(hi+hj*)rl~-X~r~ for t2>t, 
i 

(39) 

which is exactly the same as for SECSY. For the region 
t,<t,,definingt, = t; + tzgives 

autopeaks of S~osy( t f ,t2) 

0zC ~-Xj’~~-(hi+“i*)‘Z for t2<tl. 
i 

(40) 

The information content in Eq. (40) is the same as that in Eq. 
(39), although the roles of t1 and t2 are interchanged. These 
transformations of the axis show that one can still retrieve 
the homogeneous linewidth from the COSY spectrum by 
eliminating the S,, signal by dual quadrature data 
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(b) 

FIG. 4. The effect of Gaussian inhomogeneous broadening. The COSY spectrum in time (left-hand side) and frequency (right-hand side) domains for (a) the 
S, _ signal and (b) the S,, signal. The same parameters listed in Fig. 3 are used except R,=4.OX lo* s-‘, Rll=8.OX 10s s-‘, Ao= 1 G. Absolute-value spectra 
are shown for the spectra in the frequency domain. 

collection.25 Therefore it is not necessary to quench the FID 
by applying a field gradient, which would decrease the reso- 
lution in the 02 direction, to obtain the homogeneous line- 
width across the spectrum. Note that the COSY-transformed- 
into-SECSY format has better sensitivity than SECSY itself, 
since it is based on the whole FID collection, and not just on 
the decaying half of the echo. Even in the case where only 
the echo signal is observed, one can still collect the entire 
echo and use the transformations. This would increase the 
sensitivity by v? since one has both the refocusing and the 
dephasing parts of the echo. 

C. Inhomogeneous broadening (microscopic order 
macroscopic disorder effect) 

The difference between the S,, and S,- signal mostly 
originates from inhomogeneous broadening as indicated ear- 
lier. Most sources of inhomogeneous broadening distinct 
from those due to slow motions can be approximated as 
Gaussian or Lorentzian. An important class of exceptions 
appears in samples with microscopic molecular ordering 
such as liquid crystalline, model membrane, and polymer 
samples. These long-chain molecules can often be aligned 
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FIG. 5. Experimental 2D-ELDOR spectra for a mixing time of T=87 ns from the spin-labeled lipid 12-PC [I-palmitoyl-2-(12-doxyl stearoyl phosphatidyl- 
choline] in a phospholipid membrane vesicle of POPC [1-palmitoyl-2oleoyl-sn-glycerophosphatidylcholine] at 55 “C. (a) the S,, signal and (b) the S,- signal 
in the time domain. (c) the S,, signal and (d) the S,- signal in frequency domain. Note the difference in scale in (a) and (b). The scales in (c) and (d) are 
the same. The parameters estimated from the nonlinear least-squares fitting procedure are: R,=4.6X IO8 s-‘, Rll=1.4X lo9 s-‘, t$= 1.0, G=-0.4, A,=0.4 G. 
The deadtimes for tl and f2 are 50 and 67 ns, respectively (Ref. 6). The magnetic parameters used are: B,=3200 G, g,, ,g,, ,g,,=2.0092, 2.0059, 2.0021, 
A,,=A,,=4.9 G, A,,=34.2 G. 

along a specific direction (i.e., the director) resulting in mac- 
roscopic order. The molecular reorientational dynamics in 
the presence of a tendency to order is modeled by a (sym- 
metrized) rotational diffusion superoperator with a restoring 
potential of the form 

u(a) = -kBT 2 ~~~o(~) + &@@) 
L=2,4 

+~-,w)l~~ (41) 

where R=(a,P,$ represents a set of Euler angles describing 
the orientation of the diffusion tensor with respect to the 
director axis. The director tilt angle q is defined as the angle 
between the director axis and the magnetic field. 

In an effort to explain the ESR spectrum of lipid disper- 
sion samples which lack any macroscopic order, the micro- 
scopic order macroscopic disorder (MOMD) model was in- 
troduced by Meirovitch et al.34 It regards the dispersion 
sample as a collection of fragments whose director axes are 
distributed isotropically in space (macroscopic disorder). 

Within a given fragment, the molecules are well aligned 
along the director axis (microscopic order). Then the spec- 
trum from the dispersion sample can be regarded as the su- 
perposition of the spectrum from all fragments, which can be 
written as 

SyzMD= 
I 

s,,(#)sin J,/J dq (42) 

where SC* (1cI> is the ESR spectrum with the director angle $. 
The effect of the MOMD model on the cw ESR spectrum is 
also illustrated in Meirovitch et al. It has recently been ap- 
plied in the analysis of cw ESR spectra of spin labeled lipids 
in di-pahnitoyl-phosphatidyl-choline/gramicidin A.3s The 
orientation dependence of the real and imaginary parts of the 
eigenvalues for a typical nitroxide attached along the chain is 
illustrated in Fig. 6 as a function of $. The resulting MOMD 
spectrum is shown in Fig. 6(c) in an absolute-value plot. The 
outer peaks show more broadening than the central peak, 
since they show more variation in the imaginary part of the 
eigenvalues. As the orienting potential increases [large epsi- 
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lons in Eq. (41)], the line shape becomes more asymmetric, 
and one can observe a hump in the outer lines, while the 
central line becomes slightly asymmetric. All these charac- 
teristics of the MOMD model observed in the cw ESR spec- 
trum also apply to the 2D spectrum. 

Figure 7 shows typical S,, and S,- 2D-ELDOR spectra 
based on the MOMD model. The corresponding cw spectrum 
is shown in Fig. 6(c). Whereas the line shape along the au- 
topeaks in the S,- signal (negative diagonal axis) resembles 
the cw spectrum, the line shape of the autopeaks in the S,+ 
signal looks quite different, showing only the two extrema of 
the frequency distribution due to the MOMD model for each 
hyperline line. [The extrema can be clearly seen in the outer 
hyperfine lines where the frequency variation due to the 
MOMD model is large, cf. Fig. 6(b).] This seems to be due 
to a combination of the absolute-value display along both 
dimensions used to avoid the phase problem associated with 
the two-dimensional Fourier transformation, and the super- 
position of the eigenmodes resulting from the distribution of 
the director axis in the MOMD model. Note that the experi- 
mental example of Fig. 5 corresponds to this MOMD case. 

