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Two-dimensional Fourier transforf2D-FT) electron spin resonand&SR) studies on the rigid
rodlike cholestane(CSL) spin-label in the liquid crystal solvent 40,@utoxy benzylidene
octylaniline)are reported. These experiments were performed over a wide temperature range: 96 °C
to 25 °C covering the isotropicl), nematic (), smectic A 8,), smectic B &), and crystal

(C) phases. It is shown that 2D-FT-ESR, especially in the form of 2D-ELO®WR-dimensional
electron—electron double resonappeovides greatly enhanced sensitivity to rotational dynamics
than previous cw-ESR studies on this and related systems. This sensitivity is enhanced by obtaining
a series of 2D-ELDOR spectra as a function of mixing ting,, yielding essentially a
three-dimensional experiment. Advantage is taken of this sensitivity to study the applicability of the
model of a slowly relaxing local structuréSRLS). In this model, a dynamic cage of solvent
molecules, which relaxes on a slower time scale than the CSL solute, provides a local orienting
potential in addition to that of the macroscopic aligning potential in the liquid crystalline phase. The
theory of Polimeno and Freed for SRLS in the ESR slow motional regime is extended by utilizing
the theory of Leet al.to include 2D-FT-ESR experiments, and it serves as the basis for the analysis
of the 2D-ELDOR experiments. It is shown that the SRLS model leads to significantly improved
non-linear least squares fits to experiment over those obtained with the standard model of Brownian
reorientation in a macroscopic aligning potential. This is most evident foBlghase, and the use

of the SRLS model also removes the necessity of fitting with the unreasonably large CSL rotational
asymmetries in the smectic phases that are required in both the cw-ESR and 2D-ELDOR fits with
the standard model. The cage potential is found to vary from akgltin the isotropic phase to
greater than RgT in the N and S, phases, with an abrupt drop to aboutl®® in the Sy andC
phases. Concomitant with this drop at Be-Sg transition is an almost comparable increase in the
orienting potential associated with the macroscopic alignment. This is consistent with a freezing in
of the smectic structure at this transition. The cage relaxation rate giveR®bits “rotational
diffusion coefficient,” is of order of 10 s in the| andN phases. It drops somewhat in tBg

phase, but there is a greater than order of magnitude dr&5 for the Sy andC phases to about

10° s™1. This drop is also consistent with the freezing in of the smectic structure. The rotational
diffusion tensor of the CSL probe is significantly larger tifhwhich is consistent with the basic
physical premise of the SRLS model. In particul® and Rf are of order 18 s™! and

10° s™! respectively. ©1996 American Institute of Physid$0021-9606(96)51233-X]

I. INTRODUCTION which, in principle, can supply more detailed dynamic infor-
mation, but they are usually broad and of low resolution.
) 3 o 2D-FT ESR in such cases also provides greatly enhanced
spin resonancéESR}~* has opened up the possibility of resolution to the motional dynamics and the molecular

studying complex fluids with much greater resolution toordering‘.“ﬁ Recently, complex fluids, which display micro-

structure and dynamics than hitherto possible by conven- . L
. ’ scopic order but macroscopic disordMOMD), have been
tional cw-ESR method$;® the most powerful being the b P d )

studied by 2D-ELDOR;® and it was shown that for such
2D-FT electron—electron double resonaf@B-ELDOR)ex- cases, wherein the MOMD leads to additional inhomoge-

periment. In its 2D format it enables one to simultaneously . . . .
o : . . neous broadening, the microscopic molecular ordering and
distinguish homogeneous linewidths from inhomogeneou i . :
he molecular rotational and translational dynamics could be

broadening and to measure the spin cross-relaxation rates. N died to a much areater reliability than by conventional
viscous media where molecular motions are slowed down, 9 Y y

one normally observes ‘“slow motional” ESR spectra, Cw-ESR means. ) o )
Past cw-ESR studies of thermotropic liquid crystalline

systems have had the advantage of macroscopic alignment of
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past been gleaned from such studies despite limited dathe dynamics of the relatively small PD-Tempone probe over
from ESR linewidths in the motionally narrowed regiffié  a range of liquid crystalline phases in the companion p&per.
or from the ESR line shapes in the slow-motional regiffie. In this paper we present a study by 2D-FT-ESR methods
Nevertheless, these cw-ESR studies traditionally sufferedf the rotational relaxation of the relatively large and rigid
from additional inhomogeneities such as those resulting froncholestane probe with a shape that can be approximated as a
imperfections in sample alignmefite., sample mosaicity), cylinder with a length of 24 A and a diameter of 6'lt has
and in an early application of 2D-FT-ESR was shown been extensively used in past cw-ESR studies on rotational
how this method readily overcomes such problems. reorientation, and it has been found to typically yield slow-
Given the enhanced resolution to structure and dynamicsotional spectra in liquid crystalline phas7ét§'.17 However,
provided by 2D-ELDOR, one might inquire whether more in low temperature smectic phases, such as in 40,8 solvent
detailed insights could be obtained by this method than prefwhich we use in the present stydyhe cw-ESR from CSL
viously by cw-ESR in the study of liquid crystals. For ex- was found to show very little sensitivity to motional
ample, in liquid crystalline phases one must consider coopdynamicst’ and spin-echo methods are required to properly
erative phenomena which can influence the rotationatlistinguish the homogeneous linewidths for such c&%és.
dynamics of the spin probe. The hydrodynamic model oflength is nearly comparable to that of a smectic layer30
order director fluctuations, which is important in nuclearA), and it is found to be a very good reporter of the overall or
magnetic relaxatiotNMR) relaxation® has been found to be “backbone” molecular ordering within liquid crystalline
too slow and too weak to contribute more than a smallphases. Also, the low concentration utilized hardly perturbs
amount of inhomogeneous broadening in ESRCollective  the phase behavid?.Studies of its anisotropic translational
effects from critical and quasi-critical slowing of hydrody- diffusion in the smectic phase of S2 were consistent with an
namic modes near liquid—crystalline phase transitions havabsence of roto-translational coupling effects, as would be
been found to be important in the molecular dynamics fromexpected for a molecule of its size, since it simultaneously
ESR studie¥!! and NMR studies? Unlike the case for “experiences” the full length of a smectic bilay&t.
simple isotropic fluids, the motionally narrowed cw-ESR re- ~ Our current objective was to explore the evidence for
sults for liquid crystals(away from the phase transitions localized molecular cooperativity with this probe over a
have typically exhibited linewidth anomalies for which a va- range of liquid crystalline phases using the latest capabilities
riety of mechanisms have been suggeétdtbst useful has in 2D-FT-ESR methodology. This probe had previously been
been a model of localized molecular cooperativity referred teemployed in 2D-FT-ESR studies on membrane vesicles
as the slowly relaxing local structufSRLS)model. In the  which exhibit the MOMD effeck. Whereas good agreement
SRLS model the slowly fluctuating components of the anisowas found with theoretical predictions based on a simple
tropic intermolecular potential are regarded as a local strucmodel of rotational diffusion in a mean orienting potential,
ture, which persists for a mean timg, that is much longer some systematic deviations were observed. It was felt that
than the rotational correlation timeg of the individual mol-  studies on well-aligned liquid crystalline phases would pro-
ecule. Simple approximate analyses of the effects of SRLSide better and more resolved 2D-FT-ESR spectra with
on motionally narrowed ESR spectra have met with moderwhich to assess the possible role of localized dynamic coop-
ate succes&®°but have also shown the limited information erativity.
content available. Since the CSL spectra in liquid crystalline phases is gen-
The early 2D-ELDOR study on a small spin-probe, per-erally in the slow-motional regime, it is necessary to have a
deuterated Tempone, in the smectic A phase of the liquidigorous theory for the analysis of 2D-FT-ESR spectra in this
crystal S2, illustrated how one could explore a more detailedegime. This has recently been accomplished for the standard
dynamic modef. Since this probe is much smaller than the model of rotational diffusion in an orienting potentiak., a
thickness of the smectic bilayer, a model involving rotational Smoluchowski equatiofif. The generalization of
rotational—translational coupling originally due to Moro and one-dimensionallD) cw-ESR slow motional simulations to
Nordio'® was utilized. In this model a small probe is as- include the SRLS model, though complicated, has recently
sumed to experience an orienting potential which dependseen achieved by Polimeno and Fré2uVe present here the
upon its location in the smectic bilayer. Thus, as the spirgeneralizations needed to include the SRLS model into the
probe translates through the smectic layer, its orientationaimulation of slow motional 2D-FT-ESR spectra. We again
potential is modulated. This model was useful in explaininguse the approach of globally fitting a set of 2D-ELDOR
the 2D-ELDOR cross-peaks and their angular dependencspectra as a function of mixing time by modern non-linear
but could not simultaneously explain the magnitude of theeast squares methods in order to obtain optimum ordering
measured homogeneods’s and their(weak) angular de- and dynamic parameters from the very extensive data sets
pendence(Here the angular dependence refers to the orienresulting from such experiments:?! Thus the rapid calcula-
tation of the nematic director with respect to the appliedtion of theoretical spectra for the SRLS model is a practical
magnetic field for the macroscopically aligned sample. necessity.
More recent measurements of the anisotropic translational It is also important to note that our experimental format
diffusion of this probe in the smectic phase of S2, have howof obtaining the 2D-ELDOR spectra for 6—8 different mix-
ever been interpreted successfully in terms of such a modéhg times actually presents a third dimension to the experi-
combined with a free-volume mod¥l.We explore further ment. That is, the relative intensities and the shapes of the
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auto and cross-peaks of a 2D-ELDOR spectrum may be obkslearing point. Samples were prepared in 2-mm-o.d. glass
served as they change with mixing time. This is a source ofubes after deoxygenating them with standard procedures and
the extensive spectral information that we find very useful tosealing them under vacuum.

