Rotational dynamics of axially symmetric solutes in isotropic liquids.
I. A collective cage description from molecular dynamics simulations

Antonino Polimeno®
Baker Laboratory of Chemistry, Cornell University, Ithaca, New York 14853-1301

Giorgio J. Moro
Department of Physical Chemistry, University of Padova, Via Loredan 2, 35131 Padova, Italy

Jack H. Freed
Baker Laboratory of Chemistry, Cornell University, Ithaca, New York 14853-1301

(Received 21 December 1994; accepted 15 February 1995)

An operational definition of collective cage variables previously introduced for liquid argon is
extended, via a molecular dynamics study, to the rotational properties of axially symmetric
molecules. Quantitative measures of the static and dynamic cage properties are extracted for liquid
Cl, near the triple point. The collective cage variables are well described by the potential acting on
an arbitrary moleculéi.e. solute)for a fixed configuration of the other moleculgés. solvent). A
dynamic separability of the solute orientation relative to the cage potential and of the relative solute
displacement is justified in part by the faster relaxation found for the latter. Large and persistent
orientational cage potentia{s-15—-20kgT) lead to substantial alignment of the solute in the cage
with an average local order parameter of 0.87. The reorientational correlation times ¢ageere
consistent with axially symmetric Brownian motion. The reorientational correlation times for the
soluteare nearly equal to the equivalent ones of the cage, consistent with the strong coupling of
solute within its cage which leads to a collective reorientation of solute and(eagge‘ci)gez 1.4 ps,

and 73} =1.2 ps). Solute librations within the cage are much fastdf)&0.12 ps)and are
comparable to the relaxation of the relative solute displacemeptsQ(15 ps). The solute angular
momentum exhibits the fastest correlation time’&0.06 ps). While the orientational cage
potential shows rapidly and slowly relaxing componentéuzé 0.14 ps and75=2.87 ps,
respectively), its dominant portion shows a very long persistencd.986 American Institute of
Physics.

I. INTRODUCTION highly correlated in time, in opposition to the assumption of
fast fluctuating forces of Brownian motion theory. To ac-
In principle, a full description of the molecular interac- count for these systematic forces, Brownian motion theory
tions is required to explain rotational motions in liquids. In should be generalized by including the cage potential gener-
practice, however, simplified models based on Brownian moated by the solvent molecules surrounding the solute in an
tion theory are often employed to analyze such observationgppropriate manner.
as spectroscopic results or transport phenomena with rather Dielectric dispersion of polar liquids supplied the first
good success. In these simplified models the role of the sokvidence of this cage effect. In order to explain the Poley
vent is merely a source of frictional drag, i.e. it is a con-absorption in the far infrared region, N.E. Hill proposed in
tinuum devoid of specific interactions with the solute. Norather clear terms a cage picture of solute dynamics by fo-
room exists in this framework for the chemist’s intuition of cusing on the potential felt by the solute under the action of
the liquid state as an ensemble of strongly interacting molneighboring moleculeSHer key assumption was the exist-
ecules. ence of a time scale separation between fast librational mo-
More extensive models than are supplied by Browniantions of the solute within the cage potential, and the slow
motion theory are required to analyze the effects of the morotations of the minimum of this potential after reorganiza-
lecular organization of the solvent. The picture of liquids astions of the solvent. In this way the Poley absorption in the
strongly interacting molecules without long range order sughigh frequency region can be explained by solute librational
gests that a primary role should be played by the cage amotions, while the Debye relaxation time measured at lower
solvent molecules around the solute. It can be visualized agequencies would be associated with rotation of the equilib-
the locally organized structure of the solvent confining therium orientation of the solute, viewed as a cooperative mo-
solute in a small region of the available volume because ofion involving the neighbors forming the cage.
strong interactions with nearest neighbors. As long as this  Further insights on cage effects were provided by mo-
confining effect has a persistent character, the fofaed the  lecular dynamicgM.D.) simulations. The first realistic cal-
torques)exerted by the solvent cage on the solute becomeulation of an atomic liquid showed the limits of standard
Brownian motion theory. In fact, the velocity autocorrela-

20n leave of absence from Department of Physical Chemistry, University ofiOn fun_Ction di3p|ay5.a. negative _ta" to be associated Wit.h
Padova. the action of a confining potential. The same feature is
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shared by angular velocity correlation functions derived fromdeveloped in relation to far-infrared and vibrational
M.D. simulations of a variety of linear molecules, like CO, spectroscopie€:?’
N,, O,, Br,, CO,, CS,.3> " These results suggest that cage A completely different approach is that advocated by
effects are intrinsic to liquids under normal conditions. Stillman and Free@ As in standard Brownian motion
On the experimental side, manifestations of cage effecttheory, Fokker—Planck equations are employed, but with an
were found by different means, for example from carefulextended set of stochastic variables to include parameters
analysis of infraret? and Ramat? band shapes. Also lower characterizing the cage potential, and with the constraints of
frequency spectroscopies like EPR can detect them when tifietailed balance rigorously applied. A formal analogy exists
frequency dependence of spectral densities is analyzedith itinerant oscillator models because of the overall Mar-
showing both higher frequency and lower frequencykovian character of both representations. But in this case no
effects'**® Even more convincing with regard to the high- artificial particles are required, since the extra stochastic
frequency librational motions are spectroscopic observationgariables are directly representative of the features of the
in the time domain. Experimental advances which allowcage potential, like its strength and its stationary position,
measurements in the subpicosecond range, have provided @0d fully three-dimensional rotations are considered. Further
rect evidence of molecular librational motion within the sol- developments of this line of research were made by Poli-
vent cage®~*®Equivalent information can also be recoveredMeno and Freet,** who showed the equivalence of the
from stimulated gain experiments of depolarized light scat-Stillman and Freed approach to using multi-body Fokker—
tering in the suitable frequency ranie. Planck—Kramers equations, and obtained extensive numeri-

On the theoretical side, a variety of models and method§@! solutions to a range of cage models. These cage models
each with quite different ingredients have been proposed foficlude both short-time and Iong-U_rg&Eehawor of the solute,
the solvent cage problem. With itinerant oscillator models@"d they are related to the previolS” EPR studies. Re-

the solvent cage is assimilated into a fictitious particle inter€ntly, Nordio and Polimerié have applied a planar multi-

acting with the solute according to a given potential. Sto-b?gy ::oklfer—lrlangk—Kr%n}ers. e;quat(ijonbto the.inter.pretlati.on
chastic equations are employed to describe the time evol P! dielectric relaxation and far-infrared absorption signals in

tion of such a two-particle system. Originally this methodd'po_:_"’;]r I'?_;“dst' ¢ th ical dels of frocts |
was used for the solute translational motion within the € literature ot theoretical Mocels of cage etiects 15
aefxtenswe, with contributions that elaborate the general fea-
motion2! particularly by Coffeyet a in a planar two- tures noted above or that develop particular aspects of the
particle description. Even if this procedure is very attractive.pmblem' In the latter context we note the treatments which

for directly representing the solvent cage, it is not completel include explicitly barrier crossingump) processes under the
yrep g ge, P yhypothesis that the cage potential displays a multistable

satisfactory. First of all, this is because of the artificial char- &2 Ki
acter of the cage representation as a particle whose foass structure>” Kivelson and co-workers have related the cage
effect to the differentiation ofr and B relaxation processes

momentum of inertiy as well as the momenta, are not well . .
defined. Moreover this kind of model utilizing a fixed inter- in glasses and supercooled liquis.

o ) 9a . Molecular dynamics simulations provide very detailed
action potential cannot account for fluctuations in the.

