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An operational definition of collective cage variables previously introduced for liquid argon is
extended, via a molecular dynamics study, to the rotational properties of axially symmetric
molecules. Quantitative measures of the static and dynamic cage properties are extracted for liquid
Cl2 near the triple point. The collective cage variables are well described by the potential acting on
an arbitrary molecule~i.e. solute!for a fixed configuration of the other molecules~i.e. solvent!. A
dynamic separability of the solute orientation relative to the cage potential and of the relative solute
displacement is justified in part by the faster relaxation found for the latter. Large and persistent
orientational cage potentials~;15–20kBT) lead to substantial alignment of the solute in the cage
with an average local order parameter of 0.87. The reorientational correlation times for thecageare
consistent with axially symmetric Brownian motion. The reorientational correlation times for the
soluteare nearly equal to the equivalent ones of the cage, consistent with the strong coupling of
solute within its cage which leads to a collective reorientation of solute and cage~e.g.tcage

(2) 51.4 ps,
and tsolute

(2) 51.2 ps!. Solute librations within the cage are much faster (t libr
(2) 50.12 ps!and are

comparable to the relaxation of the relative solute displacements (t r50.15 ps!. The solute angular
momentum exhibits the fastest correlation time (t J50.06 ps!. While the orientational cage
potential shows rapidly and slowly relaxing components (tv

f 50.14 ps andtv
s 52.87 ps,

respectively!, its dominant portion shows a very long persistence. ©1995 American Institute of
Physics.
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I. INTRODUCTION

In principle, a full description of the molecular interac
tions is required to explain rotational motions in liquids.
practice, however, simplified models based on Brownian m
tion theory are often employed to analyze such observati
as spectroscopic results or transport phenomena with ra
good success. In these simplified models the role of the
vent is merely a source of frictional drag, i.e. it is a co
tinuum devoid of specific interactions with the solute. N
room exists in this framework for the chemist’s intuition o
the liquid state as an ensemble of strongly interacting m
ecules.

More extensive models than are supplied by Browni
motion theory are required to analyze the effects of the m
lecular organization of the solvent. The picture of liquids
strongly interacting molecules without long range order su
gests that a primary role should be played by the cage
solvent molecules around the solute. It can be visualized
the locally organized structure of the solvent confining t
solute in a small region of the available volume because
strong interactions with nearest neighbors. As long as t
confining effect has a persistent character, the forces~and the
torques!exerted by the solvent cage on the solute beco

a!On leave of absence from Department of Physical Chemistry, University
Padova.
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highly correlated in time, in opposition to the assumption
fast fluctuating forces of Brownian motion theory. To a
count for these systematic forces, Brownian motion theo
should be generalized by including the cage potential gen
ated by the solvent molecules surrounding the solute in
appropriate manner.

Dielectric dispersion of polar liquids supplied the firs
evidence of this cage effect. In order to explain the Pol
absorption in the far infrared region, N.E. Hill proposed
rather clear terms a cage picture of solute dynamics by
cusing on the potential felt by the solute under the action
neighboring molecules.1 Her key assumption was the exist
ence of a time scale separation between fast librational m
tions of the solute within the cage potential, and the slo
rotations of the minimum of this potential after reorganiz
tions of the solvent. In this way the Poley absorption in t
high frequency region can be explained by solute libration
motions, while the Debye relaxation time measured at low
frequencies would be associated with rotation of the equil
rium orientation of the solute, viewed as a cooperative m
tion involving the neighbors forming the cage.

Further insights on cage effects were provided by m
lecular dynamics~M.D.! simulations. The first realistic cal-
culation of an atomic liquid showed the limits of standa
Brownian motion theory.2 In fact, the velocity autocorrela-
tion function displays a negative tail to be associated w
the action of a confining potential. The same feature

of
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8095Polimeno, Moro, and Freed: Rotational dynamics in liquids
shared by angular velocity correlation functions derived fro
M.D. simulations of a variety of linear molecules, like CO
N2, O2 , Br2 , CO2, CS2 .

3–11These results suggest that cag
effects are intrinsic to liquids under normal conditions.

On the experimental side, manifestations of cage effec
were found by different means, for example from carefu
analysis of infrared12 and Raman13 band shapes. Also lower
frequency spectroscopies like EPR can detect them when
frequency dependence of spectral densities is analyz
showing both higher frequency and lower frequenc
effects.14,15 Even more convincing with regard to the high
frequency librational motions are spectroscopic observatio
in the time domain. Experimental advances which allo
measurements in the subpicosecond range, have provided
rect evidence of molecular librational motion within the so
vent cage.16–18Equivalent information can also be recovere
from stimulated gain experiments of depolarized light sca
tering in the suitable frequency range.19

On the theoretical side, a variety of models and metho
each with quite different ingredients have been proposed
the solvent cage problem. With itinerant oscillator model
the solvent cage is assimilated into a fictitious particle inte
acting with the solute according to a given potential. Sto
chastic equations are employed to describe the time evo
tion of such a two-particle system. Originally this metho
was used for the solute translational motion within th
cage,20 and subsequently it has been extended to rotation
motion,21 particularly by Coffeyet al.,22 in a planar two-
particle description. Even if this procedure is very attractiv
for directly representing the solvent cage, it is not complete
satisfactory. First of all, this is because of the artificial cha
acter of the cage representation as a particle whose mass~or
momentum of inertia!, as well as the momenta, are not we
defined. Moreover this kind of model utilizing a fixed inter
action potential cannot account for fluctuations in th
strength of the cage potential. This is an important ingredie
of the problem, as shown by M.D. results for the distributio
of the Einstein frequencies for translational and rotation
motions of test particles.10

The importance of the distribution of librational frequen
cies has been emphasized by Kushick who proposed a mo
for describing its effects on the solute rotational motion.23

The same problem has been analyzed by Lynden-Bell a
Steele by applying cumulant techniques to orientational co
relation functions.24 Their Gaussian cage model is based on
normal distribution of librational frequencies. Substantia
agreement has been found with the correlation functions o
tained from M.D. simulations, after fitting of a paramete
such as the width of the librational frequency distribution. I
this framework, however, a marginal role is attributed to th
dynamics of the solvent cage. In particular, the fluctuatio
of the solute equilibrium orientation within the cage potentia
were not considered, whereas in the Hill picture this proce
is essential to rationalize the rotational dynamics at lon
times. In an effort to include such a process, Deb has p
posed a Monte Carlo sampling of trajectories interrupted
reorganizations of the solvent cage.25 Several analytical
treatments of cage effects within impact theories have be
J. Chem. Phys., Vol. 102Downloaded¬25¬Jan¬2010¬to¬128.253.229.158.¬Redistribution¬subjec
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developed in relation to far-infrared and vibrationa
spectroscopies.26,27

A completely different approach is that advocated b
Stillman and Freed.28 As in standard Brownian motion
theory, Fokker–Planck equations are employed, but with
extended set of stochastic variables to include paramet
characterizing the cage potential, and with the constraints
detailed balance rigorously applied. A formal analogy exis
with itinerant oscillator models because of the overall Ma
kovian character of both representations. But in this case
artificial particles are required, since the extra stochas
variables are directly representative of the features of t
cage potential, like its strength and its stationary positio
and fully three-dimensional rotations are considered. Furth
developments of this line of research were made by Po
meno and Freed,29,30 who showed the equivalence of the
Stillman and Freed approach to using multi-body Fokker
Planck–Kramers equations, and obtained extensive num
cal solutions to a range of cage models. These cage mod
include both short-time and long-time behavior of the solut
and they are related to the previous14,15 EPR studies. Re-
cently, Nordio and Polimeno31 have applied a planar multi-
body Fokker–Planck–Kramers equation to the interpretati
of dielectric relaxation and far-infrared absorption signals
dipolar liquids.