critically assess deviations from simple Markovian behavior =~ ELDOR experiments were carried out on a home-built
in the molecular reorientation. In the presence of a dynami¢T-ESR spectrometér*?as a function of temperature cov-
cage, molecular reorientation is necessarily non-Markoviangring all the mesophases. These experiments usesl2a

so that this is an important feature of the experiment. In our— t,—#/2 — T,,—m/2 — t, pulse sequence. Similar experi-
theoretical analysis of the SRLS model we include both thenents were also performed using the COSY sequence of
usual Smoluchowski-type diffusive operator, which de-z/2 — t,—=/2 — t,. The width of ther/2 pulses typically was
scribes the rotation of the probe in a mean potential, and thabout 5 ns, which provides nearly uniform spectral rotation
diffusive operator for the rotation of the local structitee into the rotatingx—y plane over at least a- 75 MHz
cage)formed by the molecules in the immediate surround-bandwidth>?*2°The signal after the last pulse was sampled
ings of the probe. As a result of the probe—cage interactioevery 1 ns, which is obtained by an interleaving method, and
potential, neither the motion of the probe, nor that of theit yielded 256 data points. The separation between the first
cage, can separately be regarded as Markovian processeéso pulses, oit;, was stepped with 128 steps of 2 ns. The
Instead, it is their collective motion which exhibits Markov- spectrometer dead timey was 60 ns, while the minimum
ian behavior in the form of a multi-dimensional Markov pro- separation between pulses was 50 ns. A(82step dual
cess. quadrature phase cycling sequence for 2D-ELD@®SY)

The validity of a SRLS or cage-type model for fluids has provided the complex signal with respecttioandt,, and it
recently received support from another source. In a molecuprovided for subtraction of all unwanted sign&fs?*2> A
lar dynamics study of a simple diatomic molecular fluid, thefyll data collection required about 20 minutes for 2D-
use of a cage, defined in terms of the ensemble averagedl DOR. Each step in the phase cycling sequence was an
instantaneous interaction potential of all molecules acting owerage of 500 signals.

a probe molecule, led to a stochastic model that was very The Samp|e temperature was regu|ated using a gas flow
effective in interpreting the results of the molecular dynam-type Cryostat with a commercial temperature controller
ics calculatiort” The SRLS cage model we use in this work (Bruker, model ER 4111 VJTto an accuracy of about 1 °C.

is very similar to that stochastic model. In the present casghe magnetic field was stabilized using a standard field-
for ESR, we are only interested in Ionger times, Whereinfrequency lock arrangeme(Warian Fieldial, Mark |D, lead-
inertial effects may be neglected, and we also allow for gng to a typical field stability better than 10 mG (or about
macroscopic or mean orienting potential. Ultimately the rel-3 parts in 16) during a 20 minute data collection. The mi-
evance of the SRLS model must be judged(grthe quality  crowave frequency was stabilized to an accuracy of about
of the fits obtained versus those for the simpler Standal’%l kHz (Or about a part in ]_70 (using a Microwave Systems
model (or other models and (i) the extent to which the |nc., Model MOS lock box). Rotation of the sample director
ordering and dynamic parameters obtained for the probgiith respect to the static magnetic field is achieved by
molecule and the cage are physically reasonable. mounting the sample on a suitable goniometer.

In Sec. Il, we present experimental details. The theoreti-  |n both the 2D ELDOR and COSY experiments the dual
cal approach used to include the SRLS model into the SLEjuadrature data were transformed to e combination
method for simulating 2D-FT-ESR spectra is detailed in Secfor analysis. In all these cases there was no observable signal
lll. Our results are described in Sec. IV, and are furtherin the S., combination of the dual quadrature data. In the
discussed in Sec. V. Conclusions appear in Sec. VI. S, and Sz phases these experiments were carried out as a

function of the orientation of the director at two temperatures

in each phase. The 2D-ELDOR measurements were per-
Il. EXPERIMENTAL DETAILS formed for different “mixing times”Tm. _T_ypicz_illy these _

spectra were recorded for at least six mixing times ranging

The liquid crystal N-(p-butoxybenzylidene)-p-n- from 90 to about 300—400 ns, the signal to noise ratio being
octylaniline (40,8) was prepared earlier in this laboratory, the limiting factor for stepping oul,, further. The spectra
and the transition temperatures were confirmed by differenshowed no significant instrumental artifacts, and hence the
tial scanning calorimetry measurements as: time domain data were directly used, without any further

. . . i processing, to generate 2D magnitude Fourier spectra.
034—»CS 4168 GiCN7LCI 1) The magnetic parameters of CSL in 40,8 solvent have
B A ' been given previously. They are A,,=A,,=5.27GA,,

The smectic layer spacing for 40,8 is estimated to be=33.44Gg,,=2.0089g,,=2.0058¢g,,=2.0021. For CSL
about 28 A from the value for 40,7 of 26.8 A obtained by the magneticx-axis is along the N—O bond, and the mag-
X-ray measurements. The nitroxide free radical '33'- netic z-axis is along the nitrogep— 7 orbital, with the mag-
dimethyloxazolidinyl-Noxy-2', 3-5a-cholestandCSL) was  neticy axis perpendicular to both. It is also known from the
obtained from commercial sources. Solutions of CSL in 40,8tructure that the magnetisaxis is parallel to the rotational
at a concentration of about>x410~3 M were prepared by y-axis, and the magnetig-axis is tilted 15° with respect to
mixing them very well for a prolonged period just above thethe diffusionalz-axis, leading to a corresponding tilt between
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the magneticx-axis and the diffusionak-axis?%2® (Tradi-
tionally one refers to the principal magnetic axes ¥,

y”, andz” and to the principal axes of rotational diffusion &
by x’, y’, andz').”*'°Based upon molecular shape consid-
erations, and standard practice, we take the principal axes of ); AF
orientation of CSL to coincide with the’, y’, andz’ axes. oF
Thus, except for the 15° tilt, CSL corresponds to a case of .
y-ordering,(i.e., they”|z’). 2} 2
00
L er a1
IIl. THEORETICAL FRAMEWORK
ur
A. The stochastic Liouville equation (SLE) 7] )‘ /
&

Let us consider a classical stochastic set of coordinates
Q, which describe the motional degrees of freedom needed _ _ .