) . ) ) . “information about the rotational motion of liquidst® In
strength of the cage potential. This is an important 'ngred'enbrinciple, one can use such information not only to verify the

of the prqblem, as shown' by M.D. resultg for the OIIStrIbLft'onalready existing theories of the solvent cage, but also for
of the Einstein frequencies for translational and rOtat'Onaheveloping new and more accurate models. However. one is
motions of test particle¥. confronted by the problem of precisely defining the param-

~ The importance of the distribution of librational frequen- giar5 characterizing the cage, so that they can be identified
cies has been emphasized by Kushick who proposed a mod&eﬁmng a simulation. A new method has been prop&séat

for describing its effects on the solute rotational mofidn. e translational motion of atomic liquids, that is based on a
The same problem has been analyzed by Lynden-Bell angefinition of the cage potential as the interaction energy be-
Steele by applying cumulant techniques to orientational coryyeen a solute and all the solvent molecules, and it must be
relation functions!’ Their Gaussian cage model is based on &:gnsjdered as a function of solute position for fixed solvent
normal distribution of librational frequencies. Substantial configuration. This cage potential can easily be calculated at
agreement has been found with the correlation functions obsach instant of a M.D. run, by holding the solvent particles

tained from M.D. simulations, after fitting of a parameter fixed and by computing the overall potential energy as a
such as the width of the librational frequency distribution. Infynction of solute displacement. Because of strong confining
this framework, however, a marginal role is attributed to theeffects on the solute due to interactions with its nearest
dynamics of the solvent cage. In particular, the ﬂUCtuatiOHS’]eighbors, this potentia| can be approximated by its para-
of the solute equilibrium orientation within the cage potentialpglic expansion. The parameters of the expansion, i.e. the
were not considered, whereas in the Hill picture this procesfocation of the minimum and the curvatures, can be used as
is essential to rationalize the rotational dynamics at longhysical variables characterizing the cage potential itself. In
times. In an effort to include such a process, Deb has proparticular, the location of the minimum is identified with the

posed a Monte Carlo sampling of trajectories interrupted byage center, i.e. it is the stationary point for solute trajecto-
reorganizations of the solvent caffeSeveral analytical ries if the solvent is frozen. By diagonalizing the curvature

treatments of cage effects within impact theories have beematrix, one derives the principal frequencies of solute mo-

.22
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tion within the caggto be denoted as the cage frequencies
and the corresponding principal directions which define the
axes of a cage frame. All these parameters fluctuate as a : AV AR -
result of the reorganizations of the solvent. However, be- /I/‘:’ \\‘ \ :'“w‘
cause of the operational character of such a definition of pf o
“collective” cage variables, they can be exactly calculated )iT
during a M.D. simulation, thereby providing detailed statis- v Ti MF
tical information about their distribution and relaxation. On
the basis of this information one can develop a model which A A
explicitly includes the cage parameters as independent sto-
chastic variable$®

A main objective of the present work is the generaliza-
tion of this method to molecular liquids. Even in this case
one can define the cage potential, expressed as the overall
interaction energy, as a function of solute coordinates, i.e. its
pps_itior] and _orie_ntation, for -gi-ven solvent Conﬁ-gur-ation' TheFIG 1. Relevant frames of reference for the probecage system; LF
.dlffICL.J|tIeS ansein pgrametnzmg such a potential in ordgr toIabo.ratlory frame; MF molecular frame; KF principal axis frame %or the
identify the cage variables. One can perform a parabolic €Xranslational cage force; CF rotational cage frame.
pansion, but because of the dependence on both translational
and rotational coordinates, this leads to an increased number

of parameters whose relation to relevant features of solute- .
solvent interactions becomes challenging. lecular frame MF with respect to a laboratory frame LF.

An additional objective in this work is to examine the Figure 1 illustrates the relations among the various frames of

M.D. results to see whether a well defined collective cagdeérence employed in the derivation. Thexis of the MF is
potential exists and persists long enough to significantly inhosen parallel to the long molecular axis. Because of the
fluence the solute reorientations as proposed by Hill. axial symmgtry of the molecule, the interactions with the
The parametrization of the cage variables is examined ir?%l‘_’em are independent of the angfe Therefore we leave
detail in the next Section by considering an axially symmet-¥_ in the treatment since we prefer to deal with Wigner ro-
ric solute. A parabolic expansion of the cage potential jglation matrices throughout, instead of a mixed representation
introduced under the hypothesis that the solvent hinders botifat includes spherical harmonics. Also, this will more
translations and rotations of the molecule. In order to deaf€adily permit the generalization of the present treatment to
with a minimal set of cage variables, the limit of fast equili- NON-linear molecules in the future. _
bration of solute displacement with respect to the cage center _FOF any given solvent configuration denoted concisely
is introduced. This allows for the identification of cage vari- PY = (i-e. the ensemble of coordinates of sglveont_part}cles
ables most directly related to the rotational dynamics of thé?N€ can calculate the interaction potenddr”,Q",=) be-
solute. In Sec. Ill, a M.D. simulation of liquid chlorine is tween solute and solvent by adding the pairwise contribu-
analyzed in order to determine the equilibrium properties andions. The cage potential is defined ®¢r”,Q2%,=) to be
the relaxation behavior. Section IV is dedicated to the analyconsidered for a fixed solvent configurati@ The same
sis of the distribution of cage frequencies and to their sepadeneral methodology introduced in Ref. 34 will be applied to
ration into slow and fast components. A general overview of€ roto-translational problem. The main objective is that of
the M.D. results is presented in Sec. V wherein the differenf€Presenting in a simple form the dependence of the cage
dynamical processes driving solute-solvent interactions angotential on the ensemble of solvent coordinates. This can be
their time scales are characterized. This leads to a preci&onveniently achieved by introducing a parabolic expansion
and clear statement of the role of the collective solvent cage! the cage potential with respect to the solute degrees of
A summary Section concludes this paper. In the second paffe€dom. In this way the dependence on the solvent configu-
of the work® (hereafter called I1), a stochastic model will be ration is included in the coefficients of such an expansion,
presented, which takes into account all the relevant feature®d they can be used as effective degrees of freedom repre-