The literature of theoretical models of cage effects
extensive, with contributions that elaborate the general fe
tures noted above or that develop particular aspects of
problem. In the latter context we note the treatments whi
include explicitly barrier crossing~jump!processes under the
hypothesis that the cage potential displays a multistab
structure.32 Kivelson and co-workers have related the cag
effect to the differentiation ofa andb relaxation processes
in glasses and supercooled liquids.33

Molecular dynamics simulations provide very detaile
information about the rotational motion of liquids.3–11 In
principle, one can use such information not only to verify th
already existing theories of the solvent cage, but also f
developing new and more accurate models. However, one
confronted by the problem of precisely defining the param
eters characterizing the cage, so that they can be identifi
during a simulation. A new method has been proposed34 for
the translational motion of atomic liquids, that is based on
definition of the cage potential as the interaction energy b
tween a solute and all the solvent molecules, and it must
considered as a function of solute position for fixed solve
configuration. This cage potential can easily be calculated
each instant of a M.D. run, by holding the solvent particle
fixed and by computing the overall potential energy as
function of solute displacement. Because of strong confini
effects on the solute due to interactions with its neare
neighbors, this potential can be approximated by its pa
bolic expansion. The parameters of the expansion, i.e.
location of the minimum and the curvatures, can be used
physical variables characterizing the cage potential itself.
particular, the location of the minimum is identified with the
cage center, i.e. it is the stationary point for solute traject
ries if the solvent is frozen. By diagonalizing the curvatur
matrix, one derives the principal frequencies of solute m
, No. 20, 22 May 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8096 Polimeno, Moro, and Freed: Rotational dynamics in liquids
tion within the cage~to be denoted as the cage frequencie!
and the corresponding principal directions which define t
axes of a cage frame. All these parameters fluctuate a
result of the reorganizations of the solvent. However, b
cause of the operational character of such a definition
‘‘collective’’ cage variables, they can be exactly calculate
during a M.D. simulation, thereby providing detailed stati
tical information about their distribution and relaxation. O
the basis of this information one can develop a model wh
explicitly includes the cage parameters as independent
chastic variables.35

A main objective of the present work is the generaliz
tion of this method to molecular liquids. Even in this ca
one can define the cage potential, expressed as the ov
interaction energy, as a function of solute coordinates, i.e.
position and orientation, for given solvent configuration. T
difficulties arise in parametrizing such a potential in order
identify the cage variables. One can perform a parabolic
pansion, but because of the dependence on both translat
and rotational coordinates, this leads to an increased num
of parameters whose relation to relevant features of solu
solvent interactions becomes challenging.

An additional objective in this work is to examine th
M.D. results to see whether a well defined collective ca
potential exists and persists long enough to significantly
fluence the solute reorientations as proposed by Hill.1

The parametrization of the cage variables is examined
detail in the next Section by considering an axially symm
ric solute. A parabolic expansion of the cage potential
introduced under the hypothesis that the solvent hinders b
translations and rotations of the molecule. In order to d
with a minimal set of cage variables, the limit of fast equi
bration of solute displacement with respect to the cage ce
is introduced. This allows for the identification of cage va
ables most directly related to the rotational dynamics of t
solute. In Sec. III, a M.D. simulation of liquid chlorine is
analyzed in order to determine the equilibrium properties a
the relaxation behavior. Section IV is dedicated to the ana
sis of the distribution of cage frequencies and to their se
ration into slow and fast components. A general overview
the M.D. results is presented in Sec. V wherein the differe
dynamical processes driving solute-solvent interactions a
their time scales are characterized. This leads to a pre
and clear statement of the role of the collective solvent ca
A summary Section concludes this paper. In the second
of the work36 ~hereafter called II!, a stochastic model will b
presented, which takes into account all the relevant featu
observed in the M.D. simulation.

II. THE CAGE VARIABLES

In this section, the interaction potential between the s
ute and the solvent is analyzed with the aim of providing
precise definition of cage variables to be calculated se
consistently during a M.D. simulation. The dependence
both the translational and rotational coordinates of the sol
must be considered in order to completely represent the
teraction potential.

Let us consider a rod-like solute characterized by t
position r0 and the orientationV05(a0,b0,g0) of the mo-
J. Chem. Phys., Vol. 102Downloaded¬25¬Jan¬2010¬to¬128.253.229.158.¬Redistribution¬subjec
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lecular frame MF with respect to a laboratory frame LF
Figure 1 illustrates the relations among the various frames
reference employed in the derivation. Thez-axis of the MF is
chosen parallel to the long molecular axis. Because of t
axial symmetry of the molecule, the interactions with th
solvent are independent of the angleg0. Therefore we leave
g0 in the treatment since we prefer to deal with Wigner ro
tation matrices throughout, instead of a mixed representat
that includes spherical harmonics. Also, this will mor
readily permit the generalization of the present treatment
non-linear molecules in the future.

For any given solvent configuration denoted concise
by J ~i.e. the ensemble of coordinates of solvent particles!,
one can calculate the interaction potentialV(r0,V0,J) be-
tween solute and solvent by adding the pair-wise contrib
tions. The cage potential is defined asV(r0,V0,J) to be
considered for a fixed solvent configurationJ. The same
general methodology introduced in Ref. 34 will be applied
the roto-translational problem. The main objective is that
representing in a simple form the dependence of the ca
potential on the ensemble of solvent coordinates. This can
conveniently achieved by introducing a parabolic expansi
of the cage potential with respect to the solute degrees
freedom. In this way the dependence on the solvent config
ration is included in the coefficients of such an expansio
and they can be used as effective degrees of freedom re
senting the influence of the solvent on the solute.

The positionr c and the orientationVc5(ac,bc,gc) of
the solvent cage are determined by the minimization ofV
with respect to the solute coordinates

S ]V~r0,V0,J!

]r0 D
r05rc,V05Vc

50, ~1!

S ]V~r0,V0,J!

]V0 D
r05rc,V05Vc

50. ~2!

The cage coordinates necessarily depend on the solvent c
figuration J. SinceV is independent ofg0, condition ~2!

FIG. 1. Relevant frames of reference for the probe1 cage system; LF
laboratory frame; MF molecular frame; KF principal axis frame for th
translational cage force; CF rotational cage frame.
, No. 20, 22 May 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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does not determine the third anglegc of Vc. We assume for
the moment thatgc has been chosen according to some pr
cise rule to be specified further on.

