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In paper I of this series, a molecular dynamics~MD! study of liquid chlorine was performed, and it
includes the definition and observation of operational cage variables. These cage variables were
used to describe the local environment of a rotating axially symmetric molecule, or probe. Probe and
cage properties of interest, such as rotational correlation functions and momentum correlation
functions, were computed, together with an effective distribution of librational cage frequencies. In
the second part of this work, we develop a stochastic model which includes the relevant elementary
relaxation processes previously identified by the MD study. This stochastic model is based upon a
multi-dimensional Fokker–Planck equation for the coupled dynamics of the probe and cage
orientations, the angular momentum of the probe, and the librational frequencies for the probe in the
cage. Semi-analytical approximations, based upon a ‘‘Born–Oppenheimer’’-type separability of fast
and slow variables, are used in order to calculate probe and cage correlation functions, and they are
found to be in reasonable agreement with the MD results. In an appendix the Born–Oppenheimer
approximation for stochastic operators is developed. ©1996 American Institute of Physics.
@S0021-9606~96!01203-5#

I. INTRODUCTION

In a previous work~Ref. 1 hereafter denoted as paper I!,
a Molecular Dynamics~MD! simulation of liquid chlorine
has been performed in order to characterize the solvent cage
confining a solute. The method employed was a generaliza-
tion to molecular systems of the procedure originally applied
to atomic liquids.2 In order to introduce operational defini-
tions of cage properties which can be extracted from a MD
simulation, the interaction potential between the solute and
the solvent~a probe molecule and the rest of the sample,
respectively, when considering pure liquids! is considered as
a function of the solute coordinates for a given solvent con-
figuration sampled during the simulation. The parametriza-
tion of such a cage potential, through its curvatures and the
location of its minimum, provides an ensemble of parameters
which can be easily determined during the MD simulation
and which describe the effects on the solute of the surround-
ing solvent cage.

As shown in paper I, a general analysis of the cage po-
tential can be performed for axially symmetric solutes, by
including both translational and rotational coordinates, but it
leads to a very large set of cage parameters whose interpre-
tation in terms of solute–solvent interactions is difficult.
Therefore, a reduced form of the cage potential was derived
in paper I under the assumption that probe translations within
the cage are dynamically uncoupled, at least approximately,

to the probe rotations because of their short time scale. In
this way only the following parameters are required to de-
scribe the rotational effects of the solvent cage: the cage
frequencies v[(vx ,vy) and the orientation
Vc[(ac,bc,gc) of the cage frame. The two cage frequen-
ciesvx andvy determine the independent frequencies for the
librational motion of the probe in the presence of the confin-
ing potential due to the surrounding molecules, and therefore
their magnitude measures the strength of solute–solvent in-
teractions. Thez2axis of the cage frame determines the
probe’s stationary orientation for a fixed cage configuration,
while thex2 and y2axes are fixed along the principal di-
rections of probe librational motions. The probe motion
would then be represented by the superposition of fast libra-
tional fluctuations about the equilibrium configuration de-
scribed byVc, and a slower rotational diffusion driven by
reorientations of the cage frame, in agreement with a picture
proposed by Hill.3

Given the operational character of our definition of cage
parameters, their evolution can be followed during a MD
simulation with the opportunity of deriving detailed informa-
tion about the distribution and the relaxation times of the
cage parameters. This has been done in paper I for liquid
chlorine near the triple point, thereby recovering for this spe-
cific system the statistical distribution of the librational fre-
quencies and the relaxation times of both probe and cage
variables from the corresponding time correlation functions.
As expected, a time scale separation exists between the fast
librational processes within the cage~as revealed by correla-
tion functions of the probe angular momentum and of the
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probe relative orientation with respect to the cage frame! and
the slower evolution of both the cage orientation and the
cage frequencies, with the rotation of the principal librational
axes around thez2direction of the cage frame in the inter-
mediate range.

In this work, we intend to develop a theoretical model
for the probe rotational dynamics coupled to the solvent
cage. In the past this problem has been tackled from different
points of view ~see Sec. I of paper I for a review!. Our
method is based on a Markovian representation which in-
cludes explicitly both the probe degrees of freedom and the
cage parameters as independent stochastic variables.4,5 A
Fokker–Planck~FP! equation will be defined for the en-
semble of these independent variables, by using the MD re-
sults as a guideline for the choice of the equilibrium distri-
bution and of the transport coefficients. A similar procedure
has been applied to liquid argon with a satisfactory agree-
ment when compared with the correlation functions of the
MD simulation.6 Here we shall examine specifically the
solute-cage rotational problem on the basis of information
derived in paper I from the MD simulation of liquid chlorine.

Given the complexity of the problem, with the interfer-
ence of several relaxation mechanisms, a detailed represen-
tation of all the features of the MD simulation is not pos-
sible. A more reasonable objective is the representation of
the most important features of the solute-cage dynamical
coupling by means of a simple enough model to allow a
transparent description of the underlying physical processes.
For instance, the MD simulation of liquid chlorine has
shown that cage frequencies have a complex dynamics with
superimposed fast and slow decay processes. To account for
this behavior in paper I, we have separated the fast and slow
components of the overall cage frequencies. In principle both
of these parameters should be considered as independent
variables to be treated on an equal footing, in order to fully
reproduce the MD correlation functions. But this would re-
quire an enlarged set of independent variables with a too
complex theoretical model to permit reasonably accurate pre-
dictions. Therefore, we shall treat explicitly only the slow
components of the cage frequencies, which are essential to
describe the long time behavior of the system, while their
fast fluctuating parts are included among the processes lead-
ing to frictional dissipation.

Even if the stochastic model in its essential form is de-
veloped with a proper choice of the independent variables,
its solution for the calculation of the relevant correlation
functions would still be a formidable task because of the
intrinsic couplings between a large number of variables. No
exact analytical solutions are available and also complete
numerical solutions are not realistic because of the huge ma-
trices that would be required. The only reasonable way to
tackle the problem is to benefit from the time scale separa-
tion between different variables in order to derive reasonably
accurate approximations. We shall employ a specific tech-
nique based on the Born–Oppenheimer~BO! approximation
often applied to quantum mechanical problems. By properly
adapting the BO approximation to stochastic operators, an
efficient method is derived for separating the effects of fast

and slow relaxation processes in the correlation functions.
Given the generality of this approach, we expect it might
also be useful in the study of other stochastic problems.

In Sec. II, the Fokker–Planck equation is introduced for
the solute-cage rotational problem by isolating the contribu-
tion of each independent relaxation mechanism. Particular
care is taken in the derivation of a compact representation of
the time evolution operator, which should allow straightfor-
ward formal manipulations, for example when a change of
variables is required. In the following sections the FP model
is analyzed in order to derive the correlation functions of
interest by employing the BO approximation whose general
application to stochastic operators is described in Appendix
B. The relaxation behavior of the slow cage variables is ana-
lyzed in Section III on the basis of the projected evolution
operator which allows straightforward calculations of corre-
lation functions for the cage orientation and for the libra-
tional frequencies. The analysis of the dynamics of the fast
variables, like the probe angular momentum, is performed in
Section IV by using an asymptotic technique justified by the
strength of the cage potential. The probe orientational corre-
lation functions are then reconstructed by superimposing
both the fast and the slow components. The general conclu-
sions of this work are finally presented in Section V.

II. STOCHASTIC MODEL FOR SOLUTE AND CAGE
DYNAMICS

As shown in paper I, a general picture of the evolution of
both cage and probe variables can be obtained from MD
simulations. The next step is the formulation of a stochastic
model for the dynamics of these variables, with the objective
of analyzing the solute rotational motion and its coupling
with the cage dynamics. The required information is pro-
vided by correlation functions from a MD simulation, which
allows one to identify the time scales of the independent
relaxation mechanisms. Considerable freedom still exists in
choosing a particular model for the time evolution operator.
Highly accurate representations would require complex mod-
els with a large set of independent parameters to be opti-
mized ~that is transport coefficients mainly, since the equi-
librium distribution can be obtained directly from MD
simulations, cf. paper I!. On the other hand, given the intrin-
sic complexity of the problem to be analyzed, a primary
objective of any theoretical description should be the identi-
fication of the contribution of each elementary process to the
relaxation of the relevant observables. This calls for simple
models in order to allow semi-analytical calculation of the
correlation functions. In the present theory we have at-
tempted to balance these opposite requisites.

