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Two-dimensional Fourier transform~2D-FT! electron spin resonance~ESR! studies on the rigid
rodlike cholestane~CSL! spin-label in the liquid crystal solvent 4O,8~butoxy benzylidene
octylaniline!are reported. These experiments were performed over a wide temperature range: 96 °C
to 25 °C covering the isotropic (I ), nematic (N), smectic A (SA), smectic B (SB), and crystal
(C) phases. It is shown that 2D-FT-ESR, especially in the form of 2D-ELDOR~two-dimensional
electron–electron double resonance! provides greatly enhanced sensitivity to rotational dynamics
than previous cw-ESR studies on this and related systems. This sensitivity is enhanced by obtaining
a series of 2D-ELDOR spectra as a function of mixing time,Tm , yielding essentially a
three-dimensional experiment. Advantage is taken of this sensitivity to study the applicability of the
model of a slowly relaxing local structure~SRLS!. In this model, a dynamic cage of solvent
molecules, which relaxes on a slower time scale than the CSL solute, provides a local orienting
potential in addition to that of the macroscopic aligning potential in the liquid crystalline phase. The
theory of Polimeno and Freed for SRLS in the ESR slow motional regime is extended by utilizing
the theory of Leeet al. to include 2D-FT-ESR experiments, and it serves as the basis for the analysis
of the 2D-ELDOR experiments. It is shown that the SRLS model leads to significantly improved
non-linear least squares fits to experiment over those obtained with the standard model of Brownian
reorientation in a macroscopic aligning potential. This is most evident for theSA phase, and the use
of the SRLS model also removes the necessity of fitting with the unreasonably large CSL rotational
asymmetries in the smectic phases that are required in both the cw-ESR and 2D-ELDOR fits with
the standard model. The cage potential is found to vary from aboutkBT in the isotropic phase to
greater than 2kBT in theN andSA phases, with an abrupt drop to about 0.2kBT in theSB andC
phases. Concomitant with this drop at theSA–SB transition is an almost comparable increase in the
orienting potential associated with the macroscopic alignment. This is consistent with a freezing in
of the smectic structure at this transition. The cage relaxation rate given byRc, its ‘‘rotational
diffusion coefficient,’’ is of order of 107 s21 in the I andN phases. It drops somewhat in theSA
phase, but there is a greater than order of magnitude drop inRc for theSB andC phases to about
105 s21. This drop is also consistent with the freezing in of the smectic structure. The rotational
diffusion tensor of the CSL probe is significantly larger thanRc which is consistent with the basic
physical premise of the SRLS model. In particular,R'

o and Ri
o are of order 108 s21 and

109 s21 respectively. ©1996 American Institute of Physics.@S0021-9606~96!51233-X#

I. INTRODUCTION

Two-dimensional Fourier transform~2D-FT! electron
spin resonance~ESR!1–3 has opened up the possibility of
studying complex fluids with much greater resolution to
structure and dynamics than hitherto possible by conven-
tional cw-ESR methods,4–6 the most powerful being the
2D-FT electron–electron double resonance~2D-ELDOR!ex-
periment. In its 2D format it enables one to simultaneously
distinguish homogeneous linewidths from inhomogeneous
broadening and to measure the spin cross-relaxation rates. In
viscous media where molecular motions are slowed down,
one normally observes ‘‘slow motional’’ ESR spectra,

which, in principle, can supply more detailed dynamic infor-
mation, but they are usually broad and of low resolution.
2D-FT ESR in such cases also provides greatly enhanced
resolution to the motional dynamics and the molecular
ordering.4–6 Recently, complex fluids, which display micro-
scopic order but macroscopic disorder~MOMD!, have been
studied by 2D-ELDOR,4,5 and it was shown that for such
cases, wherein the MOMD leads to additional inhomoge-
neous broadening, the microscopic molecular ordering and
the molecular rotational and translational dynamics could be
studied to a much greater reliability than by conventional
cw-ESR means.

Past cw-ESR studies of thermotropic liquid crystalline
systems have had the advantage of macroscopic alignment of
the sample, a phenomenon which occurs simply as a result of
the alignment in a magnetic field, typically the field used for
the ESR experiment. Considerable information has in the
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past been gleaned from such studies despite limited data
from ESR linewidths in the motionally narrowed regime7~a!

or from the ESR line shapes in the slow-motional regime.7~b!

Nevertheless, these cw-ESR studies traditionally suffered
from additional inhomogeneities such as those resulting from
imperfections in sample alignment~i.e., sample mosaicity!,
and in an early application of 2D-FT-ESR3 it was shown
how this method readily overcomes such problems.

Given the enhanced resolution to structure and dynamics
provided by 2D-ELDOR, one might inquire whether more
detailed insights could be obtained by this method than pre-
viously by cw-ESR in the study of liquid crystals. For ex-
ample, in liquid crystalline phases one must consider coop-
erative phenomena which can influence the rotational
dynamics of the spin probe. The hydrodynamic model of
order director fluctuations, which is important in nuclear
magnetic relaxation~NMR! relaxation,8 has been found to be
too slow and too weak to contribute more than a small
amount of inhomogeneous broadening in ESR.7,9 Collective
effects from critical and quasi-critical slowing of hydrody-
namic modes near liquid–crystalline phase transitions have
been found to be important in the molecular dynamics from
ESR studies10,11 and NMR studies.12 Unlike the case for
simple isotropic fluids, the motionally narrowed cw-ESR re-
sults for liquid crystals~away from the phase transitions!
have typically exhibited linewidth anomalies for which a va-
riety of mechanisms have been suggested.7 Most useful has
been a model of localized molecular cooperativity referred to
as the slowly relaxing local structure~SRLS!model. In the
SRLS model the slowly fluctuating components of the aniso-
tropic intermolecular potential are regarded as a local struc-
ture, which persists for a mean timetc , that is much longer
than the rotational correlation time,tR of the individual mol-
ecule. Simple approximate analyses of the effects of SRLS
on motionally narrowed ESR spectra have met with moder-
ate success,7~a!,9but have also shown the limited information
content available.

The early 2D-ELDOR study on a small spin-probe, per-
deuterated Tempone, in the smectic A phase of the liquid
crystal S2, illustrated how one could explore a more detailed
dynamic model.3 Since this probe is much smaller than the
thickness of the smectic bilayer, a model involving
rotational–translational coupling originally due to Moro and
Nordio13 was utilized. In this model a small probe is as-
sumed to experience an orienting potential which depends
upon its location in the smectic bilayer. Thus, as the spin
probe translates through the smectic layer, its orientational
potential is modulated. This model was useful in explaining
the 2D-ELDOR cross-peaks and their angular dependence,
but could not simultaneously explain the magnitude of the
measured homogeneousT2’s and their ~weak! angular de-
pendence.~Here the angular dependence refers to the orien-
tation of the nematic director with respect to the applied
magnetic field for the macroscopically aligned sample.!
More recent measurements of the anisotropic translational
diffusion of this probe in the smectic phase of S2, have how-
ever been interpreted successfully in terms of such a model
combined with a free-volume model.14 We explore further

the dynamics of the relatively small PD-Tempone probe over
a range of liquid crystalline phases in the companion paper.15

In this paper we present a study by 2D-FT-ESR methods
of the rotational relaxation of the relatively large and rigid
cholestane probe with a shape that can be approximated as a
cylinder with a length of 24 Å and a diameter of 6 Å.16 It has
been extensively used in past cw-ESR studies on rotational
reorientation, and it has been found to typically yield slow-
motional spectra in liquid crystalline phases.7~b!,17 However,
in low temperature smectic phases, such as in 4O,8 solvent
~which we use in the present study!, the cw-ESR from CSL
was found to show very little sensitivity to motional
dynamics,17 and spin-echo methods are required to properly
distinguish the homogeneous linewidths for such cases.18 Its
length is nearly comparable to that of a smectic layer~; 30
Å!, and it is found to be a very good reporter of the overall or
‘‘backbone’’ molecular ordering within liquid crystalline
phases. Also, the low concentration utilized hardly perturbs
the phase behavior.19 Studies of its anisotropic translational
diffusion in the smectic phase of S2 were consistent with an
absence of roto-translational coupling effects, as would be
expected for a molecule of its size, since it simultaneously
‘‘experiences’’ the full length of a smectic bilayer.14

Our current objective was to explore the evidence for
localized molecular cooperativity with this probe over a
range of liquid crystalline phases using the latest capabilities
in 2D-FT-ESR methodology. This probe had previously been
employed in 2D-FT-ESR studies on membrane vesicles
which exhibit the MOMD effect.5 Whereas good agreement
was found with theoretical predictions based on a simple
model of rotational diffusion in a mean orienting potential,
some systematic deviations were observed. It was felt that
studies on well-aligned liquid crystalline phases would pro-
vide better and more resolved 2D-FT-ESR spectra with
which to assess the possible role of localized dynamic coop-
erativity.