The same kind of superposition occurs in simulations we 
have performed of rigid limit (i.e., powder) COSY spectra. 
Since the resonance frequency depends on the orientation of 
the micro crystal, the orientational average in a powder spec- 
trum can be viewed as the integral in Eq. (42). The powder 
spectrum is not much different from the spectrum at a very 
slow motional rate (near the rigid limit). We simulated the 
S,, and S,- COSY spectra at a near rigid limit motional 
rate, and confirmed that they have similar lineshapes to those 
in the MOMD spectra in Fig. 7. Note that the S,, signal in 
this motional regime decays too fast to be detected in real 
experiments. 

The crosspeaks with Amr= + 1 in the 2D-ELDOR spec- 
tra shown in Fig. 7 exhibit the opposite trend to that noted 
above for the autopeaks. The S,+ signal shows a smooth 
shape, and the S,- signal shows extrema. It should be 
pointed out that these fine details may not be easily observed 
in an experiment. The ordering potential should be large to 
have an appreciable MOMD effect. This makes the S,+ sig- 
nal decay much faster than the S,- signal, resulting in a 
much weaker signal not as likely to be detectable after the 
deadtime. Also, the additional inhomogeneous broadening 
(Gaussian or Lorentzian) smears out the fine details of the 
spectrum. 

In Fig. 8 we show an experimental 2D-ELDOR spec- 
trum for the case of MOMD with a large ordering potential 
from the study of Crepeau et aL7 Only the S,- signal is 
detectable after the finite deadtime. Note that the peak shapes 
reflect the MOMD effect; i.e., compare with Fig. 7(b). How- 
ever in Fig. 8 one has a different principal axis of alignment 
than in Fig. 7, leading to some differences in detail of the 
autopeak shapes, and the experimental spectrum of Fig. 8 has 
incipient slow motional effects as well. We list in the figure 
caption the relevant dynamic and ordering parameters found 
by a NLLS fit of the theory to this spectrum. 
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FIG. 6. The effect of MOMD: (a) Re{h-,} vs director tilt angle (b) Im{L,} 
vs director tilt angle (c) cw ESR spectrum based on the MOMD mode1 
averaged over 20 director tilt angles. The absolute-value field-swept spec- 
trum is shown for comparison to the 2D spectra in Fig. 7, which are ob- 
tained with frequency sweep. The parameters used for the simulation are: 
Be=3200 G, g,,g,,,g,,=2.0092, 2.0059, 2.0021, A,,=A,,=4.9 G, 
A,,=34.2 G, R,=4.0X108 s-‘, R,(=8.0X 10’ SC’, &=O”, L-=4. Apoten- 
tial coefficient of $= 1.0 (S-0.22) is used to provide microscopic ordering 
for the MOMD effect, and additional Gaussian inhomogeneous broadening 
of 0.5 G is included (Ao=0.5 G). 

D. Ultraslow motional regime (near rigid limit) 

The simulation of the near rigid limit is a challenging 
problem, since the dimension of the matrix becomes larger as 
the motion slows down. This makes the RA very inefficient 
especially for eigenvector calculations. For a matrix with 
n=912 and nb=66 at a motional rate of R= lo4 s-‘, the full 
eigenvector calculation took about 35 min on a IBM 
RS6000/355 workstation. It is difficult to use Lanczos-based 
algorithms, since the test for spurious and duplicate eigen- 
values is not very reliable because the eigenvalues are not 
well separated (cf. Sec. III A). We chose to use the RA with 
a minimized basis set to avoid any complications. Possible 
improvement of performance is expected by using the RA 
based on calculating the cross-correlation function rather 
than the eigenvectors (cf. Sec. III C). It should be empha- 
sized that the dimension of the matrix should be minimized 
by selecting only the necessary basis vectors using the full 
pruning scheme described in Sec. III D. Only the S,- signal 
is available in the form of an echo in this motional regime 
due to the inhomogeneous broadening, and the spectra will 
be shown in SECSY format (i.e., autopeak alongfl =O). Fig-’ 
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FIG. 7. 2D-ELDOR spectra with the MOMD model for (a) the S,, signal and (b) the SC- signal. The same parameters listed in Fig. 6 are used. Additional 
parameters for the 2D simulation are: initial t, ,r,=O ns, steps in I, and r2 (i.e., At, and AtJ are 5 ns, with 128 t, ,t2 values, mixing time T= 100 ns. 
Absolute-value plots are shown. Notice the difference in scale in S,, and SC- . 

ure 9 shows the SECSY and 2D-ELDOR spectra with 
R = lo4 s-t for a typical &oxide. Note that the crosspeaks 
between the two autopeaks at cfi ,f2) = (OJ,) and (Of& ap- 
pear at cf, - f b ,f,) and cfb - f, ,fb) in the SECSY format. 

The apparent linewidths of the autopeaks in 2D-ELDOR 
spectra increase as the mixing time increases. This is due to 
the development of the crosspeaks arising from the slow ro- 
tational motion (“motional crosspeaks”). The development 
of these motional crosspeaks appears as line broadening 
since the eigenmodes represent a virtual continuum of the 
orientations in the near rigid limit; i.e., one is observing “ro- 
tational jumps” from each orientation to all other orienta- 
tions by the Brownian rotation. The cw ESR spectra for mo- 
tional rates slower than R = lo6 s-’ are essentially in the rigid 
limit, e.g., there is no difference between the cw spectra from 
R = lo5 and lo4 s-i, but this is not the case for the 2D spec- 
tra. 

