Rotational dynamics of axially symmetric solutes in isotropic solvents. II.
The stochastic model
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In paper | of this series, a molecular dynam({dD) study of liquid chlorine was performed, and it
includes the definition and observation of operational cage variables. These cage variables were
used to describe the local environment of a rotating axially symmetric molecule, or probe. Probe and
cage properties of interest, such as rotational correlation functions and momentum correlation
functions, were computed, together with an effective distribution of librational cage frequencies. In
the second part of this work, we develop a stochastic model which includes the relevant elementary
relaxation processes previously identified by the MD study. This stochastic model is based upon a
multi-dimensional Fokker—Planck equation for the coupled dynamics of the probe and cage
orientations, the angular momentum of the probe, and the librational frequencies for the probe in the
cage. Semi-analytical approximations, based upon a “Born—Oppenheimer”-type separability of fast
and slow variables, are used in order to calculate probe and cage correlation functions, and they are
found to be in reasonable agreement with the MD results. In an appendix the Born—Oppenheimer
approximation for stochastic operators is developedl®®6 American Institute of Physics.
[S0021-9606(96)01203-5]

I. INTRODUCTION to the probe rotations because of their short time scale. In
this way only the following parameters are required to de-
In a previous workRef. 1 hereafter denoted as papgr | scribe the rotational effects of the solvent cage: the cage
a Molecular DynamicgMD) simulation of liquid chlorine  frequencies o=(wy,0,) and the orientation
has been performed in order to characterize the solvent cag@®= («°,3°,v°) of the cage frame. The two cage frequen-
confining a solute. The method employed was a generalizasiesw, andw, determine the independent frequencies for the
tion to molecular systems of the procedure originally appliedibrational motion of the probe in the presence of the confin-
to atomic liquids? In order to introduce operational defini- ing potential due to the surrounding molecules, and therefore
tions of cage properties which can be extracted from a MDheir magnitude measures the strength of solute—solvent in-
simulation, the interaction potential between the solute angeractions. Thez—axis of the cage frame determines the
the solvent(a probe molecule and the rest of the sampleprobe’s stationary orientation for a fixed cage configuration,
respectively, when considering pure liquids considered as while thex— andy— axes are fixed along the principal di-
a function of the solute coordinates for a given solvent conrections of probe librational motions. The probe motion
figuration sampled during the simulation. The parametrizawould then be represented by the superposition of fast libra-
tion of such a cage potential, through its curvatures and theéonal fluctuations about the equilibrium configuration de-
location of its minimum, provides an ensemble of parameterscribed byQ°, and a slower rotational diffusion driven by
which can be easily determined during the MD simulationreorientations of the cage frame, in agreement with a picture
and which describe the effects on the solute of the surrouncbroposed by Hilf
ing solvent cage. Given the operational character of our definition of cage
As shown in paper |, a general analysis of the cage poparameters, their evolution can be followed during a MD
tential can be performed for axially symmetric solutes, bysimulation with the opportunity of deriving detailed informa-
including both translational and rotational coordinates, but ition about the distribution and the relaxation times of the
leads to a very large set of cage parameters whose interpreage parameters. This has been done in paper | for liquid
tation in terms of solute—solvent interactions is difficult. chlorine near the triple point, thereby recovering for this spe-
Therefore, a reduced form of the cage potential was derivedific system the statistical distribution of the librational fre-
in paper | under the assumption that probe translations withiguencies and the relaxation times of both probe and cage
the cage are dynamically uncoupled, at least approximatelyariables from the corresponding time correlation functions.
As expected, a time scale separation exists between the fast

20n leave of absence from Department of Physical Chemistry, University o”brationall processes within the cages revealed by correla-
Padova. tion functions of the probe angular momentum and of the
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probe relative orientation with respect to the cage freamel  and slow relaxation processes in the correlation functions.
the slower evolution of both the cage orientation and theGiven the generality of this approach, we expect it might
cage frequencies, with the rotation of the principal librationalalso be useful in the study of other stochastic problems.
axes around the—direction of the cage frame in the inter- In Sec. I, the Fokker—Planck equation is introduced for
mediate range. the solute-cage rotational problem by isolating the contribu-
In this work, we intend to develop a theoretical modeltion of each independent relaxation mechanism. Particular
for the probe rotational dynamics coupled to the solventcare is taken in the derivation of a compact representation of
cage. In the past this problem has been tackled from differerthe time evolution operator, which should allow straightfor-
points of view (see Sec. | of paper | for a revigwOur  ward formal manipulations, for example when a change of
method is based on a Markovian representation which invariables is required. In the following sections the FP model
cludes explicitly both the probe degrees of freedom and thés analyzed in order to derive the correlation functions of
cage parameters as independent stochastic varfablés. interest by employing the BO approximation whose general
Fokker—Planck(FP) equation will be defined for the en- application to stochastic operators is described in Appendix
semble of these independent variables, by using the MD reB. The relaxation behavior of the slow cage variables is ana-
sults as a guideline for the choice of the equilibrium distri-lyzed in Section Il on the basis of the projected evolution
bution and of the transport coefficients. A similar procedureoperator which allows straightforward calculations of corre-
has been applied to liquid argon with a satisfactory agreelation functions for the cage orientation and for the libra-
ment when compared with the correlation functions of thetional frequencies. The analysis of the dynamics of the fast
MD simulation® Here we shall examine specifically the variables, like the probe angular momentum, is performed in
solute-cage rotational problem on the basis of informationSection IV by using an asymptotic technique justified by the
derived in paper | from the MD simulation of liquid chlorine. strength of the cage potential. The probe orientational corre-
Given the complexity of the problem, with the interfer- lation functions are then reconstructed by superimposing
ence of several relaxation mechanisms, a detailed represepoth the fast and the slow components. The general conclu-
tation of all the features of the MD simulation is not pos- sions of this work are finally presented in Section V.
sible. A more reasonable objective is the representation of
the most important features of the solute-cage dynamical
coupling by means of a simple enough model to allow %‘YEL?A?CHQSHC MODEL FOR SOLUTE AND CAGE
transparent description of the underlying physical processes.
For instance, the MD simulation of liquid chlorine has As shown in paper |, a general picture of the evolution of
shown that cage frequencies have a complex dynamics withoth cage and probe variables can be obtained from MD
superimposed fast and slow decay processes. To account fsimulations. The next step is the formulation of a stochastic
this behavior in paper |, we have separated the fast and slowodel for the dynamics of these variables, with the objective
components of the overall cage frequencies. In principle botlof analyzing the solute rotational motion and its coupling
of these parameters should be considered as independesith the cage dynamics. The required information is pro-
variables to be treated on an equal footing, in order to fullyvided by correlation functions from a MD simulation, which
reproduce the MD correlation functions. But this would re-allows one to identify the time scales of the independent
quire an enlarged set of independent variables with a togelaxation mechanisms. Considerable freedom still exists in
complex theoretical model to permit reasonably accurate prezhoosing a particular model for the time evolution operator.
dictions. Therefore, we shall treat explicitly only the slow Highly accurate representations would require complex mod-
components of the cage frequencies, which are essential s with a large set of independent parameters to be opti-
describe the long time behavior of the system, while theimized (that is transport coefficients mainly, since the equi-
fast fluctuating parts are included among the processes leafibrium distribution can be obtained directly from MD
ing to frictional dissipation. simulations, cf. paperl On the other hand, given the intrin-
Even if the stochastic model in its essential form is de-sic complexity of the problem to be analyzed, a primary
veloped with a proper choice of the independent variablespbjective of any theoretical description should be the identi-
its solution for the calculation of the relevant correlation fication of the contribution of each elementary process to the
functions would still be a formidable task because of therelaxation of the relevant observables. This calls for simple
intrinsic couplings between a large number of variables. Nanodels in order to allow semi-analytical calculation of the
exact analytical solutions are available and also completeorrelation functions. In the present theory we have at-
numerical solutions are not realistic because of the huge maempted to balance these opposite requisites.
trices that would be required. The only reasonable way to In the definition of the stochastic model it is convenient
tackle the problem is to benefit from the time scale separato use the following set of independent variab{fslowing
tion between different variables in order to derive reasonablyhe same notation of paper I):
accurate approximations. We shall employ a specific tech- Y=(0°.L, O°, o) 1)
nigue based on the Born—Oppenheirnt®@®©) approximation R
often applied to quantum mechanical problems. By properhysince it allows a straightforward identification of the inde-
adapting the BO approximation to stochastic operators, apendent contributions to the time evolution operator. The sets
efficient method is derived for separating the effects of fasbf Euler anglesQ®=(a®, 8¢, y%) and Q°=(a°,B° 7°) de-
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scribe the orientation of the cage fraif@&F) and of the probe A Markovian time evolution equation is assumed for the
molecule, respectively, with respect to the laboratory framenon-equilibrium distributiorP(Y;t):

