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A formulation is presented for calculating double quantum two dimensional electron spin resonance
(DQ-2D ESR)spectra in the rigid limit that correspond to recent experimental DQ-2D ESR spectra
obtained from a nitroxide biradical. The theory includes the dipolar interaction between the
nitroxide moieties as well as the fully asymmetgiand hyperfine tensors and the angular geometry

of the biradical. The effects of arbitrary pulsstrong but not truly nonselective pulgese included

by adapting the recently introduced split Hamiltonian theory for numerical simulations. It is shown
how arbitrary pulses in magnetic resonance create “forbidden” coherence pathways, and their role
in DQ-2D ESR is delineated. The high sensitivity of these DQ-2D ESR signals to the strength of the
dipolar interaction is demonstrated and rationalized in terms of the orientational selectivity of the
“forbidden” pathways. It is further shown that this selectivity also provides constraints on the
structural geometryi.e., the orientations of the nitroxide moietiesf the biradicals. The theory is
applied to the recent double quantum modulatb@M) experiment on an end-labeled poly-proline
peptide biradical. A distance of 18.5 A between the ends is found for this biradical. A new two pulse
double quantum experiment is propogbyg analogy to recent NMR experimehtand its feasibility

for the ESR case is theoretically explored. 1®97 American Institute of Physics.
[S0021-9606(97)00729-0]

I. INTRODUCTION (1/r®), wherer is the interelectron distance. Hence this

method is not expected to be very reliable for larger dis-

Recently double quantum two dimensional gleéctron SPiNances. It would also require an additional experiment that
resonanceDQ-2D ESR)experiments were obtainedn a  (qjies on the availability of a suitable monoradical, for the

poly-peptide system, spin labeled with a nitroxide at bothyeermination of small differences in tfig's between mono
ends. -Lh's requwedd a no;]/el zppllljtlzatlon of pulses ﬁf arbitrary, 4 piradicals and the estimation of a rotational correlation
strengths to produce the double quantum coherence. f\.o n 4 similar spirit one could measure the difference in

double quantu_m electron spm_ecl(uESE) S|gr_1a| was also T, but the nonsecular spectral densities available are typi-
reported on spin-correlated radical pdisgherein the double cally small?

quantum coherence IS naturally produced” by the bond The advantage of double quantum ESR is that one can,
cleavage. Such experiments have opened up a powerful new.

tool for structural and relaxation studies. W'th apprc_)pnate phase cyglmg, |$0Iate th_e dogble qu_an_tum
. . L signal which carries the dipolar information directly in its
For example, a particularly important application for

ESR is the measurement of large distances in doubly labele odula’qon pat_terﬁ.Sm_ce th'.s coher_enge depends on the
macromolecules or between paramagnetic sites in a soli _|polar |ntera30t|on, the |n.ter.15|ty of this ?'Qﬂa' falls off more
Such measurements in ESR have thus far largely relied on 3oV (~1/r) and therein lies the possibility for measuring
large exchange or dipolar coupling leading to an observabl&rger d|§tances. Also, the calibration using a monoradical is
difference in the continuous wave spectréimf Hence they Ot required. _

have been restricted to measurements of less than ca. 15 A. Single quantum selective pulse methods have been de-
One approach, might be to measure the homogeneous lin¥eloped for measuring distances, based on double electron—
widths (i.e., T,) in a biradical and extract the distance infor- €/ectron resonant@ (DEER) and on the “2+1” pulse
mation from that by comparison with tfie, from a structur-  train®*! The success of these methods in measuring dis-
ally and chemically similar monoradical used as a standard@nces greater than 15 A, is encouraging. In particular,
However, the extraction of homogeneous linewidths from arl-arsen and Sing&lvere able to measure the dipolar coupling
inhomogeneously broadened spectrum is often very ambigiirectly from the spectrum, after appropriate signal process-
ous in continuous wavéCW) ESR. The natural candidate ing. However, the advantage of the double quantum coher-
for this approach would then be a spin-echo or a SECS\ence method is that the measured signal is directly due to the
experiment. In the latter case inhomogeneities are refocusetipolar interaction(by the very nature of generation of DQ

in t;, and hence one obtains the homogeneous linewidtheoherences), and hence it has a greater sensitivity towards
along w,.° However, the contributions to the homogeneousthis interaction. For this reason the analysis of a DQ coher-
linewidths in the biradical spectrum due to fluctuations in theence experiment to extract distances is cleaner than the other
intramolecular dipolar interaction, when compared to themethods: For example, in the DEER based techniyjttee
monoradical, would fall off rapidly with separation as weak dipolar echo modulation has to be extracted from the
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1318 S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance

dominant background echo decay by spectral subtracii®n coherences that are created by finite pulses in magnetic reso-
suming a simple exponential decays for the background sigaance(cf. Sec. 1V). The insight provided by the use of SHT
nal). In addition, the DQ signal is unaffected by monoradicalhas lead us to an alternative approach for the creation of DQ
impurities, while the other techniques may have to correctoherences that is useful for the measurement of distances
for these signals. Another important advantage would bécf. Sec. Ill B).
that, in the DQ method we can measure the double quantum In this paper, we first consider the single quant{(8@)
relaxation rate T5) directly. This has the potential of sig- COSY/SECSY signal from a biradical. We then show how
nificantly aiding the elucidation of motional dynamiogf.  the same two pulse sequence may be used to detect DQ
below). signals, by analogy with recent NMR observatidhs’8
The use of double spin labeling of macromolecules forThe feasibility of such experiments for ESR is theoretically
distance measurements is analogous to the method of fluexplored. We then consider the DQ ESR experiments that
rescence energy transféFET). However, distances mea- have already been experimentally performéthese are five
sured from FET suffer from large uncertainties in tké  pulse experiments which are based on the creation of extra
parameter that describes the relative orientation of the trarPQ coherences due to the arbitrary pulb@he first case is
sition dipoles of the two chromophor&sNo comparable the double quantum modulatididQM) experiment. In the
problem exists in ESR, since the spins are quantized alongme domain this provides a simple method of measuring the
the magnetic field. dipolar interaction. The second is the DQ-COSY experiment,
As mentioned above, another important application ofwhich provides information on the DQ relaxation rate.,
double quantum ESR would be the elucidation of motionaiT). Next, we turn to the detection of the primary DQ echo
dynamics in conjunction withand in analogy tp single based on a six pulse sequence. Finally, we compare the
quantum methods like COSY/SECSY and 2D ELD®R. DQM experiment to theory.
For example, a simple comparison of the double and single  This work validates the key observations of our first
quantum linewidthgi.e., T,'s) would provide a clue for cor- communicatior. The DQ signals we see are additional
related vs uncorrelated dynamitgi.e., overall rotation as and/or “forbidden” coherences created by the second and
opposed to local motions). This would be of significant rel-third pulses of the five pulse sequence. The forbidden nature
evance for studies on flexible biomolecules, like proteins. Of these signals also provides an orientational selectivity,
In this paper, we present a detailed analysis of such DGuch that the signal primarily arises from those orientations
experiments, with the aim of improving the sensitivity, reso-of the dipolar vector that are parall@r nearly so)o the dc
lution, and range of the DQ technique that we havemagnetic field. It is this orientational selectivity that causes
developed. Also, other approaches for measuring the DQthe signal to be very sensitive to the dipolar interaction, and
signal are discussed. To this end, we consider the full combence to the interelectron distance. We further show that this
plexity of the nitroxide Hamiltonian. Therefore, we include orientational selectivity leads to a structural sensitivity, i.e.,

the completely anisotropig and hyperfine tensors and the the signals are sensitive to the orientations of the two nitrox-
angular geometries of the biradidaf. Fig. 1). ides. This has significant potential for structural studies in

Further, we treat the effect of the finite pulses in detail.biomolecules. Also, we demonstrate from theoretical simula-
The key feature of these DQ experiméntgas the creation tions, that the primary or “allowed” echo arising from a
of a double quantum coherence by an arbitrary p(lse, a basic six pulse sequendgyhich lacks this orientational se-
strong but not completely nonselective pulse:H, wheree  lectivity), has a much reduced intensity compared to the
represents the effect of a pulse aHdthe internal Hamil-  “forbidden” DQM/DQ-COSY echoes. This is undoubtedly
tonian of the systein The effects of the arbitrary pulse are the reason why we were unable to observe the primary &cho.
therefore considered in detail. In general, such cases in mag- The appropriate theory for these experiments is summa-
netic resonance are dealt with by “brute force” rized in Sec. Il, with more detailed descriptions of the deri-
diagonalizatiort? which lacks the predictive power that an vations given in the Appendices. The two pulse single and
analytic theory provides. Recently, a number of ana|ytichUb|e quantum experiments are discussed in Sec. Ill. The
methods$® have been proposed to deal with the case of weakase of the five pulse DQM/DQCOSY is presented in Sec.
(i.e., e<H) and/or selective pulses for other applications!V, and the six pulse primary DQ signal in Sec. V. The
(mainly for nuclear modulation in ESR These are, of theory is compared to experiment in Sec. VI, and the con-
course, not immediately applicable for our case because o@lusions are given in Sec. VII.
pulses are neither weak nor truly selective. However, re-
cently a new theoretical method called split HamiltonianI THEORY
theory (SHT) has been developed to deal with the case o# '
arbitrary pulses in magnetic resonariaVe have used SHT In this section we provide the theory for calculating
to account for the role of the pulses in our experimdnfs  double quantum 2D ESR spectra for nitroxide biradicals. The
Sec. Il B). Not only does this method provide accurate nu-underlying model consists of a rigid biradical with well de-
merical results, but in lowest order, tractable analytical exfined orientations of the two nitroxides with respect to the
pressions may be readily obtained, that while not necessarilgipolar vector. This is illustrated in Fig.(d) and relevant
guantitative, do describe the formation and general propereoordinate frames are shown in FigbL In Sec. Il A we
ties (such as orientational selectivity, cf. belpwf the DQ  give the spin Hamiltonian for this rigid system, with more
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x10 21 x 2 We assume axial symmetry of the dipolar interaction,
N f 20 f 2 which is appropriate for the case of interest to us, of biradi-
™ cals wherein the electron spins are well separated. This term
can then be written 3%
X D 2_ 12
d HD=§(300§ 0—1)[S; =357, Q)
(@ “a
where
S,=S,+S,, @
S=5+5;, )

andD is the dipolar spin—spin interaction parameter, which
we shall express in Gaus$). For a given interelectron
distancer (in Angstroms), this paramet® (in G) is given

by®

FIG. 1. (a) A schematic drawing of a biradical defining the convention used D= 3gBe (6)
for the axis systems of the magnetjand hf tensors: The axes are along 2r3

the N7 orbitals and thex axes are along the N—O bond. Theaxes are in

the plane of the ring(b) The relevant Euler angles required to transform whereg is the isotropicg value andg. is the value of the

from the dipolar to the molecular frame. These Euler angles define thggghr magneton.
angular geometry of the molecule. The spin exchange term is taken to’be

H;=3(3-25,'S)), )

details provided in Appendix A. In Sec. Il B we describe yhereJ is the strength of the exchange interaction.

how the signal is calculated, and we show how SHT is  Finally, during a pulse of duratioty , the Hamiltonian is
adapted for the numerical calculations.