Since the CSL spectra in liquid crystalline phases is gen-
erally in the slow-motional regime, it is necessary to have a
rigorous theory for the analysis of 2D-FT-ESR spectra in this
regime. This has recently been accomplished for the standard
model of rotational diffusion in an orienting potential~i.e., a
rotational Smoluchowski equation!.4,6 The generalization of
one-dimensional~1D! cw-ESR slow motional simulations to
include the SRLS model, though complicated, has recently
been achieved by Polimeno and Freed.20We present here the
generalizations needed to include the SRLS model into the
simulation of slow motional 2D-FT-ESR spectra. We again
use the approach of globally fitting a set of 2D-ELDOR
spectra as a function of mixing time by modern non-linear
least squares methods in order to obtain optimum ordering
and dynamic parameters from the very extensive data sets
resulting from such experiments.4,5,21Thus the rapid calcula-
tion of theoretical spectra for the SRLS model is a practical
necessity.

It is also important to note that our experimental format
of obtaining the 2D-ELDOR spectra for 6–8 different mix-
ing times actually presents a third dimension to the experi-
ment. That is, the relative intensities and the shapes of the
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auto and cross-peaks of a 2D-ELDOR spectrum may be ob-
served as they change with mixing time. This is a source of
the extensive spectral information that we find very useful to
critically assess deviations from simple Markovian behavior
in the molecular reorientation. In the presence of a dynamic
cage, molecular reorientation is necessarily non-Markovian,
so that this is an important feature of the experiment. In our
theoretical analysis of the SRLS model we include both the
usual Smoluchowski-type diffusive operator, which de-
scribes the rotation of the probe in a mean potential, and the
diffusive operator for the rotation of the local structure~the
cage!formed by the molecules in the immediate surround-
ings of the probe. As a result of the probe–cage interaction
potential, neither the motion of the probe, nor that of the
cage, can separately be regarded as Markovian processes.
Instead, it is their collective motion which exhibits Markov-
ian behavior in the form of a multi-dimensional Markov pro-
cess.

The validity of a SRLS or cage-type model for fluids has
recently received support from another source. In a molecu-
lar dynamics study of a simple diatomic molecular fluid, the
use of a cage, defined in terms of the ensemble averaged
instantaneous interaction potential of all molecules acting on
a probe molecule, led to a stochastic model that was very
effective in interpreting the results of the molecular dynam-
ics calculation.22 The SRLS cage model we use in this work
is very similar to that stochastic model. In the present case
for ESR, we are only interested in longer times, wherein
inertial effects may be neglected, and we also allow for a
macroscopic or mean orienting potential. Ultimately the rel-
evance of the SRLS model must be judged on~i! the quality
of the fits obtained versus those for the simpler standard
model ~or other models!, and ~ii! the extent to which the
ordering and dynamic parameters obtained for the probe
molecule and the cage are physically reasonable.

In Sec. II, we present experimental details. The theoreti-
cal approach used to include the SRLS model into the SLE
method for simulating 2D-FT-ESR spectra is detailed in Sec.
III. Our results are described in Sec. IV, and are further
discussed in Sec. V. Conclusions appear in Sec. VI.

II. EXPERIMENTAL DETAILS

The liquid crystal N-(p-butoxybenzylidene!-p-n-
octylaniline ~4O,8! was prepared earlier in this laboratory,
and the transition temperatures were confirmed by differen-
tial scanning calorimetry measurements as:

C →
34 °C

SB →
48 °C

SA →
62 °C

N →
77 °C

I. ~1!

The smectic layer spacing for 4O,8 is estimated to be
about 28 Å from the value for 4O,7 of 26.8 Å obtained by
x-ray measurements.23 The nitroxide free radical 38,38-
dimethyloxazolidinyl-N-oxy-28, 3-5a-cholestane~CSL! was
obtained from commercial sources. Solutions of CSL in 4O,8
at a concentration of about 431023 M were prepared by
mixing them very well for a prolonged period just above the

clearing point. Samples were prepared in 2-mm-o.d. glass
tubes after deoxygenating them with standard procedures and
sealing them under vacuum.

ELDOR experiments were carried out on a home-built
FT-ESR spectrometer,2,24,25as a function of temperature cov-
ering all the mesophases. These experiments used ap/2
2 t1–p/2 2 Tm–p/2 2 t2 pulse sequence. Similar experi-
ments were also performed using the COSY sequence of
p/22 t1–p/22 t2. The width of thep/2 pulses typically was
about 5 ns, which provides nearly uniform spectral rotation
into the rotatingx–y plane over at least a6 75 MHz
bandwidth.5,24,25The signal after the last pulse was sampled
every 1 ns, which is obtained by an interleaving method, and
it yielded 256 data points. The separation between the first
two pulses, ort1, was stepped with 128 steps of 2 ns. The
spectrometer dead time,td was 60 ns, while the minimum
separation between pulses was 50 ns. A 32~8! step dual
quadrature phase cycling sequence for 2D-ELDOR~COSY!
provided the complex signal with respect tot1 andt2, and it
provided for subtraction of all unwanted signals.2,5,24,25 A
full data collection required about 20 minutes for 2D-
ELDOR. Each step in the phase cycling sequence was an
average of 500 signals.

The sample temperature was regulated using a gas flow
type cryostat with a commercial temperature controller
~Bruker, model ER 4111 VT! to an accuracy of about61 °C.
The magnetic field was stabilized using a standard field-
frequency lock arrangement~Varian Fieldial, Mark II!, lead-
ing to a typical field stability better than6 10 mG~or about
3 parts in 106) during a 20 minute data collection. The mi-
crowave frequency was stabilized to an accuracy of about
61 kHz ~or about a part in 107) ~using a Microwave Systems
Inc., Model MOS lock box!. Rotation of the sample director
with respect to the static magnetic field is achieved by
mounting the sample on a suitable goniometer.

In both the 2D ELDOR and COSY experiments the dual
quadrature data were transformed to theSC2 combination
for analysis. In all these cases there was no observable signal
in the SC1 combination of the dual quadrature data. In the
SA andSB phases these experiments were carried out as a
function of the orientation of the director at two temperatures
in each phase. The 2D-ELDOR measurements were per-
formed for different ‘‘mixing times’’ Tm . Typically these
spectra were recorded for at least six mixing times ranging
from 90 to about 300–400 ns, the signal to noise ratio being
the limiting factor for stepping outTm further. The spectra
showed no significant instrumental artifacts, and hence the
time domain data were directly used, without any further
processing, to generate 2D magnitude Fourier spectra.

The magnetic parameters of CSL in 4O,8 solvent have
been given previously.17 They are Axx5Ayy55.27G,Azz

533.44G;gxx52.0089,gyy52.0058,gzz52.0021. For CSL
the magneticx-axis is along the N–O bond, and the mag-
neticz-axis is along the nitrogenp–p orbital, with the mag-
netic y axis perpendicular to both. It is also known from the
structure that the magneticz-axis is parallel to the rotational
y-axis, and the magneticy-axis is tilted 15° with respect to
the diffusionalz-axis, leading to a corresponding tilt between
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the magneticx-axis and the diffusionalx-axis.20,26 ~Tradi-
tionally one refers to the principal magnetic axes byx-,
y-, andz- and to the principal axes of rotational diffusion
by x8, y8, andz8).7,9,10Based upon molecular shape consid-
erations, and standard practice, we take the principal axes of
orientation of CSL to coincide with thex8, y8, andz8 axes.
Thus, except for the 15° tilt, CSL corresponds to a case of
y-ordering,~i.e., they-iz8).