LF), while L is the angular momentum of the probe with ~

f:orr)1ponents in the molgecular frantMF) of the sl(a)lute. In IP(Yi)/ot=—TP(Yt). ®)
order to describe the fluctuations in the strength of solute4n order to model the time evolution operatfir we shall
solvent interactions, we have included also the two indepeninclude several contributions identified on physical grounds
dent librational frequencies of the cage, which are denotedith the various independent dynamical processes.

by w=(wy,w,). We recall that in the MD simulation of Let us first consider the solute. We shall include the
paper I, we have identified both fast and slow fluctuatingstreaming operatoFy for its conservative rotational motion
components of these librational frequencies, which must bén the presence of the cage potential, and the collisional op-
treated separately because of the different time scalegratorl’, describing the frictional relaxation of the angular

Whereas a more general theory should include both thesgomentum. The streaming operator is written in the follow-
components, we will consider explicitly only the slower onesing standard forrh

in order to minimize the set of independent variables. On the 1 o "
other hand, only these librational frequencies are essential to  I's=L"I " "M(Q%)+(T+P)"d/dL, (6)
account for the long time behavior of the system. HereaﬂerwhereM(Q°) is the rotation operator acting a®° with

w; with i =x,y will denote the slow components of the libra- omponents in the molecular frame. The torgudue to the
tional frequenciesgor cage frequencies), which are character—Cage potential and the precessional torGuare given as:
ized by the same distribution functid® ;) because of their

statistical equivalence. T=-M(Q°)V(Q,w), P=L,I7L, (7)
An important ingredient of the problem is the interaction

potential between solute and solvent. As shown in paper I,

can be represented by a cage potenigdlQ2, w) which de-

pgrp}ds explicitlyhon the ][nO|eCU|afd0rier;]tatiﬁTt()a,ﬁ,7)| _In order to specify unambiguously the rotation operator
with respect to the cage frame, and on thewer librationa M (Q°), let us consider an infinitesimal rotation of the mo-

frequencies describing the strength of solute—solvent intera(fécular frame fromQ° to Q°+dQ° with dQ°=(da®

tions for a given configuration of the solvent cage. In paper Id o dy°)"". It can be represented by an infinitesimal Carte-

we have discussed in detail the procedures for deriving from; : O (4.0 4,0 [ Oyt
MD data the cage potential and its parametrized forms. Fon%Ian vector with componend.;go ._.(d"?x dey.dez) " in the_
9¢ b par: ._molecular frame. Then the infinitesimal change of a given
the moment we do not choose a particular cage potenti unction f(0°) can be specified as:
since we intend to introduce the stochastic model in a rather ' R
general framework. For a given cage potential, the equilib-  df(Q°)=f(Q°+dQ°)—f(Q°) =(de®)"™M(Q°)f(Q°)

where the X3 matrix L is derived from the vectoL on
fhe basis of its identity with the vector product v=_LX v
with any vectorv.®®

rium distribution is derived as (8)
P(Y) and this equation implicitly defines the rotation operator
M(Q°) in the molecular frame. By means of the linear
Cexp{— LY I2+4 Ve(Q, ) 1/ kg T} P(0,) P(wy) relatior?
 16mkg Tl (27kgT1) 2 dQ exp{ —Vo(Q,0)/Ks T} dQ°=R(Q°)d¢”,
2
—cosy®/sing° siny®/sinB° 0
wherel is the inertia tensor in the molecular frame Sy o b Y Oﬁ
R(Q°)= siny coSy 0
. 0 0 c0s8°cosy°/sinB° —cosB%siny®/sinB® 1
= 0 1.0 (3) 9)
0 0 it can be written explicitly in terms of the Euler angle de-
) o o ) rivatives as
and theP(w;) is the equilibrium distribution function for the .
librational frequencies along thi¢h molecular axis. Trans- M(Q°)=R(Q°)"3/dQ°. (10)

pose arrays or matrices are Iabt?rled in E).as wellinthe e yotation operator in the laboratory frame would be re-
following by the superscript-(-)*. Distribution P(Y) al-  cqyered by inserting in Eq8) the components al¢?® in the
lows the calculgtlon pf equilibrium averages of funCt'onSIaboratory frame. The same procedure can be applied to the
f(Y) of stochastic variables: relative orientation of two arbitrary frames, thus generating

_ the corresponding rotation operators.

f=J dYf(Y)P(Y), 4) If all solute—solvent interactions were taken into account

by the cage potential (2, w), then the streaming operator

wheredY=dQ°%dLd Q°dw is the infinitesimal volume ele- T alone would be sufficient to represent the solute rotational
ment, with dQ° and dQ° including integration factors motion. However, a parabolic expansion about the minimum
sin 8° and sing’, respectively. is required in order to derive a simple parametrization of the
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cage potentialcf. paper ). Thus the anharmonic contribu- D, 0 O
tions to the cage potential are neglected. Even if small in ( 0 D 0
magnitude, these anharmonic interactions might influence D7= +
the solute, by generating additive torques with respeBtad 0 0 D
Eq. (7) due toV.(Q,w). In the hypothesis that torques of
anharmonic origin are rapidly fluctuating, they act as aThe coefficienD is the reorientation rate of CEaxis that
source of frictional drag on the angular momentum. Fluctuadetermines the most favorable orientation of the solute. Also,
tions of the fast components of the librational frequencies; determines the exchange rate of the principal librational
should have similar effects. Therefore, we introduce the colaxes(i.e. the rotations of the C& andy-axes around the CF
lisional operator describing angular momentum relaxatiory-axis which are described by the angjé). A diffusion
due to frictional effects: operator will also be employed for the fluctuations of the
librational frequencies, and w,:

(14)

. J ] - 9 J -
Po=—KeTo- €P(Y) - P(V) (11) F,=-2 70 D PY) 55 PO (15)

with a unique diffusion coefficienD“ because of the statis-

in order to include in the stochastic model the dynamicalt'C""I_I_iqu'valenllCe oflttzgz two Ilbr?tlo'nafll fre”quenues. qf
effects of those interactions with the thermal bath which areth € ?Ver?ﬂ erzlvofu :??hoperra:/ior IS mricr?/br?iczvere rom
not accounted for by cage potentigl(€2, w). The following € superposition ot all the previous co utions

friction matrix in the molecular frame 1::1:S+ fc+fD+fw' (16)