In the definition of the stochastic model it is convenient
to use the following set of independent variables~following
the same notation of paper I!:

Y[~Vo,L,Vc,v! ~1!

since it allows a straightforward identification of the inde-
pendent contributions to the time evolution operator. The sets
of Euler anglesVc[(ac,bc,gc) and Vo[(ao,bo,go) de-
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scribe the orientation of the cage frame~CF!and of the probe
molecule, respectively, with respect to the laboratory frame
~LF!, while L is the angular momentum of the probe with
components in the molecular frame~MF! of the solute. In
order to describe the fluctuations in the strength of solute–
solvent interactions, we have included also the two indepen-
dent librational frequencies of the cage, which are denoted
by v5(vx ,vy). We recall that in the MD simulation of
paper I, we have identified both fast and slow fluctuating
components of these librational frequencies, which must be
treated separately because of the different time scales.
Whereas a more general theory should include both these
components, we will consider explicitly only the slower ones
in order to minimize the set of independent variables. On the
other hand, only these librational frequencies are essential to
account for the long time behavior of the system. Hereafter,
v i with i5x,y will denote the slow components of the libra-
tional frequencies~or cage frequencies!, which are character-
ized by the same distribution functionP(v i) because of their
statistical equivalence.

An important ingredient of the problem is the interaction
potential between solute and solvent. As shown in paper I, it
can be represented by a cage potentialVc(V,v) which de-
pends explicitly on the molecular orientationV5(a,b,g)
with respect to the cage frame, and on the setv of librational
frequencies describing the strength of solute–solvent interac-
tions for a given configuration of the solvent cage. In paper I
we have discussed in detail the procedures for deriving from
MD data the cage potential and its parametrized forms. For
the moment we do not choose a particular cage potential,
since we intend to introduce the stochastic model in a rather
general framework. For a given cage potential, the equilib-
rium distribution is derived as

P~Y!

5
exp$2@L trI21L/21Vc~V,v!#/kBT%P~vx!P~vy!

16p3kBTI'~2pkBTI i!
1/2*dV exp$2Vc~V,v!/kBT%

,

~2!

whereI is the inertia tensor in the molecular frame

I5 S I' 0 0

0 I' 0

0 0 I i
D ~3!

and theP(v i) is the equilibrium distribution function for the
librational frequencies along thei th molecular axis. Trans-
pose arrays or matrices are labeled in Eq.~2! as well in the
following by the superscript (•••)tr. Distribution P(Y) al-
lows the calculation of equilibrium averages of functions
f (Y) of stochastic variables:

f̄5E dY f ~Y!P~Y!, ~4!

wheredY5dVodLdVcdv is the infinitesimal volume ele-
ment, with dVo and dVc including integration factors
sinbo and sinbc, respectively.

A Markovian time evolution equation is assumed for the
non-equilibrium distributionP(Y; t):

]P~Y;t !/]t52ĜP~Y;t !. ~5!

In order to model the time evolution operatorĜ, we shall
include several contributions identified on physical grounds
with the various independent dynamical processes.

Let us first consider the solute. We shall include the
streaming operatorĜs for its conservative rotational motion
in the presence of the cage potential, and the collisional op-
erator Ĝc describing the frictional relaxation of the angular
momentum. The streaming operator is written in the follow-
ing standard form7:

Ĝs5L trI21M̂ ~Vo!1~T1P! tr]/]L, ~6!

where M̂ (Vo) is the rotation operator acting onVo with
components in the molecular frame. The torqueT due to the
cage potential and the precessional torqueP are given as:

T52M̂ ~Vo!Vc~V,v!, P5L3I
21L , ~7!

where the 333 matrix L3 is derived from the vectorL on
the basis of its identity with the vector productL3v[L3 v
with any vectorv.8,6

In order to specify unambiguously the rotation operator
M̂ (Vo), let us consider an infinitesimal rotation of the mo-
lecular frame fromVo to Vo1dVo with dVo[(dao,
dbo,dgo) tr. It can be represented by an infinitesimal Carte-
sian vector with componentsdwo[(dwx

o ,dwy
o ,dwz

o) tr in the
molecular frame. Then the infinitesimal change of a given
function f (Vo) can be specified as:

d f~Vo![ f ~Vo1dVo!2 f ~Vo!5~dwo! trM̂ ~Vo! f ~Vo!
~8!

and this equation implicitly defines the rotation operator
M̂ (Vo) in the molecular frame. By means of the linear
relation9

dVo5R~Vo!dwo,

R~Vo!5S 2cosgo/sinbo singo/sinbo 0

singo cosgo 0

cosbocosgo/sinbo 2cosbosingo/sinbo 1
D .

~9!

it can be written explicitly in terms of the Euler angle de-
rivatives as

M̂ ~Vo!5R~Vo! tr]/]Vo. ~10!

The rotation operator in the laboratory frame would be re-
covered by inserting in Eq.~8! the components ofdwo in the
laboratory frame. The same procedure can be applied to the
relative orientation of two arbitrary frames, thus generating
the corresponding rotation operators.

If all solute–solvent interactions were taken into account
by the cage potentialVc(V,v), then the streaming operator
Ĝs alone would be sufficient to represent the solute rotational
motion. However, a parabolic expansion about the minimum
is required in order to derive a simple parametrization of the
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cage potential~cf. paper I!. Thus the anharmonic contribu-
tions to the cage potential are neglected. Even if small in
magnitude, these anharmonic interactions might influence
the solute, by generating additive torques with respect toP of
Eq. ~7! due toVc(V,v). In the hypothesis that torques of
anharmonic origin are rapidly fluctuating, they act as a
source of frictional drag on the angular momentum. Fluctua-
tions of the fast components of the librational frequencies
should have similar effects. Therefore, we introduce the col-
lisional operator describing angular momentum relaxation
due to frictional effects:

Ĝc52kBT
]

]L
jP~Y!

]

]L
P~Y!21 ~11!

in order to include in the stochastic model the dynamical
effects of those interactions with the thermal bath which are
not accounted for by cage potentialVc(V,v). The following
friction matrix in the molecular frame

j5S j' 0 0

0 j' 0

0 0 j i
D ~12!

will be used for axially symmetric solutes.
Let us now discuss the cage dynamics. One should dif-

ferentiate the collective behavior of the ensemble of solvent
particles, which is described by a variety of time scales, from
the dynamics of solvent particles surrounding the solute and
which have the major influence on the cage potential. A sim-
plified treatment with few relaxation times appears to be suf-
ficient in the latter case as long as only short range fluctua-
tions need to be described. A model is easily generated by
directly considering the variablesVc andv which describe
at each instant the configuration of the cage potential. In fact,
one can introduce stochastic operators for their time evolu-
tion without the need to describe in detail the solvent particle
motions that determine the changes in the cage potential. In
our model, we shall include two independent contributions
that describe i! rotations of the cage frame orientationsVc

and ii! fluctuations of the librational frequenciesv. A rota-
tional diffusion operator for axially symmetric particles will
be used for the former:

ĜD52M̂ ~Vc!†DCP~Y!M̂ ~Vc!P~Y!21, ~13!

where M̂ (Vc) denotes the rotation operator acting on the
Vc variables and with its components in the cage frame
~CF!. Two coefficients are required to specify the diffusion
matrix in the cage frame

DC5S D' 0 0

0 D' 0

0 0 D i
D . ~14!

The coefficientD' is the reorientation rate of CFz-axis that
determines the most favorable orientation of the solute. Also,
D i determines the exchange rate of the principal librational
axes~i.e. the rotations of the CFx- andy-axes around the CF
z-axis which are described by the anglegc). A diffusion
operator will also be employed for the fluctuations of the
librational frequenciesvx andvy :

Ĝv52(
i

]

]v i
DvP~Y!