III. THEORETICAL FRAMEWORK

A. The stochastic Liouville equation (SLE)

Let us consider a classical stochastic set of coordinates
Q, which describe the motional degrees of freedom needed
to represent the system. According to the stochastic Liouville
approach, the density matrixr(Q,t) is described semiclassi-
cally by the joint evolution of the internal quantum~spin!
degrees of freedom and the classical motional dynamics:27

]

]t
r̂~Q,t !52~ Ĝ1 iĤ x!@ r̂~Q,t!2 r̂0~Q!#, ~2!

whereĤ x is the quantum Liouville operator, i.e., the com-
mutator superoperator associated with the spin Hamiltonian
Ĥ for the magnetic interactions, i.e.:

Ĥ5~be /\!B0–g–S1geI–A–S, ~3!

whereg andA are theg and hyperfine tensors, respectively,
S and I are the electron spin and nuclear spin operators re-
spectively,B0 is the dc magnetic field,be is the Bohr mag-
netron,ge , the electron gyromagnetic factor. In Eq.~2! Ĝ is
a Markovian operator, usually a Smoluchowski or Fokker–
Planck operator, describing the stochastic motion of theQ
coordinates. The quantityĜ1 iĤ x5L̂ is referred to as the
stochastic Liouville operator~SLO!. It is more convenient to
use the reduced density operatorx̂(Q,t)5 r̂(Q,t)2 r̂0(Q),
wherer̂0(Q) is the density matrix at thermal equilibrium:

]

]t
x̂~Q,t !52 L̂x̂~Q,t!. ~4!

The formal solution of Eq.~4! is naturally given by:

x~Q,t1t0!5exp~2 L̂t !x~Q,t0!. ~5!

Equation~5! is solved numerically after diagonalizing a ma-
trix representation of the SLO. Typically in the interpretation
of ESR experiments in liquids, the phase spaceQ is limited
to the Euler anglesVo which specify the instantaneous ori-
entation of the probe molecule with respect to an inertial
frame~e.g., the laboratory frame or a fixed director frame for
liquid crystals!. The associated stochastic operatorĜ(Vo) is
usually chosen as a Smoluchowski operator, i.e., the spin
probe is described as a Brownian rotator, in the presence of a
static mean potential in the case of an ordered phase. In the
SRLS model, the augmented phase spaceQ includes also the
collective reorientation of the solvent structure in the form of
a second set of Euler anglesVc. The SLE is then modified
by replacing the diffusional operatorĜ(Vo) with an aug-

mented Smoluchowski operatorĜ(Vo,Vc), which depends
upon the interaction potential between the probe and the sol-
vent structure or cage.20

The spin-dependent part of the SLO has been detailed in
previous work by LBF and PF,@LBF5Ref. 6, and PF5Ref.
20#. When we consider the full SLO, we note that at least six
different frames of references have to be introduced to
clearly define the dynamic behavior of the spin probeplus
cage system. They are the laboratory and director frames~LF
and DF!, which are inertial frames, and the molecular~MF!,
cage ~CF!, and theg and A tensor ~GA and AF! frames,
which are frames moving with the spin probe or in the case
of the CF moving with the cage~see Fig. 1!. The spin-
Liouvillean can be written as the scalar operator which re-
sults from the scalar product of zero and second-rank irre-
ducible spherical tensors and tensor operators; i.e., the
Fm,L
( l ,m) which represent the relevant magnetic tensor compo-

nents and theAm,L
( l ,m) which represent the electron and nuclear

spin operators in their irreducible tensor form~and the super-
script x is used to denote the Liouville operator form!:

Ĥ x5 (
m5g,A

(
l50,2

(
m52 l

l

Fm,L
~ l,m!* Âm,L

~ l,m!x

5 (
m5g,A

(
l50,2

(
m52 l

l

(
m852 l

l

(
m952 l

l

D mm8
l

~Vd!

3D m8m9
l

~Vo!Fm,M
~ l,m9!* Âm,L

~ l,m!x . ~6!

HereVd specifies the orientation of the director frame rela-
tive to the laboratory frame. This spin Hamiltonian does not
depend explicitly upon the solvent degrees of freedom, since
the magnetic interaction terms are solely an internal property
of the probe molecule. In Eq.~6! Xm,N

( l ,m) (X5F,A) stands for
themth component (m52 l, . . . ,l ) in the N frame of the
l th (l50,2) rank irreducible spherical tensor or tensor opera-
tor, which relates to the interactionm (m5g or A);
D mk

l (V) is a generic Wigner rotation matrix inV. The mo-

FIG. 1. Reference frames which define the structural and dynamic proper-
ties of the combined system of spin-bearing probe molecule and solvent
cage: LF5lab frame, DF5director frame, MF5molecular frame, CF5cage
frame, GF5g-tensor frame, AF5A-tensor frame.
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lecular components of theF tensors are defined in terms of
their components in the proper magnetic frame. The compo-
nents of theF and A tensor operators are summarized in
LBF and PF.

The dynamical coupling between the probe and collec-
tive solvent modes for the SRLS model is contained in the
two-body Smoluchowski operator:

Ĝ5 Ĵo•Ro
•PeqĴ

oPeq
211 Ĵc•Rc

•PeqĴ
cPeq

21. ~7!

Here Ĵo is equal to the vector operator that generates an
infinitesimal rotation of the probe~except for a factor2 i ),
with components specified in the MF;Ĵo is the equivalent
operator for the cage, with components specified in the CF.
The diffusional tensorsRo andRc are time-independent and
diagonal in the MF and in the CF, respectively. The Boltz-
mann distributionPeq is defined with respect to a generic
potentialV(Vo,Vc):

Peq~Vo,Vc!

5exp@2V~Vo,Vc!/kBT#/^exp@2V~Vo,Vc!/kBT#&

~8!

and

V~Vo,Vc!5Vo~Vo!1Vint~Vo2Vc!1Vc~Vc!. ~9!

As in PF the probe, cage, and interaction components of the
potential displayed in Eq.~9! are explicitly defined in terms
of second and fourth rank Wigner matrices as, respectively:

vo~Vo![
1

kBT
Vo~Vo!

52 (
l52,4

$a0
l
D 00

l ~Vo!

1a2
l @ D 02

l ~Vo!1 D 022
l ~Vo!#%, ~10!

vc~Vc![
1

kBT
Vc~Vc!

52 (
l52,4

$b0
l
D 00

l ~Vc!

1b2
l @ D 02

l ~Vc!1 D 022
l ~Vc!#%, ~11!

v int~V![
1

kBT
Vint~V!

52 (
l52,4

$c0
l
D 00

l ~V!

1c2
l @ D 02

l ~V!1 D 022
l ~V!#%. ~12!

Equations~10! and ~11! correspond to the mean potentials
experienced by the probe and the cage in a uniaxial liquid
crystal, while for simplicity the potential of interaction of the
probe in the cage, given by Eq.~12!, is taken to also be
uniaxial. ~A brief discussion on more general potentials al-
lowing for biaxial character of the cage is given in PF.!

In the course of a typical 2D-FT-ESR experiment, the
system is subjected to a sequence of microwave pulses. The
pulses are usually strong and approximately non-selective,
i.e., they affect the spins over a wide frequency range.6 Fol-
lowing LBF, we shall assume for simplicity that only ideal
non-selective pulses are used.@Effects of imperfect coverage
may be corrected for empirically as discussed elsewhere#.5

The evolution of the density matrix after a pulse of duration
tp is then given as:6

r~ t01tp!5P r~ t0!5 P̂r~ t0!P̂
21. ~13!

Thus a complete formulation for interpreting a 2D-FT-ESR
experiment requires the specification of the pulse propagator
operatorP̂. This is given in LBF, in the absence of the cage,
in terms of the matrix which acts on subsets of the set of
basis vectors used to represent the SLO~see below!. Here we
shall generalize that expression to include the presence of the
solvent degrees of freedom. However, we have first to define
the complete set of basis vectors and to outline the compu-
tational procedure employed to evaluate actual 2D-ESR
spectra.

B. Basis vectors

The generic basis set for representingL̂ andP̂ is given
by a direct product of spin operators and Wigner rotation
matrices which span the space of the two sets of Euler
angles, ~i.e., Q5Vo,Vc). Detailed descriptions are pre-
sented in PF and LBF, so only a brief summary is given here.