KF

Q=@ g )

observed in the M.D. simulation. senting the influence of the solvent on the solute.
The positionr® and the orientatio2°= (¢, 8¢, 9°) of
Il. THE CAGE VARIABLES the solvent cage are determined by the minimizatiorVof

. . ] . . with respect to the solute coordinates
In this section, the interaction potential between the sol-

ute and the solvent is analyzed with the aim of providing a aVv(r°, Q0 E) B

precise definition of cage variables to be calculated self- ar0 (0o Qo:m_o' @)
consistently during a M.D. simulation. The dependence on ’

both the translational and rotational coordinates of the solute [ V(r° Q0 =)

must be considered in order to completely represent the in- (T =0. )

. . 0—=rc 00=QcC
teraction potential. rernatee

Let us consider a rod-like solute characterized by theThe cage coordinates necessarily depend on the solvent con-
positionr® and the orientatiof2°=(a?, 8% v°) of the mo-  figuration . SinceV is independent ofy°, condition (2)
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does not determine the third angjé of Q°. We assume for Where the superscrift denotes the transposed ar(@y ma-

the moment thay® has been chosen according to some IoreIrix). Since we retain terms up to second order overalf in

cise rule to be specified further on. and B, the matrix V(?() should be evaluated g8=0,
The set of coordinates §,Q°) defines a cage frame CF, without any _dependence an Then we can write the_ second

and one can then specify the solute configuration by mearf@der term in Eq.(5) as r'Kr/2, where K= V(®)(0) is the

of relative coordinatesr(€2) for the displacement and the Curvature matrix for the translational motion. We use Kor

rotation of the solute from the CFE to the MFE. Then the cage_the same parametrization introduced in Ref. 34, by consider-

potential can be described in terms of this new set of varilN9 the eigenvalue problem

ables asv(r, Q,E), where the dependence ohand Q° is

included through=. In the following we shall analyze in KU ;= KU 9)

detail the dependence of the cage potential on the relativg:, e principal directionsi; defining the axes of thé
coordinates of the solute by leaving implicit the dependence,.; e (KF). The Euler angIeJ:ﬂK will denote the rotation
of V on the solvent configuratioE. from the LF to the KF.

Some hypothesis about the solute-solvent interactions is Let us now analyze the first order term in Eg). Since

required as a guideline in the parametrization of the caggye relative coordinates of the solute vanish at the minimum
potential. We assume that there is a strong confining effecéf V,,, it must obey the condition

due to the solvent such that the cage potential is character-
ized by a steep dependence on the solute displacement and
rotation. Given these conditions, a parabolic expansion of the
cage potential with respect toand to should describe its This term can also be expanded in a basis of Wigner func-
dominant part. Note that the condition of small displace-tions, more precisely in terms of functiori3] ,(€2) with
ments from the equilibrium orientation does not limit the | #0 becauseD}, (0)#0 would violate Eq.(10). But if VV,,
range of the anglex of Q. includes only terms up to second order in the translational

Thus we separate the cage potential into two parts and rotational displacements, this expansion is confined to
functions D, ; () in agreement with Eq(4). Moreover,
these functions give rise to the same angular dependence,
independent of the rank when terms linear ifB are con-
sidered[cf. Eqg. (4)]. In conclusion, the expansion can be
limited to the lowest rank functions, and we write

vdo)=o. (10)

V(r, Q)=V,(r,Q)+V,(r,Q), (3)

where the harmonic contributiow, includes all the terms up
to the second order in powersioandB, andV, denotes the
remaining anharmonic contributions. We assume Yhatan

be neglected in the equilibrium distribution of the problem, T 1 1
and the following analysis is devoted to the parametrization ~ UmY' ~(£2)=C; D1 () +C_1nDZ; (€2), (11

of Vi, alone. It should be mentioned, however, that the dyyyhere the components of the gradienMsP) with respect to
namical effects of the anharmonic terms are partially aCtne principal directions of the KF are to be considered for the
counted for by the stochastic cage modef. paper I} gake of conveniencésee next paragraphOf course,V,,
through the fast fluctuating forces responsible for the fric-y, st be a real function and therefare, = —c*

. . . . ’ s m-

tional dissipation. Finally, the zeroth order terd®(Q), has to be param-

Let us first discuss the dependencegfon the solute etrized. One should take into account th4®)(Q) has a
orientation{2. Because of the axial symmetry of the solute, \inimum at =0 and, therefore, it should obey the condi-
V, can be expanded in a series of Wigner matrices;yng
D{ ,(€2), where, in this expansion, only the terms bearing a
contribution up to second order i need be included. (&V(O)(Q) NO(Q)

Therefore components witlh|>2 are excluded because >
Py

Q=0

=0, (12)
Q=0

Iy

DI jxexp —ila)B!"l for B—0. 4
| exp—ila)B p @ whereg is a rotation vector with componengs, (p=X,y) in

The dependence on the anglds then confined to just a few the CF. This condition is equivalent to
periodic functions.
By performing the expansion with respect to the solute  [M_V©(Q)]o_0o=0, (13)

displacement, one obtains . . .
P where M=d/d¢ is the corresponding rotation operator.

Vi (r, Q) =VO(Q) +rTVD(Q)+rTvVR(Q)r/2, (5)  Therefore, only Wigner function®] ,(2) with [=0,+2 en-
ter in the expansion o¥/(9(Q) term. For small values of
VO(Q)=V,(0,Q), (6) B and afixed, these functions give rise to the same angular
dependence independent of the rgnkwhich then can be

V()= (M) @) fixed. We shall employ second rank functions, so that
ﬁri _ '
=0 VO(Q)=boD2 (@) +b,D3 Q) +b_,D?, Q) (14)
FPPVp(r, Q) .
@)= | N2 with b_,=bj" .
v3(@) ( e ) . ®) =D

The overall potential is then written as
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3 strictive a condition, which in general cannot be justified.
Vi= 2 bD7(Q)+ 2 (ugr) 2 ¢ mDiy() The preferable alternative is to consider the solute orienta-
’ B tion uncoupled to solute displacement from a dynamical

o2 m e point of view. Let us suppose that solute displacemenith
3 respect to the cage center is characterized by a very fast
+ > Km(ulr)2/2. (15) relaxation timer,. Then an effective distribution based on
m=1 an average with respect tais sufficient to describe the sys-

t?m at times greater thamn . Because of the simple quadratic

ependence on of the cage potentiaV/y,, the integration
overr of the Maxwell-Boltzmann expression of E@L7) is
easily performed

The strength of the cage potential is characterized by the s
of coefficientsb for the purely rotational part, the coeffi-
cientsk for the translational part, and by the coefficients
for the mixed components.