. L .. FIG. 1. Reference frames which define the structural and dynamic proper-
to represent the Sys_tem' A‘?Cord'”g to the ;tochaan '—'OUY'”%es of the combined system of spin-bearing probe molecule and solvent
approach, the density matrp(Q,t) is described semiclassi- cage: LF=lab frame, DFdirector frame, Mmolecular frame, CFcage
cally by the joint evolution of the internal quantufapin)  frame, GF=g-tensor frame, AFA-tensor frame.

degrees of freedom and the classical motional dynafics:

J . L A - -
S P(QU=—(T+i7M[p(Q,1) = po(Q], (2 mented Smoluchowski operatdf(Q°,0Q°), which depends
. upon the interaction potential between the probe and the sol-

where.7Z * is the quantum Liouville operator, i.e., the com- vent structure or cag®.
mutator superoperator associated with the spin Hamiltonian  The spin-dependent part of the SLO has been detailed in
¢ for the magnetic interactions, i.e.: previous work by LBF and PFLBF=Ref. 6, and PF=Ref.

2, 20]. When we consider the full SLO, we note that at least six

H=(Belf)Bo-g-S+yel-A-S, ©)  different frames of references have to be introduced to
whereg andA are theg and hyperfine tensors, respectively, clearly define the dynamic behavior of the spin prqibas
Sand| are the electron spin and nuclear spin operators recage system. They are the laboratory and director frahfes
spectively,By is the dc magnetic field3. is the Bohr mag- and DF), which are inertial frames, and the molecuMF),
netron, y,, the electron gyromagnetic factor. In E@) I'is  cage (CF), and theg and A tensor(GA and AF) frames,
a Markovian operator, usually a Smoluchowski or Fokker—which are frames moving with the spin probe or in the case
Planck operator, describing the stochastic motion of Ghe of the CF moving with the cagésee Fig. 1 The spin-
coordinates. The quanti®+i.f7,/f X— & is referred to as the Liouvillean can be written as the scalar operator which re-
stochastic Liouville operataiSLO). It is more convenient to  Sults from the scalar product of zero and second-rank irre-
use the reduced density operafpfQ,t)=p(Q,t) — po(Q), ducible spherical tensors and tensor operators; i.e., the
wherepy(Q) is the density matrix at thermal equilibrium: FSIT) which represent the relevant magnetic tensor compo-

p nents and the\ﬂf) which represent the electron and nuclear
E)‘((Q,t): — Z%(Q,1). (4)  spin operators in their irreducible tensor fotemd the super-

scriptx is used to denote the Liouville operator form):

The formal solution of Eq(4) is naturally given by: A [ A
W X= E E E F(|,|'Ln)* A(|,T)X

x(Q.t+tg)=exp(— Zt)x(Q,to). (5) pS9A 102 M= M Ko
Equation(5) is solved numerically after diagonalizing a ma- [ [ I
trix represente}tion of _the.SL.O. Typically in the interpr_etation => > > > > 9 'mm,(gd)
of ESR experiments in liquids, the phase spces limited w=gAI=02m=—l m/=—| m"=—|
to thg Euler angle€2° which specify the instantaneou_s ori.— ) (QO)FI I Almix ®
entation of the probe molecule with respect to an inertial 7 m'm” wM ml

frame(e.qg., the laboratory frame or a fixed director frame forHere Q4 specifies the orientation of the director frame rela-
liquid crystals). The associated stochastic operdt(®°) is tive to the laboratory frame. This spin Hamiltonian does not
usually chosen as a Smoluchowski operator, i.e., the spidepend explicitly upon the solvent degrees of freedom, since
probe is described as a Brownian rotator, in the presence oftae magnetic interaction terms are solely an internal property
static mean potential in the case of an ordered phase. In thsf the probe molecule. In E46) X{'W’ (X=F,A) stands for
SRLS model, the augmented phase sg@decludes also the the mth component fn=—1, ... ,|) in the N frame of the
collective reorientation of the solvent structure in the form ofith (1=0,2) rank irreducible spherical tensor or tensor opera-
a second set of Euler angl€¥°. The SLE is then modified tor, which relates to the interactiom (u=g or A);

by replacing the diffusional operatof(Q°) with an aug- <& 'mk(ﬂ) is a generic Wigner rotation matrix €. The mo-
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lecular components of thE tensors are defined in terms of In the course of a typical 2D-FT-ESR experiment, the
their components in the proper magnetic frame. The composystem is subjected to a sequence of microwave pulses. The
nents of theF and A tensor operators are summarized in pulses are usually strong and approximately non-selective,
LBF and PF. i.e., they affect the spins over a wide frequency rahgel-

The dynamical coupling between the probe and colleciowing LBF, we shall assume for simplicity that only ideal
tive solvent modes for the SRLS model is contained in thenon-selective pulses are us¢Hffects of imperfect coverage

two-body Smoluchowski operator: may be corrected for empirically as discussed elseviffere
o o e e S The evolution of the density matrix after a pulse of duration
[=J°.R°.P qJ Pe +J R® Peq)“Peq - () t, is then given a$:
Here J° is equal to the vector operator that generates an p(t0+tp)=:ﬁp(t0)=|5p(t0)|5‘1. (13)

infinitesimal rotation of the probéexcept for a factor-i),
with components specified in the MB? is the equivalent
operator for the cage, with components specified in the C
The diffusional tensor&° andR°® are time-independent and
diagonal in the MF and in the CF, respectively. The Boltz-
mann distributionP, is defined with respect to a generic
potential V(Q°,Q°):

Thus a complete formulation for interpreting a 2D-FT-ESR
I:experlment requires the specification of the pulse propagator
operatorP. This is given in LBF, in the absence of the cage,
in terms of the matrix which acts on subsets of the set of
basis vectors used to represent the S&€e below). Here we
shall generalize that expression to include the presence of the
solvent degrees of freedom. However, we have first to define

Ped 2°,Q°) the complete set of basis vectors and to outline the compu-
tational procedure employed to evaluate actual 2D-ESR
=exfd —V(Q°,Q%/kgT]/{exd — V(Q°,Q°)/kgT]) spectra.
(8)
and

_ B. Basis vectors
V(Q°,0° =V°(Q°) +VM(Q°— Q°)+Ve(Q°). 9) . ) A A
The generic basis set for representifrgandP is given
As in PF the probe, cage, and interaction components of they a direct product of spin operators and Wigner rotation
potential displayed in Eq9) are explicitly defined in terms matrices which span the space of the two sets of Euler
of second and fourth rank Wigner matrices as, respectivelyangles, (i.e., Q=Q° Q). Detailed descriptions are pre-
sented in PF and LBF, so only a brief summary is given here.

(Q0)= ivo(ﬂo) Basis states of the spin Hamiltonian for a single electron
kgT spin may be written agS,mg) in Hilbert space. Each “spin-
transition,” which is an element of the basis for representing
=— 2 {a 7 00(2%) the spin superoperatorZ *, can be characterized by the two
transition numberspS=mg—mg and qS=m+mg, where
+ah Z Q0+ 7§ _,(Q%)]}, (10)  for the case o5=1/2 the values opS==1 denote the two

counter-rotatingx—y components of spin magnetization,
and pS=0 accounts for the component. Similar quantum

C(QC)— VC(QC) (I ; .
numbersp’, g can be defined as the transition quantum
numbers for the nuclear spin Thus in Liouville (transition)
- E {bo OO(QC) space the superoperatorz * is spanned by the basis

IpS,a5p'.q")). The stochastic Liouville equation couples
the spin system with the classical stochastic phase sace
so that a complete basis for representifngis obtained by
’ 1 the direct product of the spin basis set and the complete set
v"(Q)= ﬁv'"t(n) of basis functions which span the functional sp&(®). In

B the case of the SRLS model, we use the direct product of

Wigner rotation matrices for the two sets of Euler angles
== 2 {Co oo(ﬂ) Q° and Q°:
|ps,qs,pl,ql;LO,MO,KO;LC,MC,KC>>
[ L°L c:|1/2

Equations(10) and (11) correspond to the mean potentials = |p%,q5p'.q")
experienced by the probe and the cage in a uniaxial liquid
crystal, while for simplicity the potential of interaction of the * (0 ¢
probe in the cage, given by E@l2), is taken to also be 7 oe” (Q°) 7 o™ (). (14)
uniaxial. (A brief discussion on more general potentials al-In the following we shall let the cage potentid®(Q°) of
lowing for biaxial character of the cage is given in PF.) Eqg. (11) be cylindrically symmetric. Then the symmetry of