Basis states of the spin Hamiltonian for a single electron
spin may be written asuS,mS& in Hilbert space. Each ‘‘spin-
transition,’’ which is an element of the basis for representing
the spin superoperatorĤ x, can be characterized by the two
transition numberspS5mS92mS8 and qS5mS91mS8 , where
for the case ofS51/2 the values ofpS561 denote the two
counter-rotatingx2y components of spin magnetization,
and pS50 accounts for thez component. Similar quantum
numberspI , qI can be defined as the transition quantum
numbers for the nuclear spinI . Thus in Liouville~transition!
space the superoperatorĤ x is spanned by the basis
upS,qS,pI ,qI&&. The stochastic Liouville equation couples
the spin system with the classical stochastic phase spaceQ,
so that a complete basis for representingL̂ is obtained by
the direct product of the spin basis set and the complete set
of basis functions which span the functional spacef (Q). In
the case of the SRLS model, we use the direct product of
Wigner rotation matrices for the two sets of Euler angles
Vo andVc:

upS,qS,pI ,qI ;Lo,Mo,Ko;Lc,Mc,Kc&&

5 upS,qS,pI ,qI&&
@LoLc#1/2

8p2

3 D MoKo
Lo * ~Vo! D McKc

Lc * ~Vc!. ~14!

In the following we shall let the cage potential,Vc(Vc) of
Eq. ~11! be cylindrically symmetric. Then the symmetry of
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the interaction potential between the probe and the cage,
given by Eq.~12! will enable the neglect of the third cage
quantum numberKc.20

In the high-field limit and when no microwave pulse is
present, the stochastic Liouville matrixL is block-diagonal
with respect to the coherence order of the electron spin, i.e.,
pS. ForS51/2 we shall distinguish between the submatrices
L61 ~spanned by the off-diagonal subspacespS561) and
L0 ~spanned by the diagonal spacepS50). The three ma-
trices can be diagonalized separately by different complex
orthogonal transformations:

Om
tr
LOm5Lm , ~15!

wherem50,61;Om andLm are, respectively, the eigenvec-
tors and eigenvalues matrices for themth subset. The diago-
nalization of each submatrix can be performed by using a
suitable iterative algorithm like the Lanczos or the conjugate
gradient27,28 algorithm.

The pulse propagatorP̂ is still to be defined. For a par-
ticular coherence pathway we may writeP(p

1
S←p

2
S) as the cor-

responding pulse propagator, wherep1
S andp2

S are the coher-
ence orders after and before the pulse, respectively. Each
such pulse propagator is proportional to the unit matrix span-
ning the associated sub-space~s!of the matrix representation
of the SLE. Each non-zero element shows a typical depen-
dence on the phase of the pulse, which we may write as
^^p1

SuP up2
S&& } exp@2i(p1

S2p2
S)f#.6 This provides the basis

for the selection of the coherence pathway by phase cycling.
The 2D-ESR signal for a particular experiment may be writ-
ten down quite simply once~i! the matrix representation in
the diagonal and off-diagonal subspaces of the operator is
obtained,~ii! the matrix representation of the pulse propaga-
tor to switch between the sets of subspaces is obtained~from
Eq. ~11! of LBF!; and~iii! the eigenvalues and eigenvectors
of the SLE are found. For example, theFID signal can be
written as:6

SFID} ^^v21uO21exp~2L21t1!O21
tr uv21&&, ~16!

where P(61←0)r0 is the density matrix after the firstp/2
pulse. The two-pulse COSYSc6 signals have coherence
pathwayspS50→61→21; they are written as:

Sc61

COSY} ^^v21uO21exp~2L21t2!O21
tr P~21←71!O71

3exp~2L71t1!O71
tr uv71&&. ~17!

The ELDOR Sc61
signals with coherence pathway

pS50→71→0→21 are given by:

Sc61

ELDOR} ^^v21uO21exp~2L21t2!O21
tr P~21←0!O0

3exp~2L0Tm!O0
trP~0←71!O71

3exp~2L71t1!O71
tr uv61&&. ~18!

The COSY signals are formally equivalent to the ELDOR
signals for zero mixing times, i.e.,Tm50.

C. Matrix elements

Following Meirovitch et al.,29 we write the matrix ele-
ments of the SLE Ĥ x operator in the~as yet unsymme-
trized! basis set after making appropriate changes to take
account of the presence of the cage:20

^^S1uĤ xuS2&&5dL
1
c ,L

2
cdM

1
c ,M

2
c@L1

oL2
o#1/2

3 (
m5g,A

(
l50,2

(
m52 l

l

(
m852 l

l

(
m952 l

l

D mm8
l

3~Vd!S L1o l L 2
o

M1
o M2

o2M1
o 2M2

oD
3S L1o l L 2

o

K1
o K2

o2K1
o 2K2

oDFm,M
~ l ,m9!*

3^^s1uÂm,L
~ l ,m!us2&&, ~19!

where the effect of the spin operators is concentrated in the
last factor, which contains the reduced matrix elements that
depend only upon the spin part of the basis set. The reduced
matrix elements are given, for example, in PF. HereuS&& and
us&& respectively represent the complete set of quantum
numbers and just the subset of magnetic quantum numbers.
Detailed expressions of theF andA tensors, for the hyper-
fine tensor (m5A) and electronic g-tensor (m5g) are given,
for example in PF. The indicesM andL are referred to the
MF and LF, where theF and A tensors respectively are
naturally defined.

The symmetrized diffusional operatorG̃5Peq
21/2ĜPeq

1/2

has a more complicated matrix representation.20 It is conve-
nient to split the operator into four distinct contributions:

G̃5G̃sym1G̃asym1Fsym1Fasym. ~20!

The first two terms do not depend upon the potential; the
axially symmetric term is:

G̃sym5R'
o Ĵo21~Ri

o2R'
o !Ĵz

o21RcĴc2. ~21!

Here we are assuming an isotropic diffusion tensor for the
cage,Rc5Rc1 for simplicity, ~or more precisely,Rc may be
replaced byR'

c for an axially symmetric diffusion tensor!.6

The asymmetric term is:

G̃asym5Rd
o~ Ĵx

o22 Ĵy
o2!, ~22!

where

R'
o5

Rx
o1Ry

o

2
, ~23!

Ri
o5Rz

o , ~24!

Rd
o5

Rx
o2Ry

o

4
~25!

andRx
o , Ry

o , andRz
o are the 3 principal components of the

rotational diffusion tensor for the probe expressed in the mo-
lecular frame~MF! in which this tensor is diagonal. Since
G̃ is independent of the spin degrees of freedom, we have:
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^^S1uG̃uS2&&5ds1 ,s2
^l1uG̃ul2&, ~26!

where ul&5uLoMoKoLcMc&. The matrix element ofG̃sym

and G̃asymare readily evaluated:

^l1uG̃symul2&5dl1 ,l2
@R'

o Lo~Lo11!1~Ri
o2R'

o !Ko2

1RcLc~Lc11!#, ~27!

^l1uG̃asymul2&5dL
1
o ,L

2
odM

1
o ,M

2
odL

1
c ,L

2
cdM

1
c ,M

2
c

3
Rd
o

2
@cL

2
oK

2
o

2
cL

2
oK

2
o21

2 dK
1
o ,K

2
o22

1cL
2
oK

2
o

1
cL

2
oK

2
o11

1 dK
1
o ,K

2
o12#. ~28!

The functionsFsym andFasym can be written in the form of
an expansion of probe–cage normalized Wigner functions:

V~Vo,Vc!5(
l
vlul&, ~29!

Fsym~Vo,Vc!5(
l

f l
symul&, ~30!

Fasym~Vo,Vc!5(
l

f l
asymul&. ~31!

The vl parameters are easily related to the natural potential
parametersam

l , bm
l , andcm

l in Eqs.~10!–~12!, respectively;
the f l are calculated in terms of complicated sums of the
vl .

20 The matrix elements are completely defined once the
integral of threeul& functions is explicitly written in terms of
products of integrals of Wigner rotation matrices.20

Following LBF, additional relaxation terms have been
included in the 2D-ESR formulation which were not present
in the previous cw work of PF, namely:~i! the Heisenberg
spin exchange contributionG̃ex, whose magnitude is mea-
sured by the Heisenberg frequencyvHE; ~ii! the rotationally
independent electron spin flip term,G̃We

, measured by the
electron spin flip rateWe ; and~iii! the rotationally indepen-
dent nuclear spin flip term,G̃Wn

, measured by the nuclear
spin flip rateWn . These terms are basically the same in the
presence or in the absence of the SRLS, since they do not
depend uponVc; explicit expressions are given by LBF.

