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A formulation is presented for calculating double quantum two dimensional electron spin resonance
~DQ-2D ESR!spectra in the rigid limit that correspond to recent experimental DQ-2D ESR spectra
obtained from a nitroxide biradical. The theory includes the dipolar interaction between the
nitroxide moieties as well as the fully asymmetricg and hyperfine tensors and the angular geometry
of the biradical. The effects of arbitrary pulses~strong but not truly nonselective pulses! are included
by adapting the recently introduced split Hamiltonian theory for numerical simulations. It is shown
how arbitrary pulses in magnetic resonance create ‘‘forbidden’’ coherence pathways, and their role
in DQ-2D ESR is delineated. The high sensitivity of these DQ-2D ESR signals to the strength of the
dipolar interaction is demonstrated and rationalized in terms of the orientational selectivity of the
‘‘forbidden’’ pathways. It is further shown that this selectivity also provides constraints on the
structural geometry~i.e., the orientations of the nitroxide moieties! of the biradicals. The theory is
applied to the recent double quantum modulation~DQM! experiment on an end-labeled poly-proline
peptide biradical. A distance of 18.5 Å between the ends is found for this biradical. A new two pulse
double quantum experiment is proposed~by analogy to recent NMR experiments!, and its feasibility
for the ESR case is theoretically explored. ©1997 American Institute of Physics.
@S0021-9606~97!00729-0#
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I. INTRODUCTION

Recently double quantum two dimensional electron s
resonance~DQ-2D ESR!experiments were obtained,1 on a
poly-peptide system, spin labeled with a nitroxide at bo
ends. This required a novel application of pulses of arbitr
strengths to produce the double quantum coherence
double quantum electron spin echo~ESE! signal was also
reported on spin-correlated radical pairs,2 wherein the double
quantum coherence is ‘‘naturally produced’’ by the bo
cleavage. Such experiments have opened up a powerful
tool for structural and relaxation studies.

For example, a particularly important application f
ESR is the measurement of large distances in doubly lab
macromolecules or between paramagnetic sites in a s
Such measurements in ESR have thus far largely relied
large exchange or dipolar coupling leading to an observa
difference in the continuous wave spectrum.3–5 Hence they
have been restricted to measurements of less than ca. 1
One approach, might be to measure the homogeneous
widths ~i.e.,T2! in a biradical and extract the distance info
mation from that by comparison with theT2 from a structur-
ally and chemically similar monoradical used as a stand
However, the extraction of homogeneous linewidths from
inhomogeneously broadened spectrum is often very amb
ous in continuous wave~CW! ESR. The natural candidat
for this approach would then be a spin-echo or a SEC
experiment. In the latter case inhomogeneities are refocu
in t1 , and hence one obtains the homogeneous linewid
alongv1 .

6 However, the contributions to the homogeneo
linewidths in the biradical spectrum due to fluctuations in
intramolecular dipolar interaction, when compared to
monoradical, would fall off rapidly with separation a
J. Chem. Phys. 107 (5), 1 August 1997 0021-9606/97/107(5)/13
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(1/r 6), where r is the interelectron distance. Hence th
method is not expected to be very reliable for larger d
tances. It would also require an additional experiment t
relies on the availability of a suitable monoradical, for t
determination of small differences in theT2’s between mono
and biradicals and the estimation of a rotational correlat
time. In a similar spirit one could measure the difference
T1 but the nonsecular spectral densities available are t
cally small.7

The advantage of double quantum ESR is that one c
with appropriate phase cycling, isolate the double quant
signal which carries the dipolar information directly in i
modulation pattern.1 Since this coherence depends on t
dipolar interaction, the intensity of this signal falls off mo
slowly (;1/r3) and therein lies the possibility for measurin
larger distances. Also, the calibration using a monoradica
not required.

Single quantum selective pulse methods have been
veloped for measuring distances, based on double electr
electron resonance8,9 ~DEER! and on the ‘‘211’’ pulse
train.10,11 The success of these methods in measuring
tances greater than 15 Å, is encouraging. In particu
Larsen and Singel9 were able to measure the dipolar couplin
directly from the spectrum, after appropriate signal proce
ing. However, the advantage of the double quantum coh
ence method is that the measured signal is directly due to
dipolar interaction~by the very nature of generation of DQ
coherences!, and hence it has a greater sensitivity tow
this interaction. For this reason the analysis of a DQ coh
ence experiment to extract distances is cleaner than the o
methods.1 For example, in the DEER based technique9 the
weak dipolar echo modulation has to be extracted from
131717/24/$10.00 © 1997 American Institute of Physics
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1318 S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
dominant background echo decay by spectral subtraction~as-
suming a simple exponential decays for the background
nal!. In addition, the DQ signal is unaffected by monoradi
impurities, while the other techniques may have to corr
for these signals. Another important advantage would
that, in the DQ method we can measure the double quan
relaxation rate (T2

D) directly. This has the potential of sig
nificantly aiding the elucidation of motional dynamics1 ~cf.
below!.

The use of double spin labeling of macromolecules
distance measurements is analogous to the method of
rescence energy transfer~FET!. However, distances mea
sured from FET suffer from large uncertainties in thek2

parameter that describes the relative orientation of the t
sition dipoles of the two chromophores.12 No comparable
problem exists in ESR, since the spins are quantized a
the magnetic field.

As mentioned above, another important application
double quantum ESR would be the elucidation of motio
dynamics in conjunction with~and in analogy to! single
quantum methods like COSY/SECSY and 2D ELDOR.6,13

For example, a simple comparison of the double and sin
quantum linewidths~i.e.,T2’s! would provide a clue for cor-
related vs uncorrelated dynamics,1 ~i.e., overall rotation as
opposed to local motions!. This would be of significant r
evance for studies on flexible biomolecules, like proteins

In this paper, we present a detailed analysis of such
experiments, with the aim of improving the sensitivity, res
lution, and range of the DQ technique that we ha
developed.1 Also, other approaches for measuring the D
signal are discussed. To this end, we consider the full c
plexity of the nitroxide Hamiltonian. Therefore, we includ
the completely anisotropicg and hyperfine tensors and th
angular geometries of the biradical~cf. Fig. 1!.

Further, we treat the effect of the finite pulses in det
The key feature of these DQ experiments1 was the creation
of a double quantum coherence by an arbitrary pulse~i.e., a
strong but not completely nonselective pulse:e;H, wheree
represents the effect of a pulse andH the internal Hamil-
tonian of the system!. The effects of the arbitrary pulse ar
therefore considered in detail. In general, such cases in m
netic resonance are dealt with by ‘‘brute force
diagonalization,14 which lacks the predictive power that a
analytic theory provides. Recently, a number of analy
methods15 have been proposed to deal with the case of w
~i.e., e,H! and/or selective pulses for other applicatio
~mainly for nuclear modulation in ESR!. These are, of
course, not immediately applicable for our case because
pulses are neither weak nor truly selective. However,
cently a new theoretical method called split Hamiltoni
theory ~SHT! has been developed to deal with the case
arbitrary pulses in magnetic resonance.16 We have used SHT
to account for the role of the pulses in our experiments~cf.
Sec. II B!. Not only does this method provide accurate
merical results, but in lowest order, tractable analytical
pressions may be readily obtained, that while not necess
quantitative, do describe the formation and general prop
ties ~such as orientational selectivity, cf. below! of the DQ
J. Chem. Phys., Vol. 107
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coherences that are created by finite pulses in magnetic r
nance~cf. Sec. IV!. The insight provided by the use of SH
has lead us to an alternative approach for the creation of
coherences that is useful for the measurement of dista
~cf. Sec. III B!.

In this paper, we first consider the single quantum~SQ!
COSY/SECSY signal from a biradical. We then show ho
the same two pulse sequence may be used to detect
signals, by analogy with recent NMR observations.14,17,18

The feasibility of such experiments for ESR is theoretica
explored. We then consider the DQ ESR experiments
have already been experimentally performed.1 These are five
pulse experiments which are based on the creation of e
DQ coherences due to the arbitrary pulses.1 The first case is
the double quantum modulation~DQM! experiment. In the
time domain this provides a simple method of measuring
dipolar interaction. The second is the DQ-COSY experime
which provides information on the DQ relaxation rate~i.e.,
T2
D!. Next, we turn to the detection of the primary DQ ec

based on a six pulse sequence. Finally, we compare
DQM experiment to theory.

This work validates the key observations of our fir
communication.1 The DQ signals we see are addition
and/or ‘‘forbidden’’ coherences created by the second a
third pulses of the five pulse sequence. The forbidden na
of these signals also provides an orientational selectiv
such that the signal primarily arises from those orientatio
of the dipolar vector that are parallel~or nearly so!to the dc
magnetic field. It is this orientational selectivity that caus
the signal to be very sensitive to the dipolar interaction, a
hence to the interelectron distance. We further show that
orientational selectivity leads to a structural sensitivity, i.
the signals are sensitive to the orientations of the two nitr
ides. This has significant potential for structural studies
biomolecules. Also, we demonstrate from theoretical simu
tions, that the primary or ‘‘allowed’’ echo arising from
basic six pulse sequence,~which lacks this orientational se
lectivity!, has a much reduced intensity compared to
‘‘forbidden’’ DQM/DQ-COSY echoes. This is undoubtedl
the reason why we were unable to observe the primary ec1

The appropriate theory for these experiments is sum
rized in Sec. II, with more detailed descriptions of the de
vations given in the Appendices. The two pulse single a
double quantum experiments are discussed in Sec. III.
case of the five pulse DQM/DQCOSY is presented in S
IV, and the six pulse primary DQ signal in Sec. V. Th
theory is compared to experiment in Sec. VI, and the c
clusions are given in Sec. VII.

II. THEORY

In this section we provide the theory for calculatin
double quantum 2D ESR spectra for nitroxide biradicals. T
underlying model consists of a rigid biradical with well d
fined orientations of the two nitroxides with respect to t
dipolar vector. This is illustrated in Fig. 1~a! and relevant
coordinate frames are shown in Fig. 1~b!. In Sec. II A we
give the spin Hamiltonian for this rigid system, with mo
, No. 5, 1 August 1997
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1319S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
details provided in Appendix A. In Sec. II B we describ
how the signal is calculated, and we show how SHT
adapted for the numerical calculations.

A. Spin Hamiltonian

In order to deal properly with the 2D ESR spectra w
include the fully asymmetricg and hyperfine~hf! tensors. In
that case, the internal Hamiltonian for a nitroxide biradica
given by

H5H11H21HD1HJ , ~1!

whereHi ( i51,2) is the contribution from the hyperfine an
Zeeman terms of the two nitroxides andHD andHJ are the
contributions from the dipolar and~isotropic! exchange in-
teractions, respectively. The termsHi ( i51,2) can be written
as

Hi5CiSzi1AiSziI zi1BiSziI11i
1B*SziI21i

~2!

when as is usual, the hf terms nonsecular inSi are neglected,
~i.e., the high field approximation!. Explicit expressions for
the termsCi , Ai , andBi are provided in Appendix A. They
contain the anisotropies in theg and hf tensors and are de
pendent on the Euler angles (a i ,b i ,g i) that describe the
orientation of the respectiveg and hf tensors relative to th
dipolar frame, and also the angles~u,z! that define the orien-
tation of the interspin dipolar frame relative to the dc ma
netic field. Note that we assume the respectiveg and hf
tensors of each nitroxide to have the same principal a
systems~PAS!. This is clarified in Fig. 1 where we show th
PAS’s of the two nitroxides and the Euler angles required
transform theg andA tensors to the lab frame.

FIG. 1. ~a!A schematic drawing of a biradical defining the convention us
for the axis systems of the magneticg and hf tensors: Thez axes are along
theNp orbitals and thex axes are along the N–O bond. They axes are in
the plane of the ring.~b! The relevant Euler angles required to transfo
from the dipolar to the molecular frame. These Euler angles define
angular geometry of the molecule.
J. Chem. Phys., Vol. 107
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We assume axial symmetry of the dipolar interactio
which is appropriate for the case of interest to us, of bira
cals wherein the electron spins are well separated. This t
can then be written as19

HD5
D

2
~3 cos2 u21!@Sz

22 1
3S

2#, ~3!

where

Sz5Sz11Sz2, ~4!