+bh[ 7 Q)+ T4 ,(QO)]}, (12)

+C2[ v 2(9) 2(0)]} (12)
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the interaction potential between the probe and the cag&;. Matrix elements
given by Eq.(12) will enable the neglect of the third cage

c20
quantum numbeK . ments of the SLE .77 * operator in the(as yet unsymme-

In the high-field limit and when no microwave pulse is _ . : . .
Co o ; trized) basis set after making appropriate changes to take
present, the stochastic Liouville matri¥ is block-diagonal .
account of the presence of the c&§e:

with respect to the coherence order of the electron spin, i.e.; )

p>. For S=1/2 we shall distinguish between the submatrices((3,|. 7 *|3,)) = 8¢ | <Syc me[ LSLI]Y2
i 1 2 Ll,L2 Ml,M2 12

% ., (spanned by the off-diagonal subspapés- +1) and

%, (spanned by the diagonal spagg=0). The three ma- ! S

trices can be diagonalized separately by different complex X E 2 E 2 E D o

Following Meirovitch et al.?® we write the matrix ele-

orthogonal transformations: #EQAIZ0ZME Tl =
] L L9
o' YO, =A,, (15) X (Qy)
m m=Am M MS-MP —M3

wherem=0,*1; O,, and A, are, respectively, the eigenvec- Lo | Lo

tors and eigenvalues matrices for timéh subset. The diago- % (1) 0 o 20) Fﬂ'm”)*
nalization of each submatrix can be performed by using a Ki Ka—=Ki —K3/ ™

suitable iterative algorithm like the Lanczos or the conjugate ~(1.m)

gradient’?8 algorithm. X({(a|AL T 02), (19)

The pulse propagatdA? is still to be defined. For a par- where the effect of the spin operators is concentrated in the
ticular coherence pathway we may wrﬁg:pfﬂg) as the cor- last factor, which contains the reduced matrix elements that

responding pulse propagator, whexgandp$ are the coher- depqnd only upon the_ spin part of the bgsis set. The reduced
ence orders after and before the pulse, respectively. EadRatrix elements are given, for example, in PF. Heig) and
such pulse propagator is proportional to the unit matrix spank?)) fespectively represent the complete set of quantum
ning the associated sub-spaceffihe matrix representation NUMbers and just the subset of magnetic quantum numbers.
of the SLE. Each non-zero element shows a typical deperfPetailed expressions of tiie and A tensors, for the hyper-
dence on the phase of the pulse, which we may write afine t€nsor f=A) and electronic g-tensog(=g) are given,
((prP |p§'>> o exq—i(pf—p§)¢].6 This provides the basis for example in PF. The indice®l andL are referrgd to the

for the selection of the coherence pathway by phase cyclind!F @nd LF, where theF and A tensors respectively are
The 2D-ESR signal for a particular experiment may be writ-naturally defined. - ot 17

ten down quite simply oncé) the matrix representation in The symmetrized diffusional operatdr=P; TPy

the diagonal and off-diagonal subspaces of the operator 12s & more complicated matrix representaffoh.is conve-
Obtained’(ii) the matrix representation of the pu|Se propagaﬁient to Spllt the operator into four distinct contributions:

tor to switch between the sets of subspaces is obtdfneah T'=Tsymy Tasymy psym, pasym (20)

Eqg. (11) of LBF); and(iii) the eigenvalues and eigenvectors

of the SLE are found. For example, théD signal can be The first two terms do not depend upon the potential; the
written as® axially symmetric term is:

TM=R J%2+ (RP— R)J%2+ ROI2, (21)

_ _ _ _ Here we are assuming an isotropic diffusion tensor for the
where P(.1._o)po is the density matrix after the first/2  cage,R°=RC1 for simplicity, (or more preciselyR® may be
pulse. The two-pulse COSY5.. signals have coherence replaced byRS for an axially symmetric diffusion tensp?

SPa ((v_1|O_sexp(— A _1t;)O", [v_4)), (16)

pathwayspS=0— *=1— —1: they are written as: The asymmetric term is:
Sg?le“ <<Ufl|o—1eXF(_A—ltz)otfrlp(fkil)oil [eom= Rg(J;’Z—JSZ), (22)
here
X exp(—A+1t1) O Ju1)). an "
, R+Ry
The ELDOR S signals with coherence pathway Ri=—— (23)
pS=0—*1—0——1 are given by:
R/=R7, (24)
SEE?OR“ ((v_1|O_1exp(— A _1t5)O" 1P(_1. 0Op RO_ RO
R9=—"1"2 (25)
Xexp—AoTmOgP 0 +1)0+1 d 4

Xexp(—A+q1t)0% |v.s)). (18) andRg, Ry, andR7 are the 3 principal components of the
rotational diffusion tensor for the probe expressed in the mo-

The COSY signals are formally equivalent to the ELDORlecular frame(MF) in which this tensor is diagonal. Since
signals for zero mixing times, i.eT,,=0. I is independent of the spin degrees of freedom, we have:
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(B4l T15)) = 8, o (MITINS), (26) A K=[2(14 ko] "1 (34)

where [N)=[L°M°K°L°M®). The matrix element ofsym

andT@M are readily evaluated: and nowK is a non-negative number, where

(M™M= 85, p [RILO(LO+1) +(RP— RY)K®2 .
for K°=0, j*=(-)",

+RCLS(LS+1)], 27) (35)
(MIT*A,)= 610 L9duo modie L5Oue s for 0<KOs<L®, jK==+1.
a
X7[0[2K20[2K2,15K3,Kg—2 Symmetrization with respect tM°, M¢ and p', which is
included in order to exploit the symmetry properties of the
+c:0K0c:0K0+15Ko ko4 2] (28)  Liouvillean at high field values, is substantially different
22 a2 172

from the standard M-symmetrization” which was used in
The functionsF¥Y™ and F2Y™ can be written in the form of the pas{LBF), for the case of a single Brownian rotator. We
an expansion of probe—cage normalized Wigner functions: shall refer to the present, more general case, as
M t-symmetrization, wherdlt=M°+MF is the projection

V(Q°,0% =" u,/\), (29)  quantum number relative to the &= axis of thetotal “an-
Y gular momentum”(i.e., probe plus cage “angular momen-
tum”):
FYMQP, Q%= fY"A), (30)
A

|psqsp|q|;LOMOKOjKLCMCj>>M
FasyM Q0,0 = fah). (31)
A
=,/]/M[|psqsplql;LOMOKOjKLCMC>>

The v, parameters are easily related to the natural potential s s e ou0: Ky .
parametersl , b\, andc!. in Egs.(10)~(12), respectively; +js[p>—g>—p'q";L°—M° K L —MF))], (36)
the f, are calculated in terms of complicated sums of the
vy.2% The matrix elements are completely defined once th
integral of thred\) functions is explicitly written in terms of
products of integrals of Wigner rotation matric8s.

Following LBF, additional relaxation terms have been SS:(_)L°+L°+M°+M°+qS, (37)
included in the 2D-ESR formulation which were not present
in the previous cw work of PF, namelyi) the Heisenberg
spin exchange contributiofi.,, whose magnitude is mea- A M=[2(1+ Sy0,00mc 08p1 00501 2 (38)
sured by the Heisenberg frequensy; (i) the rotationally
independent electron spin flip terrﬂwe, measured by the

electron spin flip ratéV,; and(iii) the rotationally indepen- "1 for all other allowed combinations of these four quantum
dent nuclear spin flip ter , measured by the nuclear — W inatl . ur guantu
" pin Tip ern u y ! numbers(cf. PF). (When M%=0, then this reduces to the

spin flip rateW,,. These terms are basically the same in thestandard ‘M -symmetrization.”)The SLE matrix elements in

gresendce Orr";]c_the a|1.b§ence of t.he SRLS’. smcg tt%deo nﬂ’ie symmetrized basis set are easily related to the unsymme-
epend upor2°; explicit expressions are given by . trized ones as expressed in PF.