]

]v i
P~Y!21 ~15!

with a unique diffusion coefficientDv because of the statis-
tical equivalence of the two librational frequencies.

The overall evolution operator is finally recovered from
the superposition of all the previous contributions

Ĝ5Ĝs1Ĝc1ĜD1Ĝv . ~16!

Note that equilibrium distribution Eq.~2! is the stationary
solution toĜ as well as to each term on the right-hand side of
Eq ~16!. Therefore, relaxation to the correct equilibrium dis-
tribution must be recovered from time dependent solutions of
Eq. ~5!. In the following sections this stochastic model will
be analyzed with the purpose of interpreting the relaxation of
both solute and cage variables. This requires the calculation
of correlation functions of the form

G~ t ![ f @Y~ t !#* f @Y~0!#

5E dY f ~Y!* exp~2Ĝt ! f ~Y!P~Y! ~17!

for a set of observablesf (Y) specified as functions of the
stochastic variables. The major obstacle derives from the
large number of stochastic variables which are intrinsically
coupled by the time evolution operator. Of course, simplified
models can be obtained by reducing the set of stochastic
variables. For instance, in the presence of negligible fluctua-
tions in the librational frequencies, one may substitutev
with their averages. The resulting model with the set of
(Vo,L,Vc) variables has been previously discussed by Poli-
meno and Freed.5

A more compact representation of the full Fokker–
Planck operator is derived by introducing the gradient¹̂Y
with respect to the ensemble of stochastic variablesY:

¹̂Y[S M̂ ~Vo!

]/]L

M̂ ~Vc!

]/]v
D . ~18!

Then the time evolution operator can be recasted in the fol-
lowing form
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Ĝ52¹̂Y
trAYP~Y!¹̂YP~Y!21 ~19!

with matrix AY given by:

AY5S 0 2kBT1 0 0

kBT1 kBT~j2L3! 0 0

0 0 DC 0

0 0 0 Dv1
D . ~20!

In this way a diffusion-like operator is recovered forĜ, even
if AY cannot be identified with a true diffusion matrix, since
it is neither symmetric nor positive definite. The matrixAY
describes the dynamical coupling among the different vari-
ables. It should be emphasized that the coupling between
solute variables (Vo,L) and cage variables (Vc,v) is deter-
mined by the equilibrium distributionP(Y) through the ex-
plicit dependence of the cage potential on the librational fre-
quenciesv and on the solute orientationV with respect to
the cage frame. This clearly prevents any factorization of
P(Y; t) with respect to the two sets of variables.

The orientationVo of the solute with respect to the labo-
ratory frame is not a convenient variable for the analysis of
the model. In fact its relaxation is driven by two processes
with very different time scales: the fast librational motion
within the cage potential and the slow reorientation of the
cage frame. In order to take into account the time scale sepa-
ration, it is useful to replaceVo by the relative solute orien-
tationV with the cage orientationVc already included in the
set of stochastic variables. Therefore, in the analysis of the
model we shall employ the following set of variables:

X5 ~V,L,Vc,v!. ~21!

The Fokker–Planck equation for the non-equilibrium distri-
butionP(X; t) must now be derived for the new set of vari-
ables. A detailed discussion of the procedure is given in Ap-
pendix A, where the new time evolution operator is derived
in the following form:

Ĝ52¹̂X
trAXP~X!¹̂XP~X!21, ~22!

P(X) being the equilibrium distribution with respect to the
new set of variables. The gradient operator and the coupling
matrix are now:

¹̂X5S M̂ ~V!

]/]L

M̂ ~Vc!

]/]v
D ,

AX5S EDCEtr 2kBT1 2EDC 0

kBT1 kBT~j2L3! 0 0

2DCEtr 0 DC 0

0 0 0 Dv1
D , ~23!

where M̂ (V) is the rotation operator on anglesV whose
components are expressed in the molecular frame, while

E5E(V) is the Euler matrix transforming vector compo-
nents from the cage frame to the molecular frame. The fol-
lowing analysis will be confined to the operatorĜ in the form
of Eq. ~22!without further change of variables, and the sub-
scriptX of the gradient operator and of the coupling matrix
will be omitted.

When convenient we shall use the symmetrized time
evolution operator

G̃[P~X!21/2ĜP~X!1/2

52P~X!21/2¹̂ trAP~X!¹̂P~X!21/2 ~24!

which enables the calculation of correlation functions in the
following form:

G~ t ![ f ~X~ t !!* f ~X~0!!

5^ f ~X!P~X!1/2uexp~2G̃t !u f ~X!P~X!1/2& ~25!

with the scalar product̂•••& defined as an integration over
the set of stochastic variablesX. Specific calculations will be
performed with the following cage potential, written in terms
of the Wigner rotation matrices forV:

Vc~V,v!52~ I'/6!$~vx
21vy

2!D0,0
2 ~V!

1A3/2~vx
22vy

2!@D2,0
2 ~V!1D22,0

2 ~V!#% ~26!

which has been derived for liquid chlorine studied in the MD
simulation of paper I. In the same work the simulation results
were analyzed in order to recover the distribution of the slow
librational frequencies. A bell-shaped distribution was found
with the center atv̄ i57.5 ps21 and widths51.6 ps21. In
order to simplify the calculations with the stochastic model,
a Gaussian distribution will be employed for the librational
frequencies:

P~v i !5
1

sA2p
exp$2~v2v̄ i !

2/2s2% ~27!

with the previously given parameterss̄ i and s. The other
required parameterAkBT/I'51.47 ps21 is obtained from the
moment of inertia of Cl2 and the temperatureT5178K used
in the Molecular Dynamics simulation.

III. SLOWLY RELAXING PROCESSES

A rather complex model with a large set of variables is
required in order to represent in a complete fashion the dy-
namics of both the solute and the solvent cage. Exact solu-
tions cannot be derived analytically because of the inherent
coupling between all the variables. Also a complete numeri-
cal solution of the problem becomes prohibitive because of
the huge dimension of the matrix required to represent the
time evolution operator.10,5 Therefore it is necessary to
search for solutions of an approximate nature, which prop-
erly take into account the physical features of the problem, in
particular the time scale separation between the elementary
relaxation mechanisms.

In paper I we have obtained the correlation functions for
different observables from the MD simulation of chlorine.
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Those data allow the identification of the characteristic re-
laxation timetz for each variablez, which can be summa-
rized in the following form:

~tL ,tV;0.1ps!,~tgc;0.6ps!,~tv;3 ps!

,~tac,bc;5ps!. ~28!

A definite time scale separation exists between the fast solute
variables (V,L) and the slow cage variables (v,ac,bc),
with the azimuthal Euler anglegc for the cage orientation in
the intermediate range. A rather simple picture of the dynam-
ics of the system is suggested by these characteristic times.
Only the slow cage variables are essential to describe dy-
namical correlations at long enough times when the fast vari-
ables have almost equilibrated. On the other hand, the behav-
ior at short times is dominated by the evolution of the fast
solute variables which experience a substantially frozen field
of interactions due to the cage. In other words, the two sets
of variables are to a large extent dynamically uncoupled,
except for the presence of a ‘‘static’’ coupling due to the cage
potentialVc(V,v).

Given this physical picture we seek an efficient method
of solution that takes into account the time scale separation,
such as the Born–Oppenheimer~BO! approximation. A BO
approximation has previously been utilized to treat time-
scale separations in stochastic models of solute dynamics in
liquid-crystalline media.11 Appendix B presents the general
procedure to be applied to stochastic problems when the in-
dependent variablesX can be partitioned into sets of slow
XS and fastXF variables

X5 ~XS ,XF! ~29!

with a well-defined time scale separation. This method will
be applied to the solute–solvent cage problem with the fol-
lowing partition of the variables:

XS5~Vc,v!, XF5~L,V!. ~30!