S5S11S2 , ~5!

andD is the dipolar spin–spin interaction parameter, whi
we shall express in Gauss (G). For a given interelectron
distance,r ~in Angstroms!, this parameterD ~in G! is given
by5

D5
3gbe

2r 3
, ~6!

whereg is the isotropicg value andbe is the value of the
Bohr magneton.

The spin exchange term is taken to be20

HJ5J~ 1
222S1–S2!, ~7!

whereJ is the strength of the exchange interaction.
Finally, during a pulse of durationtp , the Hamiltonian is

Hp5H1e ~8!

with H given by Eq.~1!. The effect of the radiation field
during pulses is given bye, with

e~ tp!5
v1

2
~e2 ifS11eifS2!, ~9!

wheree is the irradiating microwave pulse of durationtp ,
intensity,B1 ~5v1 /ge with ge the gyromagnetic ratio for
the electron spin!, and phasef. Also

S15S111S21 ,
~10!

S25S121S22 .

The nominal flip angle of the pulse is defined asb. This is
given by

b5v1tp . ~11!

Equations~1!, ~2!, ~3!, ~7!, and ~9! then define the Hamil-
tonian we use for the case of nitroxide biradicals.

B. Calculation of the ESR signal

To calculate the ESR signal, one first describes the t
evolution of the spin density matrix,r, by the equation21–23

d

dt
r52 i @H~ t !,r~ t !#2GQ ~r~ t !2r0!. ~12!

In Eq. ~12!,H is given by Eq.~1! in the absence of radiation
andr(0)5r0}Sz , wherer0 is the equilibrium spin density
matrix. Also,GQ is the relaxation superoperator. Denoting t

e

, No. 5, 1 August 1997

ct¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



ri

ta

m

fe
e
ne

e-

th

,

-

le

g-
n
an
tra
’’
-
e
u-

liz
e
ry

il-
al
ce.
2

lse
tion
n

m-

nd

,
c-
-
des
ri-
d.

era-

on-

he

i-

1320 S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
difference between the time dependent density mat
r(t), and the equilibrium density matrix,r0 by x we get

d

dt
x52 i @H~ t !,x~ t !#2GQx~ t ![G9 8x~ t !. ~13!

Relaxation will be treated phenomenologically, with orien
tion independent relaxation ratesT1 , T2

S , andT2
D , where the

superscriptsS and D refer to single and double quantu

relaxation times, respectively. Then the superoperatorG9 8 in
the eigenbasis of the spin Hamiltonian,H of Eq. ~1! ~cf.
Appendix B!, is given by24

G9 8 i j ,kl5d ikd j l F2 iv i j2d i j
1

T1
2S 12d i j

1

T2
KG , K5S,D,

~14!

v i j5Ei2Ej , ~15!

wherev i j are the resonant frequencies, given as the dif
ences of eigenenergiesEi , in the rotating frame. Thes
eigenenergies are derived in Appendix B and are obtai
from Eq. ~B13!. Equation~13! is then solved in the form24

x~ t01t ! i j5eG
9

i j i j8 tx~ t0! i j , ~16!

where thex i j are expressed in the eigenstates of Eqs.~B5!
and~B11!. In Appendix B we also provide the matrix repr
sentation for the spin Hamiltonian given by Eq.~1!, and also
explicit expressions fore2 iHt .

During a pulse, spin relaxation will be neglected, so
density matrix will evolve as

d

dt
r52 i @~H1e!,r~ t !#. ~17!

The formal solution to Eq.~17!, after a pulse of duration
tp , is given by

r~ t01tp!5e2 i ~H1e!tpr~ t0!e
i ~H1e!tp. ~18!

In the usual nonselective pulse approximation,e is deemed
to be much greater thanH ~i.e., e@H! during tp , and hence
one needs to calculate onlye2 i etp. However, in 2D ESR~and
in solid state NMR!the pulses are typically not truly nonse
lective. We shall instead refer to them asarbitrary. In fact,
the finiteness ofe is crucial for generating a class of doub
~and in general multiple! quantum coherences.1,14,17,18The
inability of an arbitrary pulse to uniformly excite the ma
netic resonance spectrum leads to significant off-resona
effects, like a frequency dependent variation in phase
intensity.22,25 More subtly, arbitrary pulses also create ex
coherence pathways, which lead to ‘‘ghost’’ and ‘‘phantom
echoes in 2D NMR spectroscopy.26 These effects were con
sidered to be artifacts and phase cycling sequences wer
vised to eliminate them.26~a!However, there has been a rej
venated interest in characterizing27–29 and utilizing these
large effects.1,14,17,18

Hence one needs to calculatee2 i (H1e)tp explicitly. The
usual approach has been to numerically diagona
e2 i (H1e)tp.14 While this approach is useful for quantitativ
analysis, it lacks the predictive power of an analytic theo
J. Chem. Phys., Vol. 107
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To this end a new theoretical method, called split Ham
tonian theory~SHT!16 has been proposed recently, to de
with this situation of arbitrary pulses in magnetic resonan
Here, an arbitrary pulse is reconstructed as a series ofn
nonselective pulses of duration (tp/2n) each, interspersed
with periods of free evolution of duration (tp /n). Figure 2
shows the decomposition of an arbitrary pulse into thenth
degree SHT approximation. In this example each subpu
sequence is composed of a nonselective pulse of dura
P/2n followed by a period of free evolution of duratio
P/n and another nonselective pulse of durationP/2n. The
mathematical validity for this approach is based on the sy
metrized Suzuki–Trotter formula,30,31 which can be written
in this context as

R[e2 i ~H1e!tp5 lim
n→`

~e2 i etp/2ne2 iHt p /ne2 i etp/2n!n. ~19!

Defining

Rn5e2 i etp/2ne2 iHt p /ne2 i etp/2n, ~20!

we have

R5 lim
n→`

~Rn!
n. ~21!

Each exponential on the right-hand side of Eq.~19! can
usually be written explicitly in an appropriate basis a
hence analytic expressions forR can be determined for a
desired value of the exponent,n. Further, Salikhovet al.16

demonstrated that values of 2–4 of the Trotter exponentn,
for a model Hamiltonian were sufficient to provide satisfa
tory approximations toe2 i (H1e)tp when compared to the ex
act results. The advantage of SHT, then, is that it provi
analytic formulas for the signal which can also be nume
cally iterated for more quantitative calculations, if require
For example, even the lowest order of Eq.~19! ~i.e., n51!
conveys the essential physics of the problem like the gen
tion of extra coherences~cf. Sec. IV, below!. We have used
this approach to deal with the pulses in the experiments c
sidered and a value of 8 forn was found to be sufficient for
numerical convergence for the estimated value ofB1

517.8 G currently available in our spectrometer. For t

FIG. 2. Thenth order split Hamiltonian theory approximation for an arb
trary pulse of durationP.
, No. 5, 1 August 1997
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1321S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
case of weak pulses of strength (B151.8 G) used for some
simulations,n516 was used. The expressions fore2 i etp re-
quired in Eq.~19! are provided in Appendix C.

Note that in Eq.~19!we have definedRn in a form that
is a variant of that used by Salikhovet al. That is they used
the choice16

Rn5e2 iHt p/2ne2 i etp /ne2 iHt p/2n. ~22!

While these choices are arbitrary in the formulation of SH
the convention of Salikhovet al. @Eq. ~22!# results in more
tractable analytical calculations for a given value ofn, since
the periods of free evolution that occur in the extremities
R can be combined with the time intervals just preceding a
just following the pulse. However, note that in our conve
tion then51 approximation already breaks up the arbitra
pulse into two subpulses, whereas, this requires then52
approximation in the convention of Salikhovet al. In this
sense theirn subpulse approximation is related to then21
subpulse approximation in our convention. The value of

FIG. 3. Pulse sequence used.~a! Two pulse COSY/SECSY sequence.~b!
Two pulse DQ sequence.~c! Five pulse sequence used for DQM/DQ-COS
experiments.~d! Six pulse sequence used for a refocused DQ echo exp
ment. Relevant coherence pathways are also shown.
J. Chem. Phys., Vol. 107
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present approach is that the effects of an arbitrary pulse
be discussed at a lower order ofn. Using Eq. ~19!, R
[e2 i (H1e)tp can be shown to have the form

R5S R11

R21e
if

R31e
if

R41e
2if

R12e
2 if

R22

R32

R42e
if

R13e
2 if

R23

R33

R43e
if

R14e
22if

R24e
2f

R34e
2 if

R44

D ,

~23!

where the elementsRi j , are independent of the phasef of
the pulse.

This characteristic labeling inf means that each cohe
ence pathway is distinctly defined by the phase of each pu
and hence efficient phase cycling sequences can be e
determined to experimentally select desired coherence p
ways. Also, this allows us to selectively calculate the sig
from a given coherence pathway. Note that theRi j are de-
pendent on the strength,B1 and duration,tp of the pulse, and
also on the resonant frequencies,v i j .

For the sake of convenience of notation, the propaga
operatorei (H1e)tp can be similarly written down as a matri
P. From the unitary property of the operatorei (H1e)tp

Pi j5Rji* . ~24!

We choose the dipolar frame as the main symmetry a
of the molecule. The signal,F1(t), is calculated for each
orientation of the dipolar vector with respect to the dc ma
netic field ~given by the anglesu andz! as

F1~ t,u,z!5Tr@S1r~ t !#. ~25!

Using Eqs.~16! and~18!we can obtainr(t) for the relevant
coherence pathway~s!from a sequence of pulses, and th
the signal,F due to each orientation@cf. Eq. ~25!# can be
written as a combination of terms dependent on the pu
~i.e., Ri j5Pji* ! and on the resonant frequencies~i.e., v i j !.
Combinations of the terms inv i j , which appear in the sig-
nal, are given in Table I. These are denoted bySj

i ~the sub-
script labels the different terms, while the superscript,i , is

ri-

TABLE I. Terms defining the signal due to each orientation. Note that
superscript,i , is used to label the time interval while the subscripts lab
each term.v i j5Ei2Ej . TheEi , i51,2,3, or 4 are given by Eq.~B13!, and
F is given by Eq.~B10!.

S1
i cos2 Fe2iv12t i1sin2 Fe2iv13t i

S2
i cosF sinF$e2iv12t i2e2 iv13t i%
S3
i cos2 Fe2iv24t i1sin2 Fe2iv34t i

S4
i cosF sinF$e2iv24t i2e2 iv34t i%
S5
i sin2 Fe2iv12t i1cos2 Fe2iv13t i

S6
i sin2 Fe2iv24t i1cos2 Fe2iv34t i

TABLE II. Phase cycling for two pulse double quantum experiment. T
two step cycle is augmented by the addition of CYCLOPS making it
eight pulse sequence.

P1 P2 Sign

0 0 1

180 0 1
, No. 5, 1 August 1997
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1322 S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
used to label the relevant time intervals!. The powder pattern
is calculated by integrating over all the orientations of t
dipolar vector

S~ t !5E
0

2p

dzE
0

p

sin uF1~ t,u,z!du. ~26!

Using Eqs.~16!, ~18!, ~19!, and~24!, the signal from any
pulse sequence can be calculated. Signals from the p
sequence and coherence pathways shown in Fig. 3 were
culated in this manner. These are discussed in the next t
sections. The phase cycling for the two pulse and five pu
DQ experiments is provided in Tables II and III, respe
tively.

III. TWO PULSE EXPERIMENTS

We begin with the simplest of two dimensional expe
ments, i.e., two pulse experiments. In Sec. III A single qu
tum COSY and SECSY experiments are discussed. Rece
double quantum 2D NMR experiments using the two pu
sequence have been performed.14,17,18 In Sec. III B we dis-
cuss the feasibility of such experiments for the 2D ESR ca
s

in
o

ns
lle
o-
e
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th
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A. Single quantum signals: COSY and SECSY
experiments

In the single quantum COSY experiment the first pu
creates transverse magnetization~61 coherences!. The sig
nal is measured after the second pulse. Formally, the SEC
signal is related to the COSY signal by the transformat
t2→t21t1 .

22,32 In the SECSY experiment the inhomogen
ities are refocused int1 and hence this experiment provide
the homogeneous single quantum linewidths alongv1 .