The ensemble of solute and cage variables required t
specify at each instant the configuration of the system, isj dr eXK—Vh/kBT)“eXD{ — 2 dD{(Q)/kgT!.
then 1=0,+2

20
X'=(r, Q,r¢,0Q° QK k,b,c) (16) (20)

_ o , Thereby a reduced cage potential in terms of just the angular
and the equilibrium distribution should be considered as Q/ariablgs is obtained ?Nitﬁ coefficiendsgiven a]s g
function P(X") of all these variables. Under this approxima- '
tion, the dependence of the distribution on the solvent con-

figuration E is parametrized through the set of cage vari-  do=bo+ 2> |cym?/3kny,
ables, just as in the treatment of the purely translational m
problem3* Of courseP(X’) depends upom® and Q° only (21)

implicitly throughr, @ when dealing with homogeneous and d+2=b+2—2 Cim/\/gkm-
isotropic solvents. The dependence on solute coordirmates - I

andQ is determined by the Maxwell-Boltzmann expression

with respect to the solute-solvent interaction energy,\ie. In the presence of dynamically uncoupled solute rotations,

of Eq. (15): the equilibrium distribution depends on a restricted set of
P(X')=f'(QK K, b,c)exp — Vi(X')/KsT} (17) Vvariables
with f’ a function related to the distribution of the cage  X=(£,Q°d) (22)

variables. M.D. simulations can provide the needed detailed dith ¢ imilar to Eq19)-

information about the dependenceR{fX") on the cage vari- and it has a form similar to Eq19):

ablesQX, k, b andc. Because of the large number of inde-

pendent cage variables, their complete statistical analysis ap- P(X)=f(d)exp — 2 d,DﬁO(Q)/kBT . (23)

pears to be a prohibitive task. Given the limited accuracy in 1=0,+2

the statistics of a finite M.D. run, it would seem to be diffi- o o _

cult to characterize the distribution with respect to each offhus, only the distribution of coefficients i.e. f(d) needs

these 15 real parameters and their correlations. Therefor& be determined from M.D. simulation. _

some further simplification for the equilibrium distribution is It s our belief that this model is most appropriate for the

required. analysis of the rotational dynamics. Of course one should
We first derive a simpler description by neglecting com-check the presence of a fast time scajefor the solute

pletely the coupling between solute displacemeand sol- d|splacememr.. N.evertheless, even in cases where a time

ute orientatior®2 in the cage potential}, of Eq. (15). This is scale separation is not clearly present, this model would most

equivalent to assuming that the 6 cross-coefficientanish.  likely represent the best available approximation for treating

In this case the solute orientation is coupled only to the cagé’e cage problem in simple terms. Of course the model in-

variablesQ¢ andb, and one can define a reduced distribu-cludes as a particular case the limit of vanishing rotation-

tion P(X") on this smaller set of variables translation coupling=0, whered=b.
In order to attribute a physical meaning to the coeffi-
X"=(Q,Q°b) (18)  cientsb and to specify the most convenient method for their
in the form calculation during a M.D. run, it is convenient to derive Eq.
(23) by following an alternative route. Let us denote g
P(X") = f"(b)expl — 2 by D2 Q)/keT (19) unit vectqr in thex—_y plane of the CF, which makgs an
o2 10 B angle ¢ with they axis: v=v(¥). We can analyze the inter-

action potential with the solvent by considering displace-
with only the distribution of parametetsto be determined mentsr, and rotationsd aboutv() of the solute for a fixed
from M.D. simulations. This model with uncoupled solute ¢. As independent variables one can wpe(6,r), where
rotations is very appealing because it permits a simple analy? is the librational displacement of the molecule, i.e. the
sis of the M.D. data. On the other hand, the hypothesis ongle between its symmetry axis and thexis of the CF
vanishing cross-correlation coefficiemseems to be too re- (note thatd cannot be identified witlB because the domain
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for 0 is between— 7 and + 7). Since the cage potential has lation. But in order to recover a continuous evolution of the

a minimum atq=0, one can write the following parabolic cage orientatio2¢ for a given solute, the initial assignment

expansion: should be preserved with time according to the rule of least
2V reorientation of the cage frame axgsst as for the axes of

(24)  the KF, see Ref. 34

dq;dq; q=0 The principal librational frequencies defined as the ex-

with matrix A depending on the angl¢. Once the cage tr_ema ofw(y), are then associateq with librational frequen-

position is identified during the M.D. simulation, this matrix C1€S @x and wy for molecular rotations about the andy

can be easily evaluated as functiongoby means of a finite 2X€S, respectively, of the cage frame. They represent the

difference method. The equilibrium distribution with respectMOSt convenient parameters for describing the strength of the

to solute coordinates subject to the constraint of orthogonaf0IVeNt cage in relation to the rotational dynamics of the
ity betweenv and the molecular symmetry axis, is then writ- solute, and they will be used as independent variables for the

V=V,+q'Aq/2, Ai,j=(

ten as cage together wittQ2°. Equation(28) can be considered as
. the smallg limit of distribution Eq.(23), thereby establish-
Paxexp(—q Ag/2kgT). (25)  ing the relation between the coefficietsisand the librational

By performing the integration over solute displacements frequencies. Thatis, one can write an effective cage potential
according to the model of dynamically uncoupled rotations for solute rotation in the form

one obtains: Ve(@,0) = = (1L/6){(w}+w])Df )
C (A -1
Pocexp{— 6°(Ago—AgiA11 “A10/2kgT}, (26) n \/3_/2(w>2<—w§)[D§,o(Q)+Dz_z,o(ﬂ)]},
where the matriXA has been partitioned as (31)
_ (Ao,o Ao,l) (27) Wherew=(w,,wy). Notice the similarity of this cage poten-
Ao A1z tial with the mean field potential for axial probes in a biaxial
with go= 0 andq;=r. An alternative form of Eq(26) is nematic phase. S
) ) The cage potential given by E@31) has the correct
Paxexp[— 671, w(4)/2kgT}, (28)  symmetry for linear molecules with a center of symmetry,
wherel , is component of the moment of inertia perpendicu-lik€ N2 or CS. In factV(€2,») is unaffected by the trans-
lar to the symmetry axis of the solute, so that formation («,8)—(a—m,m—p), and it has two equal
e - minima at 3=0 and 8=. This cage potential, however,
o(h)=1"Ago=AgsA11 A1 (29)  has too high a symmetry for describing linear molecules like

can be identified with the effective librational frequency OCS Without a center of inversion and which are character-

within the solvent cage for rotations abo(ty). These li- ized by two nqn-equivalent mlinim_a. One can generalize the
brational frequencies are real and positive quantities sincBotential to this case, by taking mtoz account that Big,
the argument of the square root is positive for the followingfunction of Eq.(31) derives from thes” term of the expan-

reasons. First, by using the partition theorem of matrices, onglon @nd, therefore, it can be substituted by linear combina-
can show that tions of the type