Note that equilibrium distribution Eq2) is the stationary

& 000 solution tolI” as well as to each term on the right-hand side of
0 & O Eq (16). Therefore, relaxation to the correct equilibrium dis-
(12)  tribution must be recovered from time dependent solutions of
0 0 § Eq. (5). In the following sections this stochastic model will
be analyzed with the purpose of interpreting the relaxation of
both solute and cage variables. This requires the calculation
will be used for axially symmetric solutes. of correlation functions of the form
Let us now discuss the cage dynamics. One should dif-
ferentiate the collective behavior of the ensemble of solvent H=IYOI* Y]
particles, which is described by a variety of time scales, from R
the dynamics of solvent particles surrounding the solute and = f dYf(Y)*exp(—TOf(Y)P(Y) (17)

which have the major influence on the cage potential. A sim-

plified treatment with few relaxation times appears to be suffor a set of observable§(Y) specified as functions of the
ficient in the latter case as long as only short range fluctuastochastic variables. The major obstacle derives from the
tions need to be described. A model is easily generated blarge number of stochastic variables which are intrinsically
directly considering the variableQ® and @ which describe coupled by the time evolution operator. Of course, simplified
at each instant the configuration of the cage potential. In factnodels can be obtained by reducing the set of stochastic
one can introduce stochastic operators for their time evoluvariables. For instance, in the presence of negligible fluctua-
tion without the need to describe in detail the solvent particlgions in the librational frequencies, one may substituie
motions that determine the changes in the cage potential. lwith their averages. The resulting model with the set of
our model, we shall include two independent contributions(Q°,L, Q°) variables has been previously discussed by Poli-
that describe)irotations of the cage frame orientatiof2¥ meno and Freed.

and ii) fluctuations of the librational frequencies. A rota- A more compact representation of the full Fokker—
tional diffusion operator for axially symmetric particles will Planck operator is derived by introducing the gradi€nt
be used for the former: with respect to the ensemble of stochastic variabes
M(Q°)
Ip=—M(Q)D7P(Y)M(QS)P(Y) 1, (13) alaL
VYE '\7| (QC) . (18)

WhereI\7I(Q°) denotes the rotation operator acting on the dldew

QF variables and with its components in the cage frame
(CF). Two coefficients are required to specify the diffusionThen the time evolution operator can be recasted in the fol-
matrix in the cage frame lowing form
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f:—@Y”AYP(Y)@YP(Y)*l (19) E=E(L) is the Euler matrix transforming vector compo-
nents from the cage frame to the molecular frame. The fol-
lowing analysis will be confined to the operaldin the form

0 —kgT1 0 0 of Eq. (22) without further change of variables, and the sub-
KeT1 KkeT(é-L,) O 0 sgnptx of.the gradient operator and of the coupling matrix
Ao— . (20) will be omitted.

v 0 0 D o When convenient we shall use the symmetrized time

0 0 0 D“1 evolution operator

I'=P(X)YP(X)¥?

with matrix Ay given by:

In this way a diffusion-like operator is recovered fdr even . .

if Ay cannot be identified with a true diffusion matrix, since =—P(X) YV AP(X)VP(X) 2 (24)

it is neither symmetric nor positive definite. The mathX  \yhich enables the calculation of correlation functions in the

describes the dynamical coqplmg among the dl_fferent Va”ToIIowing form:

ables. It should be emphasized that the coupling between

solute variablesQ°,L) and cage variables®¢, w) is deter-  G(t)=f(X(t))* f(X(0))

mined by the equilibrium distributioRP(Y) through the ex- _ 12 ~ 1

plicit dependence of the cage potential on the librational fre- =(fOOPO) exp(~TH)[f(X)P(X)™?) (25)

quenciesw and on the solute orientaticf) with respect to  with the scalar product:--) defined as an integration over

the cage frame. This clearly prevents any factorization othe set of stochastic variabl¥s Specific calculations will be

P(Y;t) with respect to the two sets of variables. performed with the following cage potential, written in terms
The orientatior(2° of the solute with respect to the labo- of the Wigner rotation matrices fa:

ratory frame is not a convenient variable for the analysis o _ 5 2.2

the model. In fact its relaxation is driven by two processesK/C(Q’w)_ _(IL/G){(‘”XJF“’Y)DOD(Q)

with very different time scales: the fast librational motion + @(wi—wi)[Dio(ﬂHDz_z,o(ﬂ)]} (26)

within the cage potential and the slow reorientation of the _ o _ o

cage frame. In order to take into account the time scale sep3thich has been derived for liquid chlorine studied in the MD

ration, it is useful to replac€® by the relative solute orien- simulation of paper I. In the same work the simulation results

tation Q with the cage orientatiof2® already included in the Were analyzed in order to recover the distribution of the slow

set of stochastic variables. Therefore, in the analysis of théPrational frequencies. A bell-shaped distribution was found

model we shall employ the following set of variables: with the center at»;=7.5 ps * and widtho=1.6 ps*. In
. order to simplify the calculations with the stochastic model,
X=(Q,L, Q% w). (21)  a Gaussian distribution will be employed for the librational

The Fokker—Planck equation for the non-equilibrium distri-frequencies:

bution P(X;t) must now be derived for the new set of vari- 1

ables. A detailed discussion of the procedure is given in Ap-  P(w;)= ———exp{— (0 — w;)%/20°%} (27)
pendix A, where the new time evolution operator is derived o\2m

in the following form: with the previously given parameter§ and o. The other

-~ ~ ~ H — =1; H

F= —VUAPX) ¥ P(X) L, 22 required pa_ramgte«rkBT/IL—l.M ps " is obtained from the
xAxPX)VXP(X) (22) 1 oment of inertia of Gl and the temperaturE=178K used

P(X) being the equilibrium distribution with respect to the in the Molecular Dynamics simulation.

new set of variables. The gradient operator and the coupling

matrix are now:
Ill. SLOWLY RELAXING PROCESSES

M) A rather complex model with a large set of variables is
- dldL required in order to represent in a complete fashion the dy-
Vx= M(QC) , namics of both the solute and the solvent cage. Exact solu-

PYEPN tions cannot be derived analytically because of the inherent

coupling between all the variables. Also a complete numeri-
et . cal solution of the problem becomes prohibitive because of
EDE —kgT1 —ED” 0 the huge dimension of the matrix required to represent the

keT1 kgT(é—Ly) 0 0 time evolution operatd®® Therefore it is necessary to
Ax=| _p7Er 0 D" o | (23 search for solutions of an approximate nature, which prop-
erly take into account the physical features of the problem, in
0 0 0 D1 particular the time scale separation between the elementary
R relaxation mechanisms.
where M(Q) is the rotation operator on angl€® whose In paper | we have obtained the correlation functions for

components are expressed in the molecular frame, whildifferent observables from the MD simulation of chlorine.
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Those data allow the identification of the characteristic reAs a result, the correlation function deélo(Q) will be de-
laxation timer, for each variablez, which can be summa- void of any slow component from the barrier crossing, and

rized in the following form: the time scale separation between varialfdeand X of Eq.
(30) will be fulfilled. Notice that the constraint E¢31) does
(7L, 70~0.1p9 <(7,c~0.6p9<(7,~3 P9 not limit the available configurations for the solute, since the