The set of coordinates (r c,Vc) defines a cage frame CF,
and one can then specify the solute configuration by mea
of relative coordinates (r,V) for the displacement and the
rotation of the solute from the CF to the MF. Then the cag
potential can be described in terms of this new set of va
ables asV(r,V,J), where the dependence onr c andVc is
included throughJ. In the following we shall analyze in
detail the dependence of the cage potential on the relat
coordinates of the solute by leaving implicit the dependen
of V on the solvent configurationJ.

Some hypothesis about the solute-solvent interactions
required as a guideline in the parametrization of the ca
potential. We assume that there is a strong confining effe
due to the solvent such that the cage potential is charac
ized by a steep dependence on the solute displacement
rotation. Given these conditions, a parabolic expansion of t
cage potential with respect tor and tob should describe its
dominant part. Note that the condition of small displace
ments from the equilibrium orientation does not limit th
range of the anglea of V.

Thus we separate the cage potential into two parts

V~r,V!5Vh~r,V!1Va~r,V!, ~3!

where the harmonic contributionVh includes all the terms up
to the second order in powers ofr andb, andVa denotes the
remaining anharmonic contributions. We assume thatVa can
be neglected in the equilibrium distribution of the problem
and the following analysis is devoted to the parametrizatio
of Vh alone. It should be mentioned, however, that the d
namical effects of the anharmonic terms are partially a
counted for by the stochastic cage model~cf. paper II!
through the fast fluctuating forces responsible for the fri
tional dissipation.

Let us first discuss the dependence ofVh on the solute
orientationV. Because of the axial symmetry of the solute
Vh can be expanded in a series of Wigner matrice
Dl ,0

j (V), where, in this expansion, only the terms bearing
contribution up to second order inb need be included.
Therefore components withu l u.2 are excluded because

Dl ,0
j }exp~2 i l a!b u l u for b→0. ~4!

The dependence on the anglea is then confined to just a few
periodic functions.

By performing the expansion with respect to the solu
displacement, one obtains

Vh~r,V!5V~0!~V!1rTV~1!~V!1rTV~2!~V!r/2, ~5!

V~0!~V!5Vh~0,V!, ~6!

Vi
~1!~V!5S ]Vh~r,V!

]r i
D
r5 0

, ~7!

Vi , j
~2!~V!5S ]2Vh~r,V!

]r i]r j
D
r5 0

, ~8!
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where the superscriptT denotes the transposed array~or ma-
trix!. Since we retain terms up to second order overall inr
and b, the matrixV(2)(V) should be evaluated atb50,
without any dependence ona. Then we can write the second
order term in Eq.~5! as rTKr/2, where K5V(2)(0) is the
curvature matrix for the translational motion. We use forK
the same parametrization introduced in Ref. 34, by consider-
ing the eigenvalue problem

Kum5kmum ~9!

with the principal directionsuj defining the axes of theK
frame ~KF!. The Euler anglesVK will denote the rotation
from the LF to the KF.

Let us now analyze the first order term in Eq.~5!. Since
the relative coordinates of the solute vanish at the minimum
of Vh , it must obey the condition

V~1!~0!50. ~10!

This term can also be expanded in a basis of Wigner func-
tions, more precisely in terms of functionsDl ,0

j (V) with
lÞ0 becauseD0,0

j (0)Þ0 would violate Eq.~10!. But if Vh

includes only terms up to second order in the translational
and rotational displacements, this expansion is confined to
functionsD61,0

j (V) in agreement with Eq.~4!. Moreover,
these functions give rise to the same angular dependence
independent of the rankj , when terms linear inb are con-
sidered@cf. Eq. ~4!#. In conclusion, the expansion can be
limited to the lowest rank functions, and we write

um
TV~1!~V!5c1,mD1,0

1 ~V!1c21,mD21,0
1 ~V!, ~11!

where the components of the gradient ofV(1) with respect to
the principal directions of the KF are to be considered for the
sake of convenience~see next paragraph!. Of course,Vh

must be a real function and, thereforec21,m52c1,m* .
Finally, the zeroth order termV(0)(V), has to be param-

etrized. One should take into account thatV(0)(V) has a
minimum atV50 and, therefore, it should obey the condi-
tions

S ]V~0!~V!

]wx
D

V50

5S ]V~0!~V!

]wy
D

V50

50, ~12!

wherew is a rotation vector with componentswp (p5x,y) in
the CF. This condition is equivalent to

@M6V
~0!~V!#V5050, ~13!

where M5]/]w is the corresponding rotation operator.
Therefore, only Wigner functionsDl ,0

j (V) with l50,62 en-
ter in the expansion ofV(0)(V) term. For small values of
b and a fixedl , these functions give rise to the same angular
dependence independent of the rankj , which then can be
fixed. We shall employ second rank functions, so that

V~0!~V!5b0D0,0
2 ~V!1b2D2,0

2 ~V!1b22D22,0
2 ~V! ~14!

with b2 l5bl* .
The overall potential is then written as
, No. 20, 22 May 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8098 Polimeno, Moro, and Freed: Rotational dynamics in liquids
Vh5 (
l50,62

blDl ,0
2 ~V!1 (

m51

3

~um
T r ! (

l561

cl,mDl,0
1 ~V!

1 (
m51

3

km~um
T r !2/2. ~15!

The strength of the cage potential is characterized by the
of coefficientsb for the purely rotational part, the coeffi
cientsk for the translational part, and by the coefficientsc
for the mixed components.

The ensemble of solute and cage variables required
specify at each instant the configuration of the system,
then

X85~r,V,r c,Vc,VK,k,b,c! ~16!

and the equilibrium distribution should be considered as
functionP(X8) of all these variables. Under this approxima
tion, the dependence of the distribution on the solvent c
figuration J is parametrized through the set of cage va
ables, just as in the treatment of the purely translatio
problem.34 Of courseP(X8) depends uponr c andVc only
implicitly through r,V when dealing with homogeneous an
isotropic solvents. The dependence on solute coordinater
andV is determined by the Maxwell–Boltzmann expressio
with respect to the solute-solvent interaction energy, i.e.Vh

of Eq. ~15!:

P~X8!5 f 8~VK,k,b,c!exp$2Vh~X8!/kBT% ~17!

with f 8 a function related to the distribution of the cag
variables. M.D. simulations can provide the needed deta
information about the dependence ofP(X8) on the cage vari-
ablesVK, k, b andc. Because of the large number of inde
pendent cage variables, their complete statistical analysis
pears to be a prohibitive task. Given the limited accuracy
the statistics of a finite M.D. run, it would seem to be diffi
cult to characterize the distribution with respect to each
these 15 real parameters and their correlations. Theref
some further simplification for the equilibrium distribution i
required.