The symmetry properties of the SLE may be exploited
by representing the operator in a new basis set which is a
linear combination of unsymmetrized basis functions. The
K-symmetrization andMT-symmetrization for the SRLS
problem have been already discussed by PF. The
K-symmetrized basis set is given as:

upSqSpIqI ;LoMoKoj KLcMc&&K

5N K@ uLoMoKoLcMcKcpSqSpIqI&&

1 j KsKuLoMo2KoLcMcKcpSqSpIqI&&], ~32!

where

sK5~2 !L
o1Ko, ~33!

N K5@2~11dKo,0!#
21/2 ~34!

and nowK is a non-negative number, where

for Ko50, j K5~2 !L
o
,

~35!

for 0,Ko<Lo, j K561.

Symmetrization with respect toMo, Mc and pI , which is
included in order to exploit the symmetry properties of the
Liouvillean at high field values, is substantially different
from the standard ‘‘M -symmetrization’’ which was used in
the past~LBF!, for the case of a single Brownian rotator. We
shall refer to the present, more general case, as
MT-symmetrization, whereMT5Mo1Mc is the projection
quantum number relative to the LFz2axis of thetotal ‘‘an-
gular momentum’’~i.e., probe plus cage ‘‘angular momen-
tum’’!:

upSqSpIqI ;LoMoKoj KLcMcj &&M

5N M@ upSqSpIqI ;LoMoKoj KLcMc&&

1 jsupS2qS2pIqI ;Lo2MoKoj KLc2Mc&&], ~36!

where the following quantities are defined:

sS5~2 !L
o1Lc1Mo1Mc1qS, ~37!

N M5@2~11dMo,0dMc,0dpI ,0dqS,0!#
21/2, ~38!

and j5(2)L
o1Lc whenpI5Mc5Mo5qS50, and is equal to

61 for all other allowed combinations of these four quantum
numbers~cf. PF!. ~WhenM050, then this reduces to the
standard ‘‘M -symmetrization.’’!The SLE matrix elements in
the symmetrized basis set are easily related to the unsymme-
trized ones as expressed in PF.

The starting vector element in the symmetrized basis set
is simply related to the unsymmetrized basis set representa-
tion of the Boltzmann distribution of Eq.~8!. We associate
the cw-ESR spectrum with the spectral density related to the
x-component in the LF of the electronic magnetization, so
that the appropriate starting vector is proportional toŜ6 :

uv6&&5@ I #21/2uŜ6 ^1I ^Peq
1/2&&, ~39!

where1I is the unit operator in the nuclear spin space. The
starting vector generic element in the symmetrized basis set
is then given by:
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^^Suv6&&5N dpI ,0d upSu,1~11 j K!~11 j !^luPeq
1/2&, ~40!

whereN is the normalization for the fully symmetrized~Ko

andMT symmetrization!basis set~cf. PF!. The reduced vec-
tor element pl5^luPeq

1/2& can be evaluated by factoring the
equilibrium distribution, and then using the completeness of
the ul& space~cf. PF!.

Finally, we need to find an explicit expression for the
pulse propagators in the symmetrized basis. The task is a
straightforward generalization of the formulas presented by
LBF. The pulse propagator for the conversion from the off-
diagonal space into the diagonal space is then given as:

P~0←61!u61,0,pI ,qI ;LoMoKoj KLcMcj &&M

56~11dpI ,0dMo,0dMc,0!
21/2

3@ u0,1,pI ,qI ;LoMoKoj KLcMcj &&M

1 j ~2 !L
o1Lc1Mo1Mc

3u0,21,2pI ,qI ;Lo2MoKoj KLc2Mcj &&M] ~41!

while the pulse propagator for the conversion from the diag-
onal space into the off-diagonal space is:

P~61←0!u0,1,pI ,qI ;LoMoKoj KLcMcj &&M55
~11dpI ,0dMo,0dMc,0!

1/2(u1,0,pI ,qI ;LoMoKoj KLcMcj &&M
2u21,0,pI ,qI ;LoMoKoj KLcMcj &&M), Mo>0

j ~2 !L
o1Lc1Mo1Mc

(u1,0,2pI ,qI ;Lo2MoKoj KLc2Mcj &&M
2u21,0,2pI ,qI ;Lo2MoKoj KLc2Mcj &&M), Mo,0.

~42!

The pulse propagator from thepS51 space into the
pS521 space, which appears in the COSY experiment, is
again a unit matrix.

D. Basis sets

The problem of calculating the 2D-FT-ESR spectrum is
thus reduced to the diagonalization of the two complex sym-
metric matrices in the diagonal and off-diagonal subspaces.
The necessity of calculating the eigenvectors as well as the
eigenvalues is the main source of the additional computa-
tional effort that is required in the 2D-FT case with respect to
cw ESR, where eigenvalues are required, but only the pro-
jections of the eigenvectors on the starting vector are needed.
The Lanczos algorithm27,28can be used to first tridiagonalize
the matrices; next theQR algorithm6,27,28is employed to find
the eigenvalues. The eigenvectors corresponding to dominant
eigenvalues are found by inverse iteration.

The dimensions of the matrices which must be handled
are quite large. Due to the presence of two additional quan-
tum numbers,Lc, Mc, the computational effort, compared to
the traditional single-body Smoluchowski approach, is defi-
nitely increased. However, symmetries contribute to keep the
number of basis functions to a manageable number. First of
all, only even values ofLc are included, due to the absence
of odd rank Wigner functions in the cage potential. Second,
in the absence of director tilt, the projection numbers along
the LF z-axis obey the selection ruleMo1Mc5pI : the re-
sulting reduction in the dimension of the basis set amounts to
at least a factor of 10. Still the dimensions of the matrices
which have to be diagonalized are respectable@up to
N'O(105) for a typical slow-motion spectrum with
Ro>107 s21 andRc>106 s21#.

However, one can determine a minimum set of basis
vectors by using the ‘‘pruning’’ technique described by
Vasavadaet al.30 This technique is based on the idea that
only a subset of the original basis vectors is actually needed
for a satisfactory~within a given percentage error,e) agree-
ment with experiment. First the solution vector of the related
cw-ESR problem is found. Since each element in the solu-
tion vector is a measure of the relevance of the correspond-
ing basis vector in representing the cw-ESR spectrum at each
sweep-field position, one can perform this analysis for a
number of field sweep positions and retain all the basis func-
tions whose projection on to the normalized solution vector
is greater than a given tolerance~usuallye53% is enough to
assure a sensible agreement!.

Once the minimum required basis set is obtained, a sys-
tematic comparison between the experimental 2D spectrum
and the simulation is performed until the best fitting set of
parameters~potential coefficients, probe diffusion and cage
diffusion coefficients!is obtained. Following Leeet al.,6,21 a
non-linear least square fitting criterion, which is based on the

FIG. 2. Logarithm of the dimension of the pruned basis set as a function of
the percentage tolerance,e. Curve a is for the PDT case; curve b is for the
CSL case.
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Marquardt–Levenberg procedure, has been used in the cases
considered in this work.

Two sets of simulations for paramagnetic probes dis-
solved in an ordered phase have been performed. The first set
was used in the study of PDT dissolved in 4O,8~cf. Ref. 15!.
The motional rates in that case are relatively large since
Ro'1010 s21 andRc'108 s21. The potential coefficients,

both for the probe and interaction potentials, were deter-
mined in the range of 1–2kBT. The basis set employed for
these calculations was selected by starting with truncation
valuesLmax

o 58, Mmax
o 54, Kmax

o 54, Lmax
c 56, Mmax

c 56; be-
fore pruning, this corresponds to a total number of 2960
functions for the off-diagonal subspace~note that this is the
dimension after applying the selection ruleMo1Mc5pI).

FIG. 3. Comparison of experimental and simulated 2D-ELDOR spectra~stack plots!, based on SRLS and standard models, at representative temperatures in
each phase:~a! isotropic, 91 °C;~b! nematic, 66 °C;~c! smectic A, 59 °C;~d! smectic B, 41 °C;~e! crystal, 29 °C. Left~right! column is forTm590 ns~250!
in ~a!, 90 ns~200 ns!in ~b!, 110 ns~250 ns!in ~c!, 200 ns~300 ns!in ~d!, and 200 ns~400 ns!in ~e!. Top spectra are experimental, middle spectra are SRLS
simulations, bottom spectra in~a!, ~b!, and~c! are standard simulations.~a! is shown above, and Figs.~b!–~e! are shown on subsequent pages.
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After pruning ~with a 3% tolerance! one obtains a reduced
set of 139 functions.