(b)

Hpo=H+e ®)

with H given by Eq.(1). The effect of the radiation field
A. Spin Hamiltonian during pulses is given by, with

In order to deal properly with the 2D ESR spectra we w1, ”
include the fully asymmetrig and hyperfinghf) tensors. In e(tp)=— (e 7S, +€7S.), 9)
that case, the internal Hamiltonian for a nitroxide biradical is
given by where € is the irradiating microwave pulse of duratiog,
intensity, B; (=w; /vy, with v, the gyromagnetic ratio for
H=H;+Hy+Hp+H,, (1) the electron spin), and phage Also

whereH; (i=1,2) is the contribution from the hyperfine and

=S, +
Zeeman terms of the two nitroxides ahig, andH are the S+=S1t 5., (10)
contributions from the dipolar an@sotropic) exchange in- S =S,_+S,_.
teractions, respectively. The termds (i =1,2) can be written _ ) _ _ o
as The nominal flip angle of the pulse is defined @sThis is
given by
Hi:CiSzi+AiSzi|zi+BiSzi|+1i+B*Szi|—1i 2
B=witp. (11)

when as is usual, the hf terms nonseculagiare neglected,
(i.e., the high field approximatignExplicit expressions for
the termsC;, A;, andB; are provided in Appendix A. They
contain the anisotropies in tlgeand hf tensors and are de- B. Calculation of the ESR signal
pendent on the Euler anglesy(,8;,v;) that describe the
orientation of the respectivg and hf tensors relative to the
dipolar frame, and also the angles?) that define the orien-
tation of the interspin dipolar frame relative to the dc mag- d . R

netic field. Note that we assume the respectivend hf gi P~ IH®.p(O]=T(p(1) —po). (12)
tensors of each nitroxide to have the same principal axis

systemgPAS). This is clarified in Fig. 1 where we show the In Eq.(12),H is given by Eq.(1) in the absence of radiation
PAS's of the two nitroxides and the Euler angles required t&and p(0) =po*S;, wherep, is the equilibrium spin density
transform theg and A tensors to the lab frame. matrix. Also,T" is the relaxation superoperator. Denoting the

Equations(1), (2), (3), (7), and(9) then define the Hamil-
tonian we use for the case of nitroxide biradicals.

To calculate the ESR signal, one first describes the time
evolution of the spin density matriy, by the equatioft 23
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1320 S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance

difference between the time dependent density matrix, P
p(t), and the equilibrium density matriyy by x we get

d A A
aX=—i[H(t),X(t)]—Fx(t)EF’X(t)- (13)

Relaxation will be treated phenomenologically, with orienta- SHT
tion independent relaxation rat€s, T5, andT5 , where the
superscriptsS and D refer to single and double quantum

relaxation times, respectively. Then the superoperﬁto'm
the eigenbasis of the spin HamiltoniaH, of Eq. (1) (cf.
Appendix B), is given b$!

2P

2 _ ; 1 1 _ R, R,
I = ik dji| —lwij—&ij 77| 1= 4 < K=SD,
! 2 (14) FIG. 2. Thenth order split Hamiltonian theory approximation for an arbi-
trary pulse of duratiorP.
wij:Ei_Ej ) (15)

wherew;; are the resonant frequencies, given as the differq yhis end a new theoretical method, called split Hamil-
ences of eigenenergie;, in the rotating frame. These tonian theory(SHT)*® has been proposed recently, to deal

eigenenergies are derived in Appendix B and are Oﬁgtaine%ith this situation of arbitrary pulses in magnetic resonance.
from Eq. (B13). Equation(13) is then solved in the for Here, an arbitrary pulse is reconstructed as a seriesnof 2

Tt nonselective pulses of durationi,(2n) each, interspersed
X(tot1)ij= ey (to)ij (16)  with periods of free evolution ofpdurationp(/n). Figure 2
where they;; are expressed in the eigenstates of E§S$)  shows the decomposition of an arbitrary pulse into titie
and(B11). In Appendix B we also provide the matrix repre- degree SHT approximation. In this example each subpulse
sentation for the spin Hamiltonian given by E), and also sequence is composed of a nonselective pulse of duration

explicit expressions foe™ 't P/2n followed by a period of free evolution of duration
During a pulse, spin relaxation will be neglected, so theP/n and another nonselective pulse of durat®2n. The
density matrix will evolve as mathematical validity for this approach is based on the sym-
g metrized Suzuki—Trotter formuf;** which can be written
— p=—i[(H+e€),p(t)]. (17)  inthis context as
dt . . . .
REe—I(H+E)Ip: lim (e—letp/Zne—lHtp/ne—|etp/Zn)n. (19)
The formal solution to Eq(17), after a pulse of duration, n—o
t,, is given by Defining
p(to-l—tp) = e—*I(HJre)tpp(to)el(H+e)tp_ (18) R,= e—ietp/2ne—thp/ne—ietp/Zn, (20)

In the usual nonselective pulse approximatiens deemed \ye pave
to be much greater tha (i.e., e>H) duringt,, and hence

one needs to calculate ordy '<». However, in 2D ESRand R= lim (R,)". (21)
in solid state NMR)}the pulses are typically not truly nonse- e
lective. We shall instead refer to them abitrary. In fact, Each exponential on the right-hand side of EtP) can

the finiteness ot is crucial for generating a class of double usually be written explicitly in an appropriate basis and
(and in general multiplequantum coherencés®1"18The  hence analytic expressions f& can be determined for a
inability of an arbitrary pulse to uniformly excite the mag- desired value of the exponent, Further, Salikhowet al®
netic resonance spectrum leads to significant off-resonanaemonstrated that values of 2—4 of the Trotter expongnt,
effects, like a frequency dependent variation in phase antbr a model Hamiltonian were sufficient to provide satisfac-
intensity???> More subtly, arbitrary pulses also create extratory approximations t@ (" * €% when compared to the ex-
coherence pathways, which lead to “ghost” and “phantom” act results. The advantage of SHT, then, is that it provides
echoes in 2D NMR spectroscopyThese effects were con- analytic formulas for the signal which can also be numeri-
sidered to be artifacts and phase cycling sequences were deally iterated for more quantitative calculations, if required.
vised to eliminate therf® However, there has been a reju- For example, even the lowest order of E#9) (.e., n=1)
venated interest in characterizfig?® and utilizing these conveys the essential physics of the problem like the genera-
large effects:1417:18 tion of extra coherence&f. Sec. IV, below. We have used
Hence one needs to calculate' (" 9% explicitly. The  this approach to deal with the pulses in the experiments con-
usual approach has been to numerically diagonalizeidered and a value of 8 far was found to be sufficient for
e~ (HT % 14 while this approach is useful for quantitative numerical convergence for the estimated value B
analysis, it lacks the predictive power of an analytic theory.=17.8 G currently available in our spectrometer. For the
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case of weak pulses of strengtBl(= 1.8 G) used for some TABLE I. Terms defining the signal due to each orientation. Note that the

simulations.n= 16 was used. The expressions &r <'» re- superscriptj, is used to label the time interval while the subscripts labels
! ’ P each termw;; =E;—E; . TheE;, i=1,2,3, or 4 are given by E¢B13), and

quired in Eq.(19) are provided in Appendix C. ® is given by Eq.(B10).
Note that in Eq(19) we have define®, in a form that _ : ‘

is a variant of that used by Salikh@t al. That is they used S, cog de1di+ sir? de '

the ChOiCé6 S, cos® Sin(b{eﬂmlztl_e—mmtl}

S, cof e 124 4 sin? Peiwadi

— a—iHty/2na—iet, Inn—iHt/2n g cos® sincp{e’iwzz:'ife*i“’sct‘i}

Rn e pPele ple Pt (22) Sz S|n2 fI)e’f‘”H‘i-&-cosz q)efiwlgl‘

While these choices are arbitrary in the formulation of SHT, Ss sin? @e™ 241+ cos’ e 'esd

the convention of Salikhoet al. [Eq. (22)] results in more
tractable analytical calculations for a given valuengfsince
the periods of free evolution that occur in the extremities Ofpresent approach is that the effects of an arbitrary pulse can

R can be combined with the time intervals just preceding anq,e discussed at a lower order af Using Eq. (19), R
just following the pulse. However, note that in our conven-

=e '(H*9% can be shown to have the form
tion then=1 approximation already breaks up the arbitrary _ . .
pulse into two subpulses, whereas, this requires rtke? Ris Ri2™'% Ry’ Rye ??
approximation in the convention of Salikhat al. In this | Rpe'? Rz Ras Roe™?
sense thein subpulse approximation is related to the 1 B R3le‘¢ Rs, Ra3 R34e*“” ’
subpulse approximation in our convention. The value of the Ri;€%? Rue'? Rye'? Rus
(23)
where the element®;;, are independent of the phageof
the pulse.

This characteristic labeling igp means that each coher-
ence pathway is distinctly defined by the phase of each pulse,
and hence efficient phase cycling sequences can be easily
determined to experimentally select desired coherence path-
ways. Also, this allows us to selectively calculate the signal
from a given coherence pathway. Note that Rie are de-

-2 pendent on the strengtB; and durationt, of the pulse, and
@ also on the resonant frequencies; .
P i For the sake of convenience of notation, the propagation
Y to operatore' "+ 9% can be similarly written down as a matrix
P. From the unitary property of the opera®@f™ 9t
+2
+1 P” = RT; . (24)

We choose the dipolar frame as the main symmetry axis
-1 of the molecule. The signak . (t), is calculated for each
(_bz) orientation of the dipolar vector with respect to the dc mag-
netic field (given by the angle® and¢) as

7
b ta tg ty ts F.(t,0,)=Tr[S,;p(t)]. (25)

o
o
]
T
d

+2 Using Egs.(16) and(18) we can obtairp(t) for the relevant

+1

coherence pathway($jom a sequence of pulses, and then
the signal,F due to each orientatiofcf. Eq. (25)] can be
written as a combination of terms dependent on the pulse
(i.e,, Rj=Pj}) and on the resonant frequencig., w;;).
Combinations of the terms im;; , which appear in the sig-
nal, are given in Table I. These are denotedS})y(the sub-
script labels the different terms, while the superscriptis

TABLE II. Phase cycling for two pulse double quantum experiment. This
two step cycle is augmented by the addition of CYCLOPS making it an
eight pulse sequence.

FIG. 3. Pulse sequence uséd) Two pulse COSY/SECSY sequende) P, P, Sign
Two pulse DQ sequencé) Five pulse sequence used for DQM/DQ-COSY

experiments(d) Six pulse sequence used for a refocused DQ echo experi- 0 0 +
ment. Relevant coherence pathways are also shown. 180 0 +
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1322 S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance

used to label the relevant time interval$he powder pattern TABLE lll. Phase cycling for five pulse double quantum experiment. This

is calculated by integrating over all the orientations of thefour step cycle is augmented by the additional four steps in parentheses, to
dipolar vector which CYCLOPS is then added.