The symmetry properties .Of the SLE may be ex_pI0|t_ed The starting vector element in the symmetrized basis set
k_)y represen_tlng_ the operator in a new ba_S|s set Wh'Ch IS & simply related to the unsymmetrized basis set representa-
linear coml_::mgtlon of unsymmetrlz_ed .ba3|s functions. Thetion of the Boltzmann distribution of Eq8). We associate
K-symmetrization andMT—symmetrlgat|on for the SRLS the cw-ESR spectrum with the spectral density related to the
problem h_ave be_en a_Irea_dy discussed by PF. Th?—component in the LF of the electronic magnetization, so
K-symmetrized basis set is given as: that the appropriate starting vector is proportionafSt_o:
[P%a%p'q"; LMK LM ) )

Svhere the following quantities are defined:

andj=(—)-"*° whenp'=M¢=M°=q5=0, and is equal to

=" [|L°M°K°L° MK p°a®p'q')) o N =[11"13S. 01 PL2), (39)
+jKSK|LOMO—KOLCMCchSqu|q|>>], (32)
where where 1, is the unit operator in the nuclear spin space. The
e starting vector generic element in the symmetrized basis set
s= ()t (33) s then given by:
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(Zlv )y =176y 00)ps (14 ) (L+])(A] Pé{q , (400 Po_=1)|*1,0p',g";LOM KO ELME)))y

where. /" is the normalization for the fully symmetrizei°
andM symmetrizationpasis sefcf. PF). The reduced vec-
tor element p=(A|PL?) can be evaluated by factoring the
equilibrium distribution, and then using the completeness of
the |\) space(cf. PF).

Finally, we need to find an explicit expression for the
pulse propagators in the symmetrized basis. The task is a
straightforward generalization of the formulas presented by
LBF. The pulse propagator for the conversion from the off-while the pulse propagator for the conversion from the diag-
diagonal space into the diagonal space is then given as: onal space into the off-diagonal space is:

== (14 81 oSmo,00mc0) M2
x[10,1p',q";LOMOK KL M ) )y
+j(_)L°+L°+M°+MC

X10,~1,—p',q";L°= MK L= M°}))y] (41)

(1+ 8p1,00m0,00me.0) VA1 1,0,p',9"; LOM K KLEM ] ) )y
_|_ 1,O,p|,q|;LOMOKOjKLCMCj>>M), MO>0

j(_)L°+L°+M°+M°(|1,0,_ pI,qI;Lo_ MoKOjKLc_ Mcj>>|\/|
—|-1,0,-p',q";L°— MK KL= MCj))y), MO<O.

Pi+1.000,1p",q";L°M°K%KLMC) ) )y = (42)

The pulse propagator from th@S=1 space into the The dimensions of the matrices which must be handled
pS=—1 space, which appears in the COSY experiment, isre quite large. Due to the presence of two additional quan-
again a unit matrix. tum numbers|.©, M€, the computational effort, compared to

the traditional single-body Smoluchowski approach, is defi-
nitely increased. However, symmetries contribute to keep the

. ._nhumber of basis functions to a manageable number. First of
The problem of calculating the 2D-FT-ESR spectrum 'Sall, only even values of® are included, due to the absence

thus_reduce_d to '_[he d|ag_onal|zat|on of the_two complex SYMGt odd rank Wigner functions in the cage potential. Second,
metric matrices in the diagonal and off-diagonal subspaces,

) : . ih the absence of director tilt, the projection humbers along
The necessity of calculating the eigenvectors as well as th . ) o c 1.
. " . o the LF z-axis obey the selection rulel®+M®=p': the re-
eigenvalues is the main source of the additional computa-

tional effort that is required in the 2D-FT case with respect tooulting reduction in the dimension of the basis set amounts to

cw ESR, where eigenvalues are required, but only the pro@t !east a factor of 10.. Still th.e dimensions of the matrices
hich have to be diagonalized are respectaple to

jections of the eigenvectors on the starting vector are needed. ) . :
The Lanczos algorithfd?®can be used to first tridiagonalize 50(10521 for @ typical slow-motion spectrum with
the matrices; next ther algorithnf272%is employed to find =10"s " andR°=10° 5] , . ,
the eigenvalues. The eigenvectors corresponding to dominant However, one can determine a minimum set of basis

eigenvalues are found by inverse iteration. vectors by using the “pruning” technique described by
Vasavadaet al*® This technique is based on the idea that

only a subset of the original basis vectors is actually needed
for a satisfactornyfwithin a given percentage erro¢) agree-

D. Basis sets

5.00 : . d ) ;
ment with experiment. First the solution vector of the related
b, cw-ESR problem is found. Since each element in the solu-
log N I~ tion vector is a measure of the relevance of the correspond-
e ing basis vector in representing the cw-ESR spectrum at each
225k el ' sweep-field position, one can perform this analysis for a

1.50

FIG. 2. Logarithm of the dimension of the pruned basis set as a function of’ . . . . .
the percentage tolerance, Curve a is for the PDT case; curve b is for the diffusion coefficients)s obtained. Following Leet a

CSL case.

number of field sweep positions and retain all the basis func-
tions whose projection on to the normalized solution vector
is greater than a given toleran@esuallye=3% is enough to
assure a sensible agreement).

Once the minimum required basis set is obtained, a sys-
tematic comparison between the experimental 2D spectrum
and the simulation is performed until the best fitting set of
parameters{potential coefficients, probe diffusion agtzjlcage
. a

non-linear least square fitting criterion, which is based on the
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FIG. 3. Comparison of experimental and simulated 2D-ELDOR spéstaak plots), based on SRLS and standard models, at representative temperatures in
each phasda) isotropic, 91 °Cy(b) nematic, 66 °C{c) smectic A, 59 °C{d) smectic B, 41 °Cfe) crystal, 29 °C. Leftright) column is forT,,=90 ns(250)

in (a), 90 ns(200 ns)in (b), 110 ns(250 ns)in (c), 200 ns(300 ns)in (d), and 200 ng400 ns)in (e). Top spectra are experimental, middle spectra are SRLS
simulations, bottom spectra i), (b), and(c) are standard simulation&) is shown above, and Fig&)—(e) are shown on subsequent pages.

Marquardt—Levenberg procedure, has been used in the cadesth for the probe and interaction potentials, were deter-
considered in this work. mined in the range of 1-RgT. The basis set employed for

Two sets of simulations for paramagnetic probes disthese calculations was selected by starting with truncation
solved in an ordered phase have been performed. The first sedluesL? . =8, MS_ =4 K% =4, LS =6, M. =6; be-

max max max max_ max
was used in the study of PDT dissolved in 4@;8 Ref. 15.  fore pruning, this corresponds to a total number of 2960
The motional rates in that case are relatively large sincéunctions for the off-diagonal subspagaote that this is the

R°~10' s7! and R°~10° s 1. The potential coefficients, dimension after applying the selection ruié°+M°=p').

J. Chem. Phys., Vol. 105, No. 14, 8 October 1996

Downloaded-25-Jan-2010-t0-128.253.229.158.-Redistribution-subject-to~AlP-license-or-copyright;~see-http://jcp.aip.org/jcp/copyright.jsp



5762 Sastry et al.: Liquid crystals ESR. |

10 10+
9
8 Exp’l 8 w
g 3 ‘1‘,"
6 <6 l")
3 o) il
2 3 f “
: B il
g ; § W“ w
= = i
2 LS 2 ,45//'““ v
AN i At ’“ vl ‘\\
\Ia"‘“ .‘ y ‘\““ “\\Y' “‘i‘”{"
50 sl 50 R ,‘,‘5‘.:‘,!:;‘ R0

100 0 100

SRLS

g s
< <
Q [}
: i E
AE “ 'E
g /I'Q”‘“\ g
= gl ,
:‘:"“.““‘) M ‘31:‘.“0‘0":';’/ /I/"‘:\\\ o
A DN NN
i \“““')"I’ AN ".‘“\\\\\x\‘:‘:.:clll////ll ‘“
:o::::“:\s\\:‘\\\“.%/,l l ! 0‘0.“\‘\\\}“\\\._.,:,'5,/;;’/:{%;::3::; e
100
100
- _ -100 -50
H (MHz) 100 -50 f2 (MHz) 1 (MHz) 12 (MHz)
10+ 10

Magnitude (Arb.)
Magnitude (Arb.)