The apparent linewidth broadening due to the develop- 
ment of motional crosspeaks provides a method of measur- 
ing the rotational correlation time in the motional regime 
where the cw ESR spectrum is in the rigid limit and the 
lineshape analysis is insensitive to the motional rate. The 
following procedure illustrates how one can approximately 
obtain the rotational correlation time from the experimental 
spectrum. Slices along f2=0 MHz are extracted from the 
absolute-value spectra in Fig. 9, and are shown in Fig. 10. 
The broadening of the ft >Ocft CO) region represents the 
development of the crosspeaks between the original autopeak 
(i.e., f2=0 MHz) and the autopeaks at f2CO(f2>O) MHz. 
An attempt to fit the spectra was made using a NLLS fit to 
the absolute-value spectrum using a single Lorentzian line as 

y=~[T~~+4?~~Cf-fu)~]-t’~+(baseline correction) 
(43) 

with fe=O. (This ignores details of the shapes, most evident 
at long mixing times, T, which reflect the intensities of the 
autopeaks at the different values of f-f0 .) The nominal 
linewidth T2 for each mixing time is found to satisfy the 
following: 

LiT;‘(Tm)=T;‘(Tm)-T;l(0)=~) (44 

where T;‘(O) is the linewidth of the 2D-ELDOR spectrum 
with zero mixing time, i.e., the SECSY spectrum. ra denotes 
the rotational correlation time, and it is 1/(6R) for the iso- 
tropic Brownian motional model. The linewidths from five 
mixing times T,=O,3,5,10,20 pus were analyzed by linear 
least squares to produce u = 1.0X 1O-2 ,US for R = lo4 s-‘. 
The same procedure was repeated for R= lo5 s-’ where 
T, =0,100,200,500,1000 ns were used, resulting in 
a=1.2x10-2 ps. The constant a is thus found to be inde- 
pendent of the motional rate as expected and to be 
- 1.1 X 10e2 ps. (The same result was obtained from slices 
taken along f2=78 MHz.) Then one can obtain rR from Eq. 
(44) by measuring the linewidths of the SECSY and 2D- 
ELDOR spectra. 

The dependence of a on the hyperfine tensor component 
A,, was also examined at a motional rate of R = lo5 s- ‘. The 
value of a was 2.2X lo-* ,US for AzZ=27 G, 1.1 X 10m2 ,US for 
A,,=34.2 G, and 0.7X 10e2 ,us for A,,=40 G, keeping other 
magnetic parameters constant. It showed a monotonic de- 
crease with A,, within this range. This result is sensible since 
a smaller value of a implies a faster development of the 
rotational crosspeaks, which is expected for a larger hyper- 
fine tensor. [In fact, we find that a-* plotted vs A,, yields a 
good linear fit with a slope of (5.41*0.35)X lo6 s-’ G-’ and 
an intercept of (-96t12)X106 s-l]. 
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In Fig. 11 we show slices along f2=0 MHz from experi- 
mental 2D-ELDOR spectra taken in the very slow motional 
regime’ for a range of mixing times of 3-30 ps. They were 
analyzed in an identical fashion to the simulated spectra. We 
obtained (u7-a)-‘=0.19 (ps)-* corresponding to a ~-480 
p when the theoretical estimate of u from Fig. 10 is used. 
This illustrates that 2D-ELDOR is indeed sensitive to very 
slow motions approaching the millisecond time scale, and 
that estimates of ra are easily obtained in the manner de- 
scribed. 

In addition to the motional crosspeaks, there are the 
regular AmI= 2 1 crosspeaks observed in Fig. 9 as we noted 
above. They arise from nuclear spin-flips induced by rota- 
tional modulation of the hyperfine tensor, as was the case for 
the faster motions. It is possible to estimate their rate of 
growth in the case of simple isotropic rotational diffusion 
(i.e., the growth of these cross-peak volumes compared to 
the autopeak volumes), by analogy to the fast-motional case 
of 2D-ELDOR.2 A simple perturbation theory analysis based 
on the SLE will lead to a decoupling of the forbidden ESR 
transition basis elements (p’=O,p’+O) from the allowed 
transitions (ps= t 1 ,#= 0), and the nuclear magnetic reso- 
nance (NMR) transitions (pS=O,pr#O) from the popula- 
tions (p’=O,p’=O). It was shown previously36’37 that this 
leads to a simple expression for the rotationally induced 
nuclear spin flip rate (for 14N): 

wy~=&G&, 
2 R 

where 

TR= 1/(6R), D= -; f jy,l(A,,-q,,), 
( 1 

62=-f be\ a.+; (Ap,v> , [ I 
where it is assumed A,,=A,,=AII with u,=Tr(A) and the 
nuclear Zeeman term is much smaller than uN . [For 15N the 
value of wl”” is half that given by Eq. (45).] This result is 
essentially the fast-motional result, but a previous numerical 
analysis by Schwartz” has shown that this is a useful ap- 
proximation even for slow motions, and our present results 
are consistent with it. For slow motions, Eq. (45) goes as- 
ymptotically as (D2/5)b”;‘7i;‘. The actual experiments5 
have, however, shown that it is necessary to include a rota- 
tionally independent contribution to W, to explain the more 
rapid decay of the autopeak intensities (due to the growth of 
the Am,=&1 crosspeaks) than is consistent with the rR ob- 
tained from the motional crosspeaks. Such a contribution is 
included in the general theoretical expressions given in Ap- 
pendix B. 

(45) 

We have also considered the effect of anisotropic rota- 
tional rates on the very slow motional 2D-ELDOR spectra. 
We illustrate with a large anisotropy of RIIIR, = 100 for two 
different orientations of the principal diffusion axes with re- 
spect to the magnetic tensor principal axes. When RII refers to 
the magnetic z axis we have only a modest change in spectral 
shapes versus the isotropic case [compare Figs. 12(a) and 
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12(b) with Figs. 9(a) and 9(c)]. The largest differences ap- 
pear in the T=O (i.e., SECSY) spectra which just show the 
autopeaks. When RII refers to the magnetic x axis, the line 
shape changes are more dramatic [cf. Figs. 12(c) and 12(d)], 
and the behavior is also significantly different from that of 
isotropic spectra calculated for R~~=R,=106 s-’ (not 
shown). These sample spectra illustrate the potential of 2D- 
ELDOR spectral simulations for resolving motional anisot- 
ropy in the very slow motional regime. 

The problem of large dimensional matrices in simulating 
the 14N nitroxide spectrum in the near rigid limit can be 
partially alleviated by using 15N isotopic labeling, which re- 
duces the size of the matrices by a factor of 4/9. The SECSY 
and the 2D-ELDOR spectra for a 15N nitroxide are shown in 
Fig. 13. The same g-tensor values were used as in the 14N 
nitroxide spectrum in Fig. 9, and the hyperfine tensor values 
were scaled by the ratio of the nuclear gyromagnetic ratios of 
15N vs 14N. The increase in the apparent linewidth is quali- 
tatively the same as for a 14N nitroxide, and the equivalent 
analysis at motional rates of R = lo4 and lo5 s-’ yielded 
a =3.3x 1o-3 ps. 