We first derive a simpler description by neglecting com
pletely the coupling between solute displacementr and sol-
ute orientationV in the cage potentialVh of Eq. ~15!. This is
equivalent to assuming that the 6 cross-coefficientsc vanish.
In this case the solute orientation is coupled only to the ca
variablesVc andb, and one can define a reduced distrib
tion P(X9) on this smaller set of variables

X95~V,Vc,b! ~18!

in the form

P~X9!5 f 9~b!expH 2 (
l50,62

blDl ,0
2 ~V!/kBTJ ~19!

with only the distribution of parametersb to be determined
from M.D. simulations. This model with uncoupled solu
rotations is very appealing because it permits a simple an
sis of the M.D. data. On the other hand, the hypothesis
vanishing cross-correlation coefficientsc seems to be too re-
J. Chem. Phys., Vol. 102Downloaded¬25¬Jan¬2010¬to¬128.253.229.158.¬Redistribution¬subjec
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strictive a condition, which in general cannot be justified
The preferable alternative is to consider the solute orienta
tion uncoupled to solute displacement from a dynamica
point of view. Let us suppose that solute displacementr with
respect to the cage center is characterized by a very fa
relaxation timet r . Then an effective distribution based on
an average with respect tor is sufficient to describe the sys-
tem at times greater thant r . Because of the simple quadratic
dependence onr of the cage potentialVh , the integration
over r of the Maxwell-Boltzmann expression of Eq.~17! is
easily performed

E dr exp~2Vh /kBT!}expH 2 (
l50,62

dlDl ,0
2 ~V!/kBTJ .

~20!

Thereby a reduced cage potential in terms of just the angul
variables is obtained, with coefficientsd given as

d05b01(
m

uc1,mu2/3km,

~21!

d625b622(
m

c61,m
2 /A6km .

In the presence of dynamically uncoupled solute rotation
the equilibrium distribution depends on a restricted set o
variables

X5 ~V,Vc,d! ~22!

and it has a form similar to Eq.~19!:

P~X!5 f ~d!expH 2 (
l50,62

dlDl ,0
2 ~V!/kBTJ . ~23!

Thus, only the distribution of coefficientsd, i.e. f (d) needs
to be determined from M.D. simulation.

It is our belief that this model is most appropriate for the
analysis of the rotational dynamics. Of course one shou
check the presence of a fast time scalet r for the solute
displacementr. Nevertheless, even in cases where a time
scale separation is not clearly present, this model would mo
likely represent the best available approximation for treatin
the cage problem in simple terms. Of course the model in
cludes as a particular case the limit of vanishing rotation
translation couplingc50, whered5b.

In order to attribute a physical meaning to the coeffi-
cientsb and to specify the most convenient method for thei
calculation during a M.D. run, it is convenient to derive Eq.
~23! by following an alternative route. Let us denote byv a
unit vector in thex2y plane of the CF, which makes an
anglec with the y axis:v5v(c). We can analyze the inter-
action potential with the solvent by considering displace
mentsr, and rotationsu aboutv(c) of the solute for a fixed
c. As independent variables one can useq5(u,r), where
u is the librational displacement of the molecule, i.e. the
angle between its symmetry axis and thez-axis of the CF
~note thatu cannot be identified withb because the domain
, No. 20, 22 May 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8099Polimeno, Moro, and Freed: Rotational dynamics in liquids
for u is between2p and1p). Since the cage potential has
a minimum atq50, one can write the following parabolic
expansion:

V5V01qTAq/2, Ai , j5S ]2V

]qi]qj
D
q50

~24!

with matrix A depending on the anglec. Once the cage
position is identified during the M.D. simulation, this matrix
can be easily evaluated as function ofc by means of a finite
difference method. The equilibrium distribution with respec
to solute coordinates subject to the constraint of orthogon
ity betweenv and the molecular symmetry axis, is then writ
ten as

P}exp~2qTAq/2kBT!. ~25!

By performing the integration over solute displacementsr
according to the model of dynamically uncoupled rotation
one obtains:

P}exp$2u2~A0,02A0,1A1,1
21A1,0!/2kBT%, ~26!

where the matrixA has been partitioned as

A5 S A0,0 A0,1

A1,0 A1,1
D ~27!

with q05u andq15r. An alternative form of Eq.~26! is

P}exp$2u2I'v~c!2/2kBT%, ~28!

whereI' is component of the moment of inertia perpendicu
lar to the symmetry axis of the solute, so that

v~c!5I'
21/2AA0,02A0,1A1,1

21A1,0 ~29!

can be identified with the effective librational frequenc
within the solvent cage for rotations aboutv(c). These li-
brational frequencies are real and positive quantities sin
the argument of the square root is positive for the followin
reasons. First, by using the partition theorem of matrices, o
can show that

~A0,02A0,1A1,1
21A1,0!

215eTA21e, ~30!

wheree5(1,0,0,0). On the other handA, being a curvature
matrix at a potential minimum, must be positive definite. Th
same holds forA21 if all the principal curvatures are finite.
Then the right hand side of Eq.~30! is positive, since
wTA21w.0 for any vectorw different from zero. Note that
A0,0 could be negative, so that unphysical results~i.e. an
unstable orientation with respect to the cage frame!would be
obtained by using the distribution Eq.~19! and the true co-
efficientsb supplied by a M.D. simulation.

By comparing Eq.~28!with the previous result~23!, and
taking into account thatu56b, one can show thatv(c)2

can be approximated by a shifted sine function, i.
sin2(c1c0). Therefore, two orthogonal directionsv1 andv2
for v(c) can be derived from the maximum and the min
mum of v(c). They are the principal directions for the li-
brational motions, and they are implicitly defined by the cag
potential. We can use these directions as thex andy axes of
the CF, so eliminating any indeterminacy of anglegc for the
cage orientationVc. Of course the assignment of thex axis
to v1 or to v2 is arbitrary at the beginning of the M.D. simu-
J. Chem. Phys., Vol. 102Downloaded¬25¬Jan¬2010¬to¬128.253.229.158.¬Redistribution¬subjec
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lation. But in order to recover a continuous evolution of the
cage orientationVc for a given solute, the initial assignment
should be preserved with time according to the rule of leas
reorientation of the cage frame axes~just as for the axes of
the KF, see Ref. 34!.

The principal librational frequencies defined as the ex
trema ofv(c), are then associated with librational frequen-
cies vx and vy for molecular rotations about thex and y
axes, respectively, of the cage frame. They represent t
most convenient parameters for describing the strength of th
solvent cage in relation to the rotational dynamics of the
solute, and they will be used as independent variables for th
cage together withVc. Equation~28! can be considered as
the small-b limit of distribution Eq.~23!, thereby establish-
ing the relation between the coefficientsbl and the librational
frequencies. That is, one can write an effective cage potenti
for solute rotation in the form

Vc~V,v!52~ I'/6!$~vx
21vy

2!D0,0
2 ~V!

1A3/2~vx
22vy

2!@D2,0
2 ~V!1D22,0

2 ~V!#%,

~31!

wherev5(vx ,vy). Notice the similarity of this cage poten-
tial with the mean field potential for axial probes in a biaxial
nematic phase.