The large reduction is mainly due to the curbing of the
quantum numbers related to the cage,Lc andMc. As a result
of the pruning,Lc values larger than 4 were discarded and
Mc values were limited to be between 2 and24. Such large
reductions in the dimensions of the pruned basis sets are
partially due to an overestimation in the size of the initial
basis set. We show in Fig. 2~a! how the logarithm of the
dimension of the pruned basis set depends on the tolerance.

With a severe 0.05% tolerance, the basis dimension is nev-
ertheless reduced to 1204. The dotted vertical line marks the
3% value.

Notice that after pruning~with a 3% tolerance!, the mini-

mum truncation scheme~MTS! is given by Lmax
o 56,

Mmax
o 5Kmax

o 54, 21<pI<2, Lmax
c 54, and 24<Mc<2.

Prior to pruning, this MTS~but with upI u<2 and uMcu<4)
corresponds to 1262 functions, which is significantly larger
than the pruned basis set of 297 functions.

FIG. 3~b!. See caption to Fig. 3~a!.
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The second set of simulations were performed in the
present study of CSL dissolved in 4O,8. Since CSL is much
larger than PDT, the motional rates are lower,R'

o'108 s21

andRc'1072105 s21. Also the potential coefficients are in
the range of 2kBT. Consequently, a significantly larger basis
set had to be used. Initial truncation values chosen were
Lmax
o 518, Mmax

o 512, Kmax
o 512, Lmax

c 512, Mc512. Before
pruning this corresponds to a total of 58 884 functions for the
off-diagonal space. After pruning~with a 3% tolerance! it

was reduced to just 1252 functions.~For a 1% tolerance the
pruned set is made up of 4091 functions.! After pruning~3%

tolerance!, the MTS was found to beLmax
o 514, Mmax

o 56,

Kmax
o 510, 21<pI<2, Lmax

c 510, 26<Mc<2. Prior to
pruning, this MTS~but with upI u<2 and uMcu<6) corre-
sponds to 22 623 functions. Figure 2~b! shows the reduction
of the pruned basis set dimension with increasing tolerance
for this case.

FIG. 3~c!. See caption to Fig. 3~a!.
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IV. RESULTS

The magnitude 2D-ELDOR spectra that we have ob-
tained over a range of temperatures including the isotropic
(I ), nematic (N), smectic A (SA), smectic B (SB), and crys-
tal (C) phases and over a range of mixing times,Tm are
illustrated as stack plots in Fig. 3. For compactness we only
show results for two different mixing times~rather than all
six or eight obtained! at a given temperature, and we only
display results for one representative temperature in each
phase. All spectra shown in these phases correspond to the
nematic director aligned along the dc magnetic field,@i.e., the
Euler angles,Vd in Eq. ~6! are given by~0,0,0!#. In Figs.
3~a!, 3~b!, and 3~c!we show the 2D-ELDOR spectra for
Tm5110 and 250 ns for theI , N, andSA phases, respec-
tively, and in Figs. 3~d! and 3~e!the spectra for theSB and
C phases respectively are for somewhat longer values of
Tm . In each case one observes the cross-peaks growing in as
Tm increases. This is clearest for theI , N, andSA phases,
which are the most fluid. The cross-peaks are weaker and
develop more slowly for theSB andC phases. In Fig. 4 the
development of the cross-peaks can be followed for one tem-
perature~59 °C! in theSA phase in a contour plot. Also, in
Fig. 5 the different behavior in the five phases is compared
with contour plots all obtained at the same mixing time of

Tm5200 ns. One sees a large difference between theI phase
and the ordered phases as the macroscopic alignment con-
fines the 2D-spectra to a smaller region of frequencies. This
compression is largest in theSA , SB , andC phases. The
weaker development of the cross-peaks in theSB and C
phases is also evident.

In theSA andSB phases we also conducted experiments
as a function of orientation of the nematic director with re-
spect to the dc magnetic field. Here, for each orientation, 6–8
mixing times were again studied. We show in Fig. 6 the
progression of the 2D-ELDOR spectra obtained at 57 °C
(SA phase!with tilt angleQ for Tm5400 ns. The pattern of
auto and cross-peaks is seen to depend significantly upon
Q. This includes substantial variation in their location with
respect to f 1 and f 2, as expected for a macroscopically
aligned sample, and in the relative intensities of the cross-
peaks. The cross-peaks reflect 2Wn , the nuclear-spin-flip
rate generated by the electron–nuclear dipolar interaction
~i.e., the second term in Eq.~2!! and are expected to be
strongly dependent uponQ in macroscopically aligned
phases.3,7

The 2D-ELDOR spectra forQ50 were initially simu-
lated by both the standard and SRLS models. In all the
phases the simulated spectra based upon the SRLS model

FIG. 3~d!. See caption to Fig. 3~a!.

5764 Sastry et al.: Liquid crystals ESR. I

J. Chem. Phys., Vol. 105, No. 14, 8 October 1996

Downloaded¬25¬Jan¬2010¬to¬128.253.229.158.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/jcp/copyright.jsp



were in better correspondence with experiment than was the
standard model, and this difference became greater in the
ordered phases. The final analyses were then performed by
NLLS methods21 simultaneously including all 6–8 mixing
times at a given temperature. These complete NLLS fits were
performed for the SRLS model for all the temperatures stud-
ied and for the standard model for representative tempera-
tures in theI , N, andSA phases. The best fitting parameters
from these fits are presented in Table I, and associated simu-
lations appear in Figs. 3 and 4. The evolution of the 2D-
ELDOR spectra withTm was found to play a very significant
role in our comparison of the success of both models. Even
for the I phase fits, one observes how the standard model
requires the cross-peaks to develop too rapidly with mixing
time, whereas their development is more correctly predicted
by the SRLS model~cf. Fig. 3~a!!. This is again true in the
N phase~cf. Fig. 3~b!!. Greater discrepancies between ex-
periment and simulation with the standard model appear in
Fig. 3~c! for theSA phase, whereas quite good agreement is
achieved with the SRLS model. This agreement is reinforced
by the comparison of contour plots in Fig. 4. Figures 3~d!
and 3~e!illustrate the fairly good agreement with the SRLS
model obtained for theSB and C phases. In our fits, we
found that the ratioN[Ri

o/R'
o of the parallel and perpen-

dicular rotational diffusion coefficients of the probe were
about 6 in theI andN phases corresponding nearly to the
ratio expected from Stokes–Einstein–Perrin considerations
and the molecular geometry~i.e., 5, cf. Ref. 31!. However,
this was found not to be the case for theSA , SB , andC
phases, which required a larger value of this ratio, of about
15–30. The simulations based on the standard model, on the
other hand, led not only to poorer fits compared to the SRLS
model for this phase~cf. Fig. 3~c!!, but they also led to very
high and unrealistic apparent values ofN of over 200. Simi-
lar observations were made earlier by Meirovich and Freed17

in their cw-ESR study of CSL in 4O,8 and other liquid crys-
tal solvents.

We did not include theQ Þ 0 results in our analysis,
because they led to exceedingly long times for the simula-
tions. The reduced symmetry of the problem can increase the
basis sets required by as much as an order of magnitude. In
the lower temperature phases, we already required 60 to 70
hours of computer time to fit a set ofQ50 2D-ELDOR
spectra at a single temperature. Thus the inclusion ofQ Þ 0
spectra would have led to prohibitive times for the computa-
tions.