Another important question is how one can distinguish 
between restricted [i.e., highly ordered (HO)] but fast motion 
and true slow motion (SM) given the spectral similarities for 
these two cases noted in the previous subsection. In both 
cases, the range of rotational angle sampled by the molecule 
within a short time is quite limited. We can model the re- 
stricted but fast motion by specifying a large restoring poten- 
tial and a fast rotational rate. Fig. 14 shows the SECSY and 
the 2D-ELDOR spectra based on the MOMD model with a 
potential coefficient G=lO.O, and A,=O.l G for “N. Note 
that the appearance of the SECSY spectrum is quite similar 
to the SECSY spectrum near the rigid limit without any re- 
storing potential shown in Fig. 13(a). This implies that it will 
be difficult to distinguish the two cases in the presence of 
inhomogeneous broadening with the cw ESR spectra, which 
is equivalent to the autopeaks in SECSY. (The SECSY reso- 
lution can, however, be enhanced by obtaining the pure ab- 
sorption rather than the magnitude spectrum as discussed in 
Sec. IV F) However, the resulting 2D-ELDOR spectra are 
significantly different as can be seen in Figs. 13 and Fig. 14. 
Near the rigid limit without any restoring potential, the slow 
rotational motion can still change the orientation of the mol- 
ecule into any angle. Therefore the crosspeaks develop in a 
continuous fashion as in Fig. 13. In the MOMD model, how- 
ever, the range of motion is restricted by the strong restoring 
potential, and each different orientation angle corresponds to 
a different local domain. The fast rotational motion within 
each local domain dominates and leads primarily to the de- 
velopment of the standard AmI= + 1 crosspeaks compared to 
the rotational crosspeaks. (However, rotational crosspeaks 
can result from the very slow reorientation of the domain 
structure7 which has not as yet been included in our MOMD 
model.) Therefore the crosspeaks from the MOMD model 
appear more distinct in Fig. 14 than in Fig. 13. 

The rate of crosspeak development depends, of course, 
on the motional rate. Whereas the spectra near the rigid limit 
show slow development of “rotational” crosspeaks (e.g., 5 
ps in Fig. 13), the crosspeaks in the restricted but fast mo- 
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tional case fully develop within a short period (e.g., 1 ,LG in 
Fig. 14). If any slow reorientation of the local domain were 
present in the MOMD model, the crosspeaks would develop 
in a continuous fashion over a long mixing period in addition 
to fast and distinct growth.6 In favorable cases where the two 
time scales are well separated, 2D-ELDOR may be able to 
distinguish the two processes. 

E. Nuclear modulation 

electron spin by dipolar interaction, thereby yielding struc- 
tural information. So far, most ESEEM experiments are per- 
formed in the solid state and the effect of molecular rota- 
tional motion has hardly been studied.38 However, it is clear 
from the results of Patyal et QZ.~” that nuclear modulation is 
an important component in 2D-ESR spectra even in the pres- 
ence of residual motion. We present model simulations of 
nuclear modulation phenomena for SM and for rotational 
motion restricted by a restoring potential (HO). 

Nuclear modulation of the electron-spin echo has been Simulation of the nuclear modulation requires the pseu- 
utilized mainly to study nuclei that are weakly coupled to the dosecular dipolar and the nuclear Zeeman terms in the 

PIG. 8. The experimental 2D-ELDOR spectra from cholestane spin label 
(CSL) in phospholipid membrane vesicles of POPC at 50 “C. (a) Surface 
plot and (b) contour plot of the S,- signal are shown for T=400 ns. The 
parameters estimated from the nonlinear least-squares fitting procedure are: 
R,=3.9X 10’ s-t, RU= 1.0X lo9 s-‘, 4=5.0, c$=1.6, $=-0.5, A,=1.3 G. 
The deadtimes for I, and ts are 50 and 67 ns, respectively (Ref. 7). The 
magnetic parameters used are: Bc=3200 G, g,, ,g,, ,g,,=2.0081, 2.0061, 
2.0024, A,, ,A,, ,A,,=5.6, 5.3, 33.8 G. Also, &,=90” and yo=75”. The 
S,, signal decays away during the deadtime due to the large inhomoge- 
neous broadening and MOMD effect. Note that the autopeaks of the .S,- 
signal appear along the negative-diagonal axis, ft = -fs . 

6 
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FIG. 9. 2D-echo-ELDOR spectra near the rigid limit (R= lo4 s-‘) for mixing times of (a) T=O ps, i.e., the SECSY spectrum, (b) T=3 ps, (c) T=lO ps, (d) 
T=?O ,US. The simulation parameters are: R= lo4 s-‘, g,, ,g,, ,g,,=2.0096, 2.0063, 2.0022, A,, ,Ayy,Azz=6.5, 4.5, 33.4 G, A,=l.O G, L&=56, 
L”-=27, Km= 18, M,,- -2, and B,=3200 G. A pruned basis set was obtained with a 3% tolerance. Initial t, ,f,=O ns, steps in t, and ta (i.e., At, and At,) 
are 4 ns, and 128 t, ,t2 values are used for the 2D simulation. 

Hamiltonian. Since the nuclear Zeeman terms appear as off- 
diagonal with respect to the index j”, the stochastic Liou- 
ville matrix is no longer block diagonal with respect to jM . 
Therefore it is necessary to keep those basis vectors with 
j”= - 1, which causes a considerably larger basis set. The 
presence of both symmetric (j”= 1) and, antisymmetric 
(jM = - 1) basis vectors causes the eigenvalues and the eigen- 
vectors of the ps = 2 1 subspaces to occur in pairs, where the 
eigenvalues of each subspace are complex conjugates of the 
other, and the eigenvectors have more complicated internal 
relationships we discuss next. 