(AO,O_ AO,lAl,l_ 1A1’0)_1: TA_le, (30) D%,O*)aD(z),O—'— 3(1_a)Dé,0 (32)

wheree=(1,0,0,0). On the other hanll, being a curvature With an arbitrary coefficiena. The presence of Eé,o term

matrix at a potential minimum, must be positive definite. The€liminates the degeneracy of the minima. In particular for

same holds foA ! if all the principal curvatures are finite. a=0

Then the right hand side of Eq30) is positive, since _ 2. 2101

w'A~lw>0 for any vectow different from zero. Note that Ve(€h0)= = (1 /(@3 F @) Dod )

Ao could be ne_gativ_e, so that unphysical results. an +\/1_/6((05_((,3)[[)%(9)4-[)2720(9)]}

unstable orientation with respect to the cage framayld be

obtained by using the distribution E¢L9) and the true co- (33)

efficientsb supplied by a M.D. simulation. the potential with one minimum is representative of mol-
By comparing Eq(28) with the previous resul23), and  ecules A-B with much different size of atoms A and B, such

taking into account that= =B, one can show thab()2  that 180° flips of the symmetry axis are not accommodated

can be approximated by a shifted sine function, i.e.in the given solvent cage. In the intermediate case of atoms A

sin2(y+ ). Therefore, two orthogonal directiong andv, and B not very dissimilar, a choice of the coefficient

for v(¢) can be derived from the maximum and the mini- 0<a<1 in the previous equation seems to be required. But

mum of w(). They are the principal directions for the li- in dense fluids with strong confining effects, the interconver-

brational motions, and they are implicitly defined by the cagesion of the solute between the two minima of the cage po-

potential. We can use these directions asxtady axes of tential should be too rare an event to have significant effects

the CF, so eliminating any indeterminacy of angfefor the  on the solute dynamics. Therefore it should be legitimate to

cage orientatiof2®. Of course the assignment of tlkeaxis  neglect the second minimum At= 7r, and equivalent results

to v, or tov, is arbitrary at the beginning of the M.D. simu- should be recovered from E¢31) and Eq.(33) as long as
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8100 Polimeno, Moro, and Freed: Rotational dynamics in liquids

they are characterized by the same parabolic expansion at

B=0. In the analysis of our M.D. simulation of a centrosym-

metric moleculgCl,), the cage potential of E¢31) will be =

Lsed. d 2) gep 01 ) 1% //Z}?///(E-T ¢ 1 ps
Once the cage potentidl, has been parametrized, the 5.00

equilibrium distribution Eq(23) for the uncoupled rotational

cage can be written as

50.00

-40.00

PO OF _ exp{—Vc(Q,w)/kBT} p 50.00
(2.0%0)= 57100 expl —Vo(@,0)/kgT} | (@x@Y) ¢ -5 ps
(34)
with the following normalization condition 500
J dQdQdwP(Q,0Q°%w)=1. (35)
-40.00

50.00

The functionP(wy,wy) is identified with the equilibrium
distribution for the librational frequencies. It seems reason- t =10 ps
able to assume that these parameters are statistically indepen-
dent, so that a distribution of one variable only may be de-
termined from the M.D. simulations,

-40.00

P(wX|wy):P(wx) P(wy)- (36)
-90.00 0.00 90.00

Of course the statistical independence of the two librational 729
frequencies should be confirmed by the M.D. simulations.

In summary, a complete analysis has been performed on
the cage- poFentlaI with the purpose 9f f|nd|r_1g an eff'C|entF|G. 2. Profile of the cage potentid( #) acting on a probe molecule having
parametrization of the solute-solvent interactions. An effeCyransiational coordinates at the minimufh=rc, and for fixed value off.
tive distribution has been derived for the orientational de-
grees of freedom, which has a rather simple structure and . _ _
depends on just two cage parameters identified with the prircédure. Figure 2 shows the rotational potentigb) acting

5.00

cipal librational frequencies of the molecule. on a test molecule, obtained by keeping the position vector
fixed at the translational coordinates of the minimum
Il. CALCULATION OF CAGE VARIABLES r®=r¢. Although deviations from simple parabolic shape are

observed from these cage potentials, the strong confining ef-

We applied the procedure defined in the previous sectiofect of the cage boundaries is also clear. Typicaational
to a M.D. simulation of 108 diatomic molecules interacting cage wells are of the order of magnitude of 504, i.e.
through a site-site Lennard-Jon€sJ) potential. The two  pyrely orientational relaxation of the probe within the cage is
equivalent sites are characterized by the LJ parameteigrongly hindered. When the probe reorients within the cage,
€=2.46x10"%" J and 0=3.332x10 *° m, and their dis-  gmall translational adjustments are made to the trajectory and
tance isl =2.099x10" **m. The temperature and the density the actual energy minimum resistance path in the full roto-
have been chosen a§=178.3 K and p=1.71X10°  yansiational space exhibits lower energy barriers of 15-20
K g/m®. This system has been used in the past to simulatg_T. This is the value that is compatible with the local order
static and dynamic properties of liquid Chear the triple  parameters reported in Table | for the orientation of the probe
point® The leap-frog algorithm was employed to integrateithin the cage.
the equations of motions, with a time step of 0.01 ps. A sample trajectory of the translational and rotational

At the beginning of the simulation, the-axis of the  coordinates is shown in Figures 3(@yd 3(b)respectively.
molecular frame for each test particle is chosen from the two

directions determined by the molecular symmetry axis. This
assignment is preserved with time in order to attribute a wellABLE I. Equilibrium averages.
defined meaning to the first rank orientational observables.

—_ — ———

Given the solvent configuration, the cage positibmand Ox= 744 ps D 5(2)=0.87
orientationQ¢ are obtained by locating the minimum of the ©y=7.50 ps* D 4(Q)=0.66
interaction potential. The minimization of the five dimen- ©2=62.00 ps>

sional potentialwhich depends om®, a° B° must be re-
peated for each molecule and each time step. This is the most
time consuming part of the entire calculation. We have found

©2=62.90 ps?
wyw,=55.98 ps?

that reasonable accuracy is obtained by using the principal 5_wi2=6-62 ps*
axis method’ which does not involve the evaluation of the w?=3.97 ps2
gradient of the potential. The actual solute position and ori- w7l 7=2.65 ps >

entation has been always taken as starting points of the pra
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0 130.00

(a)

65.00

-180.00 0.00 180.00
[

-20 * *
0.00 1.00 2.00 3.00

¢ (ps)

0 ; : 100 7o
0.00 1.00 2.00 3.00 0
t (ps)
-100
FIG. 3. (a) Time evolution of the component$£x,y,z) of the test particle _200 .
positionr; (continuous line)and of the cage centeR; (dashed line)(b) 0.00 1.00 2.00 3.00
Time evolution of the Euler angles for the particle axis orientatidn 8° ¢ (ps)

(continuous linejand of the cage center®, B¢ (dashed line).