6 The
COSY Sc2

24,32 signal ~given by the coherence pathwa

0→p/2 11→p/2 21! for each orientation of the dipolar vecto
can be written as

TABLE III. Phase cycling for five pulse double quantum experiment. T
four step cycle is augmented by the additional four steps in parenthese
which CYCLOPS is then added.

P1 P2 P3 P4 P5 Sign

0 ~180! 0 ~0! 0 ~0! 0 ~0! 0 ~0! 1 ~2!
90 ~270! 90 ~90! 90 ~90! 0 ~0! 0 ~0! 2 ~1!
180 ~0! 180 ~180! 180 ~180! 0 ~0! 0 ~0! 1 ~2!
270 ~90! 270 ~270! 270 ~270! 0 ~0! 0 ~0! 2 ~1!
FCOSY~ t1 ,t2!5e2if
2
e2 if1

@S3
2*R42

2 P42
2 $S3

1~R21
1 P14

1 2R24
1 P44

1 !1S4
1~R31

1 P14
1 2R34

1 P44
1 !%

1S4
2*R43

2 P43
2 $S4

1~R21
1 P14

1 2R24
1 P44

1 !1S3
1~R31

1 P14
1 2R34

1 P44
1 !%1S1

2*R21
2 P21

2 $S1
1~R11

1 P12
1 2R14

1 P42
1 !

1S2
1~R11

1 P13
1 2R14

1 P43
1 !%1S2

2*R31
2 P31

2 $S2
1~R11

1 P12
1 2R14

1 P42
1 !1S1

1~R11
1 P13

1 2R14
1 P43

1 !%#

3e2~ t11t2!/T2
S
e22p2DG

2
~ t22t1!2. ~27!
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The termsR andP in Eq. ~27! are given by Eqs.~19! and
~24!, respectively, while the terms,S, are given in Table I.
The superscripts onR, P, andf are used to label the pulse
~cf. Fig. 3! to which these terms refer~they arenot expo-
nents!.DG represents sources of inhomogeneous broaden
which are refocused in a spin–echo,32–34and are assumed t
be Gaussian.

While the dominant interactions are the hf interactio
fluctuations in the dipolar interaction would lead to a sma
homogeneousT2

S for the biradical as compared to the mon
radical in the COSY experiment. This is treated only ph
nomenologically in these simulations.

The efficiency of single quantum coherence trans
~i.e., the extent of the transfer 0→1!, T0→1 , due to the first
pulse is given by

T0→1523@~R21
1 P14

1 2R24
1 P44

1 !1~R31
1 P14

1 2R34
1 P44

1 !

1~R11
1 P12

1 2R14
1 P42

1 !1~R11
1 P13

1 2R14
1 P43

1 !#. ~28!

Also the efficiency of back coherence transfer due to
second pulse,T1→21 is given by

T1→215R42
2 P42

2 1R43
2 P43

2 1R21
2 P21

2 1R31
2 P31

2 . ~29!
g,

,
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The primary value of Eqs.~27!, ~28!, and~29! is that they
allowed us to meaningfully evaluate the intensities of t
double quantum signals and transfer efficiencies discusse
Secs. III B, IV, and V.

B. Double quantum signal

We would now like to deal with the generation of a
extra ~multiple quantum!coherence with a single pulse an
its detection with a second pulse. This idea was dem
strated very early in NMR35,36 as ‘‘forbidden transitions’’
and put in the modern magnetic resonance terminology
multiple quantum transitions by several workers.27–29 Re-
cently there has been a resurgence of interest in experim
tally exploiting this feature in NMR.14,17,18The first pulse in
this sequence creates a double~or multiple!quantum coher-
ence, which then evolves for a periodt1 . A second pulse
transfers this double~multiple! quantum coherence into ob
servable single quantum coherence. The signal is meas
after the second pulse for a series of values oft1 . The phase
cycling for this two pulse DQ sequence is provided in Tab
II.

This double quantum signal from a two puls
sequence, is given by the coherence pathw
No. 5, 1 August 1997
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1323S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
0→p/2 12→p/2 21. The first pulse creates an extra coheren
i.e., 2. This is given by (R11

1 P14
1 2R14

1 P44
1 ), whereR andP

are defined in Eqs.~19! and ~24!, respectively. For a nonse
lective pulse@cf. Eq. ~C7! in Appendix C#

R115
1
2~cosb11!,

P145
1
2~cosb21!,

R145
1
2~cosb21!, ~30!
e-

fir

e

t

se
on
t
lo
4

e
n-
r l
-
b
ub

ns
e

m

J. Chem. Phys., Vol. 107

Downloaded¬06¬Sep¬2002¬to¬128.253.229.132.¬Redistribution¬subje
,
P445

1
2~cosb11!.

Hence (R11
1 P14

1 2R14
1 P44

1 ) is zero. However, for arbitrary
pulses this term is nonzero. For example in the lowest or
(n51) SHT approximation of Eq.~19! @obtained using Eqs
~B15! and ~C7! and representingR and P in the singlet–
triplet representation#this coherence transfer is given by
T0→2[R11P142R14P445e22if1H F14 S cosS b

2 D11D 2e2 iE1tp1
1

4 S cosS b

2 D21D 2e2 iE4tp2
1

2
sin2S b

2 D ~cos2 Fe2 iE2tp

1sin2 Fe2 iE3tp! GF14 S cosS b

2 D11D S cosS b

2 D21D ~eiE1tp1eiE4tp!2
1

2
sin2S b

2 D ~cos2 FeiE2tp1sin2 FeiE3tp! G
2F14 S cosS b

2 D11D S cosS b

2 D21D ~e2 iE1tp1e2 iE4tp!2
1

2
sin2S b

2 D ~cos2 Fe2 iE2tp1sin2 Fe2 iE3tp! G
3F14 S cosS b

2 D21D 2eiE1tp1 1

4 S cosS b

2 D11D 2eiE4tp2 1

2
sin2S b

2 D ~cos2 FeiE2tp1sin2 FeiE3tp! G J . ~31!
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Here,b and tp are the nominal flip angle and duration, r
spectively, of the first pulse,F is defined in Eq.~B10!, and
Ei are the eigenvalues of the spin Hamiltonian@cf. Eq.~1!# in
its eigenbasis. These eigenvalues are given in Eq.~B13!.
Hence a double quantum coherence exists after the
pulse.

In Fig. 4 we plot the efficiency of coherence transf
0→2, denoted byT0→2 , calculated using Eqs.~B15! and
~C7! and ann of 16, as a function of the length of the firs
pulse,tp and the strength of its irradiating field,B1 . Since
the double quantum coherence following this pulse ari
due to perturbative contributions of the dipolar interacti
during this pulse, the details of this transfer were found
depend in general on this interaction. However, the p
shown is representative of dipolar couplings smaller than
G (r518.5 Å). The maximum transfer efficiency,T0→2 is
about 6%–10% of the maximum single quantum transfer
ficiency,T0→1 , depending on the strength of the dipolar i
teraction. The bands of optimum double quantum transfe
along ridges in theB1– tp plane. However, note that relax
ation has been neglected during the pulse. This would
significant for the long pulses needed to generate the do
quantum coherence.

We now turn to the efficiency of back coherence tra
fer, i.e., T2→21 . For the double quantum coherenc
T2→21 , is given by

T2→215R21
2 P41

2 1R31
2 P41

2 1R41
2 P42

2 1R41
2 P43

2 . ~32!

In Fig. 5 we plotT2→21 as a function of the duration,tp ,
and strength,B1 of the second pulse. The double quantu
st
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transfer is again about 6%–10% as efficient as the sin
quantum transfer, depending on the strength of the dip
interaction.

The DQ signal for a given orientation of the dipola
vector is given by

FDQ~ t1 ,t2!5~R11
1 P14

1 2R14
1 P44

1 !@S1
2*R21

2 P41
2 1S2

2*R31
2 P41

2

1S3
2*R41

2 P42
2 1S4

2*R41
2 P43

2 #e3if
2
e22if1

3e2 i ~E12E4!t1e2t1 /T2
D
e2t2 /T2

S
e22p2DG

2
~ t222t1!2.

~33!

The single quantum terms present duringt2 appear inSj
2 ( j

51,2,3,4). Note, that in Eq.~33! inhomogeneities are refo
cused att252t1 . The extra factor of 2@compare Eq.~33!
with Eq. ~27! where they refocus att25t1# reflects the fact
that static inhomogeneities affect the double quantum co
ence doubly.22,37The full rigid limit double quantum powde
signal is obtained by integrating Eq.~33! over a unit sphere
using Eq.~26!.

In Figs. 6 and 7 we show the theoretical two pul
double quantum powder spectra obtained for a biradical fo
range of dipolar interactions. For typical values of the ma
mum irradiation field~i.e.,B1517.8 G!the double quantum
spectrum shows little dependence on the strength of the
polar interaction~figure not shown!. Using Figs. 4 and 5 as
reference we considered the behavior of the two pulse
signal for four cases:~a! pulses of length 5 ns and streng
15.8 G, ~b! pulses of length 5 ns and strength 1.8 G,~c!
pulses of length 80 ns and strength 1.8 G~i.e., located on the
, No. 5, 1 August 1997
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1324 S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
first ridge in Figs. 4 and 5!, and ~d! pulses of length 80 ns
and strength 15.8 G. For cases~a! and ~b! the double quan-
tum spectrum showed little dependence on the dipolar in
action ~figures not shown!. Also for case~d! the spectrum
shows only a small dependence on the dipolar interact
This is apparent in Fig. 6 where the maximum of the ec
~i.e., alongt252t1! appears at a longer value oft2 as the
dipolar interaction decreases. Such a dependence bec
dramatic for a weak pulse of strength 1.8 G at a center re
nance frequency of 9.32 GHz.~cf. Fig. 7! and length 80 ns
@case~c!#. The stronger the dipolar interaction, the faster
the modulation of the echo along thet252t1 axis in Fig. 7.

FIG. 4. The transfer of 0→2 coherence during an arbitrary first pulse
duration,tp and irradiation strength,B1 , in the two pulse double quantum
experiment. Both~a!magnitude and~b! contour plots are shown. The valu
of Trotter exponent,n, was 16. The value ofD was 4.4 G (r518.5 Å).
Other simulation parameters areb15b25120°, The other Euler angle
needed to define the PAS werea15a25g250°. The magnetic parameter
are gxx52.0086, gyy52.0066, gzz52.0032 andAxx5Ayy56.23 andAzz

535.7. Note that relaxation has been neglected during the pulse. The c
frequency of the pulse is 9.32 GHz and is equal to the center freque
given bygsbeB0 /h wheregs5

1
3( igii . The maximum transfer efficiency o

0.07 occurs atB1593.5 G andtp51 ns. However, the maximum sensitivit
to modulation from the dipolar interaction occurs for smallerB1 and larger
tp ~cf. the text!.
J. Chem. Phys., Vol. 107
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Therefore, a long weak pulse is required for the effect
creation of a modulation pattern in the time domain, fro
which the dipolar interaction can be obtained. However, n
that the maximum intensity of the signal withB151.8 G and
pulse length 80 ns@case~c!# is smaller by a factor of 1–5
~depending on the dipolar interaction! when compared to tha
with B1515.8 G and pulse length 80 ns.@case~d!, cf. Fig. 6
vs Fig. 7#. Thus one must give up signal-to-noise in order
generate DQ signals that are sensitive to the modulation
tern due to the dipolar interaction. The maximum intensity
a two pulse DQ signal for case~c!, from simulations, with
D510 G (r514.1 Å) @cf. Fig. 7~a!#was found to be about a
factor of 9 weaker when compared to that of a COSY e
periment calculated using Eq.~27! ~with B1515.8 G and
pulse lengths of 5 ns!. For a smaller dipolar interaction of 1

ier
cy

FIG. 5. The transfer of 2→21 coherence during an arbitrary second pul
of duration,tp and irradiation strength,B1 , in the two pulse double quantum
experiment. Both~a!magnitude and~b! contour plots are shown. The valu
of Trotter exponent,n, was 16. The value ofD was 4.4 G (r518.5 Å).
Other simulation parameters are the same as in Fig. 4. Note that relax
has been neglected during the pulse. The carrier frequency of the pul
9.32 GHz and is equal to the center frequency given bygsbeB0 /h, where
gs5

1
3( igii . The maximum transfer efficiency of 0.03 occurs atB1

5126.5 G andtp52 ns. However, the maximum sensitivity to modulatio
from the dipolar interaction occurs for smallerB1 and largertp ~cf. the text!.
, No. 5, 1 August 1997
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1325S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
G (r530.3 Å) the signal intensity of the DQ experime
was about 70 times weaker compared to the COSY sig
However, we have not tried to find the precise optimum c
ditions for this experiment.