".W/I

Ny
o

il
"' //:' £\ RN
(R
SLOOAR
W

o‘o"’llllfll T
2 P
A
X

100

®) g1z 100 50 f2 (MHz)

FIG. 3(b). See caption to Fig(8).

After pruning (with a 3% toleranceone obtains a reduced With a severe 0.05% tolerance, the basis dimension is nev-

set of 139 functions. ertheless reduced to 1204. The dotted vertical line marks the
The large reduction is mainly due to the curbing of the3o, value.

quantum numbers related to the cagéandM®. As a result Notice that after pruningwith a 3% tolerance), the mini-
ofcthe pruning,L .vglues larger than 4 were discarded andmum truncation schemeMTS) is given by LC_=6,

M€ values were limited to be between 2 and. Such large 0 Ko 4 _qepl=2 LE —4 d —4<Mc<2
reductions in the dimensions of the pruned basis sets arjgl{“ax_ max~ T ASP=S Lma g an RN
partially due to an overestimation in the size of the initial PYiOr to pruning, this MTSbut with [p'|<2 and[M°|<4)
basis set. We show in Fig.(& how the logarithm of the corresponds to 1262 functions, which is significantly larger
dimension of the pruned basis set depends on the tolerandian the pruned basis set of 297 functions.
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FIG. 3(c). See caption to Fig(&.

The second set of simulations were performed in thewvas reduced to just 1252 functior&or a 1% tolerance the
present study of CSL dissolved in 40,8. Since CSL is muctpruned set is made up of 4091 functionafter pruning (3%

; ~ —1
larger than PDT, the motional rates are lowe{,~10® s tolerance), the MTS was found to He =14, M%_ =6,

Cae 10y — ~1 i i i m
andR°~10'—10° s~ 1. Also the poterjtla! _coefﬂments are in Ko =10, —1=p'=2, LS =10, —6<M°<2. Prior to
the range of RgT. Consequently, a significantly larger basis ; ) !

i : runing, this MTS(but with |p'|<2 and|M¢|<6) corre-
set had to be used. Initial truncation values chosen wer8 '
LS., =18 M, =12, K% =12, LS =12 M°=12. Before SPonds to 22623 functions. Figuréd2 shows the reduction
pruning this corresponds to a total of 58 884 functions for theof the pruned basis set dimension with increasing tolerance

off-diagonal space. After pruningvith a 3% toleranceit  for this case.
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FIG. 3(d). See caption to Fig(8).

IV. RESULTS Tm=200 ns. One sees a large difference between htease
. nd the ordered ph he macr ic alignmen n-
The magnitude 2D-ELDOR spectra that we have ob-a.1 d the ordered phases as the acroscopic alignme t co
. . : : .fines the 2D-spectra to a smaller region of frequencies. This
tained over a range of temperatures including the isotropic S .

. . . compression is largest in th®,, Sz, and C phases. The
(1), nematic (), smectic A G,), smectic B &), and crys- .

g . weaker development of the cross-peaks in $eand C

tal (C) phases and over a range of mixing timé&s, are

illustrated as stack plots in Fig. 3. For compactness we onl hafe_:hlssalso sz'den;' | ducted . i
show results for two different mixing timesather than all N IN€ S, andog phases we aiso conducted experiments
six or eight obtainedat a given temperature, and we only as a function of orientation of the nematic director with re-
display results for one representative temperature in eachPECt tO the dc magnetic field. Here, for each orientation, 6-8

phase. All spectra shown in these phases correspond to tigXing times were again studied. We show in Fig. 6 ”le
nematic director aligned along the dc magnetic fiile,, the ~ Progression of the 2D-ELDOR spectra obtained at 57 °C

Euler angles, in Eq. (6) are given by(0,0,0)]. In Figs. (Sa phasewith tilt angle ® for T,,=400 ns. The pattern of
3(a), 3b), and 3(c)we show the 2D-ELDOR spectra for @uto and cross-peaks is seen to depend significantly upon
T,=110 and 250 ns for thé, N, and S, phases, respec- @. This includes substantial variation in their location with
tively, and in Figs. &l) and 3(e)the spectra for th&g and ~ respect tof; and f,, as expected for a macroscopically
C phases respectively are for somewhat longer values diligned sample, and in the relative intensities of the cross-
To. In each case one observes the cross-peaks growing in B§aks. The cross-peaks reflec?V, the nuclear-spin-flip

T, increases. This is clearest for theN, and S, phases, rate generated by the electron—nuclear dipolar interaction
which are the most fluid. The cross-peaks are weaker angd.e., the second term in Ed2)) and are expected to be
develop more slowly for th&; andC phases. In Fig. 4 the strongly dependent upo® in macroscopically aligned
development of the cross-peaks can be followed for one tenphases:’

perature(59 °C) in the S, phase in a contour plot. Also, in The 2D-ELDOR spectra fo® =0 were initially simu-

Fig. 5 the different behavior in the five phases is comparedated by both the standard and SRLS models. In all the
with contour plots all obtained at the same mixing time ofphases the simulated spectra based upon the SRLS model
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FIG. 3(e). See caption to Fig(8.

were in better correspondence with experiment than was theicular rotational diffusion coefficients of the probe were
standard model, and this difference became greater in thabout 6 in thel and N phases corresponding nearly to the
ordered phases. The final analyses were then performed lgtio expected from Stokes—Einstein—Perrin considerations
NLLS method$' simultaneously including all 6-8 mixing and the molecular geomettj.e., 5, cf. Ref. 3L However,
times at a given temperature. These complete NLLS fits werthis was found not to be the case for tBg, Sz, andC
performed for the SRLS model for all the temperatures studphases, which required a larger value of this ratio, of about
ied and for the standard model for representative temperat5—30. The simulations based on the standard model, on the
tures in thel, N, andS, phases. The best fitting parametersother hand, led not only to poorer fits compared to the SRLS
from these fits are presented in Table I, and associated simmodel for this phasécf. Fig. 3c)), but they also led to very
lations appear in Figs. 3 and 4. The evolution of the 2D-high and unrealistic apparent valueshvbf over 200. Simi-
ELDOR spectra withl,, was found to play a very significant lar observations were made earlier by Meirovich and Freed
role in our comparison of the success of both models. Evein their cw-ESR study of CSL in 40,8 and other liquid crys-
for the | phase fits, one observes how the standard mode&l solvents.

requires the cross-peaks to develop too rapidly with mixing ~ We did not include thé® # O results in our analysis,
time, whereas their development is more correctly predictetbecause they led to exceedingly long times for the simula-
by the SRLS mode(cf. Fig. 3(a)). This is again true in the tions. The reduced symmetry of the problem can increase the
N phase(cf. Fig. 3(b)). Greater discrepancies between ex-basis sets required by as much as an order of magnitude. In
periment and simulation with the standard model appear ithe lower temperature phases, we already required 60 to 70
Fig. 3(c)for the S, phase, whereas quite good agreement ishours of computer time to fit a set @ =0 2D-ELDOR
achieved with the SRLS model. This agreement is reinforce@dpectra at a single temperature. Thus the inclusio® of 0

by the comparison of contour plots in Fig. 4. Figurdsl)3 spectra would have led to prohibitive times for the computa-
and 3(e)illustrate the fairly good agreement with the SRLS tions.

model obtained for theés; and C phases. In our fits, we We present in Table | a listing of all the parameters
found that the raticN=R}/R{ of the parallel and perpen- obtained in our NLLS fits of the SRLS model to all the
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FIG. 4. Comparison of experimentdeft column)and simulatedright column)2D-ELDOR spectrgcontour plots)based on SRLS model at 59 °C in the
S, phase. Upper, middle, and bottom rows correspond@, fe 90 ns, 170 ns, and 250 ns, respectively.

spectra obtained fo® =0. One notes the extensive number which appear in Eq(10) and describe thémacroscopic)

of parameters that are simultaneously obtained from theseean aligning potential experienced by the CSL in the or-
fits, 10 in all. In addition td?ﬁ’ andR?, the reorientational dered phases. They are plotted ¥sin Fig. 8a), and the
diffusion coefficient of the cageR®, is also obtained. These resulting order parameters S(ZJ:(”J%’O(QO)) and
three diffusion coefficients are plotted Vsn Fig. 7. We also ~ S3=( 74 (Q°)+ 7§ Q°)) obtained from Eq(10) in the
obtain the dimensionless potential coefficieafs and a3,  standard way, i.e.:
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FIG. 5. Contour plots of experimental spectra at a fixed mixing 289 ns), at representative temperatures in each of the phasé&sotropic, 91 °C;(b)
nematic, 66 °C{c) smectic A, 56 °C;(d) smectic B, 41 °C{e) crystal, 29 °C.

cg, which appear in Eq(12) and describe the potential of
(Zok(Q) = f dQ° 75, (Q%)ex] —v°(2°)] J dQe
xex —v°(Q°)] (43)  are plotted vsT in Fig. 9a), and the resulting local order
parameters S ,=(Z5(Q))  and  S,=(Z5 Q)
are shown in Fig. 8(b). The dimensionless coefficiedtand +75_,(£2)) given by:

interaction of the probe in the cage, are also obtained. They
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TABLE |. Optimum parameters obtained from fits to the SRLS m@del.