<(Too g~ 5P9. (28) same physical situation obtaingd afterrdlip of the solute is
recovered by means of @ rotation of thez-axis of the cage

A definite time scale separation exists between the fast solufeame, keeping the anglg fixed.

variables Q,L) and the slow cage variablesw(a®,8°), The rest of this section will be confined to the analysis of

with the azimuthal Euler anglg® for the cage orientation in  the slowly relaxing processes. This can be done by isolating

the intermediate range. A rather simple picture of the dynamthe slow components of the correlation functions from the

ics of the system is suggested by these characteristic timemore general expressions given in Appendix B. An alterna-

Only the slow cage variables are essential to describe dytive and equivalent method is supplied simply by the projec-

namical correlations at long enough times when the fast varition of the full stochastic equation onto the subspace for the

ables have almost equilibrated. On the other hand, the behaslow variablesXs. The general definition of the distribution

ior at short times is dominated by the evolution of the fastfunction Pg(Xg;t) for the slow variables is obtained by in-

solute variables which experience a substantially frozen fieldegrating over the set of fast variables:

of interactions due to the cage. In other words, the two sets

of variables are to a large extent dynamically uncoupled, ps(xs;t)zj dXeP(X;t). (32)
except for the presence of a “static” coupling due to the cage
potentialV (€2, w). Correspondingly, the reduced equilibrium distribution

Given this physical picture we seek an efficient methodP4(Xg) for the slow variables is obtained by integration of
of solution that takes into account the time scale separationhe full equilibrium distribution Eq(2), and an isotropic dis-
such as the Born—Oppenheim@&O0O) approximation. A BO tribution over the cage orientation is recovered
approximation has previously been utilized to treat time-
scale separations in stochastic models of solute dynamics in Ps(Xs) =P(w)P(wy)/2m. (33)
liquid-crystalline medid! Appendix B presents the general Let us consider the subspaeg spanned by functions of
procedure to be applied to stochastic problems when the inXg havingP(Xs) as the weighting factor in integrations. By
dependent variableX can be partitioned into sets of slow projecting the full FP equation onto thg subspacé®® the

Xg and fastXg variables time evolution equation for the reduced distribution is de-
rived as
X=(Xg,Xg) (29) R

with a well-defined time scale separation. This method will R
be applied to the solute—solvent cage problem with the folwith the projected operatdrs implicitly defined by the fol-
lowing partition of the variables: lowing equation:

Xs=(@w). Xe=(L D). B0 Tef(xgPs(Xe) = J dXeTP(X)F(Xs) (35)
Because of the intermediate time scale for #ievariable, an ] ) )
alternative choice with the inclusion of° among the fast [S€e also Eq(B22) of Appendix B]. By applying this proce-

variables is also legitimate. But in this case the application ofluré to the full FP operator of quz_)' one obtains the
the BO approximation would be much more complicated,€xPlicit form of the projected operator:

and preliminary calcglations haye show_n that the generfal fS:_M(QC)TD%M(QC)_'_fw (36)
features of the resulting correlation functions are not modi- ) - ) )
fied. with a rotational diffusion operator for the cage orientation

It should be mentioned that the cage potential @)  €° and the following Smoluchowski-type of diffusion op-
for centrosymmetric linear molecules might induce a slowerator for the librational frequencies:
decay in the correlation function @} ,(Q) as a result of R
B-angle flips between 0O ana with a barrier crossing at I,=—D, > (dldw)P(w)(dldw)P(w) L  (37)
B= /2% This process would eliminate the time scale sepa- e i
ration between slow variable$s of Eq. (30) and the solute The projected evolution operatbg can be used to calculate
relative orientatiorf2. However, the MD simulation of chlo- correlation functions for function$(Xs) of the slow vari-
rine has shown that, because of the height of the barrier, sudbles. Moreover one can compute the slowly decaying com-
a flipping process is much too infrequent to have significanponent of the correlation functioG(t) relative to a generic
effects on the rotational relaxation of the solute over timeobservablef(X) by considering its projectiorfg(Xg) onto
scales of interest. Thus we shall exclude it in our analysis byhe eg subspace:
constraining the angl@ to the following range:

0=p=m2. - fo(Xs)= J dXeF(X)P(Xg Xe), (38)
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FIG. 1. First rank orientational correlation functions of the cage from MD FIG. 2. Second rank orientational correlation functions of the cage from MD
simulation(continuous linesand from the stochastic mod@ashed lines).  simulation(continuous linesand from the stochastic mod@lashed lines).

where P(Xg|Xg) is the equilibrium conditional probability

i their average. Because of the factorizatiorf“'g\of l'o and
of Xg for a givenXs:

of the cage rotational part, its calculation can be confined to
P(XgXg)=P(X)/Pg(Xg). (39) the subspace of functions of the librational frequencies

The slow componenBg(t) of G(t) is derived as the corre-
lation function of f g(Xg):

Gg(t)=fg(Xg(t))* f5(Xs(0))

Glol()=2, dwi(t)dw;(0)

= J dwY, dwexp —T,t)dwiP(w) (43)

= | dXofo(Xo)*exp —T'et)fo(Xo)Po(Xs). (40)

J sfs(Xe)"exp ~Ts)Td(XPs(Xs) and by inserting the Gaussian distribution E2[7), the fol-

Of courseGg(t)=G(t) if f5(Xg)=f(Xg), i.e. if f is a func- lowing analytical result for the Gaussian-Markov process is
tion of the slow variables only. Otherwisg(t) would also ~ recovered

contgin a fast compone@g(t) WhiC.h can be cglculated ac- Gl w](t)=202exp(— D t/c?). (44)
cording to the methods of Appendix Bee Section IV). . ) . )

As applications we shall consider the correlation func-1herefore, a simple exponential decay is predicted for the
tions which have been determined from the MD simulationSloW cage frequency, as has been found in the MD simula-
of Cl,, with the purpose of testing the capability of our tON (see Flg. 9 of pape_r).ITh_e observed value 2.87 ps of the
stochastic model to interpret the dynamics of solute—solvertoIresponding correlation time;, allows thggetermlnat|on
cage interactions. For the cage orientation, the correlatioRf the unknown coefficient a®,=0.13 ps®. The same
function of D} , (Q°) is readily obtained from the isotropic method can be applied to the calculation of correlation func-

diffusion operator of Eq(36) in the following standard form tions of any observablé(w) that is a function of the libra-
tional frequencies, after expandif§ew) about the average

GLLQI(1) .1* The rather narrow width of the distributioR(w;) al-
- - lows one to truncate the expansion at the first order terms
=D ,(Q°(1))* D] (2%(0)) P

=exp{—[j(j+1)D, +m?(D;—D,)]t}/(2j+1). (41) f(w):f(6)+i;xy Swifi(@),

In Figures 1 and 2 the predicted behavior is compared with _
the MD results for correlation functions of the firgt=€1) filw)=[if(@)/iwi]w=5, (45)
and secondj(=2) ranks, respectively. Diffusion coefficients yielding the correlation function in the following form:
D, =0.12 ps* andD;=1.3 ps ! have been employed. The
fair agreement supports the attribution of a diffusional mo- (g (t))*f(w(0))=|f(@)|2+ >, |fi(@)|?c?
tion to the cage rotation, as emphasized in paper |. Notice [
that in Figures 1 and 2, as well as in the following ones, X exp( — Dt/ o?) (46)
correlation functions normalized with respect to their initial @ '
values Finally we examine the correlation functions for the
. probe observables. In the case of the angular momentum
9()=G(1/G(0) (42) L, no slow componentGg(t) of its correlation function is
are reported. recovered because its projection E8B) vanishes. Similarly
Let us consider now the correlation function for the de-one excludes slow components in the case of functions
viations dw;=w;— w; of the librational frequencies from f(Q) of the relative probe orientation, since their projections
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are at most constant. However a significant slow componentaBLE I. Averagesdi, () and derivatives.