In Fig. 8 we show two DQ powder spectra, obtain
using a long weak pulse, with the same value of the dipo
interaction~2.5 G, r522.2 Å! but with different geometries
of the biradical~i.e., different values ofb1 andb2 , cf. Fig.
1!. While the modulation frequency, which reflects the dip
lar interaction, is largely unchanged the modulation patt
depends on the biradical geometry. This remarkable fea
is potentially very useful for structural studies.

We postpone until the next section the discussion of w
such a sensitivity towards the structural properties~i.e., the
interelectron distance and biradical geometry! arises. How-
ever, we note that Larsen and Singel9 obtained a similar sen
sitivity towards geometrical constraints in their weak pu
DEER experiments.

FIG. 6. Theoretical two pulse DQ spectra for biradical with a dipolar int
action,D, of ~a! 10 G (r514.1 Å), ~b! 5 G (r517.8 Å), and~c! 1 G (r
530.3 Å). The strength of the irradiation field,B1 , was 15.8 G and the
lengths of the pulses were 80 ns each. The relaxation parameters werT2

S

5500 ns,T2
D5200 ns, andDG52.0 G. The remaining parameters are t

same as in Fig. 4.
J. Chem. Phys., Vol. 107
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IV. FIVE PULSE SIGNALS: DQM AND DQ-COSY

We now turn to the five pulse sequence used to de
double quantum coherence.1 The first pulse creates trans
verse single quantum magnetization~61 coherences!which
evolves for a periodt1 . The spins get labeled with the dipo
lar frequency during this interval@i.e., T1,61→T2,61 in irre-
ducible spherical tensor operators~ISTO! notation, cf. be-
low#. A second pulse transfers this magnetization toz
magnetization~longitudinal as well as 0 quantum cohe
ences!. During the periodt2 the system decays with a rat
given byT1 . Magnetization transfer can also occur durin
this period, which can lead to cross peaks in the 2D sp
trum, in analogy to the 2D ELDOR ESR experiment.25 We
have neglected the magnetization transfer in this discuss
This is justified below. At the end oft2 a third pulse transfers
the z magnetization to transverse double quantum magn
zation ~62 coherences!. In principle, this is a forbidde

- FIG. 7. Theoretical two pulse DQ spectra for biradical with a dipolar int
action,D, of ~a! 10 G (r514.1 Å), ~b! 5 G (r517.8 Å), and~c! 1 G (r
530.3 Å). The strength of the irradiation field,B1 , was 1.8 G and the
lengths of the pulses were 80 ns. The relaxation parameters wereT2

S

5500 ns, T2
D5200 ns, andDG52 G. The remaining parameters are th

same as in Fig. 4.
, No. 5, 1 August 1997
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1326 S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
transition,35,36and it occurs due to the arbitrary nature of t
third pulse. Since the double quantum coherence rapidly
cays away due to inhomogeneous broadening~cf. Sec. III! a
refocusing pulse is necessary. Hence ap pulse is applied,
after a period,t3 , and the system evolves for a timet4 under
a refocused inhomogeneity~i.e., the order of the coherence
is reversed and we obtain72!. At the end oft4 a fifth pulse
transfers the double quantum coherences to observable s
quantum coherences which are detected int5 .

To summarize, the two coherence pathways that lea
a formation of an echo att5't1 are given by

~i! 0→
P1

11→
P2
0→
P3

12→
P4

22→
P5

21: Fa

and

~ii! 0→
P1

11→
P2
0→
P3

22→
P4

12→
P5

21: Fb . ~34!

FIG. 8. Theoretical two pulse DQ spectra for biradical with a dipolar int
action,D, of 2.5 G (r522.2 Å) and geometry~a! b15b25120° and~b!
b1530°, b25120°. The strength of the irradiation field,B1 , was 1.8 G and
the lengths of the pulses were 80 ns each. The relaxation parameters
T2
S5500 ns,T2

D5200 ns, andDG52.0 G. The remaining parameters a
the same as in Fig. 4.
J. Chem. Phys., Vol. 107
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This pulse sequence is shown in Fig. 3~c!. For the desired
signal, then, the double quantum coherence is refocuse
the fourth pulse. Single quantum coherence that decays
to inhomogeneous broadening int1 is refocused alongt5 ,
and hence the signal forms att5't1 . Alternatively pathways
~i! and ~ii! can be written in irreducible spherical tensor o
erator~ISTO! formalism22,38,39

T10→
P1
T111→

t1
T211→

P2
T20→

t2
T20→

P3
T262→

t3
T262→

P4
T272

→
t4
T272→

P5
T271→

t5
T121 . ~34a!

Note that theT10→
p/2
T121 pathway would be ‘‘FID-like’’ and

would decay away in the dead time after the fifth puls
Hence it is not included. While these ISTO’s refer only to
coupled two electron system, they serve to label the coh
ences more explicitly. For example, theT211 coherence
grows in t1 from T111 due to the interelectron interaction.

40

It is this coherence which provides the double quantum s
nal. Such detail is lacking in the simple coherence pathw
picture. On the other hand, the ISTO formalism fails to ide
tify the precise terms, in product operator notation, that
the desired ones in each step.

We now justify our neglect of magnetization transf
during t2 . In the incipient rigid limit, the durationt2 for a
double quantum ESR experiment is typically 50–250 ns~for
interelectron distances of about 20–30 Å!. At very slow mo-
tional rates the cross-relaxation processes that lead to a m
netization transfer would be ineffective in creating subst
tial cross peaks during such a short duration. In fact, we w
unable to obtain cross peaks, even in the 2D ELDOR exp
ments, at the very slow motional rates characterizing
samples and temperatures studied. Hence it is safe to ne
magnetization transfer for the moment.

Note that in the actual experiments the relation betwe
t1 and t2 is fixed as is the relation betweent3 and t4 ~i.e.,
t15t2 and t35t4!. Saxena and Freed1 thus definedt1 ~and
t2! as tp and t3 ~and t4! as t1 . We have deliberately differ-
entiated each time interval so that the final equations refl
the details of the coherence pathway more clearly.

Two kinds of double quantum experiments are relev
with this five pulse sequence.1 In the double quantum modu
lation ~DQM! experiment the intervals,t3 and t4 ~with t3
5t4! are kept fixed. The intervals,t15t2 are stepped out
Coherences that lead to the formation of the double quan
signal grow in during the periodt1 .

40 These coherences de
pend entirely on the presence of an interelectron interac
~i.e., the dipolar and/or exchange interaction!. The modula-
tion of the signal as a function oft1 therefore depends on th
strength of the dipolar interaction~or exchange interaction!
and hence this experiment is useful for the measuremen
the interelectron distance. In double quantum-COSY~DQ-
COSY!, the intervals,t15t2 are kept fixed and the signal i
measured as a function oft5 for a series of steps in the
double quantum evolution periods,t35t4 . This experiment
provides the homogeneous double quantum relaxation r
T2
D .

-

re:
, No. 5, 1 August 1997
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1327S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
The signals due coherence pathways~i! and ~ii! in Eq.
~34!are denoted byFa andFb , respectively. These are give
by

Fa~ t1 ,t2 ,t3 ,t4 ,t5!5e2 if1
eif

2
e2if

3
e24if4

e3if
5

3e2 i ~E12E4!t4e2 i ~E42E1!t3R14
4 P14

4

3e2t3 /T2
D
e2t4 /T2

D

(
i51

i54

e2t1 /T2
S
Mia

3e2t2 /T1Nia(
j51

j54

e2t5 /T2
S
Qja ~35!

and

Fb~ t1 ,t2 ,t3 ,t4 ,t5!5e2 if1
eif

2
e22if3

e4if
4
e2 if5

3e2 i ~E42E1!t4e2 i ~E12E4!t3R41
4

3P41
4 e2t3 /T2

D
e2t4 /T2

D

(
i51

i54

e2t1 /T2
S

3Mibe
2t2 /T1Nib(

j51

j54

e2t5 /T2
S
Qjb .

~36!

Here, the superscripts onR, P, andf denote the numbe
of the pulse, while the subscripts onR and P refer to the
actual matrix elements. The terms inM , N, andQ are pro-
vided in Appendix D. Again, assuming that the inhomog
neous broadening is given by a Gaussian distribution,
signal can be written as

F1
5 5~Fa1Fb!e

22p2DG
2

~ t12t5!2, ~37!

whereDG is the Gaussian inhomogeneous broadening
rameter in frequency units.

In Fig. 9 we show a theoretical time domain DQM pow
der spectrum obtained using Eqs.~37! and~26!, for an inter-
electron distance of 14.1 Å, as a stack plot. The maximum
the time domain signal, from the coherence pathways~i! and
~ii!, is expected to occur along thet55t1 axis ~cf. above!.
However, in practice the finiteness of the pulses causes
center of gravity of the echo to shift slightly~i.e., a few
nanoseconds!from an exactt55t1 behavior. Fortunately
this is no problem in the 2D format! From theoretical sim
lations, we find that this shift also depends on the strengt
the dipolar interaction. This seems reasonable as the pe
bative contributions of the dipolar interaction during t
third pulse lead to the formation of the double quantu
signal.1 Note the oscillatory behavior of the echo maximu
as a function oft1 . It is these oscillations that provides th
strength of the dipolar interaction.

This is demonstrated more clearly in Fig. 10 where
single slice of the 2D time domain spectrum is plotted. He
the echo maximum as a function oft1 is shown for theoret-
ical simulations of the DQM experiment for different valu
of the dipolar interaction@D510 G (r514.1 Å), D52 G
(r524 Å), andD51.0 G r538 Å#. The stronger the dipo
J. Chem. Phys., Vol. 107
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lar interaction the faster the coherence grows to a maxim
and the greater is the frequency of the oscillations. This
remarkable feature as the dipolar interaction is very sm
when compared to the dominantg and hf terms. Also, for a
powder one would expect that the (3 cos2 u21) dependence
of the dipolar interaction@cf. Eq. ~3!# would lead to a smear
ing out of this oscillation. However, the DQM signal is ve
sensitive to the dipolar interaction for the coherence pathw
of Eq. ~34a!because of an orientational selectivity, i.e., t
signal is mainly from those molecules with orientations
the dipolar vector predominantly along thedc magnetic
field.1

This feature of orientational selectivity is in fact appr
priate for this type of a forbidden transition. Heuristical
this can be rationalized by using a simplified Hamiltonia
i.e.,

FIG. 9. Theoretical DQM spectra for biradical with a interelectron distan
r of 14.1 Å, shown in~a! stack plot;~b! contour plot. The simulation pa-
rameters areD510 G,b15180°,b25150°,T2

S5500 ns,T2
D5300 ns, and

DG52 G. The strength of the irradiation field,B1 , was 15.8 G. The dura-
tion of the pulses were:P15P35P555 ns andP25P4510 ns. The other
parameters were the same as in Fig. 4.
, No. 5, 1 August 1997
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1328 S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
Hs5V1Sz11V2Sz21bSz1Sz2, ~38!

where

b}D~3 cos2 u21!. ~39!

This was the Hamiltonian used in Ref. 1 to justify the cr
ation of a forbidden double quantum coherence, using pr
uct operator techniques.40 For simple Hamiltonians~i.e.,
composed of commuting terms!the product operator formal
ism provides a method for easy visualization in terms
simple vector picture of the effect of the pulses and evolut
in a complex pulse sequence. The ISTO formalism wh
more powerful does not carry this advantage.