We present in Table I a listing of all the parameters
obtained in our NLLS fits of the SRLS model to all the

FIG. 3~e!. See caption to Fig. 3~a!.
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spectra obtained forQ50. One notes the extensive number
of parameters that are simultaneously obtained from these
fits, 10 in all. In addition toRi

o andR'
o , the reorientational

diffusion coefficient of the cage,Rc, is also obtained. These
three diffusion coefficients are plotted vsT in Fig. 7. We also
obtain the dimensionless potential coefficientsa0

2 and a2
2,

which appear in Eq.~10! and describe the~macroscopic!
mean aligning potential experienced by the CSL in the or-
dered phases. They are plotted vsT in Fig. 8~a!, and the
resulting order parameters S0

25^D0,0
2 (Vo)& and

S2
25^D0,2

2 (Vo)1D0,2
2 (Vo)& obtained from Eq.~10! in the

standard way, i.e.:

FIG. 4. Comparison of experimental~left column!and simulated~right column!2D-ELDOR spectra~contour plots!based on SRLS model at 59 °C in the
SA phase. Upper, middle, and bottom rows correspond toTm590 ns, 170 ns, and 250 ns, respectively.
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^DOK
L ~Vo!&5E dVoDDK

L ~Vo!exp@2vo~Vo!#Y E dVo

3exp@2vo~Vo!# ~43!

are shown in Fig. 8~b!. The dimensionless coefficientsc0
2 and

c2
2, which appear in Eq.~12! and describe the potential of

interaction of the probe in the cage, are also obtained. They

are plotted vsT in Fig. 9~a!, and the resulting local order

parameters Sl ,0
2 5^D0,0

2 (V)& and Sl ,2
2 5^D0,2

2 (V)
1D022

2 (V)& given by:

FIG. 5. Contour plots of experimental spectra at a fixed mixing time~200 ns!, at representative temperatures in each of the phases:~a! isotropic, 91 °C;~b!
nematic, 66 °C;~c! smectic A, 56 °C;~d! smectic B, 41 °C;~e! crystal, 29 °C.
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^DOK
L ~V!&5E dVDOK

L ~V!exp@2v int~V!#Y E dV

3exp@2v int~V!# ~44!

appear in Fig. 9~b!. These are the principal parameters of
interest in the present work. The additional parameters that
were fit are~i! T1,e, the electron-spin longitudinal relaxation
time; ~ii! T2,e

21 which includes additional contributions to the
homogeneous linewidth not produced by the rotational
modulation of the hf andg-tensor terms in Eq.~3!, such as
spin-rotational relaxation and intramolecular dipolar interac-
tions between the electron spin and the CSL and solvent
protons;32 ~iii! D G , the inhomogeneous contribution to the
linewidths assumed to be Gaussian.6,21 Note thatDG shows
only small variation with phase as expected. One expects
that T2,e<T1,e from general considerations.7,33 We find that
our results are consistent with this inequality for all the or-
dered phases. In the isotropic phase it would appear that
T1,e is shorter than theT2,e from the additional linewidth
contributions. Note, however that the (T1,e

212T2,e
21)'5

3106 s21 corresponds to about 0.3 G ‘‘missing’’ line
broadening. We do find that the fits toT2,e andDG correlate
somewhat,5 whereasT1,e is independently determined after
fitting the other parameters. We believe that this corresponds
to a small overestimate ofDG and a corresponding underes-
timate ofT2,e

21 obtained for this phase. A similar defect shows
up for this phase using fits to the standard model, cf. Table
II.

The diffusion coefficients shown in Fig. 7 exhibit some-
what interesting behavior.R'

o is found to remain at about
108 s21 over the observed temperature range. There is some
slowing down with decrease in temperature in theI andN
phases. There is essentially no temperature variation in the
SA phase, but there is a small increase in theSB phase.Ri

o ,
which is about 63108 s21 in the I andN phases, shows
similar behavior, except for its substantial increase in the
SA phase compared to theN nematic phase, which yields the
increased rotational anisotropy noted above.Rc is of order
107 s21 in the I and N phases and is thus substantially
slower thanR'

o or Ri
o as one would expect. It decreases in

both phases with a decrease inT ~except near theI –N phase
transition!, while it remains practically constant in theSA
phase. The onset of theSB phase brings about a large drop in
Rc to about 105 s21 signaling an abrupt freezing of the cage.

In Fig. 8~a!we see that the mean field potentiala0
2 shows

a steady increase through theN andSA phases, which is the
generally expected behavior. However, there is a sudden
large increase ina0

2 with the onset of theSB phase. The
non-axial potential terma2

2 is seen to drop practically to zero
in theSB phase.@These features are mirrored in the behavior
of the order parameters in Fig. 8~b!.# The cage potential pa-
rameters show a very interesting and contrasting behavior in
this context. The axial parameter,c0

2, which is small but
significant in theI phase, increases substantially in theN
phase, with a faster increase in theSA phase, but abruptly
dropping almost to zero in theSB phase, signifying that the

TABLE I. Optimum parameters obtained from fits to the SRLS model.a

Phase T ~°C! Ri
o31029 ~s21) R'

o31029 ~s21) a0
2 a2

2 T1,e3106 ~s! T2,e3106 ~s! DG ~G! c0
2 c2

2 Rc31027 ~s21!

I 96.2 0.62 0.119 ••• ••• 0.068 0.135 1.12 1.10 0.96 2.03
I 91.0 0.57 0.094 ••• ••• 0.077 0.152 1.07 1.04 0.95 0.90
I 86.1 0.53 0.088 ••• ••• 0.072 0.188 1.15 0.69 1.00 0.43
I 80.2 0.49 0.080 ••• ••• 0.110 0.187 1.02 0.73 0.96 0.48
N 73.1 0.77 0.138 1.93 1.46 0.582 0.095 0.86 1.85 0.62 1.08
N 70.2 0.68 0.131 2.15 0.86 0.582 0.111 0.93 2.00 0.62 1.40
N 67.5 0.65 0.121 2.50 1.12 0.582 0.122 0.82 1.84 0.81 1.01
N 65.0 0.54 0.101 2.74 1.27 0.582 0.138 0.80 1.72 0.62 0.84
SA 59.1 2.37 0.081 3.57 0.84 0.288 0.283 0.94 2.26 0.82 0.33
SA 56.4 2.36 0.086 3.79 1.16 0.359 0.343 1.01 2.23 0.78 0.32
SA 53.6 2.48 0.077 4.15 1.44 0.478 0.442 1.11 2.25 0.79 0.33
SA 50.8 2.33 0.083 4.68 1.17 0.316 0.196 1.28 1.62 0.74 0.28
SB 44.4 3.23 0.150 7.49 20.62 0.185 0.092 1.19 0.215 20.029 0.022
SB 40.7 2.86 0.115 7.78 20.50 0.178 0.098 1.19 0.191 20.003 0.021
SB 38.1 2.77 0.150 7.55 20.58 0.206 0.095 1.21 0.246 20.010 0.022
SB 35.2 2.09 0.141 7.62 20.88 0.216 0.103 1.23 0.451 20.027 0.015
C 29.1 2.00 0.124 7.61 20.86 0.216 0.108 1.23 0.200 20.004 0.010
C 24.6 1.98 0.137 7.96 21.40 0.216 0.116 1.23 0.075 20.002 0.000

aThe average percent errors to the parameters areeRi
051.5, eR

'
052.7, ea0

251.8, ea2
251.1, eT1,e52.5, eT2,e55.0, eDG

51.6, ec0
252.5, ec2

252.7, eRc53.7.

TABLE II. Optimum parameters obtained from fits to the standard model.

Phase T (°C! Ri
o310210 ~s21) R'

o31029 ~s21) a0
2 a2

2 T1,e3106 ~s! T2,e3106 ~s! DG ~G!

I 91 0.208 0.037 ••• ••• 0.073 0.23 1.0
N 65 0.180 0.026 2.67 20.99 0.59 0.11 0.77
SA 59 9.94 0.043 3.68 1.81 0.094 0.28 1.15
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probe is hardly sensing a cage on the formation of theSB
phase. The non-axial coefficientc2

2 in fact goes to zero in the
SB phase. This decrease is concomitant with the increase in
a0
2 at theSA–SB transition, and the large drop inRc. All
these observations imply a freezing out of the cage so that its
slowly fluctuating potential becomes an additive component
of the mean field potential at this transition.

V. DISCUSSION

The most striking observation that emerges from our
analysis of the 2D-ELDOR results on CSL in 4O,8 in terms
of the SRLS model is the behavior at theSA–SB transition.
This is essentially a melting transition wherein theSA phase
is liquid-like, yet with orientational and translational order,
but in theSB phase the smectic layered structure is more
frozen in to yield a hexagonal close-packed structure with
strong interlayer correlations leading to three-dimensional
positional ordering.34 The principal motion that remains is
molecular rotation about the long axis of the molecule~i.e.,
theRi

o motion!, with perhaps some wagging of the long axis

within the very large orientational potential, which yields
S0
2'1. In fact, we find for CSL thatS0

2'0.9 andS2
2'0 in

theSB phase with virtually identical ordering in theC phase.
In theSA phase we can still distinguish a dynamic cage af-
fecting the CSL molecule in addition to the substantial mac-
roscopic orderS0

2'0.7. This ‘‘cage’’ is presumably due to
local regions of enhanced order as well as a collective wag-
ging of the nearby liquid–crystal molecules. We may there-
fore expect that in theSB phase this process freezes out
leading to additional macroscopic alignment which is, of
course, what we observe. The fact that our analysis predicts
that the cage relaxes much more slowly and only has a re-
sidual effect on the CSL probe in theSB andC phases, in
accordance with expectation, is an encouraging result in sup-
port of our model in addition to the improved fits to experi-
ment that we achieve.