Because of the intermediate time scale for thegc variable, an
alternative choice with the inclusion ofgc among the fast
variables is also legitimate. But in this case the application of
the BO approximation would be much more complicated,
and preliminary calculations have shown that the general
features of the resulting correlation functions are not modi-
fied.

It should be mentioned that the cage potential Eq.~26!
for centrosymmetric linear molecules might induce a slow
decay in the correlation function ofD0,0

1 (V) as a result of
b-angle flips between 0 andp with a barrier crossing at
b5p/2.12 This process would eliminate the time scale sepa-
ration between slow variablesXS of Eq. ~30! and the solute
relative orientationV. However, the MD simulation of chlo-
rine has shown that, because of the height of the barrier, such
a flipping process is much too infrequent to have significant
effects on the rotational relaxation of the solute over time
scales of interest. Thus we shall exclude it in our analysis by
constraining the angleb to the following range:

0<b<p/2. ~31!

As a result, the correlation function forD0,0
1 (V) will be de-

void of any slow component from the barrier crossing, and
the time scale separation between variablesV andXS of Eq.
~30!will be fulfilled. Notice that the constraint Eq.~31! does
not limit the available configurations for the solute, since the
same physical situation obtained after ap-flip of the solute is
recovered by means of ap rotation of thez-axis of the cage
frame, keeping the angleb fixed.

The rest of this section will be confined to the analysis of
the slowly relaxing processes. This can be done by isolating
the slow components of the correlation functions from the
more general expressions given in Appendix B. An alterna-
tive and equivalent method is supplied simply by the projec-
tion of the full stochastic equation onto the subspace for the
slow variablesXS . The general definition of the distribution
function PS(XS ;t) for the slow variables is obtained by in-
tegrating over the set of fast variables:

PS~XS ;t ![E dXFP~X; t !. ~32!

Correspondingly, the reduced equilibrium distribution
PS(XS) for the slow variables is obtained by integration of
the full equilibrium distribution Eq.~2!, and an isotropic dis-
tribution over the cage orientation is recovered

PS~XS!5P~vx!P~vy!/2p. ~33!

Let us consider the subspaceeS spanned by functions of
XS havingPS(XS) as the weighting factor in integrations. By
projecting the full FP equation onto theeS subspace,

13,6 the
time evolution equation for the reduced distribution is de-
rived as

]PS~XS ;t !/]t52ĜSPS~XS ;t ! ~34!

with the projected operatorĜS implicitly defined by the fol-
lowing equation:

ĜSf ~XS!PS~XS!5E dXFĜP~X! f ~XS! ~35!

@see also Eq.~B22! of Appendix B#. By applying this proce-
dure to the full FP operator of Eq.~22!, one obtains the
explicit form of the projected operator:

ĜS52M̂ ~Vc!†DC M̂ ~Vc!1Ĝv ~36!

with a rotational diffusion operator for the cage orientation
Vc, and the following Smoluchowski-type of diffusion op-
erator for the librational frequencies:

Ĝv52Dv (
i5x,y

~]/]v i !P~v i !~]/]v i !P~v i !
21. ~37!

The projected evolution operatorĜS can be used to calculate
correlation functions for functionsf (XS) of the slow vari-
ables. Moreover one can compute the slowly decaying com-
ponent of the correlation functionG(t) relative to a generic
observablef (X) by considering its projectionf S(XS) onto
the eS subspace:

f S~XS![E dXF f ~X!P~XSuXF!, ~38!
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whereP(XSuXF) is the equilibrium conditional probability
of XF for a givenXS :

P~XSuXF![P~X!/PS~XS!. ~39!

The slow componentGS(t) of G(t) is derived as the corre-
lation function of f S(XS):

GS~ t ![ f S~XS~ t !!* f S~XS~0!!

5E dXSf S~XS!* exp~2ĜSt ! f S~XS!PS~XS!. ~40!

Of courseGS(t)5G(t) if f S(XS)5 f (XS), i.e. if f is a func-
tion of the slow variables only. OtherwiseG(t) would also
contain a fast componentGF(t) which can be calculated ac-
cording to the methods of Appendix B~see Section IV!.

As applications we shall consider the correlation func-
tions which have been determined from the MD simulation
of Cl2 , with the purpose of testing the capability of our
stochastic model to interpret the dynamics of solute–solvent
cage interactions. For the cage orientation, the correlation
function ofDl ,m

j (Vc) is readily obtained from the isotropic
diffusion operator of Eq.~36! in the following standard form

Gm
j @Vc#~ t !

[Dl ,m
j ~Vc~ t !!*Dl ,m

j ~Vc~0!!

5exp$2@ j ~ j11!D'1m2~D i2D'!#t%/~2 j11!. ~41!

In Figures 1 and 2 the predicted behavior is compared with
the MD results for correlation functions of the first (j51)
and second (j52) ranks, respectively. Diffusion coefficients
D' 5 0.12 ps21 andD i51.3 ps21 have been employed. The
fair agreement supports the attribution of a diffusional mo-
tion to the cage rotation, as emphasized in paper I. Notice
that in Figures 1 and 2, as well as in the following ones,
correlation functions normalized with respect to their initial
values

g~ t ![G~ t !/G~0! ~42!

are reported.
Let us consider now the correlation function for the de-

viations dv i[v i2v i of the librational frequencies from

their average. Because of the factorization inĜS of Ĝv and
of the cage rotational part, its calculation can be confined to
the subspace of functions of the librational frequencies

G@v#~ t ![(
i

dv i~ t !dv i~0!

5E dv(
i

dv iexp~2Ĝvt !dv iP~v! ~43!

and by inserting the Gaussian distribution Eq.~27!, the fol-
lowing analytical result for the Gaussian-Markov process is
recovered

G@v#~ t !52s2exp~2Dvt/s
2!. ~44!

Therefore, a simple exponential decay is predicted for the
slow cage frequency, as has been found in the MD simula-
tion ~see Fig. 9 of paper I!. The observed value 2.87 ps of the
corresponding correlation timetv

s allows the determination
of the unknown coefficient asDv50.13 ps23. The same
method can be applied to the calculation of correlation func-
tions of any observablef (v) that is a function of the libra-
tional frequencies, after expandingf (v) about the average
v̄.14 The rather narrow width of the distributionP(v i) al-
lows one to truncate the expansion at the first order terms

f ~v!. f ~v̄ !1 (
i5x,y

dv i f i~v̄ !,

f i~v̄ ![@] f ~v!/]v i #v5v̄ , ~45!

yielding the correlation function in the following form:

f ~v~ t !!* f ~v~0!!.u f ~v̄ !u21(
i

u f i~v̄ !u2s2

3exp~2Dvt/s
2!. ~46!

Finally we examine the correlation functions for the
probe observables. In the case of the angular momentum
L, no slow componentGS(t) of its correlation function is
recovered because its projection Eq.~38! vanishes. Similarly
one excludes slow components in the case of functions
f (V) of the relative probe orientation, since their projections

FIG. 1. First rank orientational correlation functions of the cage from MD
simulation~continuous lines!and from the stochastic model~dashed lines!.

FIG. 2. Second rank orientational correlation functions of the cage from MD
simulation~continuous lines!and from the stochastic model~dashed lines!.
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are at most constant. However a significant slow component
is recovered for functions of the absolute probe orientation
Vo with respect to the laboratory frame. Because of their
direct relation with experimental observables of spectro-
scopic origin, these are the most important correlation func-
tions for the probe orientation. Let us consider the correla-
tion function

Gj@Vo#~ t ![Dl ,0
j ~Vo~ t !!*Dl ,0

j ~V~0!! ~47!

for the Wigner functionf5Dl ,0
j (Vo) which is conveniently

expanded as

f5(
m

Dl ,m
j ~Vc!Dm,0

j ~V!. ~48!

Its projection ontoeS according to Eq.~38! is given as

f S5(
m

Dl ,m
j ~Vc!dm

j ~v! ~49!

with

dm
j ~v![E dVDm,0

j ~V!exp$2Vc~V,v!/kBT%/E dV

3exp$2Vc~V,v!/kBT%. ~50!