The nuclear Zeeman term in the spin Hamiltonian does 
not change sign with respect to the index ps [cf. Eq. (AlO)], 
whereas the g- and hyperfine-tensor terms in the Hamil- 
tonian do change sign [cf. Eqs. (A9) and (AlO)]. Therefore, 
the two off-diagonal subspaces seem to require separate di- 
agonaiizations in general. However, a more careful examina- 
tion shows that the eigenvalues and the weighting factors of 
the two off-diagonal subspaces still remains as complex con- 
jugates of each other (i.e., A -, = A?). The eigenvectors dif- 
fer only in the sign of their components corresponding to the 

basis vectors with jM = - 1 after complex conjugation. There- 
fore once the eigenvectors for the ps= 1 subspace are ob- 
tained, the prescription for obtaining the eigenvectors of the 
ps= - 1 subspace is to take the complex conjugate of the 
eigenvectors of the ps= 1 subspace, and multiply each ele- 
ment by the jM value of the corresponding basis vector. We 
do recover the property 0- 1 = OT in the absence of the 
nuclear Zeeman term, since the basis vectors with jM = - 1 
are no longer necessary. 

Motional averaging of the nuclear modulation patterns 
was illustrated by Schwartz et al. in terms of echo envelope 
decay’7*38 With the second dimension experimentally avail- 
able, a better way of examining the nuclear modulation effect 
is the SECSY, or echo-ELDOR experiment.33 We show a 
SECSY simulation near the rigid limit @=4.63X lo3 s-‘) in 
Fig. 15(a), which shows the nuclear modulation pattern dis- 
played along the fl direction. The hyperfine-tensor elements 
and the nuclear gyromagnetic ratio are appropriate for a pro- 
ton located at -3.8 A from the unpaired electron. The modu- 
lation of the echo envelope gradually decreases as the mo- 
tional rate increases, and disappears when the rate of the 
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FIG. 10. y=O MHz slices of 2D-ELDOR spectra in Fig. 9. The solid lines 
show the best fit to the absolute value of the single Lorentzian as shown in 
Eq. (43). The resulting linewidth plot is shown in the inset. The slope of the 
linear fit is 6.2 /AS-*. 

rotational motion is faster than R = lo7 s-’ (i.e., 7,517 ns).17 
Another way of recovering the modulation pattern is by re- 
stricting the motional range by adding a strong restoring po- 
tential. As the restoring potential increases, the spectrum be- 
comes more single-crystal-like, and the nuclear modulation 
pattern becomes more prominent (unless the director axis 
coincides with one of the hyperfine tensor axes33). The 
SECSY spectrum from a dispersion sample may be again 
approximated by the MOMD model, and results from aver- 
aging over 20 director tilt angles are shown in Fig. 15(b). 
Even though the autopeaks in Figs. 15(a) and 15(b) are sig- 
nificantly different, it may be difficult to distinguish the two 
cases from the shape of the autopeaks in the presence of a 
large inhomogeneous broadening. However, additional 
modulation peaks in Fig. 15(b) may still be used to distin- 
guish between restricted but fast motion (HO) and SM. 

F. Normalized contour plots and the pure absorption 
spectrum 

Normalized contour plots were introduced as a way of 
examining the field-swept 2D-ESE spectrum by Millhauser 
and Freed.20.39 For every field position, the slice along the fi 
direction is normalized so that the amplitude at ft =O MHz is 
unity. This can be regarded essentially as the homogeneous 
linewidth (T,‘) plot across the spectrum, and it is found to 
be very sensitive to the motional dynamics and models. For 
example, these authors were able to observe a significant 

A v) .c 
5 

-G 6 

-i3 3 
.e 
& 
s 

-7 10 

T=3 /AS )fja 

i=15rr..L 
USA T=20 

I,, I I I I I I, I I I I, I I I 
-40 -20 

f, (LHL) 
20 40 

FIG. 11. y=O MHz slices of ZD-ELDOR spectra from perdeuterated tem- 
pone in 85% glycerol-15% Hz0 at -73 “C (Ref. 5). The resulting linewidth 
plot vs T is shown in the inset. The slope of the linear fit is 0.19 p-*. 

variation of the linewidth across the slow motional spectrum 
from tempone in 85% glycerol/water, which could be ex- 
plained by Brownian diffusion, but not by jump diffusion. 

As we already discussed, the cw ESR spectral simula- 
tions are found to converge with a pruning tolerance of just 
3%, since the inhomogeneous contributions to the linewidth 
reduce the resolution. However, the homogeneous linewidths 
predicted near the rigid limit are found to increase as one 
tightens the pruning tolerance versus 3% (i.e., by including 
more basis vectors), and the linewidth reaches approximately 
95% of the limiting value with a pruning tolerance of 0.03%. 
Since a normalized contour plot of the field-swept 2D ESE 
directly monitors the homogeneous linewidth, its simulation 
requires much tighter tolerance than the cw ESR simulation. 
Vasavada et al. proposed the use of 0.03% as a conservative 
tolerance. ** 

The two dimensional version of field-swept ESE is a 
SECSY experiment. The use of hard pulses in SECSY en- 
ables one to obtain the homogeneous linewidth across the 
spectrum in significantly less time. However, it is not trivial 
to obtain a pure absorption spectrum4 because one must cor- 
rect the phase errors due to effects of finite dead-time and 
finite irradiating fields.2’40’4’ In an absolute-value display of 
the SECSY spectrum, the interference from the dispersive 
components of neighboring dynamic spin packets reduces 
the resolution, and the normalized contour plot does not 
show as much variation of linewidth across the spectrum as 
the field-swept ESE. This problem is exacerbated near the 
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FIG. 12. The effect of anisotropic rotational rates: 2D-echo-ELDOR spectra simulated with R, = R,= 10 4 s -I, R,= lo6 SC’ are shown for mixing times of (a) 
T=O ps, (b) T= 10 /A% The case where R,=R,= lo4 s-‘, Rx= IO6 s-’ is shown in the simulations of(c) T=O p (d) T= 10 /.s. Other parameters are the same 
as in Fig. 9. 

rigid limit where the resonance frequencies of the dynamic 
spin packets are a continuum. Since the absolute-value plot 
of the SECSY spectrum provides reduced sensitivity to the 
homogeneous linewidth, its simulation is usually satisfied 
with a pruning tolerance of 3%. Field-swept ESE does not 
have the problem of mixed phase, since it yields a pure ab- 
sorption inherently along the swept field, and one dimen- 
sional Fourier transform is used to measure the linewidth at 
each field position. 