We might expect additional improvements in the fits as
we improve the SRLS model. The molecular dynamics re-
sults on an isotropic fluid showed that there should be some
local variation in the magnitude of the cage orientational

FIG. 6. Orientation dependence of experimental 2D-ELDOR spectra~stack plots!at 57 °C in the smectic A phase. All correspond to aTm5400 ns:~a! 0°;
~b! 15°; ~c! 45°; ~d! 90°.
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potential,22 although the dominant cage relaxation was in its
reorientation. Thus one may introduce, as an additional re-
laxation process, time-dependent fluctuations in the magni-
tude of the coefficientsc0

2, c2
2, etc. in Eq.~12!. This might

help in the fits to theI andN phases which show somewhat
greater deviations. Additionally one could use higher order
terms in the expansion of the cage potential@cf. Eq. ~12!#.
We discuss some other aspects of improved modeling in the
second paper.15

In the original cw-ESR study of Meirovitch and Freed17

on CSL in 4O,8 and related liquid crystalline solvents they
reported on a largeapparentanisotropy,N in the rotational
diffusion tensor needed to fit the cw-ESR line shapes, espe-
cially in the smectic phases. Although they suggested a
SRLS model as a way to explain the experiment, and the one
they favored on physical grounds, they could not adequately
test it for two reasons:~1! ‘‘The intrinsic low sensitivity to
the dynamics of the ESR spectra in this region of very high
ordering and slow motion;’’ and~2! no theory existed to
describe its effects on slow motional spectra. In the present
study we have been able to overcome limitation~1! by ben-
efitting from the greatly enhanced sensitivity to motion of the
2D-ELDOR experiment, and modern computational
algorithms27,28,21have made the challenging calculations of
the SRLS model feasible even for simulating 2D-ELDOR.
We do indeed find that more reasonable values ofN are
achieved once the SRLS model is introduced. It remains to
be seen whether improvements in the model~e.g., see above!
and the use of the orientation-dependent experimental spec-
tra for the smectic phases will further modify the predicted
values ofN. Both will require more powerful algorithms or
useful approximate methods to render the resulting compu-
tations more practical.

Another feature of the SRLS model compared to the
standard model is the lower values ofRi

o andR'
o obtained

with the latter~compare the results in Table II with those in
Table I!. This is most likely the result of fitting the cross-

peak intensities which depend onWn , the nuclear-spin flip
rates generated by rotational modulation of the14N hf-tensor.
Typically Wn } (6R)21@11(vn/6R)

2# for simple isotropic
Brownian motion@cf. Ref. 15# ~with vn the nuclear-spin flip
broadening of the auto-peaks vsTm . We performed such an
frequency!, wherevn'2.63108 s21 for CSL in the isotro-
pic phase andvn'2.03108 s21 in theSA phase. Thus, for
typical values of 6Ri

o'33109 s21 and 6R''53108 in the
I andN phases from the SRLS fitWn}̃ (6R)21 ~actually a
sum of contributions linear7~a! in (Ri

o)21 and (R'
o )21). In the

absence of the contribution toWn from the cage mechanism,
theWn predicted using the values ofRi

o andR'
o obtained

from the SRLS fit would be too small, so one compensates
by decreasingRi

o andR'
o

In the 2D-ELDOR studies on membrane vesicles using
CSL, an interesting observation was made.5 It is possible to
convert the present COSY and COSY-based 2D-ELDOR
SC-spectra into SECSY format by replacingt2→t11t2. Af-
ter Fourier transforming with respect to the newt2 variable,
the exponential decays int1 lead to the homogeneousT2
values. It was found in that work that the ‘‘apparent’’T2

21

values extracted from the 2D-ELDOR auto-peaks were in-
creasing linearly with mixing time,Tm . Since the trueT2
cannot vary with mixing time, it was suggested that this
could be a manifestation of collective director fluctuations,
which are too slow and too small to significantly affect cw-
ESR linewidths~cf. Sec. I!. However, in 2D-ELDOR one has
the potential to observe the ‘‘real-time motion’’ of a spin
label as it adjusts to the director orientationQ slowly chang-
ing to a new orientationQ8, or else as the label diffuses into
a region with director orientationQ8. Because this mecha-
nism leads to a slight change in the ESR resonant frequency,
exchange cross-peaks appear as an apparent increase in the
analysis of the ‘‘homogeneous width’’ of the central auto-
peak (Ms50) obtained along thef 1-axis ~for f 250) from
the SECSY format for several temperatures, and we did not
see any variation. Its absence in the present study could be
for several reasons. In the present study we typically went to
a maximumTm of 300 ns compared to 2ms in the study of
membrane vesicles.~This was partly the result of the shorter
values ofT1e in the present experiments, which limits the
maximum value ofTm.) This may be insufficient time to
observe the effects, soms times might well be needed to see
significant effects. However, another question is whether the
~non-Markovian!feature of the slow cage dynamics in the
SRLS model would be capable of causing an apparent broad-
ening ofT2

21 with mixing time. We performed simulations
of the SECSY-type of 2D-ELDOR experiment, using the pa-
rameters from Table I that were obtained from the fit to the
53.6 °CSA phase experiments. HereRc53.33106 s21 cor-
responding to a reorientational correlation time oftR

c550 ns.
Over the experimentally studied range ofTm590 to 250 ns
no variation of the central auto-peak is predicted, consistent
with experiment. One might expect to see slow cage dynam-
ics in theSB phase whereR

c523105 s21(tR
c5800 ns!, but

FIG. 7. Rotational diffusion coefficients for the probe:Ri
o ~open circles!and

R'
o ~open triangles!, as well as the cage~plus signs!, plotted as a function of

temperature.
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as discussed above the interaction potential@cf. Eq. ~12!# is
very weak in this phase.

In another context, however, there does appear to be an
important similarity between the present 2D-ELDOR study
of CSL in a macroscopically aligned liquid crystal and the
study of CSL in membrane vesicles. A careful examination
of the cross-peak development as a function ofTm in the
vesicle study shows that this evolution is approximately pre-
dicted by the standard model, but it is not very accurate.
There is more substantial variation withTm that is observed
experimentally than is predicted by the standard model. This
is just the type of behavior that we have observed in the
present work, which is better fit by a SRLS model. Thus, we
may expect improved fits to 2D-ELDOR experiments on
membranes by employing the SRLS model.

VI. CONCLUSIONS

This study has shown that 2D-ELDOR experiments as a
function of mixing time are particularly sensitive to the mo-

tional dynamics of the CSL probe in a liquid crystalline sol-
vent. Significant improvements in fitting to the 2D-ELDOR
spectra are obtained by the use of the slowly relaxing local
structure~SRLS!model to represent the effects of a dynamic
cage on the reorientational motion of the CSL probe in the
different liquid crystalline phases of 4O,8. The SRLS model
provides a consistent picture of the motional dynamics,
wherein the dynamic cage formed by the neighboring liquid
crystal molecules is in addition to the static macroscopic
mean field, and it has a time average of zero. This dynamic
cage relaxes at least an order of magnitude slower than the
rotational reorientation of the CSL in the combined potential.
There is a modest cage potential in the isotropic phase~;1
kBT) which jumps to 2–2.5kBT in the nematic phase, but
drops to a very small value in theSB andC phases. This drop
in cage potential at theSA–SB transition is concomitant with
an almost comparable increase in the static mean field poten-
tial consistent with the freezing in of the aligned structure in
this phase.

FIG. 8. ~a! Mean field ~macroscopic!orienting potential parameters:a0
2

~open circles!and a2
2 ~open triangles!, as a function of temperature~from

SRLS model simulations!.~b! Mean field~macroscopic!order parameters:
S0
25^D00

2 & ~open circles!andS2
25^D02

2 1D021
2 & ~open triangles!, as a func-

tion of temperature~from SRLS model simulations!.

FIG. 9. Cage potential parameters:c0
2 ~open circles!andc2

2 ~open triangles!,
as a function of temperature~SRLS model simulations!. ~b! Cage order
parameters:Sl ,0

2 5^D00
2 & l ~open circles!and Sl ,2

2 5^D20
2 1D220

2 & l ~open tri-
angles!, as a function of temperature~SRLS model simulations!.
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