The cage potential given by Eq.~31! has the correct
symmetry for linear molecules with a center of symmetry
like N2 or CS2. In factVc(V,v) is unaffected by the trans-
formation (a,b)→(a2p,p2b), and it has two equal
minima atb50 andb5p. This cage potential, however,
has too high a symmetry for describing linear molecules lik
OCS without a center of inversion and which are characte
ized by two non-equivalent minima. One can generalize th
potential to this case, by taking into account that theD0,0

2

function of Eq.~31! derives from theb2 term of the expan-
sion and, therefore, it can be substituted by linear combina
tions of the type

D0,0
2 →aD0,0

2 13~12a!D0,0
1 ~32!

with an arbitrary coefficienta. The presence of aD0,0
1 term

eliminates the degeneracy of the minima. In particular fo
a50

Vc~V,v!52~ I'/2!$~vx
21vy

2!D0,0
1 ~V!

1A1/6~vx
22vy

2!@D2,0
2 ~V!1D22,0

2 ~V!#%

~33!

the potential with one minimum is representative of mol-
ecules A-B with much different size of atoms A and B, such
that 180° flips of the symmetry axis are not accommodate
in the given solvent cage. In the intermediate case of atoms
and B not very dissimilar, a choice of the coefficient
0,a,1 in the previous equation seems to be required. Bu
in dense fluids with strong confining effects, the interconver
sion of the solute between the two minima of the cage po
tential should be too rare an event to have significant effec
on the solute dynamics. Therefore it should be legitimate t
neglect the second minimum atb5p, and equivalent results
should be recovered from Eq.~31! and Eq.~33! as long as
, No. 20, 22 May 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8100 Polimeno, Moro, and Freed: Rotational dynamics in liquids
they are characterized by the same parabolic expansio
b50. In the analysis of our M.D. simulation of a centrosym
metric molecule~Cl2), the cage potential of Eq.~31!will be
used.

Once the cage potentialVc has been parametrized, th
equilibrium distribution Eq.~23! for the uncoupled rotational
cage can be written as

P~V,Vc,v!5
exp$2Vc~V,v!/kBT%

8p2*dV exp$2Vc~V,v!/kBT%
P~vx ,vy!

~34!

with the following normalization condition

E dVdVcdvP~V,Vc,v!51. ~35!

The functionP(vx ,vy) is identified with the equilibrium
distribution for the librational frequencies. It seems reaso
able to assume that these parameters are statistically inde
dent, so that a distribution of one variable only may be d
termined from the M.D. simulations,

P~vx ,vy!5P~vx!P~vy!. ~36!

Of course the statistical independence of the two libratio
frequencies should be confirmed by the M.D. simulations

In summary, a complete analysis has been performed
the cage potential with the purpose of finding an efficie
parametrization of the solute-solvent interactions. An effe
tive distribution has been derived for the orientational d
grees of freedom, which has a rather simple structure
depends on just two cage parameters identified with the p
cipal librational frequencies of the molecule.

III. CALCULATION OF CAGE VARIABLES

We applied the procedure defined in the previous sect
to a M.D. simulation of 108 diatomic molecules interactin
through a site-site Lennard-Jones~LJ! potential. The two
equivalent sites are characterized by the LJ parame
e52.46310221 J ands53.332310210 m, and their dis-
tance isl52.099310210 m. The temperature and the densi
have been chosen asT5178.3 K and r51.713103

K g/m3. This system has been used in the past to simu
static and dynamic properties of liquid Cl2 near the triple
point.6 The leap-frog algorithm was employed to integra
the equations of motions, with a time step of 0.01 ps.

At the beginning of the simulation, thez-axis of the
molecular frame for each test particle is chosen from the t
directions determined by the molecular symmetry axis. T
assignment is preserved with time in order to attribute a w
defined meaning to the first rank orientational observable

Given the solvent configuration, the cage positionr c and
orientationVc are obtained by locating the minimum of th
interaction potential. The minimization of the five dimen
sional potential~which depends onr0, a0, b0) must be re-
peated for each molecule and each time step. This is the m
time consuming part of the entire calculation. We have fou
that reasonable accuracy is obtained by using the princ
axis method,37 which does not involve the evaluation of th
gradient of the potential. The actual solute position and o
entation has been always taken as starting points of the
J. Chem. Phys., Vol. 102Downloaded¬25¬Jan¬2010¬to¬128.253.229.158.¬Redistribution¬subjec
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cedure. Figure 2 shows the rotational potentialV(u) acting
on a test molecule, obtained by keeping the position vec
fixed at the translational coordinates of the minimum
r05r c. Although deviations from simple parabolic shape a
observed from these cage potentials, the strong confining
fect of the cage boundaries is also clear. Typicalrotational
cage wells are of the order of magnitude of 50-75kBT, i.e.
purely orientational relaxation of the probe within the cage
strongly hindered. When the probe reorients within the cag
small translational adjustments are made to the trajectory a
the actual energy minimum resistance path in the full rot
translational space exhibits lower energy barriers of 15-
kBT. This is the value that is compatible with the local orde
parameters reported in Table I for the orientation of the pro
within the cage.

A sample trajectory of the translational and rotation
coordinates is shown in Figures 3~a!and 3~b!respectively.

TABLE I. Equilibrium averages.

vx57.44 ps21
D 00

2 (V)50.87

vy57.50 ps21
D 00

4 (V)50.66

vx
2562.00 ps22

vy
2562.90 ps22

vxvy555.98 ps22

dv i
256.62 ps22

v f
253.97 ps22

vs
22v̄s

252.65 ps22

FIG. 2. Profile of the cage potentialV(u) acting on a probe molecule having
translational coordinates at the minimumr05r c, and for fixed value ofc.
, No. 20, 22 May 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8101Polimeno, Moro, and Freed: Rotational dynamics in liquids
The jiggling motion of the translational cage coordinate
which was found in the purely translational study present
in Ref. 34, is confirmed here, together with the fact tha
probe and cage coordinates have the same coarse time p
erties, as is demonstrated by the limited range of the relat
fluctuations. In the case of the rotational coordinates, ho
ever, the jiggling motion is of the probe orientational coo
dinates, but again the probe and cage coordinates have
same time property. It would appear that whereas the tra
lational cage coordinates are rapidly adjusting to the solu
the rotational solute coordinates are reacting to the cage.

For the calculation of the librational frequencies, it i
convenient to apply the method based on the expansion w
respect to the librational angleu, that is Eq.~29!. The matrix
A can be easily computed by evaluating the derivatives
Eq. ~24!.

The assignment ofx-y directions of the cage frame is
made according to the maximum and the minimum value
v2(c). An example is shown in Figure 4~a!. The assignment
to one of these orientations is done on the basis of the pr
ciple of the least reorientation,34 by taking into account the
system configuration at the previous time step of the simu
tion. A representative trajectory of the librational frequencie
is shown in Figure 4~b!, while in Figure 4~c!a typical ex-
ample of the time evolution of the third Euler anglegc speci-
fying the cage frame is presented.