A numerical experiment that demonstrates the loss of 
resolution in the absolute-value plot is shown in Fig. 16. 
Note the significant difference in the pure absorption spec- 
trum and the absolute-value spectrum. It demonstrates the 
importance of incorporating phase corrections4V41 to recover 
the pure absorption spectra in 2D-FT studies of very slow 
motions. 

V. SUMMARY AND CONCLUSIONS 

A theory of 2D-FT ESR that covers the entire range of 
motion in a liquid has been developed based on the stochas- 
tic Liouville approach. Relaxation processes such as the ro- 

tational motion of the molecule and Heisenberg exchange are 
explicitly included in the stochastic Liouville matrix. De- 
tailed expressions for two and three pulse sequences were 
derived from the coherence transfer pathway analysis of the 
multiple pulse sequence. The theory is general enough to 
simulate various 2D-!?‘I ESR spectra from any one electron 
and one nucleus system in the strong pulse and high field 
limit. 

The symmetry properties of the stochastic Liouville ma- 
trix were examined in detail in order to reduce the dimension 
of the stochastic Liouville matrix. The effect of the pulse 
propagator on the symmetrized basis set was found to pre- 
serve the symmetries of the density matrix existing before 
the pulse. 

Key computational aspects involved in the simulation of 
the 2D-FT ESR spectra were discussed. Special algorithms 
to deal with large sparse matrices were described in terms of 
the eigenvector calculation. Also, a general scheme of mini- 
mizing the dimension of the basis set was provided. 

The differences in the signals from the two mirror image 
coherence transfer pathways were explained in terms of the 
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(a) 

FIG. 13. 2D-echo-ELDOR spectra of the “N nitroxide (I= l/2) near the rigid limit (R=lO’ SK’) for mixing times of (a) T=O p, i.e., the SECSY spectrum, 
(b) T=0.5 /LS, (c) T=2 p, (d) T=5 p. The simulation parameters are: R=lO’ s-‘, 
G, A,=O.l G, .I&= 

g,,g,,,g,,=2.0096, 2.0063, 2.0022, A,,,A,,,A,,=9.12, 6.31, 46.84 
30, L0&=15, K,= 14, and 8,=3200 G. Pruned basis set was obtained with a 1% tolerance. Initial I, ,t,=O ns, steps in t, and I* (i.e., 

At, and A?,) are 3 ns, and 128 I, ,t2 values are used for the 2D simulation. 

inhomogeneous broadening in several motional regimes. We 
also described a method of obtaining homogeneous 
linewidths across the spectrum from the S,- COSY signal. 

The theory was applied to the case of rotational motion 
in complex fluids such as liquid crystals and membrane 
vesicles. The MOMD model was used to simulate experi- 
mental 2D-ESR spectra in such complex fluids. 

Autopeaks of the 2D-ELDOR spectra near the rigid limit 
broaden as the mixing time increases, due to the develop- 
ment of motional crosspeaks. A method of obtaining the ro- 
tational correlation time from the rate of line broadening is 
described and related to recent experimental results. 

The effect of motion and of an orienting potential on the 
nuclear modulation pattern was also demonstrated. A differ- 
ence between the field-swept 2D-ESE and the absolute value 
SECSY spectrum was described in terms of a mixed phase 
problem, and the importance of obtaining a pure absorption 
spectrum was emphasized. 

Finally, we wish to make a few comments about the 
range of applicability of the theory. It may be thought that 
the assumption of a simple Markov process to describe the 

rotational motion in fluids could be a limitation on the appli- 
cability of the stochastic Liouville equation. Actually, the 
SLE can be derived under very general conditions from the 
many-body Liouville equation using a few statistical as- 
sumptions for the rotating (and translating) molecule includ- 
ing spin.“*42-44 It is quite possible that future 2D-FT ESR 
experiments will provide sufficient detail on molecular mo- 
tions that a simple Markov process expressed by the Smolu- 
chowski equation (of Appendix B) is no longer adequate, 
especially for very slow motions. In fact, as we pointed out 
some time ago,45 augmented models of the motional dynam- 
ics are very likely required to fit ESR spectra. Fortunately, 
the assumption of a Markov process is not in itself particu- 
larly limiting, since one is able to write the SLE for a more 
complex Markov process in which all the slow variables 
which are relevant to the motional dynamics of the spin- 
bearing molecule are explicitly included in the form of a 
multidimensional Fokker-Planck equation.“*42-44 

Procedures for constructing more sophisticated many- 
body Fokker-Planck equations to deal with rotational mo- 
tions in liquids have been extensively reviewed by us.* For 
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FIG. 14. 2D-echo-ELDOR spectra of the “N nitroxide (I= l/2) for restricted but fast motion based on the MOMD model averaged over 20 director tilt angles. 
(a) T=O ns, i.e., the SECSY spectrum, (b) T= 100 ns, (c) T=500 ns, (d) T= 1000 ns. The simulation parameters are the same as in Fig. 13 except R = lo7 s-‘, 
c+=IO.O, Ac=O.l G, L&=12, L&=9, K,- -4, and &,=3200 G. Pruned basis set was obtained with a 2% tolerance. Initial t, ,r,=O ns, step size At,, 
At,=3 ns, and 128 t, ,t2 values are used for the 2D simulation. 

example, a model of particular relevance for slow-motional 
ESR studies is one of a loose “cage” of solvent molecules 
around the reorienting probe molecule, which is itself relax- 
ing in the same time range as the probe molecule. (This may 
be regarded as a generalization of the MOMD model). The 
construction of such a “slowly relaxing local structure 
model” (SRLS), as well as other related models in the 
Fokker-Planck formalism is described elsewhere43T47’48 and 
applied to highly viscous fluids.48 The associated multidi- 
mensional Fokker-Planck operators, since they are Markov- 
ian, can then replace the simple Smoluchowski equation used 
in this work [as the F(n) in Eq. (l)] to provide a more 
detailed theory with which to analyze both cw and 2D-FT 
ESR spectra. In particular, we plan to report in the near fu- 
ture on the use of the SRLS mode146,48 for describing ESR 
spectra from viscous fluids by means of the SLE.49 This 
analysis shows that better agreement between simulations 
and experimental data can be obtained when slow solvent 
modes are relevant, but the principal features of the spectra 
are usually not substantially affected by the use of such a 
more sophisticated model. 
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APPENDIX A: MATRIX REPRESENTATION OF THE 
STOCHASTIC LIOUVILLE OPERATOR-THE 
SPIN HAMILTONIAN SUPEROPERATOR 