P, P, Ps P, Ps Sign

2m (m 0 (180) 0 (0) 00 00 0O +(-)

S(t)= fo dg“fo sin 0F ,.(t,6,£)d6. (26) 90 (270) 90 (90) 90(90) 00 0 - ()
180 (0) 180 (180) 180(180) 0 (0) 0 (0)  + (-)

270 (90) 270 (270) 270(270) 0(0) 0 (0) - (+)

Using Eqgs.(16), (18), (19), and(24), the signal from any
pulse sequence can be calculated. Signals from the pulse

sequence and coherence pathways shown in Fig. 3 were cal- )

culated in this manner. These are discussed in the next thrée Single quantum signals: COSY and SECSY
sections. The phase cycling for the two pulse and five pulsgxpenments

DQ experiments is provided in Tables Il and Ill, respec- In the single quantum COSY experiment the first pulse

tively. creates transverse magnetizatianl coherences). The sig-
nal is measured after the second pulse. Formally, the SECSY

IIl. TWO PULSE EXPERIMENTS signal is related to the COSY signal by the transformation

t,—t,+1,.22%2|In the SECSY experiment the inhomogene-

We begin with the simplest of two dimensional experi- .2 ) X , ,
ities are refocused ity and hence this experiment provides

ments, i.e., two pulse experiments. In Sec. Il A single quan- e homogeneous single quantum linewidths along® The
m Y and SECSY experiments are di . Recentl . . T
tum COSY and SECSY experiments are discussed. Recentiy, S._2*% signal (given by the coherence pathway

double gquantum 2D NMR experiments using the two pulse™ i
sequence have been perforntéd”*®In Sec. Il B we dis- 0— +1— —1) for each orientation of the dipolar vector
cuss the feasibility of such experiments for the 2D ESR casecan be written as

2
FCOOSY(t,,t,) =€ ? e 14 [ S5 R,P4A S5(Ry P14~ R34Pus) + Si(R3 P14~ R3P1)}
+ S5 RigPa{ Si(Ro1P 14— R54P10) + S3(R31P14— R3yPi0)  + S5* R3PS SH(RT,P1,— R1P2,)
+SH(R}1P1s— R1PI)} + S5* RE,PA{SH(RI,P1,— R1P1) + Si(R},P1s— RiP1)}]

S 2
w @~ (t1+1)/Tog—2m?Ag (t—t)? (27)

The termsR and P in Eq. (27) are given by Egs(19) and  The primary value of Eqs27), (28), and(29) is that they
(24), respectively, while the term§, are given in Table I. allowed us to meaningfully evaluate the intensities of the
The superscripts oR, P, and ¢ are used to label the pulses double quantum signals and transfer efficiencies discussed in
(cf. Fig. 3) to which these terms refdthey arenot expo-  Secs. llI B, IV, and V.
nents).A g represents sources of inhomogeneous broadenin
which are refocused in a spin—ecffo>*and are assumed to
be Gaussian. We would now like to deal with the generation of an

While the dominant interactions are the hf interactions,extra(multiple quantum)coherence with a single pulse and
fluctuations in the dipolar interaction would lead to a smallerits detection with a second pulse. This idea was demon-
homogeneou$ for the biradical as compared to the mono- strated very early in NMB*® as “forbidden transitions”
radical in the COSY experiment. This is treated only phe-and put in the modern magnetic resonance terminology of
nomenologically in these simulations. multiple quantum transitions by several worké&fs*® Re-

The efficiency of single quantum coherence transfercently there has been a resurgence of interest in experimen-
(i.e., the extent of the transfer-01), To_.,, due to the first tally exploiting this feature in NMR*!"*8The first pulse in

%. Double quantum signal

pulse is given by this sequence creates a doulde multiple) quantum coher-
11 11 11 11 ence, which then evolves for a period. A second pulse
To—.1=2X[(R21P 14~ RosPus) + (R31P 14~ R3sPu) transfers this doublémultiple) quantum coherence into ob-

+(RLPL-RIPLy+(RLPL-RLPL)T. (28 servable single quantum coherence. The signal is measured
(RuP1o™ RuPao) + (RuPre~ RuPag) ). (28) after the second pulse for a series of values;ofThe phase
Also the efficiency of back coherence transfer due to thecycling for this two pulse DQ sequence is provided in Table
second pulseT,_, 4 is given by Il.
This double quantum signal from a two pulse
_p2 p2 2 p2 2 p2 2 p2
T1 1= RePay T RagPas T Ro1P2 T R5Pay. (29) sequence, is given by the coherence pathway
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w2 w2 _ P4=3(COSB+1).
0— +2— —1. The first pulse creates an extra coherence,

i.e., 2. This is given by Ri;P1,— Ri,P4,), whereR and P
are defined in Eq9.19) and (24), respectively. For a nonse-

lective pulse{cf. Eq. (C7) in Appendix C] Hence R},P1,—RI,Pi) is zero. However, for arbitrary
Ry;= X(cosB+1), pulses this term is nonzero. For example in the lowest order
(n=1) SHT approximation of Eq(19) [obtained using Egs.
P14=3(cos f—1), (B15) and (C7) and representind? and P in the singlet—
Ry4= 3(cos B—1), (30) triplet representationthis coherence transfer is given by

2

+1 "Eltp+1 co B -1 2e"Eﬁttn)—Esm2 (cos2 de B2l
4 2 2

[ood
o
(e etoveion - i

cos{ p
2

Here, g andt, are the nominal flip angle and duration, re- transfer is again about 6%-10% as efficient as the single
spectively, of the first pulseb is defined in Eq(B10), and quantum transfer, depending on the strength of the dipolar
E; are the eigenvalues of the spin Hamiltonjah Eq.(1)]in interaction.

a1
ol

To—2=R11P14—R1Ps=e M’{ 2
Ilod?
4 2 2

+ sir? CIDe‘E3tP)} 005('8) )(elEltP'f- e'Falp) — %sm2< )(co§ de'Ealo+ sir? <I>e'E3‘p)}

el

1

B
2

(cos de Ealp4 sjr? (I)e‘EStp)}

2

B
+1 E

g'Eatp— % sin2< )(0052 de'Ealp 4 sir? (I)eiEStp)H. (31)

its eigenbasis. These eigenvalues are given in (B43). The DQ signal for a given orientation of the dipolar
Hence a double guantum coherence exists after the firstector is given by
pulse.

In Fig. 4 we plot the efficiency of coherence transfer 5o N 2% 2 ow 2 2
0—2, denoted byT, .,, calculated using EqgB15) and  F(t1,t2) =(Ry1P14— R1P4)[ S R21P21+ S R3,P2,
(C7) and ann of 16, as a function of the length of the first

2% 52 B2 24 52 B2 1a3i p2a—2i 1
pulse,t, and the strength of its irradiating fiel&,. Since +S53" RiPuot Sy RypPugle”” e

the double quantum coherence following this pulse arises xe*i(E1*E4)t1e*t1/Tge*t2/Tge*ZWzAé(t2*2t1)2
due to perturbative contributions of the dipolar interaction '
during this pulse, the details of this transfer were found to (33)

depend in general on this interaction. However, the plot
shown is representative of dipolar couplings smaller than 4.
G (r=18.5 A). The maximum transfer efficiency,_,, is
about 6%—-10% of the maximum single quantum transfer ef-
ficiency, To_,1, depending on the strength of the dipolar in- tsr’]eg attzz; 2t1h Thctehextraffactor of %c]omﬁanta Ifr? (3}3)t
teraction. The bands of optimum double quantum transfer lig" q .( . ) where ey refocus dp=1] reflects the fac
along ridges in thd,—t, plane. However, note that relax- that static inhomogeneities affect the double quantum coher-
ation has been negllec{)ed during the pulse. This would p&"ce doubly**"The full rigid limit double quantum powder
significant for the long pulses needed to generate the doubltsegnal is obtained by integrating E(B3) over a unit sphere

quantum coherence. sing Eq.(26).

We now turn to the efficiency of back coherence trans- d LT Flgsm6mandw7d v;/e sh?rw tgte |:1h%|0frertlcall|rmé? pluflsre
fer, i.e.,, T,_,_4. For the double quantum coherence, ouble guantum powder Spectra obtained for a biradical for a

T, . 1, is given by range of dipolar interactions. For typical values of the maxi-
2o-b mum irradiation field(i.e., B;=17.8 G)the double quantum
spectrum shows little dependence on the strength of the di-
T, . 1=R3P2+R%P2 +R2P2,+R2,P2, (32) polar interactior‘(figgre not shown U;ing Figs. 4 and 5 as
reference we considered the behavior of the two pulse DQ
signal for four cases(a) pulses of length 5 ns and strength
In Fig. 5 we plotT,_,_, as a function of the duratior,,, 15.8 G, (b) pulses of length 5 ns and strength 1.8 @)
and strengthB; of the second pulse. The double quantumpulses of length 80 ns and strength 1.8 @., located on the

4f‘he single quantum terms present duriagappear inS2 (]
1,2,3,4). Note, that in E(33) inhomogeneities are refo-
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FIG. 5. The transfer of 2> —1 coherence during an arbitrary second pulse

FIG. 4. The transfer of 8:2 coherence during an arbitrary first pulse of ©f duration,t, and iradiation strengttB, , in the two pulse double quantum
duration,t, and irradiation strengtfB; , in the two pulse double quantum &XPeriment. Botia) magnitude andb) contour plots are shown. Thegalue
experiment. Bott{a) magnitude andb) contour plots are shown. The value ©f Trotter exponentn, was 16. The value ob was 4.4 G (=185 A).
of Trotter exponentn, was 16. The value ob was 4.4 G (=18.5 A). Other simulation parameters are the same as in Fig. 4. Note that relaxation
Other simulation parameters a@ = 8,=120°, The other Euler angles has been neglt_acted during the pulse. The carrier frequency of the pulse is
needed to define the PAS wetg= a,=y,=0°. The magnetic parameters 9'321GHZ and is equa_l to the center freq_uc_ency giverglleB, /h, where
are gy, =2.0086, g,,= 2.0066, g,,=2.0032 andA.,=A,,=6.23 andA,, 0s=32i0ii- The maximum transfer efficiency of 0.03 occurs B{

=35.7. Note that relaxation has been neglected during the pulse. The carrigr 1265 G_ anctp_= 2ns. _However, the maximum sensitivity to modulation
frequency of the pulse is 9.32 GHz and is equal to the center frequenc{fom the dipolar interaction occurs for smally and largett,, (cf. the text).
given bygsB.B,/h wheregs= %Eigii . The maximum transfer efficiency of

0.07 occurs aB,;=93.5 G and,=1 ns. However, the maximum sensitivity

to modulation from the dipolar interaction occurs for smaBgrand larger

t, (cf. the text. Therefore, a long weak pulse is required for the effective
creation of a modulation pattern in the time domain, from
which the dipolar interaction can be obtained. However, note

first ridge in Figs. 4 and 5 and(d) pulses of length 80 ns that the maximum intensity of the signal with=1.8 G and

and strength 15.8 G. For cas@s and (b) the double quan- pulse length 80 ngcase(c)] is smaller by a factor of 1-5

tum spectrum showed little dependence on the dipolar intercdepending on the dipolar interactiomhen compared to that

action (figures not shown Also for case(d) the spectrum with B;=15.8 G and pulse length 80 fsase(d), cf. Fig. 6

shows only a small dependence on the dipolar interactiorvs Fig. 7. Thus one must give up signal-to-noise in order to

This is apparent in Fig. 6 where the maximum of the echagenerate DQ signals that are sensitive to the modulation pat-

(i.e., alongt,=2t;) appears at a longer value bf as the tern due to the dipolar interaction. The maximum intensity of

dipolar interaction decreases. Such a dependence becomedwo pulse DQ signal for case), from simulations, with

dramatic for a weak pulse of strength 1.8 G at a center res® =10 G (r=14.1 A) [cf. Fig. 7(a)]was found to be about a

nance frequency of 9.32 GHgcf. Fig. 7) and length 80 ns factor of 9 weaker when compared to that of a COSY ex-

[case(c)]. The stronger the dipolar interaction, the faster isperiment calculated using E@27) (with B;=15.8 G and

the modulation of the echo along thg=2t; axis in Fig. 7.  pulse lengths of 5 nsFor a smaller dipolar interaction of 1
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FIG. 6. Theoretical two pulse DQ spectra for biradical with a dipolar inter-

action,D, of (8 10 G r=14.1A), ()5 G (r=17.8 A), and(c) 1 G (r
=30.3 A). The strength of the irradiation fiel&;, was 15.8 G and the
lengths of the pulses were 80 ns each. The relaxation parametersT@ere:
=500 ns, T>=200ns, andAg=2.0 G. The remaining parameters are the
same as in Fig. 4.