is recovered for functions of the absolute probe orientatior
Q° with respect to the laboratory frame. Because of their
direct relation with experimental observables of spectro-
scopic origin, these are the most important correlation func-
tions for the probe orientation. Let us consider the correla-

tion function

GI[Q°](1)=D] ((Q°(1))* D] o(2(0)) (47)

for the Wigner functionf=Df"0(Q°) which is conveniently
expanded as

f=§m: D! (Q°)DI, (). (48)

Its projection ontoeg according to Eq(38) is given as

fs=2 DI (Q9)dh(w) (49)
with
d (@)= f dOD!, ((Q)exp{—V (Q,w)/kgT}/ f dQ
X exp{ — V(Q,w)/kgT}. (50)

Notice thatd! (@)= 6, odb(®) because of the axial symme-
try of the cage potential Eq26) for w,=wy .

The corresponding correlation function is easily calcu-

lated because of the factorization iy of orientational and
librational terms. By taking into account only the first order
contributions in the librational frequency expansion as in Eq
(46), the following explicit relation is found

GL[Q°Ts()=F4(t)* f5(0)
=(2j+1) " Ydh(@)|%exp{—j(j+1)D, t}

+(2j+1)7Y X ofd (@)
m i=xy

xexp{—[j(j+1)D,+m%(Dj—D,)

+D,/d?]t} (51)

with coefficientsdﬁn’i(a) for i =x,y defined according to Eq.

(45). In general the slow component of the orientational cor-

relation function for the probe should display a multi-

exponential decay with rates depending on the diffusion co

efficientsD, andD of the cage and on the coefficieDt,
for the diffusion of the librational frequencies. The weights

distribution P(w;) of the librational frequencies through co-
efficients dj(w) and d},;(w). Table I provides the non-
vanishing values of these coefficients for the case of chlorin
explicitly considered here. .
|od],;(@)]? are much smaller than tht)(w)|? of the lead-
ing term(we remind the reader that=1.6 ps ). Therefore
Eqg. (51) can be approximated as

GI[OQ°](t)=(2j+ 1) *|d}(w)|?exp{ —j(j+1)D, t}
(52)

B

In this case the weights

1097
i m d (@) dl (@) dl, (@)
1 0 0.957 0.0064 0.0064
2 0 0.878 0.0174 0.0174
2 2 0 0.0071 -0.0071

which has the simple behavior expected from a rotational
diffusion model for the probe motion with the same diffusion
coefficient as that of the cage rotation. This corresponds to
the physical situation of a solvent exerting a rather strong
cage potential, so that the probe orientation at long times
simply follows the slow rotational motion of the cage. Such
a result, however, cannot be extended to the possible sys-
tems. In particular, noticeable effects of the multi-
exponential decay of the probe orientational correlation func-
tion should be detected @ the presence of a weaker cage
potential leading to smaller values of thi§(w) coefficients

and correspondingly increasirtﬂnvi(a) terms, or b with a
broader distribution of cage frequencies which increases the
width o.

IV. FAST PROCESSES

As shown in Appendix B, the correlation function for a
generic observablé(X)

G()=1(X(0))* f(X(t))=Gs(t) + Gg(t) (53)

can be decomposed into a slow compon@g(t) to be cal-
ctulated according to the procedure of Sec. lll, and a fast
componentGg(t) associated with operatdre driving the
relaxation of the fast variablesy when the slow variables
are kept frozen. In this section the fast component of the
correlation function for the different observables of interest
will be derived by neglecting the small effects due to the
evolution of the slow variables. Therefore the fast compo-
nent Ge(t) will be calculated as an average ov¥g as
shown in Eq.(B26), of the correlation functio®Gg(Xg;t),

that is derived by solving the dynamical problem for only the
fast variables according to E¢B27). That is:

Gr(Xgit)= f dX 8 (X)* exp( — [et) 8T (X)P(Xg/ Xg)
(54)

with a parametric dependence on the “static” variables
In the previous equatiodf(X)=f(X)—fg(Xg) is the or-
thogonal component of the observalbleX) with respect to

She € subspace. In order to avoid a very cumbersome nota-

tion, we shall always leave implicit the parametric depen-
dence orXg of Eq. (54), as well as the average owég to be
erformed onGg(Xs;t), by focusing on the solution of the
dynamical problem for the operatbk which is chosen ac-
cording to constraints Eq€B2) and (B3). This choice is
done by selecting from the complete time evolution operator
of Eqg. (22) those components of the gradient operdigr
acting explicitly onto the fast variable¥r=(Q,L). Then
one derives the following operator
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Te=T+T+Tp ¢ (55) By also introducing the spherical tensor components
’ A L3=Y=%(L,%iL,) of the angular momentum, the observ-
with three independent contributions. OperalQrdenotes able can be written as
the streaming operator for the variabléof Eq. (21), and it
has the same form as E(f) except for the substitution of L= > L@mxpdm= > @hg )*nd) (61)
rotation operatoM (2°) by rotation operatoM (Q) acting m==*1 1=0,x1
on the relative solute orientatio. A similar substitution \yith
should be performed on E7) for the torqueT. The colli-
sional o_p_en_';ltofC _is the s_ame as Edjll? after substitution of fLD(Q,L)= 2 Dllm(ﬂ)* L(Lm (62)
the equilibrium distribution byP(X). Finally, I'p ¢ accounts m=+1

for the contributions deriving from operat®f, of Eq. (13) gy petitution into Eq(58) and using the orthogonality rela-
for the cage rotational diffusion. This is the most compli- tion
cated part because of the presence of several terms, which

can be partitioned according to their proportionality to the — n{)*. n<cl'">: S 1 (63)
parallel componenD or the perpendicular componedt,

of the diffusion matrix Eq(14), which have been previously
determined by analyzing the correlation function for the cag
rotation. Given the small value @, =0.12 ps?, one ex-
pects that the corresponding componentd' 9% have neg- GILIW= 2 FEDQ(), L(1)* fHD(Q(0),L(0)).
ligible effects on the relaxation of fast variables occurring on " (64)

a time scale of few tenths of picosecond. Then it is legitimate . . ]

to neglect these contributions and to keelﬁﬂp only the However, its calculation cannot be performed analytically

terms proportional td, thereby deriving a much simpler and also a full numerical computation would be extremely
operator: difficult because of the requirement of a complete represen-

tation of thel'r operator in the space of functions of both
~ d d 4 Q andL variables’ On the other hand we are investigating
I'pr=-D Ja P(X) Ja P(X)™" (56) the case in which the cage potential is rather strong, such that
only small fluctuations of the azimuthal angeare allowed.
In this way the evolution operator for the fast variables iSCorresponding|y one could perform an asymptotic expansion
fully specified. by retaining only linear functions o8, which are directly
First we analyze the correlation function for the angularcoupled to linear functions of angular momentum compo-
momentum componert, which is orthogonal to the probe nentsL, andL, . In order to extend the analysis to the case
symmetry axis of finite, albeit large, librational frequencies, one can adopt
X y the same strategy employed in Ref. 12, that is to represent
Lo=nulxtnuby, (57) the evolution operator into a finite set of functions with the

where @, ,n},,nZ,) are the unit vectors of the molecular correct boundary conditions, but which mimic the asymp-

frame (MF). This observable does not have a slow compo-tOtiC behavior. In the present case one should consider the
nent in its correlation function, since its average oxgr  Subspacee;, of functions with a linear dependence on the

according to Eq(38) vanishes. Therefore, only the fast com- @ngular momentum components or functions with a linear
ponent of the correlation function expansion with respect t@ as 8—0. Therefore only the

termsD7, (2)* L™ with m= =1 are retained in E¢62)
G[L](t)=L,(t)-L,(0) (58)  for functionsf*) in the correlation function Eq64), be-