Notice thatdm
j (v̄)5dm,0d0

j (v) because of the axial symme-
try of the cage potential Eq.~26! for vx5vy .

The corresponding correlation function is easily calcu-
lated because of the factorization inĜS of orientational and
librational terms. By taking into account only the first order
contributions in the librational frequency expansion as in Eq.
~46!, the following explicit relation is found

Gm
j @Vo#S~ t ![ f S~ t !* f S~0!

5~2 j11!21ud0
j ~v̄ !u2exp$2 j ~ j11!D't%

1~2 j11!21(
m

(
i5x,y

s2udm,i
j ~v̄ !u2

3exp$2@ j ~ j11!D'1m2~D i2D'!

1Dv /s
2#t% ~51!

with coefficientsdm,i
j (v̄) for i5x,y defined according to Eq.

~45!. In general the slow component of the orientational cor-
relation function for the probe should display a multi-
exponential decay with rates depending on the diffusion co-
efficientsD' andD i of the cage and on the coefficientDv

for the diffusion of the librational frequencies. The weights
of the different exponential decays are determined by the
distributionP(v i) of the librational frequencies through co-
efficients d0

j (v̄) and dm,i
j (v̄). Table I provides the non-

vanishing values of these coefficients for the case of chlorine
explicitly considered here. In this case the weights
usdm,i

j (v̄)u2 are much smaller than thatud0
j (v̄)u2 of the lead-

ing term~we remind the reader thats51.6 ps21). Therefore
Eq. ~51! can be approximated as

Gj@Vo#S~ t !.~2 j11!21ud0
j ~v̄ !u2exp$2 j ~ j11!D't%

~52!

which has the simple behavior expected from a rotational
diffusion model for the probe motion with the same diffusion
coefficient as that of the cage rotation. This corresponds to
the physical situation of a solvent exerting a rather strong
cage potential, so that the probe orientation at long times
simply follows the slow rotational motion of the cage. Such
a result, however, cannot be extended to the possible sys-
tems. In particular, noticeable effects of the multi-
exponential decay of the probe orientational correlation func-
tion should be detected a! in the presence of a weaker cage
potential leading to smaller values of thed0

j (v̄) coefficients
and correspondingly increasingdm,i

j (v̄) terms, or b! with a
broader distribution of cage frequencies which increases the
width s.

IV. FAST PROCESSES

As shown in Appendix B, the correlation function for a
generic observablef (X)

G~ t ![ f ~X~0!!* f ~X~ t !!5GS~ t !1GF~ t ! ~53!

can be decomposed into a slow componentGS(t) to be cal-
culated according to the procedure of Sec. III, and a fast
componentGF(t) associated with operatorĜF driving the
relaxation of the fast variablesXF when the slow variables
are kept frozen. In this section the fast component of the
correlation function for the different observables of interest
will be derived by neglecting the small effects due to the
evolution of the slow variables. Therefore the fast compo-
nent GF(t) will be calculated as an average overXS as
shown in Eq.~B26!, of the correlation functionGF(XS ;t),
that is derived by solving the dynamical problem for only the
fast variables according to Eq.~B27!. That is:

GF~XS ;t !5E dXFd f ~X!* exp~2ĜFt !d f ~X!P~XSuXF!

~54!

with a parametric dependence on the ‘‘static’’ variablesXS .
In the previous equationd f (X)[ f (X)2 f S(XS) is the or-
thogonal component of the observablef (X) with respect to
the eS subspace. In order to avoid a very cumbersome nota-
tion, we shall always leave implicit the parametric depen-
dence onXS of Eq. ~54!, as well as the average overXS to be
performed onGF(XS ;t), by focusing on the solution of the
dynamical problem for the operatorĜF which is chosen ac-
cording to constraints Eqs.~B2! and ~B3!. This choice is
done by selecting from the complete time evolution operator
of Eq. ~22! those components of the gradient operator¹̂X
acting explicitly onto the fast variablesXF5(V,L). Then
one derives the following operator

TABLE I. Averagesdm
j (v̄) and derivatives.

j m dm
j (v̄) dm,x

j (v̄) dm,y
j (v̄)

1 0 0.957 0.0064 0.0064
2 0 0.878 0.0174 0.0174
2 2 0 0.0071 -0.0071
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ĜF5Ĝs1Ĝc1ĜD,F ~55!

with three independent contributions. OperatorĜs denotes
the streaming operator for the variablesX of Eq. ~21!, and it
has the same form as Eq.~6! except for the substitution of
rotation operatorM̂ (Vo) by rotation operatorM̂ (V) acting
on the relative solute orientationV. A similar substitution
should be performed on Eq.~7! for the torqueT. The colli-
sional operatorĜc is the same as Eq.~11! after substitution of
the equilibrium distribution byP(X). Finally, ĜD,F accounts
for the contributions deriving from operatorĜD of Eq. ~13!
for the cage rotational diffusion. This is the most compli-
cated part because of the presence of several terms, which
can be partitioned according to their proportionality to the
parallel componentD i or the perpendicular componentD'

of the diffusion matrix Eq.~14!, which have been previously
determined by analyzing the correlation function for the cage
rotation. Given the small value ofD'50.12 ps21, one ex-
pects that the corresponding components ofĜD,F have neg-
ligible effects on the relaxation of fast variables occurring on
a time scale of few tenths of picosecond. Then it is legitimate
to neglect these contributions and to keep inĜD,F only the
terms proportional toD i , thereby deriving a much simpler
operator:

G̃D,F52D i
]

]a
P~X!

]

]a
P~X!21. ~56!

In this way the evolution operator for the fast variables is
fully specified.

First we analyze the correlation function for the angular
momentum componentL' which is orthogonal to the probe
symmetry axis

L'[nM
x Lx1nM

y Ly , ~57!

where (nM
x ,nM

y ,nM
z ) are the unit vectors of the molecular

frame ~MF!. This observable does not have a slow compo-
nent in its correlation function, since its average overXF

according to Eq.~38! vanishes. Therefore, only the fast com-
ponent of the correlation function

G@L#~ t !5L'~ t !•L'~0! ~58!

needs to be calculated according to the method previously
discussed. ObservableL' of Eq. ~57! has an implicit angular
dependence because of the rotational motion of the molecu-
lar frame axis. In order to make explicit such an orientational
dependence, it is necessary to expressL' in terms of the
cage frame axis (nC

x ,nC
y ,nC

z ), which can be considered im-
mobile during the relaxation of the fast variables. The spheri-
cal tensor notation15:

nA
~1,61![7~nA

x6 inA
y !, n~1,0![nA

z ~59!

for A5C andA5M , allows a convenient representation of
the relation between the frame axis in the following form

nM
~1,m!5 (

l50,61
Dl ,m
1 ~V!nC

~1,l! . ~60!

By also introducing the spherical tensor components
L (1,61)57(Lx6 iL y) of the angular momentum, the observ-
able can be written as

L'5 (
m561

L ~1,m!* nM
~1,m!5 (

l50,61
f ~1,l!~V,L !* nC

~1,l! ~61!

with

f ~1,l!~V,L ![ (
m561

Dl,m
1 ~V!* L ~1,m!. ~62!

Substitution into Eq.~58! and using the orthogonality rela-
tion

nC
~1,l!* •nC

~1,l8!5d l ,l 8 ~63!

leads to a correlation function without explicit reference to
any frame axis

G@L #~ t !5 (
l50,61

f ~1,l!~V~ t !,L ~ t !!* f ~1,l!~V~0!,L ~0!!.

~64!