FIG. 4. (a) Profile of the functionw?(y) for a test molecule(b) Time
o ) ) ) evolution of the librational frequencies, , , for a test molecule(c) Time
The jiggling motion of the translational cage coordinates,evolution of the third Euler anglg® for the cage relative to a test molecule.

which was found in the purely translational study presented
in Ref. 34, is confirmed here, together with the fact that
probe and cage coordinates have the same coarse time prOé)—

erties, as is demonstrated by the limited range of the relativ onvenlen(tj_to 2h025e/2at rind;)m/;n%gf the two directions,
fluctuations. In the case of the rotational coordinates, howt0résponding g <mi2 andf> /2. This assures an even

ever, the jiggling motion is of the probe orientational coor—d'strIbUtlon with respect to angig as in the cage potential

dinates, but again the probe and cage coordinates have tﬁ@' (31). The initial assignment of thedirection should be

same time property. It would appear that whereas the tranSp_reserved with time according to the principle of the least

. . 4 B .
lational cage coordinates are rapidly adjusting to the Solutéeorlentatloﬁ It should be mentioned that, if one chooses

the rotational solute coordinates are reacting to the cage. an initial distr?buj[ion. that is unbalanced with respectdp i
For the calculation of the librational frequencies, it is the correct distribution would be recovered after a suffi-

convenient to apply the method based on the expansion wit iently long time. But this equilibration time could be longer
respect to the librational angt that is Eq.(29). The matrix than the overall simulation time, if large barriers separate the
A can be easily computed by evaluating the derivatives ifVC cage potential minima g&=0 andg= . .
Eq. (24) The equilibrium properties of the librational frequencies
: : : ; —. 2
The assignment ok-y directions of the cage frame is Nave been computed, in particular averageg, of,
made according to the maximum and the minimum value of*x®y- They are reported in Table |, and it is manifest that
»2(). An example is shown in Figurgd). The assignment @x®@y= @ @y (Within statistical uncertainty), thus clearly
to one of these orientations is done on the basis of the prirsUPPOrting the factorization E¢36) of the equilibrium dis-
ciple of the least reorientatiotf,by taking into account the tribution for the librational frequencies. Under this condition,
system configuration at the previous time step of the simulath® one-dimensional distributioR(w;) is derived from the
tion. A representative trajectory of the librational frequenciesenSeémble of M.D. data, and it is shown in Figuref@l line
is shown in Figure 4(b), while in Figure 4(@ typical ex- curvg). In Table | we alsq list t_he averages of the Wigner
ample of the time evolution of the third Euler angiespeci- ~ functions of the relative orientatiof of the probe
fying the cage frame is presented. DI (O 37
Some care is required in the initial choice nfxis of Lol€Y)- 37)
the cage frame. At the beginning one calculates the preferretihey can be used to test the equilibrium distribution €4,
orientation of the molecular symmetry axis, and this deterwith the cage potential Eq31) (see paper )l Only even
mines two opposite directions for theaxis of the cage values ofl are considered, since for odd ranks the averaged
frame. Within the statistical sample of all the solutes, it isvalues are zero.
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0.30
1.00
Ple) (a)
g (Y
I
0.15 0.50
0.00 . . 0.00 . .
0.00 5.00 10.00 y 15.00 0.00 0.50 1,00 150
) (ps ") ¢t (ps)
FIG. 5. Comparison between the experimental distribut¢m) (continu-
ous line) and the derived distributioPs(ws) (dashed line)for the slow
relaxing frequencyws . 1.00 =
)
. . . . J =
Dynamical properties are characterized by means of the &,
correlation functions for all the relevant variables. For the
translational properties, we need just the correlation function 0.50 N
for the relative displacement of the test particle
Glrl(H=2 ri(t)r;(0) (38) - , . N
' 0.0 1.00 2.00 3.00
which is required to discuss the time scale separation be- ¢t (ps)

tween rotations and translatiofisee Sec. Il)and it is pre-

sented in Fig. @). The corresponding correlation timeis
determined from the time integral of E(B8).

Different kinds of orientational correlation functions can
be examined, starting from the orientati€} of the probe
with respect to the laboratory frame LF

GI[Q°1(1)=D] (Q°(1))* D] o(Q°(0)). (39)

Because of the isotropy of the system, these correlation fun
tions are independent of the indéxand the calculation is
confined to rank§=1 andj=2 (as is the case for the sub-

sequent orientational correlation functions). They are re-

ported in Fig. 6(b). The corresponding correlation times ar
denoted by°. The dynamics of the cage frame orientation
is described by the correlation functions

GlL[Q°](1)=D] (Q%(1))* D] ,(02°(0)). (40)

Again, they do not depend on the laboratory indlexX defi-
nite dependence on the index is expected and observed.

Two independent processes determine the dynamics of ttW

cage frame: the reorientation of theaxis (i.e. the change of
the most favorable orientation of the long molecular axis
and the rotation of the&-y axes following the change of the
principal directions of the librational frequencies. A simple
analogy exists with the anisotropic rotational diffusion of rod
shaped molecules, and therefore, the same behavior may
expected for the correlation functions of E40). To confirm

FIG. 6. (a) Normalized autocorrelation functions for the displacement be-
tween solute and cage centéy) Normalized orientational correlation func-
tions for the probe orientation, first rariontinuous linejand second rank
(dashed line).

pared to the overall reorientation of the system molectile
cage. This is indeed observed for the secémdany even)

Fank correlation functions

GI[Q](1)=D] o(Q(1))* D] o(L(0)), (41)

owever, first(or any odd rank correlation functions are
sensitive to the jump motion between the wells which char-
acterize the second rank potential adopted to define the cage.
Since the energy barrier is rather high, this process is ex-
tremely slow and it is not actually observable in any reason-
able standard M.D. experiment. For this reason in Fig. 8 we
show only the second rank correlation function for the rela-
tive orientationQ2. The corresponding correlation time is de-

j even.

oted simply as?). For comparison, the second rank cor-
relation functions for the probe and the cage are also
included.