400 ©

t2 (ns) t1 (ns)

FIG. 7. Theoretical two pulse DQ spectra for biradical with a dipolar inter-
action,D, of (8 10 G r=14.1 A), (b) 5 G (r=17.8 A), and(c) 1 G (r
=30.3 A). The strength of the irradiation fiel,, was 1.8 G and the
lengths of the pulses were 80 ns. The relaxation parameters VWgre:
=500 ns, TE:ZOO ns, andA;=2 G. The remaining parameters are the
same as in Fig. 4.

G (r=30.3 A) the signal intensity of the DQ experiment |v. FIVE PULSE SIGNALS: DQM AND DQ-COSY
was about 70 times weaker compared to the COSY signal.

However, we have not tried to find the precise optimum con-  We now turn to the five pulse sequence used to detect
ditions for this experiment. double quantum coherenteThe first pulse creates trans-
In Fig. 8 we show two DQ powder spectra, obtainedverse single quantum magnetizatighl coherencesyhich
using a long weak pulse, with the same value of the dipolaevolves for a period;. The spins get labeled with the dipo-
interaction(2.5 G,r=22.2 A) but with different geometries lar frequency during this intervdl.e., Ty 21— Ty 4y inirre-
of the biradical(i.e., different values of3; and3,, cf. Fig.  ducible spherical tensor operatofl§STO) notation, cf. be-
1). While the modulation frequency, which reflects the dipo-low]. A second pulse transfers this magnetization zto
lar interaction, is largely unchanged the modulation patternmagnetization(longitudinal as well as 0 quantum coher-
depends on the biradical geometry. This remarkable featurences). During the periot) the system decays with a rate
is potentially very useful for structural studies. given by T,. Magnetization transfer can also occur during
We postpone until the next section the discussion of whythis period, which can lead to cross peaks in the 2D spec-
such a sensitivity towards the structural properties., the  trum, in analogy to the 2D ELDOR ESR experiméhiVe
interelectron distance and biradical geomgtmyises. How- have neglected the magnetization transfer in this discussion.
ever, we note that Larsen and Sirgebtained a similar sen- This is justified below. At the end ¢f a third pulse transfers
sitivity towards geometrical constraints in their weak pulsethe z magnetization to transverse double quantum magneti-
DEER experiments. zation (=2 coherences). In principle, this is a forbidden
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1326 S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance

10+ This pulse sequence is shown in Figc3 For the desired
v @ signal, then, the double quantum coherence is refocused by
v“ “-' the fourth pulse. Single quantum coherence that decays due
tl’w‘ to inhomogeneous broadening ip is refocused alonds,
" “"’ and hence the signal formstat=t, . Alternatively pathways
ll " N'"‘Q,' Jov. (i) and(ii) can be written in irreducible spherical tensor op-
, ‘ H erator (ISTO) formalisnt?38:3°

Intensity (Arb.)

P1 ty P2 ty P3 t3 Py
Tio—T111—=Tor1—=Ta—=Tog— Tow o= T o—Toxo

N
QT
WL P

—=Toz0—>Toz1—T 1. (34a)

400 0
2 (ns) t1 (ns) 2 .
Note that theT,;— T,_; pathway would be “FID-like” and
would decay away in the dead time after the fifth pulse.
Hence it is not included. While these ISTO's refer only to a
coupled two electron system, they serve to label the coher-
ences more explicitly. For example, the,,,; coherence
grows int; from T, ; due to the interelectron interactiéh.
It is this coherence which provides the double quantum sig-
nal. Such detail is lacking in the simple coherence pathway
picture. On the other hand, the ISTO formalism fails to iden-
tify the precise terms, in product operator notation, that are
the desired ones in each step.
We now justify our neglect of magnetization transfer
during t,. In the incipient rigid limit, the duration, for a
AN N double quantum ESR experiment is typically 50—25@fos
I,' "o'o,‘o"'"l,l' ) 'Wm | 0"0;0;\. , interelectron distances of about 20—30 At very slow mo-
AN ',f.,'.fo,'fof"?:f: ) 400 tional rates the cross-relaxation processes that lead to a mag-
: 200 netization transfer would be ineffective in creating substan-
400 0 tial cross peaks during such a short duration. In fact, we were
tt (ns) unable to obtain cross peaks, even in the 2D ELDOR experi-
, o _ _ _ ments, at the very slow motional rates characterizing the
FIG. 8. Theoretical two pulse DQ spectra for biradical with a dipolar inter- . o
action.D, of 2.5 G (=222 A) and geometrya) B, B, 120° and(b) samples and temperatures studied. Hence it is safe to neglect
B1=30°, B,=120°. The strength of the irradiation fieB, , was 1.8 Gand ~Magnetization transfer for the moment.
the lengths of the pulses were 80 ns each. The relaxation parameters were: Note that in the actual experiments the relation between
T3=500ns, T; =200 ns, andAg=2.0 G. The remaining parameters are t, andt, is fixed as is the relation betweé¢n andt, (i.e.,
the same as in Fig. 4. t,=t, andtz=t,). Saxena and Freédhus defined; (and
t,) ast, andt; (andt,) ast;. We have deliberately differ-
entiated each time interval so that the final equations reflect
transition®>%¢and it occurs due to the arbitrary nature of the the details of the coherence pathway more clearly.
third pulse. Since the double quantum coherence rapidly de- Two kinds of double quantum experiments are relevant
cays away due to inhomogeneous broade[(]d]’ﬁgSec' ||D a with this five pulse Sequen&dn the double quantum modu-
refocusing pulse is necessary. Hencer aulse is applied, lation (DQM) experiment the intervals; andt, (with ts
after a periodts, and the system evolves for a timeunder ~ =ts) are kept fixed. The intervals; =t, are stepped out.
a refocused inhomogenei(ye_, the order of the coherences Coherences that lead to the formation of the double quantum
is reversed and we obtain2). At the end oft, a fifth pulse  Signal grow in during the perioth.** These coherences de-
transfers the double quantum coherences to observable singlend entirely on the presence of an interelectron interaction

Intensity (Arb.)

,""v
/'H' “"'O'vv.
aifi "::‘o?,'o"lo;'czlzo
bl

[ "'0'0""';7;;

t2 (ns)

guantum coherences which are detectetkin (i.e., the dipolar and/or exchange interacjionhe modula-
To summarize, the two coherence pathways that lead tdon of the signal as a function of therefore depends on the
a formation of an echo dt~t, are given by strength of the dipolar interactiofor exchange interaction
and hence this experiment is useful for the measurement of
Pr P2 P3Py Ps the interelectron distance. In double quantum-CO®Q-

) 0—-+1-0—-+2--2--1: F, COSY), the intervalst;=t, are kept fixed and the signal is

measured as a function af for a series of steps in the

and double gquantum evolution periods=t,. This experiment
PL P, Pg  P; Ps provides the homogeneous double quantum relaxation rate,
(i) 0—+1-0—-2—-+2—-1: F,. (34) T,

J. Chem. Phys., Vol. 107, No. 5, 1 August 1997

Downloaded-06-Sep-2002-t0-128.253.229.132.~Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/jcpo/jcpcr.jsp



S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance 1327

The signals due coherence pathwaysand (i) in Eq. 14
(34) are denoted b¥ , andF,, respectively. These are given i
by
1 : . . 1
Fa(tl,tz,t3,t4,t5)=e_'d’le'"5262'4’36_4'4’463'4’5 —_
o]
Xe—i(El—E4)t4e—i(E4—El>t3Rzll4P¢114 5;
i=4 'g
Xe—t3/T2De—t4/T2DE e—tl/T§Mia 2
=1
j=4 “
_ _ S i
X e tz/TlNiaZl e ’[5/T2Q]-a (35) "'
| 100 44“ 4
and 200 =
—a-idlaid?a—2ig3 4t —ig® 2 300
Fb(t1,t2|t31t4,t5)_e I(ﬁ el¢ e 2I¢ e4|¢ e I¢ t5 (ns) 0 50 1?9 (ns)150 200 50
X @ 1(Ea~Entag—i(E1-EqtaRd
D Di=4 s (b)
X P4 e t3/T e talT; e /T, . - .
4 Zl 300}
=4 :
S L
XM ibe_tz /TlNiij:L e ts /Tszb ) 250 4
(36) 200r1
M
Here, the superscripts ¢t P, and¢ denote the number 51
. . = 150t
of the pulse, while the subscripts ¢t and P refer to the
actual matrix elements. The termslh, N, andQ are pro-
vided in Appendix D. Again, assuming that the inhomoge- 100r
neous broadening is given by a Gaussian distribution, the
signal can be written as 50r

2

FE=(Fot Fp)e 2746l te), (37) 50 100 150 200 250 300
where Ag is the Gaussian inhomogeneous broadening pa- 15 (ns)
rameter in frequency units. FIG. 9. Theoretical DQM spectra for biradical with a interelectron distance,

In Fig. 9 we show a theoretical time domain DQM pow- r of 14.1 A, shown in(a) stack plot;(b) contour plot. The simulation pa-
der spectrum obtained using E37) and(26), for an inter-  rameters ai®=10 G, 5,=180°, §,=150°, T5=500 ns,T3 =300 ns, and