However, its calculation cannot be performed analytically
and also a full numerical computation would be extremely
difficult because of the requirement of a complete represen-
tation of theĜF operator in the space of functions of both
V andL variables.7 On the other hand we are investigating
the case in which the cage potential is rather strong, such that
only small fluctuations of the azimuthal angleb are allowed.
Correspondingly one could perform an asymptotic expansion
by retaining only linear functions ofb, which are directly
coupled to linear functions of angular momentum compo-
nentsLx andLy . In order to extend the analysis to the case
of finite, albeit large, librational frequencies, one can adopt
the same strategy employed in Ref. 12, that is to represent
the evolution operator into a finite set of functions with the
correct boundary conditions, but which mimic the asymp-
totic behavior. In the present case one should consider the
subspacee lin of functions with a linear dependence on the
angular momentum components or functions with a linear
expansion with respect tob as b→0. Therefore only the
termsDm,m

1 (V)* L (1,m) with m561 are retained in Eq.~62!
for functions f (1,l) in the correlation function Eq.~64!, be-
cause of the following behavior of the Wigner rotation ma-
trices forb→0:

Dl,m
j }b u l2muexp~2 i l a2 img!. ~65!

The e lin subspace will include these functions, as well as the
other elements of the Krylov sequence10,16 generated by the
ĜF operator, which belong toe lin . The following set of func-
tions is selected in this way:Dm,m

j (V)* L (1,m) and
Dm,0

j (V)* for m561 without any constraint on the indexj .
That is, because of Eq.~65!, these latter functions have the
sameb dependence independent of the indexj , which then
can be chosen according to the rank of the observable
( j51 for the angular momentum correlation!. Therefore the
following four functions, which are neither orthogonal nor
normalized @cf. the weighting functions expressed in Eq.
~25!# are sufficient to span thee lin subspace
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h15D21,0
j ~V!* ,

h25D21,21
j ~V!* L ~1,21!,

h35D1,1
j ~V!* L ~1,1!,

h45D1,0
j ~V!* . ~66!

After evaluating the overlap matrix and the matrix represen-
tation of ĜF , which are, respectively:

Cn,n85E dXFhn~XF!*P~XSuXF!hn8~XF!, ~67!

Bn,n85E dXFhn~XF!* ĜFP~XSuXF!hn8~XF!, ~68!

one is left with a simple expression for the desired correla-
tion function

G@L#~ t !5e2
tr exp~2BC21t !Ce21e3

tr exp~2BC21t !Ce3 ,
~69!

where ek is the four-dimensional array with null elements
except for the unity in thekth position. Notice that the two
terms at the right-hand side of Eq.~69! are complex conju-
gates of each other, so that the resulting function is real in
spite of the presence of complex elements in theB andC
matrices. These elements are readily calculated in terms of
integrals of exponential and Bessel functions. Of course both
matrices depend parametrically on the setXS of slow vari-
ables and, therefore, the results of Eq.~69! should be aver-
aged as in Eq.~B26! in order to obtain the complete corre-
lation function.

In Figure 3 the angular momentum correlation function
obtained from the MD simulation of chlorine is compared
with the theoretical one calculated withj' /I'58 ps21 ~the
other parameters having already been determined!. The over-
all agreement should be considered rather satisfactory, taking
into account the simplifications introduced in our stochastic
model. Note that for early times the stochastic model is un-
able to reproduce the well-known Gaussian behavior of the
momentum correlation function,17 since we have neglected
any explicit description of the rapidly fluctuating

forces ~i.e. L̇ ) acting on the probe molecule. Inclusion of
such a feature would substantially complicate the stochastic
model.

Finally we examine the fast component of the correlation
function Eq. ~47! for the overall probe rotation. Therefore
Eq. ~54! should be computed using

d f5(
m

Dl ,m
j ~Vc!@Dm,0

j ~V!2dm
j ~v!# ~70!

and it can be decomposed into the sum of contributions for
different values of the indexm in Eq. ~70!. The cross terms
will be eliminated by the subsequent average over the slow
variablesVc. Even in this case the full numerical calculation
cannot be performed easily given the large size of the func-
tional space to be considered. Therefore we shall employ the
same technique used for the angular momentum. In Table II
the averages ofuDm,0

j (V)2dm
j (v)u2 are reported in order to

show that only the contributions withm561 are the most
significant, and they correspond to functions with a linear
expansion in the azimuthal angleb. Therefore the same ba-
sis functions of Eq.~66!with the indexj fixed according to
the rank of the observable, can be employed for computing
such a correlation function

~2 j11!Gj@Vo#F~ t !5e1
trexp~2BC21t !Ce11e4

tr

3exp~2BC21t !Ce4 . ~71!

The overall correlation function, which includes both this
fast component and the slow component analyzed in the pre-
vious section, are displayed in Fig. 4 for ranksj51,2. These
results reproduce the general trend found in the MD simula-

FIG. 3. Correlation function for the probe angular momentumL' . Continu-
ous lines: MD simulation, dashed lines: result of the stochastic model.

TABLE II. Equilibrium averagesuDm,0
j (V)2dm

j (v)u2.

j m uDm,0
j (V)2dm

j (v)u2

1 0 0.0055
1 1 0.0497
2 0 0.0293
2 1 0.1116
2 2 0.0086

FIG. 4. Correlation functions of ranksj51 and j52 for the probe orienta-
tion Vc. Continuous lines: MD simulation, dashed lines: stochastic model.
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tion, with a small component decaying in short times, and
the long time tail accounted for by the cage rotational diffu-
sion.

It should be mentioned that one parameter of the sto-
chastic model has not been determined: the parallel compo-
nent,j i , of the friction. Of course it has no physical meaning
in the case of linear molecules like chlorine since their rota-
tions about the symmetry axes are not defined. In the more
general case of a molecule having a well defined parallel
componentI i of the moment of inertia and with, at least
approximately, axially symmetric interactions with the sol-
vent molecules, it can be determined by examining the cor-
relation function for the parallel componentL i[Lz of the
angular momentum. Because of the axial symmetry,L i is not
coupled to other variables by the complete evolution opera-
tor Eq. ~22!. Therefore

L i~ t !L i~0!5I ikBTexp~2tj i /I i! ~72!

and by comparison with MD data one can extract the un-
known j i friction coefficient.

V. CONCLUSIONS

In order to analyze theoretically the molecular rotational
motion coupled to the solvent cage, a rather complex treat-
ment is required even when attention is focused on the prin-
cipal correlation functions. The physical origin of such a
complexity is the presence of several competing relaxation
processes which are essential to determine the overall behav-
ior of the observables. Correspondingly, a large number of
independent variables needs to be considered in the stochas-
tic model for the solute-cage interactions, and efficient tech-
niques are required in order to derive the relevant time-
dependent observables. This has been possible in our specific
case because of the compact representation, Eq.~19! of the
time evolution operator, which facilitates the formal elabora-
tions required, for example, by the change of variables, and
because of the applicability of the BO approximation which
allows a separation of fast and slow variables in computing a
given correlation function.

The set of derived results provides a rationalization of
the findings of the MD simulation of paper I, thereby dem-
onstrating that a stochastic model which explicitly includes a
suitable set of cage parameters as independent variables is
able to account for the general features of solute–solvent
interactions. Given the efficiency of the theoretical tools, it is
possible in our opinion to develop even more detailed mod-
els by including, for example, the fast cage frequencies
among the independent variables, in order to recover a more
accurate agreement with the MD simulations particularly in
the short time scale.
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APPENDIX A: CHANGE OF ORIENTATIONAL
VARIABLES

The transformation of the representation from theY
variables of Eq.~1! to the variablesX of Eq. ~21! requires
that the absolute probe orientationVo be substituted by the
relative orientationV with respect to the cage frame. This
change of orientational variables is conveniently done by
employing the method of Ref. 8. Let us introduce the differ-
ential dỸ conjugate to the gradient operator¹̂Y @cf. Eq.
~18!#:

dỸ[S dwo

dL

dwc

dv
D , ~A1!

wheredwo has already been specified in relation to Eq.~8!,
while dwc denotes the components in the cage frame of the
infinitesimal rotation vector of the cage frame with respect to
the laboratory frame. Correspondingly, the change of an ar-
bitrary function f (Y) after an infinitesimal incrementdY of
the variables is written as:

d f5 f~Y1dY!2 f ~Y!5dỸtr¹̂Y f ~Y!. ~A2!

Note thatdY anddỸ differ in their rotational components;
cf. Eq. ~1! and ~A1!.