Among the last correlation functions to be considered
are those for the librational frequencies

be

Glwl(t)=2 dwi(t)éw;(0), (42)

this hypothesis, one can compare correlation functions with

different values of the indem in Fig. 7(a) (j=1) and in Fig.

where dw;=w;— w;. This is shown in Fig. 9. One can

7(b) (j=2). The corresponding correlation times are denotedlearly distinguish two components with rather different time

by TSTJ])C.

scales. Therefore, two relaxation timesand 7S for the fast

It is also interesting to evaluate rotational correlationcomponent and the slow component, respectively, are re-

functions for the relative angl®. The rotational-librational

quired to characterize the correlation function. Their values,

motion inside the potential well is expected to be fast com+eported in Table Il, are obtained from a bi-exponential fit-
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0.00

(a)

0.00 1.00

0.00 ==

FIG. 7. (a) Normalized orientational correlation functions for the cage ori-
entation, first rankm=0 (continuous line)m=1 (dashed line)(b) Nor-
malized orientational correlation functions for the cage orientation, secon
rank; m=0 (continuous line)m=1 (dashed lineandm=2 (dotted line).

ting of the data of Fig. 14. Finally, the correlation function

t (ps)

for the angular momenturh of the test particle

G[L](H=2 LDOL0)

3.00

8103

& (t)

050

0.00 *
0.00 1.00

FIG. 9. Normalized correlation function for the librational frequeticyn-
tinuous line)and its best bi-exponential fittinglashed line).

IV. DISTRIBUTION OF LIBRATIONAL FREQUENCIES

It was previously observed for the case of purely trans-
lational motion in the study on liquid A% that the corre-
lation function for the translational librational frequency
G,(t) relaxes according to two distinct components, thereby
implying that the internal reorganization of the cage structure
is actually made up of a slow decay mode superimposed on
a rapid local fluctuation. It appears clearly from Fig. 9 that in
the present rotational system the librational frequency corre-
lation function behaves in the same way. Correspondingly,

we separate fast and slow components of the cage
drequencies?

®w=wst w;. (44)

This decomposition is applied to each cage frequesagcy
The indexi is left implicit because of the statistical equiva-
lence of the two cage frequency modes. In order to determine
the time scale of the two distinct modes of the cage frequen-
cies, we suppose that they are dynamically uncoupled, and
thatw; behaves like a Gaussian stochastic variable with null
averagew;=0, so thatw=wg. By assuming also a simple

is presented in Fig. 10. In the insert we show the Fourierexponential decay for each component, correlation function
Laplace transformg, (w). The corresponding correlation Eq. (42) for the cage frequencies can be decomposed as:

time is defined asr ’. Table Il collects all the calculated

correlation times.

1.00 0
& (i} ”x\(’age
4 .
0.50 |
"'.,‘H}?e]. orientation P;;b; ----------
0.00 SN e
0.00 1.00 2.00 300
¢t (ps)

FIG. 8. Normalized orientational correlation functions for the relative ori-
entation between molecule and cage, second (doited line); for compari-
son the related correlation function for the prdisentinuous lineyand the

cage(dashed line).

G () =2(02— 0)e Vot 20le 7 (45)

with 7° and 7' determining the time scales of the slow and
fast components. By fittinG ,(t) supplied by M.D. simula-
tions according to the previous equation, one obtains both

TABLE II. Correlation times.

7,=0.15 ps
T10=4.2 ps
72°=12 ps
Ne=4.4 ps
7#1°=0.56 ps
72°=1.4 ps
7#°=0.41 ps
7%$2°=0.19 ps
7?=0.12 ps
1 =0.14 ps

> =2.87ps
J=0.06 ps

Relative displacement

Particle reorientationj=1)
Particle reorientationj=2)

Cage reorientationj& 1, m=0)
Cage reorientationj&1, m=1)
Cage reorientationj&2, m=0)
Cage reorientationj&2, m=1)
Cage reorientationj&2, m=2)
Relative reorientationjE 2)

Fast relaxing librational frequency
Slow relaxing librational frequency
Angular momentum relaxation
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1.00

025

g, 0t) aes

L 0.13
0.50

0.00

.00 5.00 10.00 15.00
0.00 N
0.00 0.50 1.00 1.50
 (ps)

FIG. 10. Normalized autocorrelation function for the molecule angular mo-
mentum. Insert: Fourier-Laplace transform.

the pre-exponential factorisee Table )l and the relaxation

times reported in Table Il. The fluctuating part of the slow
cage mode has the smaller weight but the longer relaxatio
time that is comparable to those for the overall rotation.
Therefore, the fluctuations of the slow cage mode are o

Polimeno, Moro, and Freed: Rotational dynamics in liquids

Notice that P(ws,w¢) must be identically zero for
wst ;<0 when—o<w;,w <+, In fact, by definition,
only positive values are allowed fas. Naturally any effec-
tive distribution found forwg should be practically null for
ws<0, to be in agreement with the idea that the main con-
tribution to the overall cage frequency residesuig.

We then define a trial functional form f&?,(ws, ws):

Piws,w) =7 (wst 0r) Q(ws)g(wr), (49)

where.7(w) is an unknown function which is one almost
everywhere foro>0 and is approaching zero rapidly and
continuously foro—07", while it is everywhere zero for

w<0; Q(ws) is an unknown distribution function; finally

d(ws) is the Gaussian distribution

_ _ 2yp 2
g(wf)—ﬁfz)mexp( wfIwa) (50)

(
with the widthw? previously derived. The problem is left of
determining the best functional forms faorZ(w) and
R(ws). Obviously, it admits of an infinite number of solu-
tions. However, we may consider as a first approximation
that the effect of7Z( w) is negligible. This approximation is

primary importance in the analysis of the rotational dynam-easonable since it affects only the region of frequencies near
ics. A secondary role can be attributed to the fast cag&ero, whereP(ws, ;) andP(w) are negligible. Under this

modes,w; since they equilibrate in rather short times. For

this reason, in the stochastic model only the slow cage com-

ponents will be explicitly taken into account, and the fluc-
tuations ofw; will be considered as an additional contribu-
tion to the frictional dissipation of the system.

Since we only know from the M.D. experiment the prob-
ability distribution for w, we are left with the problem of
determining an effective distribution faes;. One can adopt a

condition, we may identiffP4(ws) with Q(ws) so that

P(w)%J dwsPy(ws)g(w— ws). (51)
The solution of Eqg.(51) can now be carried on in many
different ways(Fourier transforms, non-linear least squares
fitting etc.). We have chosen to define a functional form for
P.(ws) which is substituted into Ed51). The best fitting set

coarse graining procedure, by averaging the cage frequenci@& parameters characterizing the function is then determined

according to a suitable cutoff time, which separates slow
and fast cage frequencigsGiven the trajectorys(t) for the

by adopting a least square fitting criterion, with respect to the
known points of P(w). The adopted functional form for

librational frequency of a test molecule, we can define theéPs(ws) is:

slow component as:

wt)= Zi “dt’ w(t).

Tc t—7¢

t+7

(46)

An effective distributionP¢(ws) for the slow component is

—v n

2
> a| -5
- n| 0
n=0 @s

n o

(52)

then obtained by the same statistical analysis used foand the following set of parameters have been calculated:

P(w).3* Alternatively, a semi-analytical treatment can be
chosen, which is described in the following paragraphs.