Phase T (°C) Rfx10°(s!) RIx109(s!) aj a3 Ty X10P(s) T,eX10P(s) Ag(G) ¢ c; R°X1077 (s
[ 96.2 0.62 0.119 0.068 0.135 112 110  0.96 2.03

[ 91.0 0.57 0.094 0.077 0.152 1.07 104 095 0.90

[ 86.1 0.53 0.088 0.072 0.188 115  0.69 1.00 0.43

[ 80.2 0.49 0.080 0.110 0.187 1.02 073  0.96 0.48

N 731 0.77 0.138 1.93 146 0.582 0.095 086 1.85 062 1.08
N 70.2 0.68 0.131 215 086 0.582 0.111 093 200 062 1.40
N 67.5 0.65 0.121 250 112 0.582 0.122 082 1.84 081 1.01
N 65.0 0.54 0.101 274 127 0.582 0.138 080 172 062 0.84
Sa 59.1 2.37 0.081 357 084 0.288 0.283 094 226 082 0.33
Sa 56.4 2.36 0.086 379 116 0.359 0.343 101 223 078 0.32
Sa 53.6 2.48 0.077 415 144 0.478 0.442 111 225 079 0.33
Sa 50.8 2.33 0.083 468 117 0.316 0.196 128 162 074 0.28
Se 44.4 3.23 0.150 749 —0.62 0.185 0.092 119 0.215 -0.029 0.022

Se 40.7 2.86 0.115 7.78 —0.50 0.178 0.098 119 0.191 —0.003 0.021

Se 38.1 2.77 0.150 7.55 —0.58 0.206 0.095 121 0.246 —0.010 0.022

Se 35.2 2.09 0.141 7.62 —0.88 0.216 0.103 1.23 0451 —0.027 0.015

C 29.1 2.00 0.124 7.61 —0.86 0.216 0.108 1.23  0.200 —0.004 0.010

c 24.6 1.98 0.137 7.96 —1.40 0.216 0.116 123 0.075 —0.002 0.000

&The average percent errors to the parametersc,gﬁre 1.5, €ro= 2.7, €a2= 1.8, €a2= 1l e, = 2.5, €T, = 5.0, €A~ 1.6, €2= 2.5, €2= 2.7, ege=3.7.

_ The diffusion coefficients shown in Fig. 7 exhibit some-
(E%K(Q)FJ dﬂ@bK(Q)exq_U'nt(Q)]/ fdﬂ what interesting behavioR? is found to remain at about
, 10° s ! over the observed temperature range. There is some
Xexg —v"™(Q)] (44)  slowing down with decrease in temperature in thand N

appear in Fig. ®). These are the principal parameters ofPhases. There is essentially no temperature variation in the
interest in the present work. The additional parameters thata Phase, but there is a small increase in Saephase R},
were fit are(i) T, the electron-spin longitudinal relaxation Which is about 6<10° s™* in the | and N phases, shows
time; (ii) T, 2 which includes additional contributions to the Similar behavior, except for its substantial increase in the
homogeneous linewidth not produced by the rotationalSa Phase compared to ti¢ nematic phase, which yields the
modulation of the hf angj-tensor terms in Eq(3), such as increased rotational anisotropy noted aboReé.is of order
spin-rotational relaxation and intramolecular dipolar interac-10’ s™* in the | and N phases and is thus substantially
tions between the electron spin and the CSL and solverlower thanR? or R}’ as one would expect. It decreases in
protons? (iii) A ¢, the inhomogeneous contribution to the both phases with a decreaseTirtexcept near thé-N phase
linewidths assumed to be Gaussf&i.Note thatAg shows  transition), while it remains practically constant in tBg
only small variation with phase as expected. One expectghase. The onset of ti& phase brings about a large drop in
that T, .<T, , from general consideratiods® We find that ~ R° to about 18 s™* signaling an abrupt freezing of the cage.
our results are consistent with this inequality for all the or-  In Fig. 8(a)we see that the mean field potentiglshows
dered phases. In the isotropic phase it would appear tha steady increase through tNeand S, phases, which is the
T, is shorter than thél,, from the additional linewidth generally expected behavior. However, there is a sudden
contributions. Note, however that theT{s—T,a)~5 large increase iraj with the onset of theSz phase. The
x10° s ! corresponds to about 0.3 G “missing” line non-axial potential termaj is seen to drop practically to zero
broadening. We do find that the fits T  andAg correlate  in the Sg phase[These features are mirrored in the behavior
somewnhaf, whereasT . is independently determined after of the order parameters in Fig(t8.] The cage potential pa-
fitting the other parameters. We believe that this correspond@meters show a very interesting and contrasting behavior in
to a small overestimate dfg and a corresponding underes- this context. The axial parameter3, which is small but
timate osz’é obtained for this phase. A similar defect shows significant in thel phase, increases substantially in tRe

up for this phase using fits to the standard model, cf. Tablg@hase, with a faster increase in tBg phase, but abruptly

Il. dropping almost to zero in th&; phase, signifying that the

TABLE Il. Optimum parameters obtained from fits to the standard model.

Phase T (°C) RfXx 107 (s71) R9x107° (s7%) a2 a3 Ty X1 (s) T2.eX 10 (9) Ag (G)
[ 91 0.208 0.037 0.073 0.23 1.0
N 65 0.180 0.026 2.67 -0.99 0.59 0.11 0.77
Sa 59 9.94 0.043 3.68 1.81 0.094 0.28 1.15
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FIG. 6. Orientation dependence of experimental 2D-ELDOR spéstagk plots)at 57 °C in the smectic A phase. All correspond td,g= 400 ns:(a) 0°;
(b) 15°; (c) 45°; (d) 90°.

probe is hardly sensing a cage on the formation of $ge within the very large orientational potential, which yields

phase. The non-axial coefficiecd in fact goes to zero inthe S2~1. In fact, we find for CSL thaB2~0.9 andS3~0 in

Sg phase. This decrease is concomitant with the increase ithe Sz phase with virtually identical ordering in th@ phase.

a5 at the Sy—Sg transition, and the large drop iRC. All In the S, phase we can still distinguish a dynamic cage af-
these observations imply a freezing out of the cage so that iffecting the CSL molecule in addition to the substantial mac-
slowly fluctuating potential becomes an additive componentoscopic orderS;~0.7. This “cage” is presumably due to

of the mean field potential at this transition. local regions of enhanced order as well as a collective wag-
ging of the nearby liquid—crystal molecules. We may there-
V. DISCUSSION fore expect that in theS; phase this process freezes out

The most striking observation that emerges from our€ading to additional macroscopic alignment which is, of
analysis of the 2D-ELDOR results on CSL in 40,8 in termsCourse, what we observe. The fact that our analysis predicts
of the SRLS model is the behavior at tBg—Sg transition.  that the cage relaxes much more slowly and only has a re-
This is essentially a melting transition wherein ®ephase  sidual effect on the CSL probe in tt& and C phases, in
is liquid-like, yet with orientational and translational order, accordance with expectation, is an encouraging result in sup-
but in the Sy phase the smectic layered structure is moreport of our model in addition to the improved fits to experi-
frozen in to yield a hexagonal close-packed structure wittment that we achieve.
strong interlayer correlations leading to three-dimensional We might expect additional improvements in the fits as
positional ordering? The principal motion that remains is we improve the SRLS model. The molecular dynamics re-
molecular rotation about the long axis of the moleclile.,  sults on an isotropic fluid showed that there should be some
the R|‘|’ motion), with perhaps some wagging of the long axislocal variation in the magnitude of the cage orientational