Some care is required in the initial choice ofz-axis of
the cage frame. At the beginning one calculates the prefer
orientation of the molecular symmetry axis, and this dete
mines two opposite directions for thez-axis of the cage
frame. Within the statistical sample of all the solutes, it

FIG. 3. ~a!Time evolution of the components (j5x,y,z) of the test particle
position r j ~continuous line!and of the cage centerRj ~dashed line!.~b!
Time evolution of the Euler angles for the particle axis orientationa0, b0

~continuous line!and of the cage centerac, bc ~dashed line!.
J. Chem. Phys., Vol. 102Downloaded¬25¬Jan¬2010¬to¬128.253.229.158.¬Redistribution¬subjec
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convenient to choose at random one of the two direction
corresponding tob,p/2 andb.p/2. This assures an even
distribution with respect to angleb as in the cage potential
Eq. ~31!. The initial assignment of thez-direction should be
preserved with time according to the principle of the lea
reorientation.34 It should be mentioned that, if one choose
an initial distribution that is unbalanced with respect tob,
the correct distribution would be recovered after a suf
ciently long time. But this equilibration time could be longe
than the overall simulation time, if large barriers separate t
two cage potential minima atb50 andb5p.

The equilibrium properties of the librational frequencie
have been computed, in particular averages:v i , v i

2 ,
vxvy . They are reported in Table I, and it is manifest tha
vxvy.vx•vy ~within statistical uncertainty!, thus clearly
supporting the factorization Eq.~36! of the equilibrium dis-
tribution for the librational frequencies. Under this condition
the one-dimensional distributionP(v i) is derived from the
ensemble of M.D. data, and it is shown in Figure 5~full line
curve!. In Table I we also list the averages of the Wign
functions of the relative orientationV of the probe

Dl ,0
j ~V!. ~37!

They can be used to test the equilibrium distribution Eq.~34!
with the cage potential Eq.~31! ~see paper II!. Only even
values ofl are considered, since for odd ranks the averag
values are zero.

FIG. 4. ~a! Profile of the functionv2(c) for a test molecule.~b! Time
evolution of the librational frequenciesvx , vy for a test molecule.(c) Time
evolution of the third Euler anglegc for the cage relative to a test molecule
, No. 20, 22 May 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8102 Polimeno, Moro, and Freed: Rotational dynamics in liquids
Dynamical properties are characterized by means of t
correlation functions for all the relevant variables. For th
translational properties, we need just the correlation functi
for the relative displacement of the test particle

G@r #~ t ![(
i

r i~ t !r i~0! ~38!

which is required to discuss the time scale separation b
tween rotations and translations~see Sec. II!and it is pre-
sented in Fig. 6~a!. The corresponding correlation timet r is
determined from the time integral of Eq.~38!.

Different kinds of orientational correlation functions can
be examined, starting from the orientationV0 of the probe
with respect to the laboratory frame LF

Gj@V0#~ t ![Dl ,0
j ~V0~ t !!*Dl ,0

j ~V0~0!!. ~39!

Because of the isotropy of the system, these correlation fun
tions are independent of the indexl , and the calculation is
confined to ranksj51 and j52 ~as is the case for the sub-
sequent orientational correlation functions!. They are r
ported in Fig. 6~b!. The corresponding correlation times a
denoted byt ( j )0. The dynamics of the cage frame orientatio
is described by the correlation functions

Gm
j @Vc#~ t ![Dl ,m

j ~Vc~ t !!*Dl ,m
j ~Vc~0!!. ~40!

Again, they do not depend on the laboratory indexl . A defi-
nite dependence on the indexm is expected and observed
Two independent processes determine the dynamics of
cage frame: the reorientation of thez-axis ~i.e. the change of
the most favorable orientation of the long molecular axi!
and the rotation of thex-y axes following the change of the
principal directions of the librational frequencies. A simpl
analogy exists with the anisotropic rotational diffusion of ro
shaped molecules, and therefore, the same behavior may
expected for the correlation functions of Eq.~40!. To confirm
this hypothesis, one can compare correlation functions w
different values of the indexm in Fig. 7~a! ( j51) and in Fig.
7~b! ( j52). The corresponding correlation times are denote
by tm

( j )c.
It is also interesting to evaluate rotational correlatio

functions for the relative angleV. The rotational-librational
motion inside the potential well is expected to be fast com

FIG. 5. Comparison between the experimental distributionP(v) ~continu-
ous line! and the derived distributionPs(vs) ~dashed line!for the slow
relaxing frequencyvs .
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pared to the overall reorientation of the system molecule1
cage. This is indeed observed for the second~or any even!
rank correlation functions

Gj@V#~ t ![Dl ,0
j ~V~ t !!*Dl ,0

j ~V~0!!, j even. ~41!

However, first~or any odd! rank correlation functions are
sensitive to the jump motion between the wells which char
acterize the second rank potential adopted to define the cag
Since the energy barrier is rather high, this process is ex
tremely slow and it is not actually observable in any reason
able standard M.D. experiment. For this reason in Fig. 8 w
show only the second rank correlation function for the rela
tive orientationV. The corresponding correlation time is de-
noted simply ast (2). For comparison, the second rank cor-
relation functions for the probe and the cage are als
included.

Among the last correlation functions to be considered
are those for the librational frequencies

G@v#~ t ![(
i

dv i~ t !dv i~0!, ~42!

where dv i[v i2v i . This is shown in Fig. 9. One can
clearly distinguish two components with rather different time
scales. Therefore, two relaxation timestv

f andtv
s for the fast

component and the slow component, respectively, are re
quired to characterize the correlation function. Their values
reported in Table II, are obtained from a bi-exponential fit-

FIG. 6. ~a! Normalized autocorrelation functions for the displacement be-
tween solute and cage center.~b! Normalized orientational correlation func-
tions for the probe orientation, first rank~continuous line!and second rank
~dashed line!.
, No. 20, 22 May 1995t¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8103Polimeno, Moro, and Freed: Rotational dynamics in liquids
ting of the data of Fig. 14. Finally, the correlation function
for the angular momentumL of the test particle

G@L #~ t ![(
i

L i~ t !Li~0! ~43!

is presented in Fig. 10. In the insert we show the Fourie
Laplace transformg̃L(v). The corresponding correlation
time is defined ast J. Table II collects all the calculated
correlation times.

FIG. 7. ~a! Normalized orientational correlation functions for the cage ori
entation, first rank;m50 ~continuous line!,m51 ~dashed line!.~b! Nor-
malized orientational correlation functions for the cage orientation, secon
rank;m50 ~continuous line!,m51 ~dashed line!andm52 ~dotted line!.

FIG. 8. Normalized orientational correlation functions for the relative ori
entation between molecule and cage, second rank~dotted line!; for compari-
son the related correlation function for the probe~continuous line!and the
cage~dashed line!.
J. Chem. Phys., Vol. 102,Downloaded¬25¬Jan¬2010¬to¬128.253.229.158.¬Redistribution¬subject
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IV. DISTRIBUTION OF LIBRATIONAL FREQUENCIES

It was previously observed for the case of purely trans
lational motion in the study on liquid Ar,34,35 that the corre-
lation function for the translational librational frequency
Gv(t) relaxes according to two distinct components, thereb
implying that the internal reorganization of the cage structu
is actually made up of a slow decay mode superimposed
a rapid local fluctuation. It appears clearly from Fig. 9 that i
the present rotational system the librational frequency corr
lation function behaves in the same way. Corresponding
we separate fast and slow components of the ca
frequencies:34

v5vs1v f . ~44!