In a similar way the differentialdX̃ conjugate to gradient
operator¹̂X of Eq. ~23! is introduced in the following form

dX̃5S dw

dL

dwc

dv
D , ~A3!

wheredw denotes the components in the molecular frame of
the infinitesimal rotation vector of the molecular frame.
From the additivity of infinitesimal rotation vectors, one im-
mediately derives

dwo5Edwc1dw, ~A4!

where the Euler matrixE5E(V) transforms vector compo-
nents from the cage frame to the molecular frame. Therefore
differentialsdỸ anddX̃ are linearly related as:

dX̃5SdỸ, S~V!5S 1 0 2E~V! 0

0 1 0 0

0 0 1 0

0 0 0 1
D . ~A5!

As in Eq. ~A2!, the infinitesimal change of a function
f (X)5@ f (Y) #Y5Y(X) is written as:
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d f5 f~X1dX!2 f ~X!5dX̃tr¹̂X f ~X!. ~A6!

Under the condition of the same initial and final states, equa-
tions ~A2! and ~A6! are equivalent and, by taking into ac-
count Eq.~A5!, one derives the following relation for the
transformation of the gradient operator

¹̂Y5Str¹̂X. ~A7!

In order to transform the evolution operator of the FP
equation also, let us consider the time-dependent average of
the functionf (Y)

f ~ t ![E dY f ~Y!P~Y; t ! ~A8!

whose time evolution is given as:

d f~ t !/dt52E dYf ~Y!ĜP~Y;t !

5E dYP~Y!@¹̂Y f ~Y!# trAY

3¹̂YP~Y!21P~Y; t !, ~A9!

where Eq.~19! has been used forĜ followed by an integra-
tion by parts applied to the first gradient operator. The con-
stant terms are omitted in such an integration by parts be-
cause of the assumed conservation of the probability norm.
By changing the integration variables toX, by then trans-
forming the gradient operator according to Eq.~A7!, and by
a further integration by parts, one finally obtains:

d f~ t !/dt52E dXf ~X!ĜP~X;t ! ~A10!

with the time evolution operator in the new set of variables

Ĝ52¹̂X
trP~X!AX¹̂XP~X!21. ~A11!

The corresponding coupling matrix is given as

AX5SAYS
tr ~A12!

and by inserting Eq.~A5! for the transformation matrixS,
the final result Eq.~23! of the second section is recovered.
Other kinds of change of variables can be performed in the
same manner after transforming the gradient operator as in
Eq. ~A7!.

APPENDIX B: THE BORN–OPPENHEIMER
APPROXIMATION APPLIED TO STOCHASTIC
OPERATORS

In this appendix we analyze in a general framework the
separation of the contributions of fastXF and slowXS vari-
ables in the stochastic problem forX5 (XS ,XF). The basic
method is the same as the Born–Oppenheimer approxima-
tion for the quantum mechanical treatment of the coupled
motion of electrons and nuclei in molecules. However, a gen-
eralization of this procedure is required in the application to
stochastic problems. Before applying the approximation, one
should isolate from the complete evolution operatorĜ its fast
componentĜF acting on theXF variables, which describes

their relaxation to equilibrium when the slow variablesXS

are frozen. Therefore, only a parametric dependence on slow
variablesXS is allowed for ĜF . Correspondingly one can
introduce a time evolution equation for theXF variables
only, by considering the conditional probability
P(XSuXF ;t) of XF with respect to a fixed setXS :

]P~XSuXF ;t !/]t52ĜFP~XSuXF ;t ! ~B1!

with the stationary solution provided by the equilibrium con-
ditional probability Eq.~39!

ĜFP~XSuXF!50. ~B2!

The following condition is required

E dXFĜFP~XSuXF ;t !50 ~B3!

in order to preserve the normalization

E dXFP~XSuXF ;t !51. ~B4!

These are the mathematical constraints for the choice of
ĜF . In the case of stochastic operators like Eq.~22!, they can
be met simply by including inĜF only the components of the
gradient operator¹̂X with derivatives ofXF variables. The
remaining terms are collected in the residual operatordĜ
such that

Ĝ5ĜF1dĜ. ~B5!

In the classic Born–Oppenheimer approximationdĜ should
only depend upon theXS variables. Then it supplies the char-
acteristic separability of the solution into eigenvectors of
ĜF that depend parametrically onXS , and the eigenvectors
for theXS depend explicitly on the particular eigenvalue of
ĜF as well as ondĜ. We shall modify this procedure by
allowing dĜ to also contain small terms dependent upon
XF such that they are perturbations compared toĜF , i.e.
such that:

uĜFu..udĜu. ~B6!

On the other hand this is an implicit condition for the sepa-
ration of fast and slow variables, since only when Eq.~B6! is
satisfied will the relaxation of the two sets of variables be
characterized by very different time scales.

For the sake of convenience, we shall employ time evo-
lution operatorsG̃, G̃F and dG̃ in their symmetrized form
defined as in Eq.~24!, and the integration restricted to fast
and slow variables will be conveniently denoted as

^•••&F[E dXF•••,^•••&S[E dXS ~B7!

so that

^•••&[E dX•••5E dXSE dXF•••5^^•••&F&S . ~B8!

A biorthonormal basis forXF-functional space can be
derived from eigenvectors ofG̃F and its adjoint
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^nun8&F5dn,n8. ~B9!

Then the operatorG̃F can be decomposed as

G̃F5(
n

un&FEn~XS!^nu, ~B10!

where En for n50,1,2,. . . , are theeigenvalues ofG̃F .
These eigenvalues, as well as the corresponding eigenvec-
tors, depend parametrically onXS variables. Notice that the
first eigenvalueE050 vanishes corresponding to the station-
ary solution derived according to Eqs.~B2! and ~B3!

u0&F5uP~XSuXF!1/2&F , ^0u5^P~XSuXF!1/2u. ~B11!

By also introducing a biorthonormal basis^quq8&S5dq,q8 for
the eS space of functions ofXS only, a complete biorthonor-

mal set spanning the full functional space inX5 (XF ,XS) is
recovered as the direct product ofun&F and uq&S , i.e.
un,q&5un&Fuq&S . Because of the assumed completeness and
biorthonormality of theun,q& basis, the correlation function
Eq. ~25! of a given observablef (X) is decomposed as:

G~ t !5 (
n,q,n8,q8

^ f ~X!P1/2~X!un,q&^n,que2G̃tun8,q8&

3^n8,q8u f ~X!P1/2~X!&. ~B12!

The exponential operator in Eq.~B12! can be expanded in a
Taylor series in time

^n,que2G̃tun8,q8&5(
k

~2t !k

k!
^n,qu~ G̃F1dG̃!kun8,q8&

5(
k

~2t !k

k! ( 8 a1 ,b1 , . . . ,am ,bm
^n,quG̃F

a1dG̃b1 . . . G̃F
amdG̃bmun8,q8&

5(
k

~2t !k

k! ( 8 a1 ,b1 , . . . ,am ,bm( n1 ,q1 , . . . ,n2m21 ,q2m21
^n,quG̃F

a1un1 ,q1&

3^n1 ,q1udG̃b1un2 ,q2& . . . ^n2m22 ,q2m22uG̃F
amun2m21 ,q2m21&^n2m21 ,q2m21udG̃bmun8,q8&, ~B13!

where the primed sums are extended over all natural num-
bers a i , b i and m but with the constraint
( i51
m (a i1b i)5k. The completeness ofun,q& is invoked

again to recover the final expression.
In this framework, the Born–Oppenheimer approxima-

tion is equivalent to 1!the use of the representation ofĜF

given by Eq.~B10! and the use of the direct product basis
un,q&, plus 2! the retention of only diagonal elements of
dG̃ with respect to theun&F basis

^nudG̃un8&F5
BO

dn,n8dG̃n , ~B14!

wheredG̃n5^nudG̃un&F is the averaged operator with respect
to un&F and, therefore, it acts onXS only. This is based upon
the condition of Eq.~B6! justifying a first order perturbation
treatment. Such an approximation is self-consistently applied
to generic powers ofdG̃ as

^nudG̃bun8&F5(
n9

^nudG̃un9&F^n9udG̃b21un8&F

5
BO

dG̃n^nudG̃b21un8&F5
BO

dn,n8~dG̃n!
b.