J. Chem. Phys., Vol. 105, No. 14, 8 October 1996

Downloaded-25-Jan-2010-t0-128.253.229.158.-Redistribution-subject-to~AlP-license-or-copyright;~see-http://jcp.aip.org/jcp/copyright.jsp



5770 Sastry et al.: Liquid crystals ESR. |

peak intensities which depend &H,, the nuclear-spin flip
rates generated by rotational modulation of ¥fi¢ hf-tensor.
Typically W, « (6R) [ 1+ (w,/6R)?] for simple isotropic
Brownian motion[cf. Ref. 15] with o, the nuclear-spin flip
broadening of the auto-peaks Vs,. We performed such an
frequency), wherew,~2.6x10° s~ for CSL in the isotro-
. pic phase and,,~2.0x10° s~ ! in the S, phase. Thus, for
3 typical values of &~3x10° s ! and R, ~5x 10% in the
| andN phases from the SRLS fi/,% (6R) ! (actually a
sum of contributions lined® in (Rf) ~* and R?) ~1). In the
absence of the contribution W/, from the cage mechanism,
the W, predicted using the values & and R} obtained
[ from the SRLS fit would be too small, so one compensates
by decreasing? andR?
In the 2D-ELDOR studies on membrane vesicles using
FIG. 7. Rotational diffusion coefficients for the prols&® (open circlesand ~ CSL, an interesting observation was madeis possible to
R? (open triangles), as well as the cagtus signs), plotted as a function of convert the present COSY and COSY-based 2D-ELDOR
temperature. Sc-spectra into SECSY format by replacing—t;+1t,. Af-
ter Fourier transforming with respect to the neywariable,
the exponential decays ity lead to the homogeneous,
potential;“ although the dominant cage relaxation was in itsvalues. It was found in that work that the “apparenTzrl
reorientation. Thus one may introduce, as an additional reyalues extracted from the 2D-ELDOR auto-peaks were in-
laxation process, time-dependent fluctuations in the magnicreasing linearly with mixing timeT,,. Since the trueT,
tude of the coefficients§, c3, etc. in Eq.(12). This might  cannot vary with mixing time, it was suggested that this
help in the fits to th¢ andN phases which show somewhat ¢oiq pe a manifestation of collective director fluctuations,
greater deviations. Additionally one could use higher ordet, i-h are too slow and too small to significantly affect cw-
terms in the expansion of the cage potenfi Eqg. (12)]. ESR linewidthgcf. Sec. ). However, in 2D-ELDOR one has
We discuss some other aspects of improved modeling in thﬁﬁe potential to observe the “real’-time motion” of a spin

second paper L ) . .
In the original cw-ESR study of Meirovitch and Frééd label as it adjusts to the (,}Ill’eCtOI’ orientatienslowly chang-
ing to a new orientatio® ', or else as the label diffuses into

on CSL in 40,8 and related liquid crystalline solvents they . . ) . N .
reported on a largapparentanisotropy,N in the rotational 2 €gion with dlrgctor onentat.lo(i) . Because this mecha-
diffusion tensor needed to fit the cw-ESR line shapes, espdliST leads to a slight change in the ESR resonant frequency,

cially in the smectic phases. Although they suggested &xchange cross-peaks appear as an apparent increase in the
SRLS model as a way to explain the experiment, and the on@nalysis of the “homogeneous width” of the central auto-
they favored on physical grounds, they could not adequatelpeak Ms=0) obtained along thé,-axis (for f,=0) from

test it for two reasons(l) “The intrinsic low sensitivity to  the SECSY format for several temperatures, and we did not
the dynamics of the ESR spectra in this region of very highsee any variation. Its absence in the present study could be
ordering and slow motion;” and2) no theory existed to for several reasons. In the present study we typically went to
describe its effects on slow motional spectra. In the preserd maximumT, of 300 ns compared to 2s in the study of
study we have been able to overcome limitati@hby ben-  membrane vesicle$This was partly the result of the shorter
efitting from the greatly enhanced sensitivity to motion of theygjues of Ty, in the present experiments, which limits the
2D'E.LDOR7 28 Zelxperiment, and modern  computationalmaximum value ofT,,.) This may be insufficient time to
algorithms” 2% have made the challenging calculations of opqerye the effects, os times might well be needed to see
the SRL.S mode! feasible even for simulating 2D'ELDOR'signiﬁcant effects. However, another question is whether the
We do indeed find that more reasonable valuesNoare non-Markovian)feature of the slow cage dynamics in the

achieved once the SRLS model is introduced. It remains t .

be seen whether improvements in the mdeey., see above) RLS mOd,Eil W.OUId be cap.able of causing an apparent. broad-
and the use of the orientation-dependent experimental spegpmg of T, ~ with mixing time. We perfgrmed smulauons
tra for the smectic phases will further modify the predictedOf the SECSY-type of 2D-ELDOR experiment, using the pa-

values ofN. Both will require more powerful algorithms or rameters from Table | that were obtained from the fit to the

useful approximate methods to render the resulting compu?3-6 °CSa phase experiments. HeRf=3.3x10° s™* cor-
tations more practical. responding to a reorientational correlation timergf= 50 ns.
Another feature of the SRLS model compared to theOver the experimentally studied range =90 to 250 ns
standard model is the lower values ‘T andR? obtained no variation of the central auto-peak is predicted, consistent
with the latter(compare the results in Table Il with those in with experiment. One might expect to see slow cage dynam-
Table 1). This is most likely the result of fitting the cross- ics in theSg phase wher®=2x10° s (75=800 ns), but
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FIG. 8. (a) Mean field (macroscopic)orienting potential parameters;rfJ
(open circles)and ag (open triangles), as a function of temperatdirem
SRLS model simulations)Yb) Mean field (macroscopicprder parameters:
S3=(Z%y (open circlesandSa=( Z3,+ Z5_,) (open triangles), as a func-
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FIG. 9. Cage potential parametec%:(open circles)andc% (open triangles),
as a function of temperatur€SRLS model simulations (b) Cage order
parametersSZ,=( 73y, (open circles)and S,=( 73+ 72 ,0) (open tri-
angles), as a function of temperat&RLS model simulations

as discussed above the interaction poteritil Eq. (12)] is
very weak in this phase. tional dynamics of the CSL probe in a liquid crystalline sol-
In another context, however, there does appear to be avent. Significant improvements in fitting to the 2D-ELDOR
important similarity between the present 2D-ELDOR studyspectra are obtained by the use of the slowly relaxing local
of CSL in a macroscopically aligned liquid crystal and the structure(SRLS)model to represent the effects of a dynamic
study of CSL in membrane vesicles. A careful examinationcage on the reorientational motion of the CSL probe in the
of the cross-peak development as a functionTgfin the  different liquid crystalline phases of 40,8. The SRLS model
vesicle study shows that this evolution is approximately preprovides a consistent picture of the motional dynamics,
dicted by the standard model, but it is not very accuratewherein the dynamic cage formed by the neighboring liquid
There is more substantial variation will, that is observed crystal molecules is in addition to the static macroscopic
experimentally than is predicted by the standard model. Thignean field, and it has a time average of zero. This dynamic
is just the type of behavior that we have observed in thecage relaxes at least an order of magnitude slower than the
present work, which is better fit by a SRLS model. Thus, werotational reorientation of the CSL in the combined potential.
may expect improved fits to 2D-ELDOR experiments onThere is a modest cage potential in the isotropic pliask
membranes by employing the SRLS model. kgT) which jumps to 2-2.%gT in the nematic phase, but
drops to a very small value in tt& andC phases. This drop
in cage potential at th8,—Sg transition is concomitant with
an almost comparable increase in the static mean field poten-
This study has shown that 2D-ELDOR experiments as dial consistent with the freezing in of the aligned structure in
function of mixing time are particularly sensitive to the mo- this phase.

VI. CONCLUSIONS
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