This decomposition is applied to each cage frequencyv i .
The indexi is left implicit because of the statistical equiva-
lence of the two cage frequency modes. In order to determi
the time scale of the two distinct modes of the cage freque
cies, we suppose that they are dynamically uncoupled, a
thatv f behaves like a Gaussian stochastic variable with nu
averagev f50, so thatv̄5vs . By assuming also a simple
exponential decay for each component, correlation functio
Eq. ~42! for the cage frequencies can be decomposed as:

Gv~ t !52~vs
22vs

2!e2t/tv
s
12v f

2e2t/tv
f

~45!

with tv
s andtv

f determining the time scales of the slow and
fast components. By fittingGv(t) supplied by M.D. simula-
tions according to the previous equation, one obtains bo

TABLE II. Correlation times.

t r50.15 ps Relative displacement
t (1)054.2 ps Particle reorientation (j51)
t (2)051.2 ps Particle reorientation (j52)
t0
(1)c54.4 ps Cage reorientation (j51,m50!

t1
(1)c50.56 ps Cage reorientation (j51,m51!

t0
(2)c51.4 ps Cage reorientation (j52,m50!

t1
(2)c50.41 ps Cage reorientation (j52,m51!

t2
(2)c50.19 ps Cage reorientation (j52,m52!

t (2)50.12 ps Relative reorientation (j52)
tv
f 50.14 ps Fast relaxing librational frequency

tv
s 52.87 ps Slow relaxing librational frequency

t J50.06 ps Angular momentum relaxation

d

FIG. 9. Normalized correlation function for the librational frequency~con-
tinuous line!and its best bi-exponential fitting~dashed line!.
No. 20, 22 May 1995¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8104 Polimeno, Moro, and Freed: Rotational dynamics in liquids
the pre-exponential factors~see Table I! and the relaxation
times reported in Table II. The fluctuating part of the slo
cage mode has the smaller weight but the longer relaxa
time that is comparable to those for the overall rotatio
Therefore, the fluctuations of the slow cage mode are
primary importance in the analysis of the rotational dyna
ics. A secondary role can be attributed to the fast ca
modes,v f since they equilibrate in rather short times. F
this reason, in the stochastic model only the slow cage co
ponents will be explicitly taken into account, and the flu
tuations ofv f will be considered as an additional contribu
tion to the frictional dissipation of the system.

Since we only know from the M.D. experiment the prob
ability distribution for v, we are left with the problem of
determining an effective distribution forvs . One can adopt a
coarse graining procedure, by averaging the cage frequen
according to a suitable cutoff timetc which separates slow
and fast cage frequencies.34 Given the trajectoryv(t) for the
librational frequency of a test molecule, we can define t
slow component as:

vs~ t !5
1

2tc
E
t2tc

t1tc
dt8v~ t !. ~46!

An effective distributionPs(vs) for the slow component is
then obtained by the same statistical analysis used
P(v).34 Alternatively, a semi-analytical treatment can b
chosen, which is described in the following paragraphs.

Let Pt(vs ,v f) be the joint probability distribution for
the slow and fast cage frequencies, andP(v) the distribution
for the measured cage frequency given by Eq.~44!. The re-
lation between them is given by

P~v!5E dvsdv fd~v2vs2v f !P~vs ,v f !

5E dvsP~vs ,v2vs! ~47!

and we are interested in the distribution of the slow comp
nent only

Ps~vs!5E dv fPt~vs ,v f !. ~48!

FIG. 10. Normalized autocorrelation function for the molecule angular m
mentum. Insert: Fourier-Laplace transform.
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Notice that Pt(vs ,v f) must be identically zero for
vs1v f<0 when2`,v f ,vs,1`. In fact, by definition,
only positive values are allowed forv. Naturally any effec-
tive distribution found forvs should be practically null for
vs,0, to be in agreement with the idea that the main con
tribution to the overall cage frequency resides invs .

We then define a trial functional form forPt(vs ,v f):

Pt~vs ,v f !5H~vs1v f !Q~vs!g~v f !, ~49!

whereH(v) is an unknown function which is one almost
everywhere forv.0 and is approaching zero rapidly and
continuously forv→01, while it is everywhere zero for
v,0; Q(vs) is an unknown distribution function; finally
g(v f) is the Gaussian distribution

g~v f !5
1

~2pv f
2!1/2

exp~2v f
2/2v f

2! ~50!

with the widthv f
2 previously derived. The problem is left of

determining the best functional forms forH(v) and
Q(vs). Obviously, it admits of an infinite number of solu-
tions. However, we may consider as a first approximatio
that the effect ofH(v) is negligible. This approximation is
reasonable since it affects only the region of frequencies ne
zero, wherePt(vs ,v f) andP(v) are negligible. Under this
condition, we may identifyPs(vs) with Q(vs) so that

P~v!'E dvsPs~vs!g~v2vs!. ~51!

The solution of Eq.~51! can now be carried on in many
different ways~Fourier transforms, non-linear least square
fitting etc.!. We have chosen to define a functional form fo
Ps(vs) which is substituted into Eq.~51!. The best fitting set
of parameters characterizing the function is then determin
by adopting a least square fitting criterion, with respect to th
known points ofP(v). The adopted functional form for
Ps(vs) is:

Ps~vs!5expF2S vs

vs
0D m

2S vs

vs
0D 2n

2 (
n50

2

anS vs

vs
0D nG

~52!

and the following set of parameters have been calculate
vs
056.24 ps21, m51.30, n53.59, a0522.20, a151.19,

a250.406. Figure 5 shows the comparison betweenP(v)
and Ps(vs). The new distribution is closer in shape to a
simple Gaussian distribution and it assigns a negligible im
portance to small frequencies.

V. DISCUSSION

The results of the last two sections, especially as sum
marized in Tables I and II, lead to a simple but dramati
statement about the rotational dynamics of a diatomic mo
ecule like Cl2 . There is a very strong cage that plays a dom
nant role in the reorientation of a given Cl2 molecule. In fact,
the molecular reorientational correlation timest (1)0 and
t (2)0 are very nearly the same as the equivalent correlatio
times t (1)c and t (2)c for the cage. This fact, plus the large
cage potentials of 15-20kT, which leads to the molecule

-
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8105Polimeno, Moro, and Freed: Rotational dynamics in liquids
being very well-aligned in the cage, show that to a good fir
approximation the molecular reorientation is driven by th
cage reorientation, i.e. the molecular reorientation is a co
lective process. Next we note that the cage potential reorien
in a manner that strongly suggests Brownian motion. Thu
for examplet0

(1)c/t0
(2)c'3 ~and t0

(1)0/t0
(2)0'3.5), and from

the cage correlation times in Table II we find that the axiall
symmetric Brownian diffusion expression:
D'
c L(L11)1(Di

c2D'
c )M2 is roughly obeyed with

D'
c '0.12 ps21 andD i

c'1.6 ps21. Thus, whereas a simple
experiment would show that Cl2 undergoes Brownian reori-
entation, it is in reality the cage motion, to which the mol
ecule is strongly coupled, that undergoes Brownian motio
to a good approximation.