The spin Hamiltonian in Liouville space can be ex- 
panded in terms of spherical tensor operators as 

Hz c $$‘*A;;;), 
PJ? 

where p specifies the kind of interaction (Zeeman or hyper- 
fine) and the AZf;r) are the irreducible tensor components of 
the spin operators in the laboratory frame. Since F is defined 
in the molecular frame, we need several transformations of 
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I n-l 

FIG. 15. SECSY spectra with nuclear modulation from the proton spin (1=1/2), for (a) R=4.63X103 s-‘, no potential, L,,=92, (b) MOMD spectrum 
averaged over 20 director tilt angles at R=4.63X107 s-‘, G=lO.O, L -=30. The parameters used for the simulation are: g,,=g,,=g,,=2.002, 
A,=A,,= -3.25 G, A,,=6.5 G, g,=5.5854 and &,=3200 G. No extra inhomogeneous broadening is added in order to show the fine details of the 
modulation pattern. 

axes from the lab frame to the molecular frame, which are 
represented by the Wigner rotation matrices. We will follow 
the transformation scheme defined in the references.‘,16 The 
relevant frames of reference in the order of transformations 
are: laboratory frame (L), director frame (d), diffusion 
frame (D), g-tensor frame (g), and hyperfine tensor frame 
(a). The director frame is included to describe uniaxial liq- 
uid crystals, whose director axis may be tilted away from the 
magnetic field axis by the “director tilt” angle +k 

The g tensor in irreducible tensor form is9 

AEf’= -$ BoS,, 

F(W), 2 Pe 
8.8 J( 11 5 h gzz 

Fg;%O, Afi”)= + $BoStt L42) 

(gxx-g,,,), A(&z2)=(). 

The corresponding components of the hyperfine tensor 
are 

00 

$I- 

h :i ,i ‘t 
* ,! ‘._, 

;-..” 
Bm---.- -.. . . ..-__. i \. . _. . ._.__._.... .“: 

-VI0 -100 -LIo 
Ruu”zl 

w 100 1 

G-0 

n:- 
P 
* <i ::, : I,, 2.. 2’ 8-l , .____ _. . . . . ;,/ _ ..____...- -J’: -Imo -100 -aa n”e.llizl w 100 I 
P 

g* 
F 
r ..’ l ,/-- . .’ ‘..... 
8 -1w -100 

FIG. 16. Normalized contour plots near the rigid limit. (a) Pure absorption 
spectrum (easily obtained in the field-swept ESE experiment); (b) pure ab- 
sorption along the fi axis, and absolute-value plot along the ft axis; (c) 
absolute-value plot along both axes (e.g., a SECSY spectrum using a simple 
2D-fast Fourier transform without phase correction). The parameters for the 
simulation are the same as in Fig. 9. 
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F(2.+1)=0 
a,a 9 ,4;2;+1)= 7’ (S+I,+S 1 ) 

2 - ZC? 
(A3) 

(A,,-A,,), A$“)=; S?Z, . 

The nuclear Zeeman term retaining only the isotropic 
contribution may be written as 

F(O*O)= -9 , n.n A;+ -B~z,, 644) 

After explicitly including the transformations of the 
frames of reference, the Hamiltonian in Eq. (Al) can be re- 
written as 

H= c dj,,,(~)~f,,,,,(R)Fjf;,““‘*Ajf;,”’, (A9 
p,l,m 
m’.m” 

where R defines the Euler angles that transform the director 
(d) frame to the diffusion (D) frame and the d:,, are the 
reduced Wigner rotation matrix elements. The spherical ten- 
sor components, F$;;f’ can be written in terms of the princi- 
pal values of the corresponding tensor or. as follows: 

(A@ 

= c ~fn,,(~D,8)86,,,,(~8~~)F~~~‘)*. m’,m” 
The “diffusion tilt angle” fiD+B = ( oD ,pD, 70) defines the 
transformation from the diffusion frame to the principal axes 
of the g-tensor frame. 

Then the matrix representation of the Hamiltonian super- 
operator in the basis set of the Liouville space defined in Eq. 
(6) can be shown to be 

=NdL1 ,L2N- 1) ‘+“+% (p: ,q; ,p: ,q:IAZ’;j?X 
PJ 

IP~,4~,P:.,ql)d~p,M,-M,(~))F~:DKl-K,)* 

Ll 1 L2 Ll 1 L2 
X 

i M, M2-M, -M2 ii K, K2-K, i -Kz ’ 
where N,(L, ,L,)=(2L, + 1)“2(2L2+ 1)“2 ad Ap=pf--pg+p{ -pi. 

The matrix representation of A$‘jX can be derived from Eqs. (A2)-(A4)16 

(p: .qf ,p: diA$?xb; $4; .p: d) 

1 

-AP 
SA 3 

where Ap’=pf-p& Aq”=qf--qg, Ap’=p{ -pi, and Aq’=q{ -4:. The quantity SA is defined as follows: 

(PSd + Pm2 if ApS=O, Ap’=O 

sA= 
- (p$p’+ q~Aq’)K,h8 if ApS=O, Ap’fO 

-(p:ApS+q:Aqs)W if Ap’#O, Ap’=O’ 

ApSAq’K,/2 if Aps#O, Ap’fO 

(A7) 

M-9 

(A9) 

I 

where 
(d d d ,q: IA~L?Xb; 94; d ,q:) 

K,=[Z(Z+ 1)-(q~Aq1+p~Ap1)(q:Aq’+p:Ap’-2)/4]”2. 
= ~m,~~~l~~l,lA~l~Ap~,o~Aq~,oBo(- 1)“‘(21+ 1)1’2 

The matrix elements of Ai’;“jX and Atr’” can be writ- 1 1 1 
ten similarly as ’ Ap 0 i -Ap (&Aps,o- Ad I- ‘3Aps,O)/\l2), 
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<P; d 7~: d/A$?Xl~f d .P: ,4:) 
= - s,,,S~,s,oShqs,~Shpl,gS~ql,~B~~: . (AlO) 

Equations (A6)-(AlO) describe the spin Hamiltonian su- 
peroperator in detail. 