. . c=2 G. The strength of the irradiation fiel8;, was 15.8 G. The dura-

elect.ron dlstan.ce pf 14.1 A, as a stack plot. The maximum oﬁon of the pulses were®, = P,= P.=5 ns andP,— P,= 10 ns. The other
the time domain signal, from the coherence pathw@yand  parameters were the same as in Fig. 4.
(ii), is expected to occur along thg=t,; axis (cf. above).
However, in practice the finiteness of the pulses causes the
center of gravity of the echo to shift slightl§.e., a few lar interaction the faster the coherence grows to a maximum,
nanosecondsjrom an exactts=t; behavior. Fortunately, and the greater is the frequency of the oscillations. This is a
this is no problem in the 2D format! From theoretical simu-remarkable feature as the dipolar interaction is very small
lations, we find that this shift also depends on the strength ofvhen compared to the dominagtand hf terms. Also, for a
the dipolar interaction. This seems reasonable as the pertupowder one would expect that the (3 €@s-1) dependence
bative contributions of the dipolar interaction during the of the dipolar interactiofcf. Eq. (3)] would lead to a smear-
third pulse lead to the formation of the double quantuming out of this oscillation. However, the DQM signal is very
signal! Note the oscillatory behavior of the echo maximum sensitive to the dipolar interaction for the coherence pathway
as a function ot;. It is these oscillations that provides the of Eq. (34a) because of an orientational selectivity, i.e., the
strength of the dipolar interaction. signal is mainly from those molecules with orientations of

This is demonstrated more clearly in Fig. 10 where athe dipolar vector predominantly along thc magnetic
single slice of the 2D time domain spectrum is plotted. Herefield !
the echo maximum as a function gf is shown for theoret- This feature of orientational selectivity is in fact appro-
ical simulations of the DQM experiment for different values priate for this type of a forbidden transition. Heuristically
of the dipolar interactiofD=10G (=14.1 A), D=2G this can be rationalized by using a simplified Hamiltonian,
(r=24A), andD=1.0 Gr=38 A]. The stronger the dipo- i.e.,
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8 / ~_ P32 P3 P3/2—
R ; S x2
S:182 S:15:2 Sr18y2
+ + +
14 A S:25)1 S:25:1 Sr284,1
T R S R R S R S FIG. 11. Generation of forbidden double quantum coherence during third
200 400 600 800 pulse(a) the third pulse with relevant product operator terms @rdowest

Time t,=t; (ns) order expansion in split Hamiltonian theory for the third pulse.
FIG. 10. Theoretical DQM spectra for biradical with a interelectron dis-
tance, (a) r=14.1 A, D=10G (solid line —), (b) r=24A, D=2G
(dashed line- -), andc) r=38 A, D=0.5 G (dash—dot line —). The
echo maximum for each value of is shown as a function df,. In these
simulationsB;=180° andB,=150°. The relaxation parameters weﬂé;‘.

ity, (i.e., from the growth of ternB), providing the challenge

to obtaining the double quantum signal. In fact, one would

also expect that the detailed modulation pattern would be

=500 ns, T5=300 ns, andA=2 G. The strength of the irradiation field, affected by orientations of the nitroxideand hf tensors with

By, was 15.8 G. The duration of the pulses wég=P;=Ps=5ns and  respect to one another, since the degree to which the resonant

P,=P,=10 ns. Other simulation parameters are the same as in Fig. 4. Thghifts provided by the and hf tensors lead to different reso-

maximum of the echo as a function gf is shown. . L .
nant frequencies for the electron spins is a measure of their

distinguishability, and hence of the failure of simple singlet—

triplet representation for them. This is indeed found to be the

HS:QlSZl+QZSZZ+ bsllszz' (38) case, as is shown in Fig. 12 which shows theoretical simula-
where tions with the same dipolar interacti¢oh0 G,r =14.1 A) but
different geometries of the biradicdl,e., differents; and
beD(3 cog 6—1). (39)

B> in Fig. 1). While the modulation frequendyvhich re-
This was the Hamiltonian used in Ref. 1 to justify the cre-flects the dipolar interactiomemains largely unchanged, the
ation of a forbidden double quantum coherence, using prodexact shape of the modulation pattern depends on the orien-
uct operator techniqué8. For simple Hamiltonians(i.e.,  tations of the nitroxides with respect to each other. Note the
composed of commuting termg)e product operator formal- intensities of the first three maxima along the-t, axis are
ism provides a method for easy visualization in terms &different for the two orientations. Thus the orientational se-
simple vector picture of the effect of the pulses and evolutiorectivity also provides structural sensitivity. Hence this ex-
in a complex pulse sequence. The ISTO formalism whileperiment is potentially very important for structural studies
more powerful does not carry this advantage. in labeled peptides or proteins, for example.

The key feature is the creation of the double quantum  The presence of such orientational selectivity due to the
coherencéi.e. (S,,S,*+S,Sy,)]in product operator formal- first pulse in the two pulse DQ experimefuf. last section
ism] from zero quantum coherencée., S, S,.) during the results in its sensitivity towards the dipolar interactiaf.

T T

third pulse of durationP; [cf. Fig. 11(a)]. The lowest order Fh'g' 7f) and b||rad|cal geometr:fgcf. Fig. ]?)' InJ:h|s sequence
split Hamiltonian theory expansion of this pulse is shown int e first . pulse causes the trans e§zl( S5, 54,
Fig. 11(b). It consists of two nonselective pulses of duration™ Sx,Sy,) in the product operator formalism. The lowest or-
P4/2 each, with a period of free evolution of duratid®,, in  der split Hamiltonian theory approximation corresponds to
between. The first of these nonselective “half-pulses”the case provided in Slichter's monogrefiithe first “half-
yields, using product operator formalismS,(S, +S,S, ~ Ppulse” creates §, +S,,=C) and during “apparent” free
=A). During free evolution under the Hamiltonian given by evolution & S, +S,,S, =D) is created fromC, which is
Eqg. (38) this provides the term&, S, +S,,S, =B), which  transferred to the double quantum coherence by the second
is transferred to double quantum coherence by the secondalf-pulse.” Again, C grows in as sin(af2) from B and
“half-pulse.” B grows in as sin(b§2), from A, during the ~ as before this sinusoidal “weighting” provides the orienta-
period of “apparent” free evolutionP3, and hence only tional selectivity.
those orientationshix3 cog #—1) which can maximize this However, note that the spin system in the two pulse
transfer would be selectively pumped to the double quantungequence is “prepared” differentlfit exist as §, +S,)]
coherence. This leads to the orientational selectivity. before the excitation to the double quantum coherence than
In the real nitroxide biradical, the presence of lagge in the five pulse sequence. In the five pulse sequence the
and hf terms would tend to detract from this simple selectivterm excited to the double quantum coherelice above)
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FIG. 13. The transfer ah— p coherenceff=1,2) during an arbitrary pulse

of duration,t,, in the five pulse sequendef. Fig. 3c)]. The irradiation

irradiation strengthB;, was 17.9 G. These are shown for three different

values of the dipolar interactiod=0.5 G (r=38 A solid —), D=1.5

G (r=26.5 A dash—dot—dot —) andD=20G (r=11.2 A dashed -)

Simulations show the effect ¢&) the second pulsém= +1, p=0) and(b)

the third pulsem=0 andp= *2) in the five pulse sequence. The value of

' Trotter exponentn, was 8. Other simulation parameters are the same as in
Fig. 4. Note that relaxation has been neglected during the pulse.

t5 (ns)

50
t1 (ns)

FIG. 12. Theoretical DQM spectra for two orientations of a biradical with
an interelectron distance of 14.1 D& 16 G). (a) 3,=180°, B,=150°
and (b) B,=180°, B,=120°. The relaxation parameters wer§§
=500 ns, T'23=300 ns, andA=2 G. The duration of the pulses weky
=P3;=Ps=5 ns and®,=P,=10 ns and the strength of the irradiation field
B,, was 15.8 G. The other parameters are the same as in Fig. 4.

athway. The detailed expressions, while unwieldy, can be

comes labeled with the dipolar frequency during the intervaEas"y extracted from Eq¢D1)—(D4) in Appendix D. In Fig.
ty. This could account in part for the reason why the first; 33) e show the transfer of 1—0 coherence due to the
pulse of the two pulse sequence needs to be wedker  second pulse in the five pulse sequence. Fa af about
B,=1.8 G)to fully exhibit orientational selectivity. 17.9 G the optimum pulse length is about 8 ns. FiguréoL3
The maximum signal intensity of the five pulse experi- shoys the transfer-0 =2 due to the third pulse. For opti-
ment(cf. Fig. 10), from simulations, when compared 0 the yyym transfer the pulse should be of 40-100 ns duration.
COSY experiment, is weaker by a factor of 1fr D These optimum pulse durations are largely independent of
=10G,r=14.1 A)t0 60 (for D=1G, r=30.3 A). Again,  pe dipolar interaction, for a range of distance from 15 to 40
we have not tried to find the precise optimum conditions forg Using these optimum pulse durations in simulations we

this experiment. But given our results so far, the signal in<inq e should be able to increase the signal by a factor of
tensity of the five pulse DQ experiment is similar to the two 5 _3 gver that obtained previously.

pulse DQ experimentcf. Sec. Ill B). The latter is, in prin-
ciple, a simpler experiment, since it involves only two pulsesV. SIX PULSE SIGNALS: REFOCUSED PRIMARY
and a smaller number of possible coherence pathways. ~DPOUBLE QUANTUM ECHO
Finally, we would like to examine the features of the Finally, we would like to discuss the feasibility of pri-
effects of the second and third pulses on the double quantumary double quantum echoes in the rigid limit. The success
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of the double quantum experiments discussed so far relies qPg,(t,,t,,t3,t,,ts,te)
the creation of extra coherences by arbitrary pulses. One

ol 542 i 48 i b 45 5 6 e
would a priori (and mistakenlylassume such effects to be =gl e 2 gld g Uit gl 4728 g I(E1m By

weak compared to the primary echoes. What about the pri- i=4
mary (_jouble quantum signal from a three_pulse sequéhce, ><efi(E‘rEl)t3R£114P4114e7t3/T5e7t4/ng e /T3
one might ask? In this sequence the firaiminal 7/2) pulse =1

createsx—y magnetization(=1 coherencesyhich evolve =4

for a period,t, during which they are labeled with the dipo- X M* e t2/T5U. S ets TSV, et/ ToW. (41)
lar frequency. A secondnominal /2) pulse creates the ' = 2 "

double quantum coherence which is transferred to observable

single quantum magnetization after a tirhg by a third Feb(t1,t2,13,1.15,t6)

pulse. Large inhomogeneities in typical ESR samples would — it 21714381 ¢ 031402145~ (E4—Ep)ty

make this experiment, in its current form, difficult. Hence,
one would insertw pulses in between the periods and _ b b s
ty,, to refocus single and double quantum coherences, respec- X e '(FimEJLR] Pge 8/ T2e /TZZ e /T
tively (cf. Ref. 26 a for the case of NMR). The signal after =t

i=4

this modified five pulse sequence would be FID-like, and R s s

hence it would rapidly decay away in the dead time after the XMEe /T2y, > e ts/Tay et/ Taw (42)
fifth pulse. Therefore, one would need to incorporate a sixth =

pulse to refocus the FID into an echo. Fec(ty ts,ts,ts,ts,tg)

The signal, then consists of contributions from the fol- e e e e
lowing coherence pathways: = 19 @210 314" 4 ¢ =314 214 °—1(E4~Eyty
i=4
—i _ A4 ~4 — D _ D _ S
PL P, Py P, Ps Pg x e (BE1-BataR} P e s/T2e t4/T22 e /T2
0——1—-+1—-—-2—-+2—+1——-1: Fg,, i=1
j=4
S S S
XMiaeitleZUiCE eitS/TZijeitelTZWj, (43)
P1 P2 P3 P4 Ps Ps =1
0—--1-+1-+2—--2—+1——-1: Fgp,
Fsd(tllt21t3!t4lt51t6)
il i 12 43 S4B o6
P, P, P, P, P, P, =g ¢ @2 gl ¢ a=4id gl $° 2147 —1(E1 ~Egty
0—-+1--1-+2—--2—-+1—-—-1: Fg, i=4

. D D s
—I(E4—Etap4 p4 a—t3/T5 oty /T —t,IT

Xe "FaTEVRBRIPIe 3 2e 4 2i§_1,e 1772

1 P P P P P

j=4
0—+1--1--2—-+2—>+1—-—-1: Fgq. 40 TS e /TS TS
6d ( ) XMiae tZ/TZUidjgl e 15/Tzvjae tG/Tzwj . (44)

Alternatively, in terms of ISTO’s of a coupled two electron ~ The termsU, V, W are given in Appendix EM is given

spin system these coherence pathways are described as in Appendix D whileR andP can be calculated using Egs.
(19) and (24), respectively. Finally, the six pulse signal for

each orientation, including Gaussian inhomogeneous broad-

P1 E P2 f2 P3 ]t3 Pa ening can be written as

Tio—=T1e1—=Tor1 = Toz1 = Toz1—> Townj = Tor o= Toxs - ,
ts Ps ts Ps te FS =(FeatFeptFoctFeg)e 27 Aallst6)", (45)
—Tos2=Toz1—=T1z1—T1e1— T, (40a)

The full powder signal is calculated using E¢$5) and(26).