Of course, rotational librations of the molecule relative
to the cage are occurring, and they are at a rate that is
order of magnitude faster than the overall reorientation. The
are necessarily of low amplitude given the high orientin
potential and high degree of molecular alignment within th
cage~cf. Fig. 4!.

This picture of a very strong cage potential, which domi
nates the long-time reorientation of a Cl2 molecule, and the
short time librations is precisely the model proposed earlie
by Hill.

We next note thatt J,,t (1)0,t (2)0, which is normally
considered as corresponding to the regime of viscous~i.e.
non-inertial! reorientational motion. For the case of simple
Brownian motion, one has in this regime the Hubbard
Einstein relation, t (2)0/t J5I/6kT, where for Cl2 ,
I51.149310245 kg m2 yielding t (2)0/t J57.71310226

s22 at 180 K. The results of the present study yield
t (2)0/t J57.2310226 s22 at 180 K. or extremely good
agreement despite the fact that an individual Cl2 molecule
does not undergo simple Brownian motion. In fact, if the
motion of the molecule were simple Brownian reorientatio
within a slowly reorienting cage potential, one expect
t (2)0/t J..I/6kT.38 In order that this strong inequality does
not hold, it appears necessary that the frictional torques
the Cl2 molecule be small enough so that, in the absence
the persistent strong cage potential, the motion would be
the inertial regime39 for which t (2)0'Ap/2(I /6kT)1/250.35
ps, which is smaller than observed. In our analysis, the pe
sistent cage potential is taken as associated with the slow
relaxing component, whereas the rapidly relaxing compone
is regarded as a source of the friction. These two compone
represent the total harmonic potential on a Cl2 molecule,
~with a small additional anharmonic correction that we hav
not studied in detail!, from which one readily obtains the
torque acting on the molecule. From Table I we find
vs
2562 ps22 ~wherevs5v i , i5x,y! and vs

22vs
252.65

ps22, so that only about 4 % of the ‘‘slow’’ component is
fluctuating. Thus it is more accurate to refer to this as
persistent component. From the ratiov f

2/vs
250.06 we see

that the rapidly relaxing component is only a small fraction
of the total harmonic potential acting on a Cl2 molecule. This
partitioning is then consistent with only a small fraction o
the cage potential supplying the rapidly fluctuating torque
that could provide the friction. Thus, this analysis support
the inference at the beginning of this paragraph, and we m
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conclude that the dominant feature of the cage potential is
persistence rather than as a source of friction. By contrast
a simple Brownian motion model, the total potential actin
on the Brownian particle would be the rapidly fluctuatin
source of friction. Finally we note thattv

f for the more rap-
idly fluctuating harmonic component is actually larger tha
t J ~0.14 vs 0.06 ps!, so that even this component does no
provide the very rapidly fluctuating torques that yield
frequency-independent friction in simple Brownian motion
Its role might best be described by a frequency-depend
friction.40 The anharmonic contributions to the potentia
would be expected to have similar properties to this fa
component.

We next note thattv
f and t r are about equal. This is

consistent with the rapidly relaxing orientational compone
of the cage being associated with the relative translation
motion of the solute within the cage. However,t r is signifi-
cantly faster thantv

s as well as the solute orientational relax
ation times and the dominant ones for the cage (t0

(1)c and
t0
(2)c). Thus these processes persist over times longer th
the relative translational displacements, and it appears app
priate to have assumed that they are decoupled from th
displacements, in the sense that they see a time average
these displacements.

The biaxial component of the cage orientational pote
tial does exhibit somewhat faster relaxation times~given by
t1
(1)c, t1

(2)c, and t2
(2)c), with t2

(2)c being comparable tot r ,
indicating that this feature of the cage potential may b
coupled to the relative translational displacements.

Finally we can surmise from Fig. 3 that the diffusion o
the position of the cage,r c is itself a slow process on the
picosecond time scale consistent with the MD simulation
previously described for liquid argon.34 We suspect that it is
this slower cage diffusion that is at least partially responsib
for the fluctuations invs with relaxation timetv

s .
Although we have focussed, in this discussion~and in

this paper!, on the collective cage properties, one might a
wish for a moremoleculardescription of the cage in terms of
the nearest neighbors to the solute molecule. By observ
the time evolution of the ensemble of Cl2 molecules resulting
from the M.D. calculation, it is clear that there is not a ver
substantial local order, i.e. the neighbor molecules appe
isotropically distributed in their positions with respect to
‘‘solute’’ molecule, and their orientations show no close co
relation with the solute. However, the nearest neighbors on
diffuse away in time-scales long compared to their reorie
tational motion. Thus we conclude that the cage potential
indeed a collective variable that arises from summing ov
the interaction of many particles. In that sense there is p
haps an analogy to other collective phenomena in conden
phases, e.g. an electron that travels with its lattice distorti
in a solid in the form of a polaron. This analogy is furthe
supported by the long persistence of the dominant portion
the orientational cage potential.

VI. SUMMARY AND CONCLUSIONS

For the case of a linear diatomic molecule~Cl2) near its
triple point, it was possible to parametrize the collective ca
No. 20, 22 May 1995¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp
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8106 Polimeno, Moro, and Freed: Rotational dynamics in liquids
variables by applying some simplifying assumptions to t
molecular dynamics simulations. The cage potential rep
sents the potential acting on the solute for a fixed solv
configuration. Due to the strong confining effect of the cag
the dominant term is the harmonic contribution with respe
to positional and orientational degrees of freedom of the s
ute relative to the cage. Consideration of the properties
these quadratic terms plus the assumption of the relative
ute orientation being dynamically uncoupled from the re
tive solute displacement, which is justified by the faster
laxation of the latter, led to a simple form for th
orientational part of the cage potential that is reminiscent
the mean field potential for axial probes in a biaxial nema
phase. It was parametrized in terms of the characteristic
quencies of libration of the diatomic molecule within th
cage.

One finds from the MD simulations large and persiste
orientational cage potentials with approximate parabo
shape, but significant anharmonic corrections, leading to s
stantial alignment, (D00

2 (V)50.87) of the solute in the cage
The librational frequencies characterizing the orientation
part of the cage potential show a dominant, mainly pers
tent, component with small and relatively slow fluctuatio
and a smaller, faster relaxing component. The orientatio
correlation times for the cage are consistent with an axia
symmetric Brownian reorientation of the cage potential. T
orientational correlation times for the solute are very nea
equal to the equivalent ones of the cage, making clear
the strong potential coupling of solute within the cage lea
to a collective reorientation of solute and cage. Thus,
observation of Brownian reorientation of the solute actua
implies the Brownian motion of the cage. A clear time sca
separation is found between the rapidly relaxing solute
gular momentum, the solute librations, the relative solu
displacement, and the rapidly relaxing component of the
brational frequencies on the one hand, and the much slo
relaxation of the solute and cage principal axes and also
slowly fluctuating component of the librational frequencie
Intermediate between these is the relaxation of the biax
component of the cage. These observations are utilized
paper II to construct a relatively simple stochastic model
rotational relaxation of a linear solute molecule in a solve
cage.
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