APPENDIX B: MATRIX REPRESENTATION OF THE 
STOCHASTIC LIOUVILLE OPERATOR-THE 
RELAXATION SUPEROPERATOR AND THE STARTING 
VECTOR 

The relaxation superoperator r(n) includes all the 
sources of relaxation of the system. The relaxation mecha- 
nisms of interest in ESR are well described elsewhere,50 and 
we will give a brief summary here just for completeness. 

The overall T(0) operator is taken as a superposition of 
the terms 

r(n)=ri,,+r,+r,j+Tex+Tw,+Tw,, 031) 

where riW represents rotational diffusion in isotropic fluids, 

rr, is the rotational diffusion correction for liquid crystals, 
rdj is the discrete jump model among equivalent sites, Tex 
represents Heisenberg spin exchange, and lYW, and lYW, ac- 
count for rotationally independent electronic and nuclear 
spin flip rates, respectively. 

Rotational diffusion in isotropic fluids assuming the dif- 
fusional motion is axially symmetric was shown to be16 

=ajM jM&K .K6 
1’2 J, ,J2 L,,L2~~,.M2~K,,K2{RIL1(L1 + 1) 

x[1+7~R*LI(L,+l)]-~~+K~[R,,(1+~,R,,K~)-~ll 

-R,( 1+ r&K:)-Q}. 032) 

The possible limiting situations are (i) Brownian motion: 
~0, E=O; (ii) free diffusion: r#O, E= l/2; and (iii) jump 
diffusion: T#O, E= 1.50 The expression for rtso was recently 
generalized to the nonaxial case for Brownian diffusion:15 

= SjM jMSjK jK~L L S, M 
1’2 1’2 1’2 1’ 2 

+(~K,-2,K2N+(L1,K1-2)+S 
(Rx-R,) 

K,+~,K*N-(L~,K~+~))NK(KI,K~)-~ 4 1 > (B3) 

where N,(L,K)=[(L+K- l)(LTK)(LCK+ 1)(L+K+2)]“2. 
The diffusion operator in the presence of an anisotropic orienting potential is formulated in terms of the symmetrized 

Smoluchowski equation.‘5T16V51 The orienting potential is assumed to be uniaxial and expanded in terms of spherical harmonics, 
i.e.. 

u(n)= -k,Tx ‘L,@,(fi), (B4) 
.LK 

where the prime indicates that the summation is restricted to even values of L and K up to 4 for convenience, and the 
expansion coefficients have the property that 

L,=L_,=EL,*. (W 

Then TV, which is the correction term due to the potential can be written as rU= ZL,KXkaK, where the coefficients Xi are 

Rx-R, 
(&+,N-(L,K+2)+&-,N+(L,K-2)) 4 

Rx+R, 
+L,[L(L+l)-K2] 2 + ELK~2~, 

2L+l -- L,,K~2,K2 +z( ‘; 4 ; i2) [ v [ ~+GW+W&~( K;; 1 -“, K;; l) 
+M-(Ll ,K,Wf-(L2&) .” l 

( 

L 352 

1 -K K2-1 11 Rx+& L 352 Ll L L2 
f- 

2 M+(L, X,)M-(-b,Kd -K K2-1 K, -K K2 * 036) 

The corresponding matrix elements in the M-symmetrized basis areI 
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b% Ml ,KI ,j::,jr;‘lrvlL2,M2,K2rj~,J’E;)KM 

= M, ,M2ajy ,jf~jf,j~NL(Ll rL2)NdKI ,K2)(- l)M1fK’C L, L L2 s 
L 

M, 0 -M 
1 

K2FK 
I 

-Li 
2 

+j~(-l)L2+KzXL,l+K2 L L2 . 
-K,-K2 K2 )I 037) 

The model of discrete jump amongst equivalent sites in the particular case that these sites are connected by a rotation 
around the diffusional z axis can be written as 

1 - #i, 
(L1 MI JI ,j::,j~IrdjlL2rM2rK2,j~,jE;I)KM= SL, ,L,S~l.MZSK,.K2Sj~,j~Sj~,j~ 7 - 03% 

where 7dj is the mean time between jumps, n, is the number of equivalent sites and the only nonzero 8: is 1 if K is a multiple 
ofn. 

The Heisenberg spin exchange operator Tex has been re-derived for the model in which spins exchange between molecules 
of arbitrary orientation.52 It can yield complete exchange narrowing even for slow-motional spectra. The matrix elements can 
be written as 

( 
1 

= OffEajy ,jFsj: ,jf8L, ,Lz’K, .K2*pS ,I$ ‘4: 4:-- 2/f 1 47; ,OSL, ,o 

x 039) 

where mHE is the effective spin exchange frequency. 
The rotationally independent electron spin flip rate W, is included as follows: 

= wesjy ,i~sjfi,“*Ll &‘K1 .K2SIM,I,IM21Slp:l.lp21 q, .q2( P, ‘p2 ISI IcYI I6 MI Jf2 + jy( - 1)L2+M*6p; ,-&a~, ,-M~). 0310) 

me rotationally independent nuclear spin flip rate W, is also included to account for the additional nuclear spin-flip rates 
other than from the rotational motion’tV’8*19753 

(o,i,p{ ,q: ;L1,Ml,j:,jrlr~“lo,l,P~,q:;~2~2~j~~j~)K~ 

=W&ijM M6.K .KS 
I “2 ‘, ,J2 L,.L~~K,,K~&~~ ,M2~Ap~,0[~~~,0(~Aq1.0-~Aq~.2)+~61~~~.1] 

for I= l/2 and 

0311) 

=W,t~jff,jf~jf,j~~L, ,L2~Kl,K2~Ml .M~SAp',0[Sp~,0(SAq',0(2-S~q~~,2Z)-SAq',2)+S~~ 1 &$AqQ- ~A,,,,> + %@l,2s,q1,01 

0312) 

for I= 1. 
me starting vector elements in the M-symmetrized basis set are 

@13) 

This completes the matrix representation of the stochastic Liouville operator in the M-symmetrized basis. 
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