Using Egs.(45) a number of simulations were carried
where we set,=t,, ts=t,, with the echo atg=t5. Also  out for the six pulse sequence. We found two features of
the most effective sequence would consist of a nominaf€lévance:(a) the strength of the powder signal is about 2
wl2—m—mwl2—m—ml2—7 sequence(ie., P,=P,=P;  orders of magnitude lower than that for the DQM experiment
—7/2 and P,=P,=Pg=m). The large brackets around and(b) we find from simulations that the modulation of the
powder signal does not directly reflect the strength of the
P, P Eijipolar interaction as compared to the DQM experiment.
included, i.e.,T,_1—T,_, and T,,;—T,,, are also rel- Signals based on forbidden coherence pathways turn out be
evant. Also, theT,_; coherence created by the first pulse stronger than the primary one!

P
T211—3>T2i2 indicate that all coherence transfers need to b

(and refocused by the seconthntributes to the DQ echo. These features are essentially due to the fact that this
These signals from the coherence pathwBys to Fgq primary double quantum signal lacks the orientational selec-
given by Eq.(40), for each orientation are given by tivity (cf. last section of the DQM experiment. Since the

J. Chem. Phys., Vol. 107, No. 5, 1 August 1997

Downloaded-06-Sep-2002-t0-128.253.229.132.~Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/jcpo/jcpcr.jsp



S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance 1331

entire range of dipolar interactioridue to the dependence of

the effective dipolar interaction on 3 ¢oé—1) contribute to

the signal one obtains a smeared out spectrum. This spreac
also results in a much reduced amplitude of the DQ spec-
trum. Therefore, the experimental success of such a refo- £
cused echo would require an imposed source of orientational 0.
ordering(for example, a bilabeled single crystal or a biradi-
cal in a liquid crystal oriented in the magnetic field). Also,
improvements in the spectrometer, especially reductions in
the instrumental dead times between pulses and better irra-
diating B, fields should enable this experiment. The primary
virtue of this experiment would be a measurement of the DQ
relaxation rates. 100 g

Intensity (A

VI. COMPARISON WITH EXPERIMENT sy O 80 9 (ns)120 140 160 180
Now we would like to compare our results with the pre-
vious experiments. We performed 2D ESR experiments on a
bilabeled poly-proline(P) peptide system TPPPPC spin
labeled with a methanethiosulphonate spin label on the cys-
teines(C). For comparison we used a similar peptide mono-
radical, APPPPC, whereA is the peptide alanine. Experi-

mental details are provided elsewhérelowever, relevant 545
details are reproduced here. The nominal pulse sequence <
consisted of a nominadr/2— w— w/2—7— /2 sequence. =)
A true nonselectiver pulse (i.e., the second pulse in this g

sequenceyould reverse all coherencdége., +1——1 and
not provide +1—0, cf. coherence pathway® and (ii) in
Sec. IV). Additionally, the third pulse, if it were truly non-
selective, would not yield the 8 =2 transfer. As noted
above, our pulses are not truly nonselective. The estimated  4gq
irradiating field of the microwave pulseB, , is about 18 G, 200
in the rotating frame, whereas the extent of the rigid limit
powder nitroxide spectrum is about42 G. This results in t5 (ns) &0 80 1?9 (ns)120 140160 180
two kinds of imperfections.(1) The rotation of the spins is 6. 14. Exserimental DOM t f the biradical peptide st
i i . 14. Experimental spectrum of the biradical peptide es
:’gorttg:re;]CICSae:]ygc?;zls sg:&s;z;zgnsgi(r:itr:;r{]hzﬁltshee Ictielzgi_ng t;[i-)th theqreticaﬁ simu|ation.QThe IZtrength of the irradiatio‘?l geld was 175'8 G.
. . ! e simulation parameters ar®=4.4 G, §,=180°, B,=180°, T;

extra coherences. This was accounted for in our Letigr  —300 ns, T2=150 nsAg=2G. The strength of the irradiation field; ,
recognizing that the second pulse is not a perfepulse, so  was 17.8 G. The duration of the pulses wePg:=P;=Pz=5 ns andP,
it will rotate the spins by an angle different from and we  =Ps=10ns. The other parameters are the same as in Fig. 4. Note that in
added the perturbative contributions due to the dipolar inter?!" earlier Letter we labeled ast,
actions during the third pulse in a simple fashfofi:*® we
dealt with these issues more rigorously in this paper, by us-
ing SHT® as described in Sec. Il. The second arbitrary puls€g and A) from their PAS to the dipolar frame. The five
transfers -0 and the third converts the latter into DQ co- angles required are shown in Fig. 1. For simplicity, we have
herencdas given by Egs(35) and(36) in Sec. IV and Ap- chosen to vary only3; and 8, which refer to the angle
pendix D], in analogy with the discussion of two pulse DQ between the respective nitrogen pi orbitals and the interelec-
signals(cf. Sec. Il B). tron vector. Therefore, the relative orientation of the nitrox-

In Fig. 14(a)we show the DQM time domain signal as a ides in this simple picture is related {8,— 8,| (cf. Fig. 1).
stack plot. The spectrum is oriented so that the modulation aé/e used the literature valffefor the magnetic tensorgj,,
a function oft; can be seen. This modulation ip, which ~ =2.0086, g,,=2.0066, g,,=2.0032 andA,,=A,,=6.23
carries the dipolar interaction, is clear. In fact, Saxena an@ndA,,=35.7. The other parameters required are the single
Freed were able to virtually “read off” the dipolar interac- and double quantum relaxation raté’§ and TZD, respec-
tion from this spectrum. tively These were determined from SECSNhich provides

We now turn to the theoretical analysis of this experi- Tz) and DQ-COSY(which prowdesT2 cf. above and Ref.
ment using Eqs(26) and (37). In this analysis the key pa- 1) experiments, on the biradical. These parameters are sum-
rameters are the strength of the dipolar interactibhd &nd  marized in Tables IV and Tables V. Note that in this analysis
the Euler angles required to transform the magnetic tensonse integrate over the anglésand ¢ that describe the orien-
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1332 S. Saxena and J. H. Freed: Double quantum two-dimensional electron spin resonance

TABLE |V. List of parameters in the simulations. VIl. SUMMARY
Parameter Symbol A theory for calculating rigid limit 2D-DQ ESR spectra

Dipolar Interaction D (G) for b_iradicals_ has been deveI(_)ped. I_Detailed_ expressions were
Euler angles (a1,2 By, 0) provided which include the dipolar interaction and the fully
g frame to dipolar frame anisotropicg and hf tensors for the nitroxides, as well as the
for nitroxide 1 . . Euler angles required to define the angular geometry of the
Euler angles (a2, B2, 7)) biradicals. The effect of the strong but not completely non-
g frame to dipolar frame . L . .
for nitroxide 2 selective pulses that exist in 2D ESRnd in solid state

NMR) was included explicitly by adapting split Hamiltonian
&These parameters are relatively unimportant and are arbitrarily kept fixed aheory for numerical simulations. The theory was used to fit
zero. DQM experimental spectra obtained from a model poly-
proline peptide systen{cf. Sec. VI). A distance of 18.5 A
was found which compares well with the value obtained by
“luorescence energy transfer measurements.

The DQ 2D ESR technique is shown to provide an at-

tation of the dipolar vector with respect to the dc magneti
field. Hence, we do not make amnsatzabout the specific
va_lues 9f6 and{ thgt_ our experiment Is favoring due to its tractive method for the measurement of large distarices
orientational selectivity.

) . . =20 A) in bilabeled molecules or between paramagnetic
Figure 14(b)shows the theoretical spectra obtained fromsites in a solid. In this case the dipolar interaction is very

our procedure. The relevant parameters obtained are an 'Weak(about 2 G ofless)com .
: oo S ome pared to the dominagtand hf
terelectron distance of 18.5 /g;=180°, andg,=180°. terms, (which provide a spectral extent of abotit42 G).

tWe nolti tlhat thetfit Oft;iga](?).’l whifleﬂ? good one, d?e's: Using standard phase cycling techniques, the DQ signal due
not completely capture the details of the experiment. Fog, ,q dipolar interaction is cleanly obtained, without any

exam_ple, the f'TSt maximum ity occurs at a S"_‘a”er value interference from the primary, or single quantum signal.

(and is sharpgrin the theory. The secon_d maximum COmeSr, any correction for monoradical impurities and/or cali-

at a latert; when compared to the experiment. This is prob-p .o\ vivn 2 monoradical spectrum is obviated.

ably due to thg fact that we have not explored the parameter However, the complex nature of the spin Hamiltonian in

space exhaustively. For example, we have arbitrarilyeget ESR as well as the short relaxation times characteristic of

:ﬁazt: yz:tr? ' Th?tlnc:(uaor\llvof Lhe?se W?hw? have ? SmtaI:jESR samples provide a significant challenge to obtaining DQ
efrect on the quaity of fit. We believe that an automate signals using standard technigues Sec. V). Hence meth-

procedure for nonllnearly fitting the experiments to theoryods that rely on arbitrary pulses for creating DQ coherences
would result in even better fits and more accurate

teré2 perh ) ant h for simpli are necessitate@f. Secs. Il B and IV. These “forbidden”
parameters. Fernaps, more important, we have tor SImplic- ., o rances are shown to be highly orientationally selective,
ity, neglected a distribution in distances. Such a distributio

r’thereby providing high resolution “single-crystal-like” re-

IS expected to_ be present in the sample. In fact, the Or'_entas'ults from unoriented frozen samples. Hence they are very
tions of the nitroxides themselves would be characterized

listicallv. b distributi Th distributi sensitive to the strength of the dipolar interaction. The prod-
more ‘realistically, by a distribution. ese distnbutions operator technique in conjunction with split Hamiltonian
would broaden the echo shapetinand should result in fits

X : . theory is used to qualitatively demonstrate how such “for-
that are ?"??er to thg experlmgnt. Fmally, we do not dISCOunBidden” coherences are created by arbitrary pulses, and why
the pOSS|p|I|ty of re§|d_ua! motions at j[h|s temper'ature_ they are orientationally selective. We note that while such
Despite these limitations, we believe that given the Naz,rhidden” coherences were obtained in NMR as early as

ture of the problem, the fit is very encouraging and serves tqgggss it jg only very recently(1995-) that they have begun
validate the key hypotheses of our earlier Lettsiz. to be experimentally exploited in NME:1718

(@) The signals are due to forbidden DQ coherences cre- Finally, we would like to point out that these DQ meth-

ated by arbitrary pulses. ods also provide a way to measure double gquantum relax-
(b) The DQM experiment is an orientationally selective ation rates, which can be used to elucidate motional dynam-
one. ics. A key application would be a distinction between global

dynamics versus local motions, an area of significant interest
for protein dynamics.