The key feature is the creation of the double quant
coherence@i.e. (Sx1Sy21Sx2Sy1)# in product operator formal-
ism# from zero quantum coherences~i.e., Sz1Sz2! during the
third pulse of duration,P3 @cf. Fig. 11~a!#. The lowest orde
split Hamiltonian theory expansion of this pulse is shown
Fig. 11~b!. It consists of two nonselective pulses of durat
P3/2 each, with a period of free evolution of duration,P3 , in
between. The first of these nonselective ‘‘half-pulse
yields, using product operator formalism, (Sz1Sy21Sz2Sy1
[A). During free evolution under the Hamiltonian given b
Eq. ~38! this provides the term (Sz1Sx21Sz2Sx1[B), which
is transferred to double quantum coherence by the sec
‘‘half-pulse.’’ B grows in as sin(bP3/2), fromA, during the
period of ‘‘apparent’’ free evolution,P3 , and hence only
those orientations (b}3 cos2 u21) which can maximize this
transfer would be selectively pumped to the double quan
coherence. This leads to the orientational selectivity.

In the real nitroxide biradical, the presence of largeg
and hf terms would tend to detract from this simple selec

FIG. 10. Theoretical DQM spectra for biradical with a interelectron d
tance, ~a! r514.1 Å, D510 G ~solid line —!, ~b! r524 Å, D52 G
~dashed line- -!, and~c! r538 Å, D50.5 G ~dash–dot line —•—!. The
echo maximum for each value oft1 is shown as a function oft1 . In these
simulationsb15180° andb25150°. The relaxation parameters were:T2

S

5500 ns,T2
D5300 ns, andD52 G. The strength of the irradiation field

B1 , was 15.8 G. The duration of the pulses wereP15P35P555 ns and
P25P4510 ns. Other simulation parameters are the same as in Fig. 4.
maximum of the echo as a function oft1 is shown.
J. Chem. Phys., Vol. 107
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ity, ~i.e., from the growth of termB!, providing the challenge
to obtaining the double quantum signal. In fact, one wo
also expect that the detailed modulation pattern would
affected by orientations of the nitroxideg and hf tensors with
respect to one another, since the degree to which the reso
shifts provided by theg and hf tensors lead to different reso
nant frequencies for the electron spins is a measure of t
distinguishability, and hence of the failure of simple single
triplet representation for them. This is indeed found to be
case, as is shown in Fig. 12 which shows theoretical sim
tions with the same dipolar interaction~10 G,r514.1 Å! but
different geometries of the biradical,~i.e., differentb1 and
b2 in Fig. 1!. While the modulation frequency~which re-
flects the dipolar interaction!remains largely unchanged, th
exact shape of the modulation pattern depends on the o
tations of the nitroxides with respect to each other. Note
intensities of the first three maxima along thet55t1 axis are
different for the two orientations. Thus the orientational s
lectivity also provides structural sensitivity. Hence this e
periment is potentially very important for structural studi
in labeled peptides or proteins, for example.

The presence of such orientational selectivity due to
first pulse in the two pulse DQ experiment~cf. last section!
results in its sensitivity towards the dipolar interaction~cf.
Fig. 7! and biradical geometry~cf. Fig. 8!. In this sequence
the first pulse causes the transfer (Sz11Sz2→Sx1Sy2
1Sx2Sy1) in the product operator formalism. The lowest o
der split Hamiltonian theory approximation corresponds
the case provided in Slichter’s monograph.40 The first ‘‘half-
pulse’’ creates (Sy11Sy2[C) and during ‘‘apparent’’ free
evolution (Sx1Sz21Sx2Sz1[D) is created fromC, which is
transferred to the double quantum coherence by the sec
‘‘half-pulse.’’ Again, C grows in as sin(aP1/2) from B and
as before this sinusoidal ‘‘weighting’’ provides the orient
tional selectivity.

However, note that the spin system in the two pu
sequence is ‘‘prepared’’ differently@it exist as (Sz11Sz2)#
before the excitation to the double quantum coherence t
in the five pulse sequence. In the five pulse sequence
term excited to the double quantum coherence~cf. above!

-

he

FIG. 11. Generation of forbidden double quantum coherence during t
pulse~a! the third pulse with relevant product operator terms and~b! lowest
order expansion in split Hamiltonian theory for the third pulse.
, No. 5, 1 August 1997
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1329S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
comes labeled with the dipolar frequency during the inter
t1 . This could account in part for the reason why the fi
pulse of the two pulse sequence needs to be weaker~i.e.,
B151.8 G! to fully exhibit orientational selectivity.

The maximum signal intensity of the five pulse expe
ment ~cf. Fig. 10!, from simulations, when compared to t
COSY experiment, is weaker by a factor of 14~for D
510 G, r514.1 Å! to 60 ~for D51 G, r530.3 Å!. Again,
we have not tried to find the precise optimum conditions
this experiment. But given our results so far, the signal
tensity of the five pulse DQ experiment is similar to the tw
pulse DQ experiment~cf. Sec. III B!. The latter is, in prin-
ciple, a simpler experiment, since it involves only two puls
and a smaller number of possible coherence pathways.

Finally, we would like to examine the features of th
effects of the second and third pulses on the double quan

FIG. 12. Theoretical DQM spectra for two orientations of a biradical w
an interelectron distance of 14.1 Å (D516 G). ~a! b15180°, b25150°
and ~b! b15180°, b25120°. The relaxation parameters were:T2

S

5500 ns,T2
D5300 ns, andD52 G. The duration of the pulses wereP1

5P35P555 ns andP25P4510 ns and the strength of the irradiation fiel
B1 , was 15.8 G. The other parameters are the same as in Fig. 4.
J. Chem. Phys., Vol. 107
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pathway. The detailed expressions, while unwieldy, can
easily extracted from Eqs.~D1!–~D4! in Appendix D. In Fig.
13~a!we show the transfer of11→0 coherence due to th
second pulse in the five pulse sequence. For aB1 of about
17.9 G the optimum pulse length is about 8 ns. Figure 13~b!
shows the transfer 0→62 due to the third pulse. For opti
mum transfer the pulse should be of 40–100 ns durat
These optimum pulse durations are largely independen
the dipolar interaction, for a range of distance from 15 to
Å. Using these optimum pulse durations in simulations
find we should be able to increase the signal by a facto
2–3 over that obtained previously.1

V. SIX PULSE SIGNALS: REFOCUSED PRIMARY
DOUBLE QUANTUM ECHO

Finally, we would like to discuss the feasibility of pri
mary double quantum echoes in the rigid limit. The succ

FIG. 13. The transfer ofm→p coherence (p51,2) during an arbitrary pulse
of duration, tp , in the five pulse sequence@cf. Fig. 3~c!#. The irradiation
irradiation strength,B1 , was 17.9 G. These are shown for three differe
values of the dipolar interaction:D50.5 G ~r538 Å solid —!, D51.5
G ~r526.5 Å dash–dot–dot —••! and D520 G ~r511.2 Å dashed - -!.
Simulations show the effect of~a! the second pulse~m511, p50! and~b!
the third pulse~m50 andp562! in the five pulse sequence. The value
Trotter exponent,n, was 8. Other simulation parameters are the same a
Fig. 4. Note that relaxation has been neglected during the pulse.
, No. 5, 1 August 1997
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1330 S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
of the double quantum experiments discussed so far relie
the creation of extra coherences by arbitrary pulses. O
would a priori ~and mistakenly!!assume such effects to b
weak compared to the primary echoes. What about the
mary double quantum signal from a three pulse sequenc40

one might ask? In this sequence the first~nominalp/2! pulse
createsx–y magnetization~61 coherences!which evolve
for a period,ta during which they are labeled with the dipo
lar frequency. A second~nominal p/2! pulse creates the
double quantum coherence which is transferred to observ
single quantum magnetization after a timetb , by a third
pulse. Large inhomogeneities in typical ESR samples wo
make this experiment, in its current form, difficult. Henc
one would insertp pulses in between the periodsta and
tb , to refocus single and double quantum coherences, res
tively ~cf. Ref. 26 a for the case of NMR!. The signal aft
this modified five pulse sequence would be FID-like, a
hence it would rapidly decay away in the dead time after
fifth pulse. Therefore, one would need to incorporate a s
pulse to refocus the FID into an echo.

The signal, then consists of contributions from the f
lowing coherence pathways:

0→
P1

21→
P2

11→
P3

22→
P4

12→
P5

11→
P6

21: F6a ,

0→
P1

21→
P2

11→
P3

12→
P4

22→
P5

11→
P6

21: F6b ,

0→
P1

11→
P1

21→
P1

12→
P1

22→
P1

11→
P1

21: F6c ,

0→
P1

11→
P1

21→
P1

22→
P1

12→
P1

11→
P1

21: F6d . ~40!

Alternatively, in terms of ISTO’s of a coupled two electro
spin system these coherence pathways are described as

T10→
P1
T161→

t1
T261→

P2
T271→

t2 FT271→
P3
T262

G→t3 T262→
P4
T272

→
t4
T272→

P5
T271→

t5
T171→

P6
T161→

t6
T121 , ~40a!

where we sett15t2 , t35t4 , with the echo att65t5 . Also
the most effective sequence would consist of a nom
p/2→p→p/2→p→p/2→p sequence~i.e., P15P35P5

5p/2 and P25P45P65p!. The large brackets aroun

T271→
P3
T262 indicate that all coherence transfers need to

included, i.e.,T221→
P3
T222 and T211→

P3
T212 are also rel-

evant. Also, theT121 coherence created by the first pul
~and refocused by the second!contributes to the DQ echo.

These signals from the coherence pathwaysF6a to F6d

given by Eq.~40!, for each orientation are given by
J. Chem. Phys., Vol. 107
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F6a~ t1 ,t2 ,t3 ,t4 ,t5 ,t6!

5eif
1
e22if2

e3if
3
e24if4

eif
5
e2if

6
e2 i ~E12E4!t4

3e2 i ~E42E1!t3R14
4 P14

4 e2t3 /T2
D
e2t4 /T2

D

(
i51

i54

e2t1 /T2
S

3Mia* e
2t2 /T2

S
Uia(

j51

j54

e2t5 /T2
S
Vjae

2t6 /T2
S
Wj , ~41!

F6b~ t1 ,t2 ,t3 ,t4 ,t5 ,t6!

5eif
1
e22if2

e2 if3
e4if

4
e23if5

e2if
6
e2 i ~E42E1!t4

3e2 i ~E12E4!t3R41
4 P41

4 e2t3 /T2
D
e2t4 /T2

D

(
i51

i54

e2t1 /T2
S

3Mia* e
2t2 /T2

S
Uib(

j51

j54

e2t5 /T2
S
Vjbe

2t6 /T2
S
Wj , ~42!

F6c~ t1 ,t2 ,t3 ,t4 ,t5 ,t6!

5e2 if1
e2if

2
e23if3

e4if
4
e23if5

e2if
6
e2 i ~E42E1!t4

3e2 i ~E12E4!t3R41
4 P41

4 e2t3 /T2
D
e2t4 /T2

D

(
i51

i54

e2t1 /T2
S

3Miae
2t2 /T2

S
Uic(

j51

j54

e2t5 /T2
S
Vjbe

2t6 /T2
S
Wj , ~43!

F6d~ t1 ,t2 ,t3 ,t4 ,t5 ,t6!

5e2 if1
e2if

2
eif

3
e24if4

eif
5
e2if

6
e2 i ~E12E4!t4

3e2 i ~E42E1!t3R14
4 P14

4 e2t3 /T2
D
e2t4 /T2

D

(
i51

i54

e2t1 /T2
S

3Miae
2t2 /T2

S
Uid(

j51

j54

e2t5 /T2
S
Vjae

2t6 /T2
S
Wj . ~44!

The termsU, V, W are given in Appendix E.M is given
in Appendix D whileR andP can be calculated using Eqs
~19! and ~24!, respectively. Finally, the six pulse signal fo
each orientation, including Gaussian inhomogeneous bro
ening can be written as

F1
6 5~F6a1F6b1F6c1F6d!e

22p2DG
2

~ t52t6!2. ~45!

The full powder signal is calculated using Eqs.~45!and~26!.
Using Eqs.~45! a number of simulations were carrie

out for the six pulse sequence. We found two features
relevance:~a! the strength of the powder signal is about
orders of magnitude lower than that for the DQM experime
and ~b! we find from simulations that the modulation of th
powder signal does not directly reflect the strength of
dipolar interaction as compared to the DQM experime
Signals based on forbidden coherence pathways turn ou
stronger than the primary one!