) _ cause of the following behavior of the Wigner rotation ma-
needs to be calculated according to the method previouslyices for 3—0:

discussed. Observablg of Eq.(57) has an implicit angular _ Il _ _
dependence because of the rotational motion of the molecu- Din*B" Mexp —ila—imy). (65)

lar frame axis. In order to make explicit such an orientationak,o e, subspace will include these functions, as well as the

dependence, it is necessary to expressin terms of the  qyar elements of the Krylov sequeftt generated by the

. y oz . . 0
cage frame axisr(c,ng,ng), which can be considered im .I'r operator, which belong tey,, . The following set of func-

mobile during the relaxation of the fast variables. The sphen;[
cal tensor notatiof:

leads to a correlation function without explicit reference to
&ny frame axis

ions is selected in this way:D!, (2)*L*™  and
DLmO(Q)* for m= =1 without any constraint on the ind¢x
nglvil)zi(nﬁiinX), n(1,0)5ni (59) That is, because of I_Ecﬁ65), these latter f_unction§ have the
samefB dependence independent of the indexvhich then
for A=C andA=M, allows a convenient representation of can be chosen according to the rank of the observable
the relation between the frame axis in the following form (j=1 for the angular momentum correlatjoTherefore the
following four functions, which are neither orthogonal nor
ng\ﬂl,m: Dﬁm(ﬂ)n(l")- (60) normalized[cf. the weighting functions expressed in Eq.

1=0,+1 c (25)] are sulfficient to span the;, subspace
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100 TABLE II. Equilibrium averagegD!, o(Q) —d! (w)|2.
2/L ]t} i m [Dh ()~ dr(w)?
: 1 0 0.0055
050 F} 1 1 0.0497
! 2 0 0.0293
2 1 0.1116
| 2 2 0.0086
0.00 —
0.00 050 100 1.50 forces (i.e. L) acting on the probe molecule. Inclusion of
t (ps) such a feature would substantially complicate the stochastic

model.
FIG. 3. Correlation function for the probe angular momentum Continu- F_ma"y we examine the fast component O,f the correlation
ous lines: MD simulation, dashed lines: result of the stochastic model. ~ function Eq. (47) for the overall _prObe rotation. Therefore
Eq. (54) should be computed using

hy=DI , {Q)* 8t =2 D} o Q9)[Dyo( @)~ diy( )] (70)
h,=D), _,(@)*L™"D), and it can be decomposed into the sum of contributions for
o 11 different values of the inder in Eq. (70). The cross terms
h3=D} ,(Q@)*L™*?, will be eliminated by the subsequent average over the slow
_ . c o 4 ;
hy=D Q). (66) variablesQ®. Even in this case the full numerical calculation

cannot be performed easily given the large size of the func-
After evaluating the overlap matrix and the matrix representional space to be considered. Therefore we shall employ the

tation of I'r, which are, respectively: same technique used for the angular momentum. In Table Il
the averages dD/, ((Q) —d!, (w)|? are reported in order to
C, ”’:f dXehn(Xe)* P(Xg/Xp)hp (XE), (67)  show that only the contributions witth==1 are the most

significant, and they correspond to functions with a linear
- expansion in the azimuthal angk Therefore the same ba-
Bnn = f dXeh,y(Xe)*TeP(Xg| Xp) iy (Xp), (68)  sis functions of Eq(66) with the index| fixed according to

) ] ] ) ) the rank of the observable, can be employed for computing
one is left with a simple expression for the desired correlas,cp a correlation function

tion function

G[L](t)=€; exp—BC 1t)Ce,+ €] exp—BC 1t)Ce;,
(69) X exp(—BC ™ 1t)Ce,. (71)

where g, is the four-dimensional array with null elements The overall correlation function, which includes both this
except for the unity in théth position. Notice that the two fast component and the slow component analyzed in the pre-
terms at the right-hand side of E@9) are complex conju- vious section, are displayed in Fig. 4 for rarjks1,2. These
gates of each other, so that the resulting function is real imesults reproduce the general trend found in the MD simula-
spite of the presence of complex elements in Bhand C
matrices. These elements are readily calculated in terms of
integrals of exponential and Bessel functions. Of course both 1.00 B
matrices depend parametrically on the Xgtof slow vari- 7o
ables and, therefore, the results of E6Q) should be aver- g [0
aged as in Eq(B26) in order to obtain the complete corre-
lation function.

In Figure 3 the angular momentum correlation function 0.50 ¢
obtained from the MD simulation of chlorine is compared
with the theoretical one calculated with /1, =8 ps ! (the
other parameters having already been determined). The over-
all agreement should be considered rather satisfactory, taking 0,00 . .
into account the simplifications introduced in our stochastic 00 700 200 3.00
model. Note that for early times the stochastic model is un- t (ps)
able to reproduce the well-known Gaussian behavior of the
momentum correlation functioff, since we have neglected rig. 4. correlation functions of ranks=1 andj=2 for the probe orienta-
any explicit description of the rapidly fluctuating tion Q°. Continuous lines: MD simulation, dashed lines: stochastic model.

(2] +1)G[Q°](t)=€lexp(—BC t)Ce, + €]

~ea
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tion, with a small component decaying in short times, andCommittee for Information Science and Technology. The au-

the long time tail accounted for by the cage rotational diffu-thors thankfully acknowledge Professor P. L. Nordio for en-

sion. lightening discussions. The computations reported here were
It should be mentioned that one parameter of the stoperformed at the Cornell Theory Center.

chastic model has not been determined: the parallel compo-

nent,&, of the friction. Of course it has no physical meaning APPENDIX A: CHANGE OF ORIENTATIONAL

in the case of linear molecules like chlorine since their rota-VARIABLES

tions about the symmetry axes are not defined. In the more  The transformation of the representation from e

general case of a molecule having a well defined paralle}ariables of Eq(1) to the variablesX of Eq. (21) requires

componentl of the moment of inertia and with, at least that the absolute probe orientati€} be substituted by the

approximately, axially symmetric interactions with the sol- yg|ative orientation® with respect to the cage frame. This

vent molecules, it can be determined by examining the corzpange of orientational variables is conveniently done by

relation function for the parallel componeh{=L, of the  employing the method of Ref. 8. Let us introduce the differ-

angular momentum. Because of the axial Symmeffys not  gniia| gy conjugate to the gradient operatdk, [cf. Eq.
coupled to other variables by the complete evolution operary g)]:

tor Eq.(22). Therefore

- de¢®
LH(t)L”(O)I|HkBTeXF(—t§”/|”) (72) dL

and by comparison with MD data one can extract the un- gy= det | » (A1)
known ¢ friction coefficient. d¢
w