TABLE V. List of fixed parameters in the simulations.

Parameter Source ACKNOWLEDGMENTS
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A tensors Literature value  Thannhauser for the synthesis of the peptides samples. Pro-
Homogeneous single quantum SECSY
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finewidth, T Cornell Theory Center and the Cornell Materials Science
Homogeneous double quantum DQCOSY : y

linewidth, T2° Center. This work was supported by NIH Grant No. RR
07126 and NSF Grant No. CHE 9615910.
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APPENDIX A: HAMILTONIAN FOR NITROXIDE
BIRADICAL

In this Appendix we provide term§;, A;, andB; used
in Eq. (2) in the main text. The Hamiltoniam, andH, [cf.
Eqg. (1)] for this system can be conveniently written as a

contraction of irreducible spherical tensor
(ISTO) 3%
Hi= X FLM*ALM i=12, (A1)
Kin LM . .
whereA;}“ﬂ contain the spin operators and refers to the

kind of interaction[Zeeman ) or hyperfine(hf)]. F is pro-
portional to the ISTO of the magnetic interacti6re.,g and

hf). Theg and hf tensof(i.e., Fb‘i'\":*) and the relevant spin

operators (i.e., Ah‘i“ﬂ) in irreducible form are given by
Schneider and Fre&tiand are reproduced here, for conve-
nience. The irreducible spherical tensor fo(f8TO) of the

g tensor ié*
18 1
59~ " 576 (Gox+ Oy T0zz),  Agi=— \/;BOSZ“
2 1
20~ V55 545 )]
2
A=~ \[5 BoSsy
(A2)
F2*l_q AZ,tl_—E B.S
9.9 ! g; .l _+2 0=
+ 1 IBe *
G932 g G~ Oy) AGIS0

The corresponding components of the hyperfine tens
are

0,0

 [Lgee
F i'gi__\/; f

A (Axxi+A +Azq):

YYi

AO’OZ—\/E[SH +1(S I +S_1 )
ALl J|TAA 2T T T
298 1 _

20 VEEE [ 3 A )

(A3)

2,0 \F 1 -
A== 5| Sila =7 (S-S 1)

-+ =+ _1 1
F2*5=0, Ai’iyl1=+§[S+ilzi+Z(Szil+i),
+ 1 geIBe +
F'%“ii'gi = E ﬁ (Axxi _AYYi)’ Ai‘ijz_ E Siil ii'

Since theF’s are most conveniently defined in the molecular
axis [i.e., the principle axis system, PAS, of each nitroxide
(cf. Fig. 1). Note, that we consider the hf agdtensors of

J. Chem. Phys., Vol. 107,

1333

each nitroxide to share the respective PAS, i.e., we assume
that there is no tilt between the respective hf antensor
axis.]we need to transform them to the lab frame. Choosing
the dipolar axis as the main symmetry axis of the molecule,
we can define this sequence, for thend hf tensors a&) a
transformation from the respective magnetic frarge to the

Operatorsdipolar frame D) followed by (b) a transformation from the

dipolar (D) frame to the laboratory frame)( This sequence
is shown in Fig. 1 and can be written as

Futl = 2 D (4-0)Dpy (g F Ty
m’,m

L m”
Mi 9

= 2 Dpm (MDD (M)F (Ad)

m',m”

whereQDﬁgiz)\i and(,_,p= » are the Euler angles defin-
ing the transformations from the to theg; frame[given by
Ni=(«;,Bi,7v;)]and from the laboratory frame to the dipolar
frame [given by »=(0,0,{)]. Note that if we assume an
axially symmetric dipolar tensofas is reasonable for such
long distance biradicalghen the direction of/4 (cf. Fig. 1)
can be chosen such that;=0 (cf. Fig. 1). Given that
Fiﬁé=0 and szliz,g: Fi’i_j [cf. Egs.(A2) and (A3)] we can
write

Hi= >

Mism

F2m AL + ; FRo A, (A5)
I

In high fields and the near rigid limit, the contribution of
non secular term@ii, Silz, Sels, Sal ;i) is relatively
small, and so retaining only the secular and pseudosecular

Oferms we obtain

Be

H= 3% (gxxi+gyyi+gzq)

geﬁe
3t

BOSZi + (Axxi

2
+ \[g 2 Do (M) Kg m ()

2
+Ayyi+Azzi)+ \/;2’ Dg,mr(n)KAi,m’O\i) Szilzi
1 2
+5 2 D (MK e (M)S, ]y,
1 2
=5 2 Dy (MKa m(M)S; 11y
=CiS, +AS; |, +BS,l 1, +B*S, 1 g, (AB)

WhereKMi m(\j) contains the transformation from the mag-
netic to the dipolar frame, and it is defined by

No. 5, 1 August 1997
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_R2 2 22
St O =Bl A0 B 2 (M) IF g A= D (70K, (V). (A9)

+D5 fMIF20. (A7)
The termsA; andC; are then given by

, The summation in Eq$A8) and(A9) can be written explic-
Ci=2 Do (7Kg m (M), (A8) itly as
m!

2 Do (1)K (M) =2 DG (0.8, K, (@i By %)

3
=\/%sm20

3
+2 \[5 si? B; cos 2a;+{)F2°

{2 cod % cos 2a;+ y;+{) + 2 sirf % cos Zai—vit{) F/2’:i2'gi

+ % (3cog 6— 1){2 \[g sir? B, cos 2”':/242&

3
. +\[§sinacosa sin B

1
+5 (3cog Bi—-LFZ%,

X

{(1+cosB)cod a;+2y+ ) +(cos Bi—1)cos 2y~ a;— ) }Fa2 o

: (A10)

3 2,0
-2 ECOSﬁi Cosai-i_g)iji \0;
Also B; is given by
28;= 2 D7 1y (7)Kp, (M)
m/

e2i¢
2

sin #(1+ cos 0) >

=2 Do (0.0,0Kp (@i By 7) = {coé % e-2ir+a) 4 girft B e—2i<aa—vi>] F&’g

3 —_— e?l¢ o .

+ \/%sinz%e‘z'c“ilzf\’io,gi - sin 6(cos 6—1) (sin“%e‘z'(yi“’i)+co§‘%ez'(”*“i)] Fi’iz,gi
3 i Bi 2ia; =20 et : 1 —i(2yi+a;)

+ §S| Ee IFAi*gi +T(2 cos6—1)(1+cos #)sin B; E{(cosﬁﬁrl)e it

e'¢
Y (2 cosf+1)(1—cosb)

. 3 .
+(cosBi—1)e T FR2 — \/; cosBie” “Fz°y

1

Xsin B; 2(

+

1 . . 3 .
> {(cos ;- Le™'®n e+ (cos B+ 1)el "W FR2  — \[5 cos Bie'“iF3°%

3cog 6—1)

X

3 1
2 \[g sin B; cos ZYiF/Z*}ngiJF 53 cod Bi— 1)':/2*}0& .

(A11)

The termsC, A, andB [cf. Egs.(A8), (A9), and(Al1l)]then  APPENDIX B: MATRIX REPRESENTATION

contain the anisotropies in tlgeand hf tensors as well as the

Euler angles needed to transform these from their respective In this Appendix we provide analytical expressions for
principal axis systems to the laboratory frame. Note that the eigenvaluess;; [that describe the resonant frequency cf.
andA are real whileB is complex. This completes the defi- Eq. (15)] of the Hamiltonian,H given in Eqg.(1). We also
nition of H; andH,. derive the matrix representation ef "' required implicitly
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for solving the evolution ofy [cf. Eq.(13)]in Eq. (16) and be taken. For a particular orientation of the biradical the
for constructing the pulse propagatdfsand P [Egs.(19)  Hamiltonian,H,, can expressed in matrix form using as a
and (24)]. basis set the direct product of the electron spin functjen

We begin by constructing an eigenbasis for the Hamil-and|—)) and the nuclear basis functiof®,). For N, the
tonian, H. For a powder an average over all the angulamuclear basis functions ari), [0), and|—1). Hamiltonian
distributions of# and ¢ (cf. Appendix A and Fig. Lshould H; [Eq. (2)] can be written in this basis as:

I+, |+,0 [+,-1) [-) [-100 [-,-1)
c, A, B
-1 1 0 0 0 0
2 2 2
B* C, B,
1 s —= 0 0 0
V2 2 V2
BY C; A
0 oo 0 0 0
2 2 2 &1
H,= . B1
C, A B
0 0 0 S B 0
2 2 2
* C B,
0 0 0 L _= _-1
V2 2 NA
* C, A
0 0 0 0 o
2 2 2

Similar expression for the case 6N are provided by Leet al3® The HamiltonianH, is diagonalized by the similarity
transformT™H,;T= A, where

T, 0
T:(o TB)' ®2

H, is then diagonal in its eigenbasis composed of the electron spin fundtiohsand |—)) and orthonormalized nuclear
functions(z,/xj(l), wherej=1,0,—1) The eigenvector.‘iy/jl are linear combinations dt), |0), |—1), i.e., for example,

|y =cq|1)+cy|0)+ 5] —1). (B3)

The diagonal form oH, i.e., A, is given by

c, 1 ) .
—+ > (A2+4]By»z O 0 0 0 0
2 2
Cy
0 — 0 0 0 0
2
C, 1, 1
0 0 5 —5(A1-4By,)? 0 0 0
M= C, 1 2 22
0 0 0 —— —5(Af-4lBy»z 0 0
Ca
0 0 0 0 -—— 0
2
Cl 1 > 1
0 0 0 0 0 —7+§(A1+4|Bl|2)z

(B4)
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Analogous equations can be written fdy and zpj(z) can be |d>:-|-7®|,/,1(1) : ,/,(k2)>5|_ _>®|,/,J(l>;,/,(k2)>_
defined, similarly.
We now construct a basis from the electron singlet—
triplet function and the nuclear functiorr/é. This is defined  The full Hamiltonian,H [Eq. (1)] can be shown to be block

as diagonal in this basis, i.e.,
@) =T. ey u?)=I++)ely”: n),
[b)=Tow 4" 447 Hy 0 0 0
0 Hxp Hxp O
H= B6
= 1)l e v ), o g e D o
V2 ! 0 0 0 Hy
(B5)

o) =S|y ;¥
Each element irH is a diagonal X9 matrix in the nuclear
Ei [|+—)—|—- +>]®|¢,}1) P2, sp!ns functions,df}'). The various terms can be explicitly
V2 written down as

1 ) . D
Hua= (T g HIT L 7 07 =| 5 {Ca+ Cot (AT+4]|B2) 7 + (A3 +4KIBJ*) )+ = (3 co8 6—1)| 3y S

D
Haoo=(Tot V2 [HI Ty Y ) = — 3 (308 0-1)5), 6,
H335(S¢}1)¢f<2)|H|S¢//},1) (%)>:2‘]5"’5kk"

Has=(Tou{ Vi [HISY( iy = Haz= (S ud? | HI Tou )

(B7)

1 _ _
:[5 {C1—Co+(AT+4j[B[)Y —<A§+4k|8|2>1’2k}}6”rékk, :

1
H44E<T_w}”w&”lHlT_w}Pw(ﬁB:{5{—cl Co—(AT+4|B[) %~ (A2+4k|B|2>1’2k}+ (3co$ 6- 1)}6“ S

j=1,0-1, k=1,0-1.