These features are essentially due to the fact that
primary double quantum signal lacks the orientational se
tivity ~cf. last section! of the DQM experiment. Since the
, No. 5, 1 August 1997
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1331S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
entire range of dipolar interactions~due to the dependence o
the effective dipolar interaction on 3cos2 u21! contribute to
the signal one obtains a smeared out spectrum. This sp
also results in a much reduced amplitude of the DQ sp
trum. Therefore, the experimental success of such a r
cused echo would require an imposed source of orientati
ordering~for example, a bilabeled single crystal or a birad
cal in a liquid crystal oriented in the magnetic field!. Als
improvements in the spectrometer, especially reduction
the instrumental dead times between pulses and better
diatingB1 fields should enable this experiment. The prima
virtue of this experiment would be a measurement of the
relaxation rates.

VI. COMPARISON WITH EXPERIMENT

Now we would like to compare our results with the pr
vious experiments. We performed 2D ESR experiments o
bilabeled poly-proline~P! peptide system C*PPPPC* spin
labeled with a methanethiosulphonate spin label on the
teines~C!. For comparison we used a similar peptide mon
radical, APPPPC*, whereA is the peptide alanine. Exper
mental details are provided elsewhere.1 However, relevant
details are reproduced here. The nominal pulse sequ
consisted of a nominalp/2→p→p/2→p→p/2 sequence.
A true nonselectivep pulse ~i.e., the second pulse in thi
sequence!would reverse all coherences,~i.e.,11→21 and
not provide11→0, cf. coherence pathways~i! and ~ii! in
Sec. IV!. Additionally, the third pulse, if it were truly non
selective, would not yield the 0→62 transfer. As noted
above, our pulses are not truly nonselective. The estim
irradiating field of the microwave pulses,B1 , is about 18 G,
in the rotating frame, whereas the extent of the rigid lim
powder nitroxide spectrum is about642 G. This results in
two kinds of imperfections.1 ~1! The rotation of the spins is
not preciselyp or p/2 across the spectrum and~2! the dipo-
lar term can act as a perturbation during the pulse, leadin
extra coherences. This was accounted for in our Letter1 by
recognizing that the second pulse is not a perfectp pulse, so
it will rotate the spins by an angle different fromp, and we
added the perturbative contributions due to the dipolar in
actions during the third pulse in a simple fashion.1,35,36We
dealt with these issues more rigorously in this paper, by
ing SHT16 as described in Sec. II. The second arbitrary pu
transfers 1→0 and the third converts the latter into DQ c
herence@as given by Eqs.~35! and ~36! in Sec. IV and Ap-
pendix D#, in analogy with the discussion of two pulse D
signals~cf. Sec. III B!.

In Fig. 14~a!we show the DQM time domain signal as
stack plot. The spectrum is oriented so that the modulatio
a function of t1 can be seen. This modulation int1 , which
carries the dipolar interaction, is clear. In fact, Saxena
Freed1 were able to virtually ‘‘read off’’ the dipolar interac
tion from this spectrum.

We now turn to the theoretical analysis of this expe
ment using Eqs.~26! and ~37!. In this analysis the key pa
rameters are the strength of the dipolar interaction (D) and
the Euler angles required to transform the magnetic ten
J. Chem. Phys., Vol. 107
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~g and A! from their PAS to the dipolar frame. The fiv
angles required are shown in Fig. 1. For simplicity, we ha
chosen to vary onlyb1 and b2 which refer to the angle
between the respective nitrogen pi orbitals and the intere
tron vector. Therefore, the relative orientation of the nitro
ides in this simple picture is related toub12b2u ~cf. Fig. 1!.
We used the literature value41 for the magnetic tensors:gxx
52.0086, gyy52.0066, gzz52.0032 andAxx5Ayy56.23
andAzz535.7. The other parameters required are the sin
and double quantum relaxation rates,T2

S and T2
D , respec-

tively. These were determined from SECSY~which provides
T2
S! and DQ-COSY~which providesT2

D : cf. above and Ref.
1! experiments, on the biradical. These parameters are s
marized in Tables IV and Tables V. Note that in this analy
we integrate over the anglesu andz that describe the orien

FIG. 14. Experimental DQM spectrum of the biradical peptide and~b! Best
fit theoretical simulation. The strength of the irradiation field was 17.8
The simulation parameters are:D54.4 G, b15180°, b25180°, T2

S

5300 ns,T2
D5150 nsDG52G. The strength of the irradiation field,B1 ,

was 17.8 G. The duration of the pulses were:P15P35P555 ns andP2

5P4510 ns. The other parameters are the same as in Fig. 4. Note th
our earlier Letter we labeledt1 as tp .
, No. 5, 1 August 1997
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1332 S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
tation of the dipolar vector with respect to the dc magne
field. Hence, we do not make anyansatzabout the specific
values ofu andz that our experiment is favoring due to i
orientational selectivity.

Figure 14~b!shows the theoretical spectra obtained fro
our procedure. The relevant parameters obtained are a
terelectron distance of 18.5 Å,b15180°, andb25180°.

We note that the fit of Fig. 14~b!, while a good one, doe
not completely capture the details of the experiment.
example, the first maximum int1 occurs at a smaller valu
~and is sharper! in the theory. The second maximum com
at a latert1 when compared to the experiment. This is pro
ably due to the fact that we have not explored the param
space exhaustively. For example, we have arbitrarily seta1

5a25g250°. The inclusion of these would have a sm
effect on the quality of fit. We believe that an automat
procedure for nonlinearly fitting the experiments to theo
would result in even better fits and more accur
parameters.42 Perhaps, more important, we have for simpl
ity, neglected a distribution in distances. Such a distribut
is expected to be present in the sample. In fact, the orie
tions of the nitroxides themselves would be characteriz
more realistically, by a distribution. These distributio
would broaden the echo shape int1 and should result in fits
that are closer to the experiment. Finally, we do not disco
the possibility of residual motions at this temperature.

Despite these limitations, we believe that given the
ture of the problem, the fit is very encouraging and serve
validate the key hypotheses of our earlier Letter,1 viz.

~a! The signals are due to forbidden DQ coherences
ated by arbitrary pulses.

~b! The DQM experiment is an orientationally selecti
one.

TABLE IV. List of parameters in the simulations.

Parameter Symbol

Dipolar Interaction D ~G!
Euler angles
g frame to dipolar frame
for nitroxide 1

~a1 ,
a b1 , 0!

Euler angles
g frame to dipolar frame
for nitroxide 2

(a2 ,
a b2 , g2

a!

aThese parameters are relatively unimportant and are arbitrarily kept fixe
zero.

TABLE V. List of fixed parameters in the simulations.

Parameter Source

g tensors Literature value
A tensors Literature value
Homogeneous single quantum
linewidth, T2

SQ
SECSY

Homogeneous double quantum
linewidth, T2

DQ
DQCOSY
J. Chem. Phys., Vol. 107

Downloaded¬06¬Sep¬2002¬to¬128.253.229.132.¬Redistribution¬subje
c

in-

r

-
er

l

e

n
a-
d,

t

-
to

e-

VII. SUMMARY

A theory for calculating rigid limit 2D-DQ ESR spectr
for biradicals has been developed. Detailed expressions w
provided which include the dipolar interaction and the fu
anisotropicg and hf tensors for the nitroxides, as well as t
Euler angles required to define the angular geometry of
biradicals. The effect of the strong but not completely no
selective pulses that exist in 2D ESR~and in solid state
NMR! was included explicitly by adapting split Hamiltonia
theory for numerical simulations. The theory was used to
DQM experimental spectra obtained from a model po
proline peptide system,~cf. Sec. VI!. A distance of 18.5 Å
was found which compares well with the value obtained
fluorescence energy transfer measurements.

The DQ 2D ESR technique is shown to provide an
tractive method for the measurement of large distances~i.e.,
*20 Å! in bilabeled molecules or between paramagne
sites in a solid. In this case the dipolar interaction is ve
weak~about 2 G orless!compared to the dominantg and hf
terms, ~which provide a spectral extent of about642 G!.
Using standard phase cycling techniques, the DQ signal
to the dipolar interaction is cleanly obtained, without a
interference from the primary, or single quantum sign
Thus any correction for monoradical impurities and/or ca
bration with a monoradical spectrum is obviated.

However, the complex nature of the spin Hamiltonian
ESR as well as the short relaxation times characteristic
ESR samples provide a significant challenge to obtaining
signals using standard techniques~cf. Sec. V!. Hence meth-
ods that rely on arbitrary pulses for creating DQ coheren
are necessitated~cf. Secs. III B and IV!. These ‘‘forbidden’’
coherences are shown to be highly orientationally select
thereby providing high resolution ‘‘single-crystal-like’’ re
sults from unoriented frozen samples. Hence they are v
sensitive to the strength of the dipolar interaction. The pr
uct operator technique in conjunction with split Hamiltonia
theory is used to qualitatively demonstrate how such ‘‘fo
bidden’’ coherences are created by arbitrary pulses, and
they are orientationally selective. We note that while su
‘‘forbidden’’ coherences were obtained in NMR as early
1958,35 it is only very recently~1995–! that they have begun
to be experimentally exploited in NMR.14,17,18

Finally, we would like to point out that these DQ meth
ods also provide a way to measure double quantum re
ation rates, which can be used to elucidate motional dyn
ics. A key application would be a distinction between glob
dynamics versus local motions, an area of significant inte
for protein dynamics.
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1333S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
APPENDIX A: HAMILTONIAN FOR NITROXIDE
BIRADICAL

In this Appendix we provide termsCi , Ai , andBi used
in Eq. ~2! in the main text. The Hamiltonian,H1 andH2 @cf.
Eq. ~1!# for this system can be conveniently written as
contraction of irreducible spherical tensor operat
~ISTO!.43–45

Hi5 (
m i ,L,M

Fm i ,l
L,M*Am i ,l

L,M , i51,2, ~A1!

whereAm i ,l
L,M contain the spin operators andm i refers to the

kind of interaction@Zeeman (g) or hyperfine~hf!#. F is pro-
portional to the ISTO of the magnetic interaction~i.e.,g and
hf!. The g and hf tensor~i.e., Fm i ,l

L,M* ! and the relevant spin

operators ~i.e., Am i ,l
L,M! in irreducible form are given by

Schneider and Freed44 and are reproduced here, for conv
nience. The irreducible spherical tensor form~ISTO! of the
g tensor is44

Fgi ,gi
0,0 52A1

3

be

\
~gxxi1gyyi1gzzi !, Agi , l

0,0 52A1

3
B0Szi,

Fgi ,gi
2,0 52A2

3

be

\ Fgzzi2 1

2
~gxxi1gyyi !G ,

Agi ,l
2,0 52A2

3
B0Szi,

~A2!

Fgi ,gi
2,6150, Agi ,l

2,6157
1

2
B0S6 i

,

Fgi ,gi
2,625

1

2

be

\
~gxxi2gyyi !, Agi ,l

2,6250.

The corresponding components of the hyperfine ten
are

FAi ,gi
0,0 52A1

3

gebe

\
~Axxi

1Ayyi
1Azzi

!,

AAi , l
0,0 52A1

3 FSziI zi1 1

2
~S1 i

I2 i
1S2 i

I1 i
!G ,

FAi ,gi
2,0 52A2

3

gebe

\ FAzzi
2
1

2
~Axxi

1Ayyi
!G ,

~A3!

AAi ,l
2,0 52A2

3 FSziI zi2 1

4
~S1 i

I2 i
1S2 i

I1 i
!G ,

FAi ,gi
2,6150, AAi ,l

2,6157
1

2 FS6 i
I zi1

1

4
~SziI6 i

!G ,
FAi ,gi
2,625

1

2

gebe

\
~Axxi

2Ayyi
!, AAi ,l

2,625
1

2
S6 i

I6 i
.