V. CONCLUSIONS o .
whered¢® has already been specified in relation to ),

In order to analyze theoretically the molecular rotational,,ile d¢® denotes the components in the cage frame of the
motion coupled to the solvent cage, a rather complex treapginjtesimal rotation vector of the cage frame with respect to
ment is required even when attention is focused on the pring,o laboratory frame. Correspondingly, the change of an ar-

cipal correlation functions. The physical origin of such Apitrary functionf(Y) after an infinitesimal incremerdY of
complexity is the presence of several competing relaxatiofne variables is written as:

processes which are essential to determine the overall behav- o

ior of the observables. Correspondingly, a large number of ~ df=f(Y+dY)—f(Y)=dY"V f(Y). (A2)
independent variables needs to be considered in the stocha§zie thatdY anddVY differ in their rotational components;
tic model for the solute-cage interactions, and efficient techbf_ Eq. (1) and (AL).

nigues are required in order to derive the relevant time- In a similar way the differentiadX conjugate to gradient
dependent observables. This has been possible in our sPeCigCerator@ of Eq. (23) is introduced in the following form
case because of the compact representation{Ieq.of the P X g 9

time evolution operator, which facilitates the formal elabora- de

tions required, for example, by the change of variables, and dL

because of the applicability of the BO approximation which ¢ _ 4 (A3)
allows a separation of fast and slow variables in computing a e

given correlation function. do

The set of derived results provides a rationalization of
the findings of the MD simulation of paper |, thereby dem-whered¢ denotes the components in the molecular frame of
onstrating that a stochastic model which explicitly includes ahe infinitesimal rotation vector of the molecular frame.
suitable set of cage parameters as independent variablesHsom the additivity of infinitesimal rotation vectors, one im-
able to account for the general features of solute—solvennediately derives
interactions. Given the efficiency of the theoretical tools, it is o c
possible in our opinion to develop even more detailed mod- de"=Ed¢™+de, (A4)
els by including, for example, the fast cage frequenciesvhere the Euler matrie=E({) transforms vector compo-
among the independent variables, in order to recover a moreents from the cage frame to the molecular frame. Therefore
accurate agreement with the MD simulations particularly indifferentialsdY anddX are linearly related as:
the short time scale.

10 —-EQ) O
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df=f(X+dX)—f(X)=dX"Vyf(X). (A6) their relaxation to equilibrium when the slow variablég

are frozen. Therefore, only a parametric dependence on slow
variablesXs is allowed for FF Correspondingly one can
introduce a time evolution equation for thé- variables
only, by considering the conditional probability
P(Xg/Xg;t) of Xg with respect to a fixed sés:

Under the condition of the same initial and final states, equa
tions (A2) and (A6) are equivalent and, by taking into ac-
count Eq.(A5), one derives the following relation for the
transformation of the gradient operator

%Y:str%x. (A7)

In order to transform the evolution operator of the FP . ) ) S
equation also, let us consider the time-dependent average Wfth the stationary solution provided by the equilibrium con-

IP(Xg|Xg )/ ot=—TeP(XgXg ;t) (B1)

the functionf () ditional probability Eq.(39)
f(t)EJ dYf(Y)P(Y;t) (A8) _ L :
The following condition is required

whose time evolution is given as:

) fdfoFP(xs|xF;t)=o (B3)
df(t)/dt=—J dYf(Y)TP(Y;t)

in order to preserve the normalization

:f dYPOYLVA()IAy f dXeP(XgXg 1) =1. (B4)

XVyP(Y)"P(Y;1), (A9) These are the mathematical constraints for the choice of

where Eq.(19) has been used fdF followed by an integra- I'r- Inthe case of stochastic operators like E2R), they can

tion by parts applied to the first gradient operator. The conbe met simply by including i’ only the components of the
stant terms are omitted in such an integration by parts begradient operatol x with derivatives ofXg variables. The
cause of the assumed conservation of the probability norntemaining terms are collected in the residual operaibr

By changing the integration variables ¥g by then trans- such that

forming the gradient operator according to E47), and b A A -

a furthger inte?gration byp parts, one final?y oblfgn?s: ’ I'=Te+dl. (BS)
o R In the classic Born—Oppenheimer approximat'tﬁh should
df(t)/dt= —f dXf(X)I'P(X;t) (A10)  only depend upon th¥g variables. Then it supplies the char-

acteristic separability of the solution into eigenvectors of
with the time evolution operator in the new set of variablesfF that depend parametrically ofi5, and the eigenvectors
= _@gp(x)’%ﬁxp(x)—l_ (A11) for the X5 depend explicitly on the p_artlcqlar eigenvalue of
I'r as well as onsl". We shall modify this procedure by
allowing JI' to also contain small terms dependent upon
Ay=SA,S" (A12)  Xg such that they are perturbations compared’tq i.e.
such that:

The corresponding coupling matrix is given as

and by inserting Eq(A5) for the transformation matris,

the final result Eq(23) of the second section is recovered.  |['¢|>>|4T]. (B6)

Other kinds of change of variables can be performed in the

same manner after transforming the gradient operator as |9n the other hand this is an implicit condition for the sepa-

Eq. (A7). ration of fast and slow variables, since only when &§) is
satisfied will the relaxation of the two sets of variables be

characterized by very different time scales.

APPENDIX B: THE BORN-OPPENHEIMER For the sake of convenience, we shall employ time evo-
APPROXIMATION APPLIED TO STOCHASTIC lution operatorsl’, T'r and oI in their symmetrized form
OPERATORS

defined as in Eq(24), and the integration restricted to fast

In this appendix we analyze in a general framework the@nd slow variables will be conveniently denoted as
separation of the contributions of faxt and slowXg vari-
ables in the stochastic problem f¥r= (Xs,Xg). The basic >F—f dXge - ( ">sEf dXs (B7)
method is the same as the Born—Oppenheimer approxima-
tion for the quantum mechanical treatment of the coupledo that
motion of electrons and nuclei in molecules. However, a gen-
eralization of this procedure is required in the application to (--->EJ dx---:f dxsf dXg - ={{(-*")p)s. (B8)
stochastic problems. Before applying the approximation, one
should isolate from the complete evolution operdtats fast A biorthonormal basis foiXg-functional space can be
componentl“F acting on theXg variables, which describes derived from eigenvectors dfe and its adjoint
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(nIn"Ye= 8y nr- (B9)  mal set spanning the full functional spaceXr (Xg,Xg) is
recovered as the direct product of)r and |q)s, i.e.
In,g)=|n)g|q)s. Because of the assumed completeness and
Py biorthonormality of theln,q) basis, the correlation function
Ie= - [MeEn(Xs)(n], (B10)  Eq. (25) of a given observablé(X) is decomposed as:

Then the operatof’F can be decomposed as

where E,, for n=0,1,2,..., are theeigenvalues oﬂ:F.