Let Py(ws,w;) be the joint probability distribution for
the slow and fast cage frequencies, &{a) the distribution
for the measured cage frequency given by &d). The re-
lation between them is given by

P(w)= f dodwid(w—ws— w;)P(wg,ws)

=f dwsP(ws,0— ) (47)

and we are interested in the distribution of the slow compo
nent only

Py(ws) = j dwP(ws,ws). (48)

w’=6.24 ps? wu=1.30, »=3.59, a,=—2.20, a,=1.19,
a,=0.406. Figure 5 shows the comparison betwé¥m)
and P4(wg). The new distribution is closer in shape to a
simple Gaussian distribution and it assigns a negligible im-
portance to small frequencies.

V. DISCUSSION

The results of the last two sections, especially as sum-
marized in Tables | and I, lead to a simple but dramatic
statement about the rotational dynamics of a diatomic mol-
ecule like Cb. There is a very strong cage that plays a domi-
nant role in the reorientation of a given,@holecule. In fact,

the molecular reorientational correlation time$s"° and
7?0 are very nearly the same as the equivalent correlation
times 7(Y¢ and 7(?)° for the cage. This fact, plus the large
cage potentials of 15-2RT, which leads to the molecule
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being very well-aligned in the cage, show that to a good firstonclude that the dominant feature of the cage potential is its
approximation the molecular reorientation is driven by thepersistence rather than as a source of friction. By contrast, in
cage reorientation, i.e. the molecular reorientation is a cola simple Brownian motion model, the total potential acting
lective process. Next we note that the cage potential reorientsn the Brownian particle would be the rapidly fluctuating
in a manner that strongly suggests Brownian motion. Thussource of friction. Finally we note tha*tL for the more rap-

for exampler{V%/ 7P°~3 (and 7%/ 7{°~3.5), and from idly fluctuating harmonic component is actually larger than
the cage correlation times in Table Il we find that the axially7 7 (0.14 vs 0.06 ps so that even this component does not
symmetric Brownian diffusion expression: provide the very rapidly fluctuating torques that yield a
DIL(L+1)+(Dj- D¢)M? is roughly obeyed with frequency-independent friction in simple Brownian motion.
D¢~0.12 ps?t and Df~1.6 ps . Thus, whereas a simple lts role might best be described by a frequency-dependent
experiment would show that Clndergoes Brownian reori- friction.*® The anharmonic contributions to the potential
entation, it is in reality the cage motion, to which the mol- would be expected to have similar properties to this fast
ecule is strongly coupled, that undergoes Brownian motiorfomponent.

to a good approximation. We next note thab'z) and 7, are about equal. This is

Of course, rotational librations of the molecule relative consistent with the rapidly relaxing orientational component
to the cage are occurring, and they are at a rate that is a¥f the cage being associated with the relative translational
order of magnitude faster than the overall reorientation. Theynotion of the solute within the cage. Howevey,is signifi-
are necessarily of low amplitude given the high orientingcantly faster than?, as well as the solute orientational relax-
potential and high degree of molecular alignment within theation times and the dominant ones for the cagg’t and
cage(cf. Fig. 4). 7$2)°). Thus these processes persist over times longer than

This picture of a very strong cage potential, which domi-the relative translational displacements, and it appears appro-
nates the long-time reorientation of a,Gholecule, and the priate to have assumed that they are decoupled from these
short time librations is precisely the model proposed earliedisplacements, in the sense that they see a time average over
by Hill. these displacements.

We next note that *< < 710 (20 which is normally The biaxial component of the cage orientational poten-
considered as corresponding to the regime of visdoes tial does exhibit somewhat faster relaxation tinfgven by
non-inertial) reorientational motion. For the case of simple #{1°, #?¢, and 72°), with 752 being comparable ta,,
Brownian motion, one has in this regime the Hubbard-indicating that this feature of the cage potential may be
Einstein relation, 7@%79=1/6kT, where for d, coupled to the relative translational displacements.
|=1.149x10 %> kgn? vyielding 7% 7J=7.71x10"2¢ Finally we can surmise from Fig. 3 that the diffusion of
s 2 at 180 K. The results of the present study yieldthe position of the cage, is itself a slow process on the
7207 3=72x10"% s72 at 180 K. or extremely good picosecond time scale consistent with the MD simulations
agreement despite the fact that an individuaJ ®lolecule  previously described for liquid argofiWe suspect that it is
does not undergo simple Brownian motion. In fact, if thethis slower cage diffusion that is at least partially responsible
motion of the molecule were simple Brownian reorientationfor the fluctuations inwg with relaxation timer$ .
within a slowly reorienting cage potential, one expects Although we have focussed, in this discussi@amd in
720 73> >1/6kT 38 In order that this strong inequality does this paper), on the collective cage properties, one might also
not hold, it appears necessary that the frictional torques owish for a moremoleculardescription of the cage in terms of
the CL molecule be small enough so that, in the absence othe nearest neighbors to the solute molecule. By observing
the persistent strong cage potential, the motion would be ithe time evolution of the ensemble of,Gholecules resulting
the inertial regim& for which 7%~ \/z/2(1/6kT)Y/2=0.35  from the M.D. calculation, it is clear that there is not a very
ps, which is smaller than observed. In our analysis, the persubstantial local order, i.e. the neighbor molecules appear
sistent cage potential is taken as associated with the slowlgotropically distributed in their positions with respect to a
relaxing component, whereas the rapidly relaxing componeritsolute” molecule, and their orientations show no close cor-
is regarded as a source of the friction. These two componentslation with the solute. However, the nearest neighbors only
represent the total harmonic potential on a @iolecule, diffuse away in time-scales long compared to their reorien-
(with a small additional anharmonic correction that we havetational motion. Thus we conclude that the cage potential is
not studied in detail), from which one readily obtains theindeed a collective variable that arises from summing over
torque acting on the molecule. From Table | we findthe interaction of many particles. In that sense there is per-
w_gz 62 ps 2 (where ws=w;, i=x,y) and w_g_ w_SZZ 265 haps an analogy to other collective phenomena in condensed
ps 2, so that only about 4 % of the “slow” component is phases, e.g. an electron that travels with its lattice distortion
fluctuating. Thus it is more accurate to refer to this as dn & solid in the form of a polaron. This analogy is further
persistent component. From the ratid/w?=0.06 we see suppo_rted b_y the long persistence of the dominant portion of
that the rapidly relaxing component is only a small fractionth€ Orientational cage potential.
of the total harmonic potential acting on a,@holecule. This
partitioning is th_en consis_tent with or_wly a small _fraction of VI. SUMMARY AND CONCLUSIONS
the cage potential supplying the rapidly fluctuating torques
that could provide the friction. Thus, this analysis supports  For the case of a linear diatomic molec&,) near its
the inference at the beginning of this paragraph, and we malyiple point, it was possible to parametrize the collective cage
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