Since theF ’s are most conveniently defined in the molecu
axis @i.e., the principle axis system, PAS, of each nitroxi
~cf. Fig. 1!. Note, that we consider the hf andg tensors of
J. Chem. Phys., Vol. 107
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or

r

each nitroxide to share the respective PAS, i.e., we ass
that there is no tilt between the respective hf andg tensor
axis.#we need to transform them to the lab frame. Choos
the dipolar axis as the main symmetry axis of the molecu
we can define this sequence, for theg and hf tensors as~a! a
transformation from the respective magnetic frame (g) to the
dipolar frame (D) followed by ~b! a transformation from the
dipolar (D) frame to the laboratory frame (l ). This sequence
is shown in Fig. 1 and can be written as

Fm i ,l
L,M*5 (

m8,m9
Dm,m8
L

~V l→D!Dm8,m9
L

~VD→gi
!Fm i ,g

L,m9

5 (
m8,m9

Dm,m8
L

~h!Dm8,m9
L

~l i !Fm i ,g
L,m9 , ~A4!

whereVD→gi
5l i andV l→D5h are the Euler angles defin

ing the transformations from theD to thegi frame@given by
l i[(a i ,b i ,g i)# and from the laboratory frame to the dipola
frame @given by h[(0,u,z)#. Note that if we assume an
axially symmetric dipolar tensor~as is reasonable for suc
long distance biradicals!then the direction ofyd ~cf. Fig. 1!
can be chosen such thatg150 ~cf. Fig. 1!. Given that
Fm i ,g
2,6150 andFm i ,g

2,2 5Fm i ,g
2,22 @cf. Eqs.~A2! and~A3!# we can

write

Hi5 (
m i ,m

Fm i ,l
2,m*Am i ,l

2,m 1(
m i

Fm i ,l
0,0*Am i ,l

0,0 . ~A5!

In high fields and the near rigid limit, the contribution o
non secular terms~S6 i

, S6 i
I zi, S6 i

I6 i
, S6 i

I7 i
! is relatively

small, and so retaining only the secular and pseudosec
terms we obtain

Hi5F be

3\
~gxxi1gyyi1gzzi !

1A2

3 (
m8

D0,m8
2

~h!Kgi ,m8~l i !GB0Szi1Fgebe

3\
~Axxi

1Ayyi
1Azzi

!1A2

3 (
m8

D0,m8
2

~h!KAi ,m8~l i !GSziI zi
1
1

2 (
m8

D21,m8
2

~h!KAi ,m8~l i !SziI21i

2
1

2 (
m8

D1,m8
2

~h!KAi ,m8~l i !SziI11i

5CiSzi1AiSziI zi1BiSziI11i
1B*SziI21i

, ~A6!

whereKm i ,m8(l i) contains the transformation from the ma
netic to the dipolar frame, and it is defined by
, No. 5, 1 August 1997
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1334 S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
Km i ,m8~l i !5@Dm8,2
2

~l i !1Dm8,22
2

~l i !#Fm i ,g
2,2

1Dm8,0
2

~l i !Fm i ,g
2,0 . ~A7!

The termsAi andCi are then given by

Ci5(
m8

D0,m8
2

~h i !Kgi ,m8~l i !, ~A8!
e
ti
t
-

J. Chem. Phys., Vol. 107
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Ai5(
m8

D0,m8
2

~h i !KAi ,m8~l i !. ~A9!

The summation in Eqs.~A8! and~A9! can be written explic-
itly as
(
m8

D0,m8
2

~h i !Km i ,m8~l i ![(
m8

D0,m8
2

~0,u,z!Km i ,m8~a i ,b i ,g i !

5A3

8
sin2 uF H 2 cos4 b i

2
cos 2~a i1g i1z!12 sin4

b i

2
cos 2~a i2g i1z!J Fm i ,gi

2,2

12A3

8
sin2 b i cos 2~a i1z!Fm i ,gi

2,0 G1
1

2
~3 cos2 u21!F2A3

8
sin2 b i cos 2g iFm i ,gi

2,2

1
1

2
~3 cos2 b i21!Fm i ,gi

2,0 G1A3

2
sin u cosu sin b i

3F$~11cosb i !cos~a i12g i1z!1~cosb i21!cos~2g i2a i2z!%Fm i ,gi
2,2

22A3

2
cosb i cos~a i1z!Fm i ,gi

2,0 G . ~A10!

Also Bi is given by

2Bi5(
m8

D1,m8
2

~h i !KAi ,m8~l i !

[(
m8

D0,m8
2

~0,u,z!KAi ,m8~a i ,b i ,g i !5
e22i z

2
sin u~11cosu!F H cos4 b i

2
e22i ~g i1a i !1sin4

b i

2
e22i ~a i2g i !J FAi ,gi

2,2

1A3

8
sin2

b i

2
e22ia iFAi ,gi

2,0 G1
e2i z

2
sin u~cosu21!F H sin4 b i

2
e22i ~g i2a i !1cos4

b i

2
e2i ~g i1a i !J FAi ,gi

2,2

1A3

8
sin2

b i

2
e2ia iFAi ,gi

2,0 G1
e2 i z

2
~2 cosu21!~11cosu!sin b iF12 $~cosb i11!e2 i ~2g i1a i !

1~cosb i21!e2 i ~a i22g i !%FAi ,gi
2,2 2A3

2
cosb ie

2 ia iFAi ,gi
2,0 G2

ei z

2
~2 cosu11!~12cosu!

3sin b iF12 $~cosb i21!e2 i ~2g i2a i !1~cosb i11!ei ~a i12g i !%FAi ,gi
2,2 2A3

2
cosb ie

ia iFAi ,gi
2,0 G1

1

2
~3 cos2 u21!

3F2A3

8
sin b i cos 2g iFAi ,gi

2,2 1
1

2
~3 cos2 b i21!FAi ,gi

2,0 G . ~A11!
or
cf.
The termsC, A, andB @cf. Eqs.~A8!, ~A9!, and~A11!# then
contain the anisotropies in theg and hf tensors as well as th
Euler angles needed to transform these from their respec
principal axis systems to the laboratory frame. Note thaC
andA are real whileB is complex. This completes the defi
nition of H1 andH2 .
ve

APPENDIX B: MATRIX REPRESENTATION

In this Appendix we provide analytical expressions f
the eigenvalues,Ei j @that describe the resonant frequency
Eq. ~15!# of the Hamiltonian,H given in Eq.~1!. We also
derive the matrix representation ofe2 iHt required implicitly
, No. 5, 1 August 1997
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1335S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
for solving the evolution ofx @cf. Eq. ~13!# in Eq. ~16! and
for constructing the pulse propagatorsR and P @Eqs. ~19!
and ~24!#.

We begin by constructing an eigenbasis for the Ham
tonian, H. For a powder an average over all the angu
distributions ofu andz ~cf. Appendix A and Fig. 1! should
J. Chem. Phys., Vol. 107
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be taken. For a particular orientation of the biradical t
Hamiltonian,H1 , can expressed in matrix form using as
basis set the direct product of the electron spin function~u1&
and u2&! and the nuclear basis functionsum1&. For

14N, the
nuclear basis functions are:u1&, u0&, andu21&. Hamiltonian
H1 @Eq. ~2!# can be written in this basis as:
r

H15

u1,1& u1,0& u1,21& u2,1& u21,0& u2,21&

1
C1

2
1
A1

2

B1

A2
0 0 0 0

B1*

A2
C1

2

B1

A2
0 0 0

0
B1*

2

C1

2
2
A1

2
0 0 0

0 0 0 2
C1

2
2
A1

2
2
B1

2
0

0 0 0 2
B1*

A2
2
C

2
2
B1

A2

0 0 0 0 2
B1*

A2
2
C1

2
1
A1

2

2 . ~B1!

Similar expression for the case of15N are provided by Leeet al.33 The Hamiltonian,H1 is diagonalized by the similarity
transformT†H1T5 L1 , where

T5 STa

0
0
Tb

D . ~B2!

H1 is then diagonal in its eigenbasis composed of the electron spin functions~u1& and u2&! and orthonormalized nuclea
functions~c j

(1) , where j51,0,21! The eigenvectorsc j
1 are linear combinations ofu1&, u0&, u21&, i.e., for example,

uc1
~1!&5c1u1&1c2u0&1c3u21&. ~B3!

The diagonal form ofH1 , i.e.,L1 is given by

L151
C1

2
1
1

2
~A1

214uB1u2!
1
2 0 0 0 0 0

0
C1

2
0 0 0 0

0 0
C1

2
2
1

2
~A1

224uB1u2
!
1
2 0 0 0

0 0 0 2
C1

2
2
1

2
~A1

224uB1u2!
1
2 0 0

0 0 0 0 2
C1

2
0

0 0 0 0 0 2
C1

2
1
1

2
~A1

214uB1u2!
1
2

2 .

~B4!
, No. 5, 1 August 1997
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1336 S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
Analogous equations can be written forH2 andc j
(2) can be

defined, similarly.
We now construct a basis from the electron single

triplet function and the nuclear functionsc j
i . This is defined

as

ua&5T1 ^ uc j
~1! ;ck

~2!&[u11& ^ uc j
~1! ;ck

~2!&,

ub&5T0^ uc j
~1! ;ck

~2!&

[
1

&

@ u12&1u21&] ^ uc j
~1! ;ck

~2!&,

~B5!
uc&5S^ uc j

~1! ;ck
~2!&

[
1

&

@ u12&2u21&] ^ uc j
~1! ;ck

~2!&,
J. Chem. Phys., Vol. 107
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ud&5T2 ^ uc j
~1! ;ck

~2!&[u22& ^ uc j
~1! ;ck

~2!&.

The full Hamiltonian,H @Eq. ~1!# can be shown to be block
diagonal in this basis, i.e.,

H5S H11

0
0
0

0
H22

H32

0

0
H23

H33

0

0
0
0
H44

D . ~B6!

Each element inH is a diagonal 939 matrix in the nuclear
spins functions,c j

( i ) . The various terms can be explicitl
written down as
H11[^T1c j
~1!ck

~2!uHuT1c j 8
~1!ck8

~2!&5F12 $C11C21~A1
214 j uBu2!1/2j1~A2

214kuBu2!1/2k%1
D

6
~3 cos2 u21!Gd j j 8dkk8 ,

H22[^T0c j
~1!ck

~2!uHuT0c j 8
~1!ck8

~2!&52
D

3
~3 cos2 u21!d j j 8dkk8 ,

H33[^Sc j
~1!ck

~2!uHuSc j 8
~1!ck8

~2!&52Jd j j 8dkk8 , ~B7!
H23[^T0c j

~1!ck
~2!uHuSc j 8

~1!ck8
~2!&5H32[^Sc j

~1!ck
~2!uHuT0c j 8

~1!ck8
~2!&

5F12 $C12C21~A1
214 j uBu2!1/2j2~A2

214kuBu2!1/2k%Gd j j 8dkk8 ,

H44[^T2c j
~1!ck

~2!uHuT2c j 8
~1!ck8

~2!&5F12 $2C12C22~A1
214 j uBu2!1/2j2~A2

214kuBu2!1/2k%1
D

6
~3 cos2 u21!Gd j j 8dkk8 ,

j51,0,21; k51,0,21.
This Hamiltonian,H @cf. Eq. ~1!# is diagonalized by the
unitary transformation

U†HU5E, ~B8!

whereU is given by

US 1
0
0
0

0
cosF

2sin F
0

0
sin F
cosF
0

0
0
0
1
D . ~B9!

In Eq. ~B9! F is given by

F5
1

2
tan21

2H23

H332H22
. ~B10!

The eigenstate of the Hamiltonian,H @cf. Eq. ~1!#, can
then be written asua&, uJa&, uJb& and ud&. uJa& and uJb&
are defined as

uJa&5~cosFuT0&1sin FuS&)^ uc j
~1! ;ck

~2!&, ~B11!
uJb&5~2sin FuT0&1cosFuS&)^ uc j
~1! ;ck

~2!&,

whereua&, ud&, uT0&, uS&, andc j
( i ) are given by Eq.~B5! and

F by Eq. ~B10!. In this basis,E is given by

E5S E1

0
0
0

0
E2

0
0

0
0
E3

0

0
0
0
E4

D , ~B12!

where the elements in Eq.~B12! are given by

E1[^T1c j
~1!ck

~2!uHuT1c j
~1!ck

~2!&

5
1

2
$C11C21~A1

214 j uBu2!1/2j1~A2
214kuBu2!1/2k%

1
D

6
~3 cos2 u21!,
, No. 5, 1 August 1997
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1337S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
E2[^Jac j
~1!ck

~2!uHuJac j
~1!ck

~2!&

5J2
D

6
~3 cos2 u21!2F H J1

D

6
~3 cos2 u21!J 2

1
1

4
$~C12C2!