~B15!

Notice that such an approximation is always required unless
one is considering the simple case of a time evolution opera-

tor with complete separation of the slow and fast variables.
Even whendG̃ is an operator onXS only, the off-diagonal
elements do not in general vanish because of the parametric
dependence of eigenvectorsun&F onXS , so they will in gen-
eral be modified by the operatordĜ.

By taking into account that basis elementsun&F are
eigenfunctions ofG̃F , Eq. ~B13! is reduced to the form:

^n,que2G̃tun8,q8&

5
BO

(
k

~2t !k

k! ( 8 a1 ,b1 , . . . ,am ,bm( q1 , . . . ,q2m21

3^quEn
a1uq1&S^q1udG̃n

b1uq2&S . . .

3^q2m22uEn
amuq2m21&S^q2m21uG̃n

bmuq8&Sdn,n8, ~B16!

which is written more concisely as

^n,que2G̃tun8,q8&5
BO

^que2~En1dG̃n!tuq8&Sdnn8. ~B17!

After substitution into Eq.~B13!, the correlation function
GBO(t) within the Born–Oppenheimer approximation is fi-
nally recovered as:

GBO~ t !5 (
n50

`

^^ f P1/2un&Fe
2~En1dG̃n!t^nu f P1/2&F&S . ~B18!
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Notice that the only properties of theuq&S basis required by
this derivation are its completeness and biorthonormality.

One can partition the terms in the summation at the
right-hand side of Eq.~B18! according to the presence~or
the absence!in the exponents of contributions due toG̃F ,
thereby defining a slow componentGS(t) and a fast compo-
nentGF(t) of the correlation function

GBO~ t !5GS~ t !1GF~ t !. ~B19!

The slow component includes only the term withn50 cor-
responding to the stationary modeu0&F with vanishing eigen-
valueE050:

GS~ t !5^^ f P1/2u0&Fe
2dG̃0t^0u f P1/2&F&S . ~B20!

While the remaining terms are collected intoGF(t)

GF~ t !5 (
n51

`

^^ f P1/2un&Fe
2~En1dG̃n!t^nu f P1/2&F&S . ~B21!

By recalling Eq.~B11! and the definition of Eq.~38! of the
projection f S(XS) of f (X) onto theXS-functional spaceeS ,
one derives the result that ^0u f P1/2&F
5 f S(XS)

1/2PS(XS)
1/2. Moreover the evolution operator in

Eq. ~B20! can be written as:

dG̃0[^0udG̃u0&F5^0uG̃u0&F5G̃S , ~B22!

whereG̃S[PS
21/2ĜSPS

1/2 is the symmetrized form of the pro-
jected operatorĜS of Eq. ~35! for the relaxation of the slow
variables. In conclusion the slow componentGS(t) can be
rewritten as

GS~ t !5^ f SPS
1/2uexp~2G̃St !u f SPS

1/2&S , ~B23!

which is equivalent to Eq.~40! already obtained in Section
III by means of a direct projection ontoeS of the full evolu-
tion operator.

In general, no further simplification can be made for the
fast component given by Eq.~B21! unless the contributions
from dG̃n are neglected by utilizing the condition given by
Eq. ~B6!. Of course such an approximation might reduce the
accuracy of the final results. On the other hand, by neglect-
ing thedG̃n terms, one can perform analytically the summa-
tion over the eigenfunctions ofG̃F , thereby obtaining:

GF~ t !.^d f P1/2ue2G̃Ftud f P1/2&, ~B24!

where

d f ~X![ f ~X!2P~X!21/2u0&F^0u f P1/2&F

5 f ~X!2 f S~XS!. ~B25!

Therefore the spectral resolution ofG̃F , i.e. the knowledge of
its eigenfunctions and eigenvalues, would not be strictly re-
quired in the calculation ofGF(t) from Eq.~B24!. By taking
into account thatG̃F depends only parametrically onXS , Eq.
~B24! can be rewritten as an average overXS

GF~ t !.E dXSPS~XS!GF~XS ,t ! ~B26!

of independent contributionsGF(XS ,t), which derive from
the relaxation of the fast variables for fixed values of the set
XS :

GF~XS ,t ![E dXFd f ~X!*P~XSuXF!1/2

3exp~2G̃Ft !d f ~X!P~XSuXF!1/2. ~B27!

When analytical solutions ofG̃F are not available, then one
can perform a numerical calculation restricted to the space of
XF variables only, with a simple superposition of the results
at differentXS ~some examples are provided in Section IV!.
An equivalent result, from a more phenomenological ap-
proach, was obtained in Ref. 6.

Notice that according to Eq.~B27!,GF(XS ,t) would be
the correlation function ofd f (X) for a fixed XS when the
solution of Eq.~B1! for the dynamics of the fast variables
only are taken into account. One can then provide a physical
picture of the full correlation function, by considering that
slow and fast variables are characterized by very different
time scalestS@tF . Within a time window of the order of
tF during which there are no significant changes of the slow
variables, only the fast variables relax to the equilibrium
consistent with the static values ofXS . This process ac-
counts for the fast componentGF(t) of the correlation func-
tion, with the observablef (X) relaxing to f S(XS), i.e. its
average overXF conditioned by the staticXS . Subsequently
the evolution of the slow variable takes place on the time
scale oftS , with the final relaxation off S(XS) to f̄ described
by the slow componentGS(t) of the correlation function.

It is also possible to obtain the above results by intro-
ducing an approximate form of the conditional probability
function. We write down such a form that immediately al-
lows us to separate the slowly and rapidly relaxing terms. It
is:

P~X0uX; t !.d~XS2XS
0!@P~XS ,XF

0 uXF ;t !2P~XSuXF!#

1P~XSuXF!PS~XS
0uXS ;t !, ~B28!

whereP(XS ,XF
0 uXF ;t) describes the dynamics of the fast

variables

P~XS ,XF
0 uXF ;t ![exp~2ĜFt !d~XF2XF

0 !, ~B29!

the parametric dependence onXS deriving from operator
ĜF , while P(XS

0uXS ;t) is the conditional probability for the
slow variables alone under the action of the projected opera-
tor ĜS@cf. Eqs.~35! and ~36!#:
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P~XS
0uXS ;t ![exp~2ĜSt !d~XS2XS

0!. ~B30!

In this way the separation of the dynamical contributions of
the two types of variables appears evident also in the time-
dependent probability. One can easily demonstrate that pre-
vious results are recovered utilizing Eq.~B29! by computing
the correlation function by means of such a conditional prob-
ability, with the fast ~approximate!componentGF(t) @cf.
Eq. ~B27!# and the slow componentGS(t) @cf. Eq. ~B23!#
deriving from the first term and the second term, respec-
tively, on the right hand side of Eq.~B28!. Simplified expres-
sions are derived from Eq.~B28! in two limiting cases. For
timest,,tSwhenP(XS

0uXS ;t).d(XS2XS
0) in the absence

of significant displacements of the slow variables, one ob-
tains

P~X0uX; t !.d~XS
02XS!P~XS ,XF

0 uXF ;t !, ~B31!

where only the dynamics of the fast variables are effective.
In the opposite limitt..tF when the fast variables have
relaxed to equilibrium, i.e.P(XS ,XF

0 uXF ;t).P(XSuXF), the
following approximation holds

P~X0uX; t !.P~XSuXF!P~XS
0uXS ;t !, ~B32!

with the evolution of the system driven by the slow variables
only, since the fast variables are always equilibrated with
respect toXS . Notice that the alternative approximation

P~X0uX; t !.PS~XS
0uXS ;t !P~XS ,XF

0 uXF ;t ! ~B33!

which was used in the analysis of Ref. 11, does reproduce the
same two limits.
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