This HamiltonianH [cf. Eq. (1)] is diagonalized by the |E,)=(—sin®|To)+cosd|S))® |t ; yi?),
unitary transformation '

UtHU=E, (88)  wherela), |d), |To), |S), andy{" are given by Eq(B5) and

o ® by Eq. (B10). In this basiskE is given by
whereU is given by

1 0 0 0 E;, 0 0 O
0 cos®d sin®d O [ 0 E; O O
0 —sin® cos® O (B9) E=l 0o o E, o] (B12)
o 0 0 1 0 0 0 E

In Eq. (B9) © is given by where the elements in E¢B12) are given by

1 2H
d=_-tan?! 28

_ B10
2 Haz—Hy (B10)

Er=(T+ i i HIT, o i)

The eigenstate of the HamiltoniaH, [cf. Eq. (1)], can
then be written a$a), |E,), |E,) and|d). |E,) and|E,)
are defined as

1 . .
=5 {C1+Co+ (AT+4j[B|?) Y% + (A3+4k|B|*)

D
|22 =(cos®|To)+sin@[S)) @ |y ;¢),  (B11) +5 (3cos 6-1),
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Ep= (" i IHIZay) Ui’

=J— % (3cog 0—1)—

2
J+ % (3 cog 0—1)]
1
+ 1 {(C1—Cy)

12
+<Ai+4j|B|2)1’21—<A§+4k|B|2>1’2k}2} :

Es=(Epsi" i’ |HIEpyiV i)

2
:J—%(S cog 6—1)+ +J+%(3 cog 0—1)]

1 . .
+ 7 {(C1—Co)+(Af+4j|B)"

1/2

— (A3+4k|B|?)Y%)2 (B13)

e—iElt 0
0 cog de 'Faltgi? peEat
0  cos¢ sin ¢p(e 'B2l—eiESY)
0 0

—iHt_

APPENDIX C: PULSE PROPAGATOR

In this section the exponential operater, <'r is derived,
in the basis vectors given i@) Eq. (B5), i.e., the singlet—

triplet basis andb) Egs.(B11) and(B5), i.e., the eigenbasis.

Expanding the operatog, '<'r in a Taylor series we get

o0

e ieth— 2

—Ie'[p)n

In the singlet—triplet basifcf. Eq. (B5)] and using Eq(9)

we find that the odd and even term in the right-hand side of

Eq. (C1) obey the recursion relationships given by

1= A, n=1.2,..., (C2)

e"=w?"A2, n=12,...%, (C3)

1337

Es=(T_ V@ [HIT_ gV yi®) =3 —C,—C,— (A

+4j|B|?) Y3 — (A34k|B|?) Y%+ iD(3 cog 6—1),

j=1,0-1; k=1,0,—1.

Note that Eq(B13) provides the 36 diagonal in elements of
E. For compactness of notation we have suppressed multi-
plication of each term in this equation @ &y -

The exponential operater ' can then be expressed as

X(t)=e Hi=yTe 'Ely. (B14)

Substituting Eqs(B9), (B12), and(B13) in Eq. (B14) we get

0 0
cos¢ sin p(e 'Fel—e Bty 0
sir? e 'E2t4 cod PpeEat 0 (B15)
0 e—iE4t
|
1 )
0 —e7io 0 0
\/E
ie“ﬁ O O ie7i¢’
A=| 2 V2 (C4)
0 0 0 0
1 .
0 — ¢ 0 0
(1) V2
and
1 0 0 e
, | o 20 o
=l 0 00 o (C5)
e 0 0 1

In Egs.(C4) and(C5), ¢ refers to the phase of the pulgs.
Eq.(9)] and note thats,t,= 8 [Eq. (11)]. Also each element
in A and AZ? s a 9x9 dlagonal matrix in the nuclear spin
basis, zp] Substituting Eq(C3) in Eq. (C1) we obtain

e '%=1+iA sin B+A?(cosB—1). (C6)

whereA andA? are matrices, that in the singlet—triplet basis On substituting Eqs(C4) and (C5) in Eq. (C6) we find that

of Eq. (B5) are given by

e '€, in the singlet—triple{case a abovelepresentation is:
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1 i : 1 :
5(cosp+1) _E singe™ ' 0 > (cogB—1)e 2¢
i i
e ictp— _Uignﬂé¢ cosp ° _7§$n36|¢ . (C7)
0 0 1 0

1 . i 1
E(cos,li‘—l)ez'"S —Esmﬂe"b 0 5 (cogB+1)

Using a similar procedure, we obtaén 't in the eigenbasis of the HamiltoniaH, (i.e., for case bgiven by Eq.(B11) and
(B5). This is given by

i ) i . )
icosB+1) —— cos® sin Be ¢ — sin® sin Be~'® i(cosp—1)e 2¢
i . 1 )
- T cos® sinBe'®  1+cos ®(cosp—1) —cos®dsin d(cosB—1) _T cos®d sin Be ¢
) 2 2
esidt=| _ . (C8)
i . i .
— sin® sin Be' —cos® sin®(cosB—1)  1+sir? ®(cosB—1) — sin® sin Be™'?
2 g 2 g
H(cosp—1)e?? L cos®dsin Be'? il sin @ sin Be'® 1 (cosB+1)
V2 V2 2

Again, each element in EqEC7) and(C8) is a 99 diago- M4, =Mg,=S}(R},P1,— R3,Piy)
nal matrix in the nuclear functions, as noted above. L1 o
Using Egs.(B15) and (C7) and we can calculat® and +S4(R21P14—= R24P24),
P in Egs.(19) and(24) to any order in the Trotter exponent,
n as.(19) (24) y P N3a=R3RIPIP I+ RoP oA REXoal 1) X1t P3

3 T 3 3 P2 p2 p3
APPENDIX D: FIVE PULSE SIGNAL T RagXaal(12) Xal12) P3y) + RagRisPaPay

In this Appendix we provide the termi, N, andQ that + REP I RiaXax( 1) XL 1) P3

define the signal observed in the five pulse DQM apd DQ- N Rizxgz(tz)xlg(tz) Pgl),
COSY experiments. The term$, R, P, andS are defined
by Egs.(B14), (19), (24), and Table I, respectively. M=M= Sé(RélPh— R;4p}14) + Si(Rélpzlu— R§4P4114),
Mi1a=M15=S;(R1:P1~ Ry,P2r) Naa=REREPHP 1+ R3P A RiXoal t2) Xpot2) Py

+ S3(R1P13~ RiPl), +R3X25(t2) XD t2) P3) + RIRPIPH
Nia=RERTIPS1PI1H RS RepXaal 1) Xol t2) Py + RZP2ZREXas(t) XL 1) PE,

+ RiXoa(t2) Xl to) P3p) + RERGPS P + RiXanlto) Xl ta) P30,

+ REIP3o RisXaa(t2) Xa(t2) Py N1p=RRE P3P+ REP 5 RIXoA 1) XA 1) P34

+ RiXanlt2) Xalt2) P3y), + RixXoa(t2) Xo(to) P3,) + RERG P3P
M 22=M 2, = S1(R;P13— R14Ps) +R3, PS4 R3aXa3( 1) X34 t,) P3,

+S3(R11P 1~ RisPlo). + RiXanlto) Xgalt2) P2,
N2a=RERE P3PS+ R PSA RIX 22 t2) X3 t2) P3 N2p=R}1RT P3P+ REP5A R X 22 t2) X3l t2) P3,

+ R35Xoa(t2) X112 P3) + RIRGPLPY + RIXoo(t) X3o(12) P3) + RRE,PAPY,

+ R3;1P 34 RXaa(t2) X2y t2) P3; + R3PS R3aXa3(1) X5 t,) P3,

+ RiXanl o) Xalt2) P3y), (D1) + RiXanlto) X3l t2) P2, (D2)
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Nap=R3RIsP 7 1Pt REPIARIXox t2) X3 t2) P3
+RXoq(12) X112) P3,) + RYRIsP5P 3
+ REP I RIaX a3 1) X5a(t2) P3,
+ RiXaalto) Xhalt2) P2,

Nap= R3IRTPEPT+ REP A R X 22 12) X3l t2) P3,
+RigXao(t2) X3l t2) P30 + RERT PP
+ REP sl RisXayt2) Xialt2) P4
+REXao(to) X312 P3y),

Q2a= Rglpil >

Quaa= R?llpi ?1* )

Q2= R§4PE131 5

Qap=R3PI:S;" .

— 5 p5 5%
Qla_R21P4181 ’
— p5 p5 5%
Q3a_R41P4 '
— pP5 p5 5%
le_R24PllSl ’

Q3=RiPLS,

(D3)

(D4)

APPENDIX E: SIX PULSE SIGNAL

In this Appendix we provide the termd, V, and W

required to describe the six pulse primary refocussed double

guantum echo
U1a=S3(R3P3RE,PE) + S5(R3PHREPE),

Usa= SE(RG,P3RTPE) + S5(RG,P3RE:PS),

El
Usa=SE(RIPHREP 3 + SH(RIPILREP), =
Usa=S3(REPHRSP S, + SH(RIPILRSPS),
Vi,=SR} P+ SSRYPS,  Wi=ST* R3PS,
V2a=SIRY P+ SSRYPS,  Wo=S5* RGPS, (E2)

V3a=S3R5,Pos+ SiR3PL, Wa=S5* R3PS,

Via=SeR5:1Past+ SSR3PL,,  Wa=S3* RGPS,

U;, can be obtained from;, (i=1, 4) by making the fol-
lowing substitutions:
R§1P34—> Rilpgli RE1P§4_> Rilpgli (E3)

3 p3 3 53 3 p3 3 53
R1P24—RiPa1,  RisPas— RasPas

Also V,,, is obtained fronV,, by the following substitutions:

5 5 5 55 5 55 5 55
R1P1—RI1P2  RiPI3—RIPas, (E4)
R34P?4_’ Rglpzsw R24P?4_’ Rglp?m-

Furthermore,
UiC:Ur‘ai Uid:Urbi i:1,4. (E5)
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