1~A1
214 j uBu2!1/2j2~A2

214kuBu2!1/2k%2G1/2,
E3[^Jbc j

~1!ck
~2!uHuJbc j

~1!ck
~2!&

5J2
D

6
~3 cos2 u21!1F H J1

D

6
~3 cos2 u21!J 2

1
1

4
$~C12C2!1~A1

214 j uBu2!1/2j

2~A2
214kuBu2!1/2k%2G1/2, ~B13!
.
t

o

is

J. Chem. Phys., Vol. 107
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E4[^T2c j
~1!ck

~2!uHuT2c j
~1!ck

~2!&5 1
2~2C12C22~A1

2

14 j uBu2!1/2j2~A2
24kuBu2!1/2k1 1

6D~3 cos2 u21!,

j5 1,021; k51,0,21.

Note that Eq.~B13! provides the 36 diagonal in elements
E. For compactness of notation we have suppressed m
plication of each term in this equation byd j j 8dkk8 .

The exponential operatore2 iHt can then be expressed a

X~ t ![e2 iHt5U†e2 iEtU. ~B14!

Substituting Eqs.~B9!, ~B12!, and~B13! in Eq. ~B14!we get
e2 iHt5S e2 iE1t

0
0
0

0
cos2 Fe2 iE2t1sin2 Fe2 iE3t

cosf sin f~e2 iE2t2e2 iE3t!

0

0
cosf sin f~e2 iE2t2e2 iE3t!

sin2 Fe2 iE2t1cos2 Fe2 iE3t

0

0
0
0

e2 iE4t
D . ~B15!
t
n

APPENDIX C: PULSE PROPAGATOR

In this section the exponential operator,e2 i etp is derived,
in the basis vectors given in~a! Eq. ~B5!, i.e., the singlet–
triplet basis and~b! Eqs.~B11! and~B5!, i.e., the eigenbasis

Expanding the operator,e2 i etp in a Taylor series we ge

e2 i etp5 (
n50

`
~2 i etp!

n

n!
. ~C1!

In the singlet–triplet basis@cf. Eq. ~B5!# and using Eq.~9!
we find that the odd and even term in the right-hand side
Eq. ~C1! obey the recursion relationships given by

e2n215v1
2n21A, n51,2,...`, ~C2!

e2n5v1
2nA2, n51,2,...`, ~C3!

whereA andA2 are matrices, that in the singlet–triplet bas
of Eq. ~B5! are given by
f

A5S 0
1

A2
e2 if 0 0

1

A2
eif 0 0

1

A2
e2 if

0 0 0 0

0
1

A2
eif 0 0

D ~C4!

and

A25S 1
0
0
e2if

0
2
0
0

0
0
0
0

e22if

0
0
1

D . ~C5!

In Eqs.~C4! and~C5!,f refers to the phase of the pulse@cf.
Eq. ~9!# and note thatv1tp5b @Eq. ~11!#. Also each elemen
in A andA2 is a 939 diagonal matrix in the nuclear spi
basis,c j

i . Substituting Eq.~C3! in Eq. ~C1! we obtain

e2 i etp511 iA sin b1A2~cosb21!. ~C6!

On substituting Eqs.~C4! and ~C5! in Eq. ~C6! we find that
e2 i et, in the singlet–triplet~case a above!representation is:
, No. 5, 1 August 1997
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1338 S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance
e2 i etp5S 1

2
~cosb11! 2

i

A2
sinbe2 if 0

1

2
~cosb21!e22if

2
i

A2
sin beif cosb 0 2

i

A2
sin be2 if

0 0 1 0

1

2
~cosb21!e2if 2

i

A2
sin beif 0

1

2
~cosb11!

D . ~C7!

Using a similar procedure, we obtaine2 i et in the eigenbasis of the Hamiltonian,H, ~i.e., for case b! given by Eq.~B11! and
~B5!. This is given by

e2 i et51
~ 1
2 cosb11! 2

i

A2
cosF sin be2 if

i

A2
sinF sin be2 if 1

2~cosb21!e22if

2
i

A2
cosF sin beif 11cos2 F~cosb21! 2cosFsin F~cosb21! 2

1

A2
cosF sin be2 if

i

A2
sin F sin beif 2cosF sin F~cosb21! 11sin2 F~cosb21!

i

A2
sin F sin be2 if

1
2~cosb21!e2if 2

i

A2
cosFsin beif

i

A2
sin F sin beif

1

2
~cosb11!

2 . ~C8!
t,

Q

Again, each element in Eqs.~C7! and~C8! is a 939 diago-
nal matrix in the nuclear functions, as noted above.

Using Eqs.~B15! and ~C7! and we can calculateR and
P in Eqs.~19! and~24! to any order in the Trotter exponen
n.

APPENDIX D: FIVE PULSE SIGNAL

In this Appendix we provide the termsM , N, andQ that
define the signal observed in the five pulse DQM and D
COSY experiments. The termsX, R, P, andS are defined
by Eqs.~B14!, ~19!, ~24!, and Table I, respectively.

M1a5M1b5S1
1~R11

1 P12
1 2R14

1 P42
1 !

1S2
1~R11

1 P13
1 2R14

1 P43
1 !,

N1a5R41
3 R11

2 P21
2 P11

3 1R21
2 P22

2 ~R42
3 X22~ t2!X22

† ~ t2!P21
3

1R43
3 X23~ t2!X32

† ~ t2!P31
3 !1R44

3 R41
2 P24

2 P41
3

1R31
2 P23

2 ~R43
3 X33~ t2!X33

† ~ t2!P31
3

1R42
3 X32~ t2!X23

† ~ t2!P21
3 !,

M2a5M2b5S1
1~R11

1 P13
1 2R14

1 P43
1 !

1S2
1~R11

1 P12
1 2R14

1 P42
1 !,

N2a5R41
3 R11

2 P31
2 P11

3 1R21
2 P32

2 ~R42
3 X22~ t2!X22

† ~ t2!P21
3

1R43
3 X23~ t2!X32

† ~ t2!P31
3 !1R44

3 R41
2 P34

2 P41
3

1R31
2 P33

2 ~R43
3 X33~ t2!X33

† ~ t2!P31
3

1R42
3 X32~ t2!X23

† ~ t2!P21
3 !, ~D1!
J. Chem. Phys., Vol. 107
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M3a5M3b5S3
1~R31

1 P14
1 2R34

1 P44
1 !

1S4
1~R21

1 P14
1 2R24

1 P44
1 !,

N3a5R41
3 R13

2 P41
2 P11

3 1R23
2 P42

2 ~R42
2 X22~ t2!X22

† ~ t2!P21
3

1R43
3 X23~ t2!X32

† ~ t2!P31
3 !1R44

3 R43
2 P44

2 P41
3

1R33
2 P43

2 ~R43
3 X33~ t2!X33

† ~ t2!P31
3

1R42
3 X32~ t2!X23

† ~ t2!P21
3 !,

M4a5M4b5S3
1~R21

1 P14
1 2R24

1 P44
1 !1S4

1~R31
1 P41

1 2R34
1 P44

1 !,

N4a5R41
3 R12

2 P41
2 P11

3 1R22
2 P42

2 ~R42
3 X22~ t2!X22

† ~ t2!P21
3

1R43
3 X23~ t2!X32

† ~ t2!P31
3 !1R44

3 R42
2 P44

2 P41
3

1R32
2 P43

2 ~R43
3 X33~ t2!X33

† ~ t2!P31
3

1R42
3 X32~ t2!X23

† ~ t2!P21
3 !,

N1b5R11
3 R11

2 P21
2 P14

3 1R21
2 P22

2 ~R12
3 X22~ t2!X22

† ~ t2!P24
3

1R13
3 X23~ t2!X32

† ~ t2!P34
3 !1R14

3 R41
2 P24

2 P44
3

1R31
2 P23

2 ~R13
3 X33~ t2!X33

† ~ t2!P34
3

1R12
3 X32~ t2!X23

† ~ t2!P24
3 !,

N2b5R11
3 R11

2 P31
2 P14

3 1R21
2 P32

2 ~R12
3 X22~ t2!X22

† ~ t2!P24
3

1R13
3 X23~ t2!X32

† ~ t2!P34
3 !1R14

3 R41
2 P34

2 P44
3

1R31
2 P33

2 ~R13
3 X33~ t2!X33

† ~ t2!P34
3

1R12
3 X32~ t2!X23

† ~ t2!P24
3 !, ~D2!
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N3b5R11
3 R13

2 P41
2 P14

3 1R23
2 P42

2 ~R12
3 X22~ t2!X22

† ~ t2!P24
3

1R13
3 X23~ t2!X32

† ~ t2!P34
3 !1R14

3 R43
2 P44

2 P44
3

1R33
2 P43

2 ~R13
3 X33~ t2!X33

† ~ t2!P34
3

1R12
3 X32~ t2!X23

† ~ t2!P24
3 !,

N4b5R11
3 R12

2 P41
2 P14

3 1R22
2 P42

2 ~R12
3 X22~ t2!X22

† ~ t2!P24
3

1R13
3 X23~ t2!X32

† ~ t2!P34
3 !1R14

3 R12
2 P44

2 P44
3

1R32
2 P43

2 ~R13
3 X33~ t2!X33

† ~ t2!P34
3

1R12
3 X32~ t2!X23

† ~ t2!P24
3 !,

Q1a5R21
5 P41

5 S1
5* , Q2a5R31

5 P41
5 S2

5* ,
~D3!

Q3a5R41
5 P42

5 S3
5* , Q4a5R41

5 P43
5 S4

5* ,

Q1b5R24
5 P11

5 S1
5* , Q2b5R34

5 P11
5 S2

5* ,
~D4!

Q3b5R44
5 P12

5 S3
5* , Q4b5R44

5 P13
5 S4

5* .

APPENDIX E: SIX PULSE SIGNAL

In this Appendix we provide the termsU, V, andW
required to describe the six pulse primary refocussed do
quantum echo

U1a5S1
2~R41

3 P21
3 R12

2 P12
2 !1S2

2~R41
3 P31

3 R12
2 P12

2 !,

U2a5S5
2~R41

3 P31
3 R13

2 P13
2 !1S2

2~R41
3 P21

3 R13
2 P13

2 !,
~E1!

U3a5S6
2~R43

3 P41
3 R34

2 P34
2 !1S4

2~R42
3 P41

3 R34
2 P34

2 !,

U4a5S3
2~R42

3 P41
3 R24

2 P24
2 !1S4

2~R43
3 P41

3 R24
2 P24

2 !,

V1a5S1
5R11

5 P42
5 1S2

5R11
5 P43

5 , W15S1
6*R21

6 P21
6 ,

V2a5S5
5R11

5 P43
5 1S2

5R11
5 P42

5 , W25S2
6*R31

6 P31
6 ,

~E2!
V3a5S3

5R21
5 P44

5 1S4
5R31

5 P44
5 , W35S3

6*R42
6 P42

6 ,

V4a5S6
5R31

5 P44
5 1S3

5R21
5 P44

5 , W45S4
6*R43

6 P43
6 .

Uib can be obtained fromUia ~i51, 4! by making the fol-
lowing substitutions:

R11
3 P24

3 →R41
3 P21

3 , R11
3 P34

3 →R41
3 P31

3 ,
~E3!

R12
3 P44

3 →R42
3 P41

3 , R13
3 P44

3 →R43
3 P41

3 .

Also Vib is obtained fromVia by the following substitutions:

R14
5 P12

5 →R11
5 P42

5 , R14
5 P13

5 →R11
5 P43

5 ,
~E4!

R24
5 P14

5 →R21
5 P44

5 , R34
5 P14

5 →R31
5 P44

5 .

Furthermore,

Uic5Uia* , Uid5Uib* , i51,4. ~E5!
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