These eigenvalues, as well as the corresponding eigenvec- -

tors, depend parametrically oy variables. Notice that the G(t)= Z , (FX)PYAX)[n,q)(n,qle""n",q")
first eigenvalue€E,=0 vanishes corresponding to the station- nan-.q

ary solution derived according to Eq®2) and (B3) x(n',q'|f(X)PYAX)). (B12)

10)e=[P(XdXp)"e,  (0]=(P(X¢gXp)¥q.  (B11)

By also introducing a biorthonormal bagigiq’)s= 6, - for ~ The exponential operator in EGB12) can be expanded in a
the eg space of functions oKg only, a complete biorthonor- Taylor series in time

(n,gle Tn’,q")= E <n ql(Te+ o0 n’,q")

(—t)k,
= k! 2 ay,Byy ey am,,Bm<n1q|FF15F51'"I{;mgrﬁm|n !q>

(_t)k ’ ~a
:% kI E A am,,BmE NyOyoeees anfl,q2m71<nvq|FFl|nqul>

X<”1:Q1|5fBHHZyQ2>---<n2m72vQ2m72|fg”Wn2m71vQ2m71><n2m71,Q2m71|5fﬁmhfyql>, (B13)

where the primed sums are extended over all natural nunter with complete separation of the slow and fast variables.
bers «;, B and m but with the constraint Even whendl is an operator orXg only, the off-diagonal
=M (e +B))=k. The completeness di,q) is invoked elements do not in general vanish because of the parametric

again to recover the final expression. dependence of eigenvectdra g on Xs, so they will in gen-
In this framework, the Born—Oppenheimer apprqxima-eral be modified by the operatel .
tion is equivalent to 1the use of the representation Bf By taking into account that basis elements) are

given by Eq.(B10) and the use of the direct product basis eigenfunctions of ¢, Eq. (B13) is reduced to the form:
|n~,q>, plus 2)the retention of only diagonal elements of

ST with respect to thén)g basis (n,q|e*ft|n’,q’>

- BO ~ BO t)k
n|olin")g= 6, 6I,, B14 - _
< | | >F n,n n ( ) —; z g, By .,

whereafnz(n| 5f|n>F is the averaged operator with respect

to |n)g and, therefore, it acts adg only. This is based upon ><(q|Eﬁ1|q1)S<ql|5ffl|q2>5. ..
the condition of Eq(B6) justifying a first order perturbation N -5
treatment. Such an approximation is self-consistently applied X (0dz2m—2/E;"d2m-1)s(Aom-1/1',"0") s, (B16)

to generic powers ofl" as L . .
which is written more concisely as

(n[8F#In")e =2 (n[sTIn")e(n"[ 87 n")e ~ g0 ~
" (n,ale”™n",q")=(ale” & q")sShy.  (BLT)

80 80 After substitution into Eq.(B13), the correlation function
=T <n|5f~,871|nr>':: 5 ,(51: )8, Ggo(t) within the Born—Oppenheimer approximation is fi-
n mr e nally recovered as:
(B15)

©

Notice that such an approximation is always required unles& o) = 2 ({(fPYYn)re En +6T}) WYn|fPY2) ). (B18)
one is considering the simple case of a time evolution opera- F/s
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Notice that the only properties of thg)s basis required by
this derivation are its completeness and biorthonormality.

One can partition the terms in the summation at the

right-hand side of Eq(B18) according to the presender
the absencejn the exponents of contributions due kg,
thereby defining a slow compone@t(t) and a fast compo-
nentGg(t) of the correlation function

Ggo(t) =Gg(t) +Gg(t). (B19)

The slow component includes only the term witk-0 cor-
responding to the stationary mof® with vanishing eigen-
valueEy=0:

G(t)=((fP¥20)re~To(0|fP¥)p)s. (B20)

While the remaining terms are collected indg(t)

Gr(t)= n; ((fPHn)ee” Entoh(n|fP12)p)s. (B21)

By recalling Eq.(B11) and the definition of Eq(38) of the
projectionfg(Xg) of f(X) onto theXg-functional spaces,
one derives  the result  that (O|fPY2),

= f4(Xg)¥?P<(Xs)Y2 Moreover the evolution operator in
Eqg. (B20) can be written as:

8Tg=(0| 8T|0)=(0|[|0)e=Ts, (B22)

wherel's=Pg “2'sP¥? is the symmetrized form of the pro-
jected operatof's of Eg. (35) for the relaxation of the slow
variables. In conclusion the slow componépg(t) can be
rewritten as

Go() =(fsPEdexp — Tet)|fsPE?)s, (B23)

which is equivalent to Eq(40) already obtained in Section
[l by means of a direct projection onte; of the full evolu-
tion operator.

1103

SH(X)=F(X)—P(X)"¥20)(0|fP¥2) ¢
=f(X)—fg(Xsg). (B25)

Therefore the spectral resolutionfﬁi, i.e. the knowledge of
its eigenfunctions and eigenvalues, would not be strictly re-
quired in the calculation 0Bg(t) from Eq.(B24). By taking
into account thal'r depends only parametrically ofy, Eq.
(B24) can be rewritten as an average oXey

GF(t)zf dXsPs(Xs)GE(Xs,t) (B26)

of independent contributionGg(Xg,t), which derive from
the relaxation of the fast variables for fixed values of the set
Xg:

Gr(Xs )= f dXr 51 (X)* P(Xe Xe) 2

xexp(—Tet) SH(X)P(Xg|Xp) Y2 (B27)

When analytical solutions dfF are not available, then one
can perform a numerical calculation restricted to the space of
Xg variables only, with a simple superposition of the results
at differentXg (some examples are provided in Section.|V
An equivalent result, from a more phenomenological ap-
proach, was obtained in Ref. 6.

Notice that according to EqB27), Ge(Xg,t) would be
the correlation function off(X) for a fixed Xg when the
solution of Eq.(B1) for the dynamics of the fast variables
only are taken into account. One can then provide a physical
picture of the full correlation function, by considering that
slow and fast variables are characterized by very different
time scalesrg> 7. Within a time window of the order of
7 during which there are no significant changes of the slow
variables, only the fast variables relax to the equilibrium
consistent with the static values &fs. This process ac-
counts for the fast compone@i-(t) of the correlation func-
tion, with the observabld (X) relaxing to fg(Xg), i.e. its
average oveKg conditioned by the stati¥g. Subsequently
the evolution of the slow variable takes place on the time
scale ofrg, with the final relaxation of (Xs) to f described
by the slow componern®g(t) of the correlation function.

It is also possible to obtain the above results by intro-
ducing an approximate form of the conditional probability
function. We write down such a form that immediately al-
Iows us to separate the slowly and rapidly relaxing terms. It

In general, no further simplification can be made for the
fast component given by E¢B21) unless the contributions XYIP(Xg, X2 Xg ;1) — P(Xg/Xp)]
from oI, are neglected by utilizing the condition given by YOI
Eq. (B6). Of course such an approximation might reduce the +P(Xs|Xg)Ps(XglXs;t), (B28)
accuracy of the final results. On the other hand, by neglectyhere P(Xg,X2|Xr;t) describes the dynamics of the fast
ing the &', terms, one can perform analytically the summa-yariables
tion over the eigenfunctions df-, thereby obtaining:

P(X°|X;t)2 6(Xs—

P(Xs, X2 Xg ;t)=exp( — [et) S(Xg— X2), (B29)

the parametric dependence ofy deriving from operator
FF, while P(Xslxs,t) is the conditional probability for the
slow variables alone under the action of the projected opera-
tor I'{ cf. Egs.(35) and(36)]:

Ge(t)=(8fPY3e v 5fPY2), (B24)

where
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P(XYXg:t)=exp —I'et) 8(Xs—XY). (B30) P(XOX;t)=Pg(XYXg;t)P(Xg, X2 Xk ;1) (B33)

In this way the separation of the dynamical contributions ofwhich was used in the analysis of Ref. 11, does reproduce the
the two types of variables appears evident also in the timesame two limits.
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