JOURNAL OF CHEMICAL PHYSICS VOLUME 112, NUMBER 3 15 JANUARY 2000

Spin relaxation by dipolar coupling: From motional narrowing
to the rigid limit

Alexander A. Nevzorov and Jack H. Freed®
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853

(Received 25 August 1999; accepted 22 October 1999

A coupled system of two molecules bearing spins of 1/2, which are allowed to diffuse relative to
each other, is considered. By using a symmetry-adapted basis operator set, the overall density matrix
equation is decoupled into two equations for the time-resolved isochromat components, the sum of
which yields the observed signal. The appropriate stochastic Liouville equation is solved by a
combination of eigenfunction expansion and finite-differences for the angular and radial relative
motions, respectively. A full range of spectra from classic Pake patterns in the rigid limit to
motionally narrowed Lorentzians is recovered. As an extension of the above approach, the
solid-echo experiment is described in terms of the ensemble-averaged isochromats. Homogeneous
transverse relaxation time§4) as a function of the translational diffusion coefficiem) are
obtained from simulating SECS{pin-echo correlation spectroscomjgnals, which show distinct

T, minima vsD+. The present method of separating the quantum and stochastic classical variables
constitutes a useful approach for treating multiquantum statistical systems, and it can be generalized
to an arbitrary number of spins as shown in a companion paper. In the present study we obtained the
usual linear dependence 5 on Dt in the motional narrowingor Redfield)limit, whereas in the

slow motional regime aD{”2 dependence is observed, consistent with studies of rotational
diffusion. Varying the distance of maximum separation between the two spip9 ©as virtually

no effect on the location of th&, minimum with respect t®, implying that the onset of slow
motion is essentially independent gf.,. © 2000 American Institute of Physics.
[S0021-9606(00)02803-8]

I. INTRODUCTION dilute solution that are diffusing relative to one another, in
which we bridge the gap between the motional narrowing
General solutions to the problem of spin relaxation fromregime and the rigid limit. In this paper, we just consider two
the motional narrowing regime, where Bloch—Wangsness-spin-bearing molecules in relative motion, and in Paper Il we
Redfield theory applies? to the rigid limit have been avail- address the many-body problem. While the first case of two
able for some timé-® The most powerful approach is based spin-bearing molecules can be solved by direct application of
on solving the stochastic Liouville equati¢8LE). This ap-  the SLE, the many-body problem is inherently much more
proach has been applied to cases of slow-tumbling in ESRomplex, requiring a more sophisticated procedure in order
(electron spin resonanceand NMR (nuclear magnetic to derive a soluble form of the appropriate SLE. For pur-
resonance};? as well as to chemically induced electronic and poses of clarity of exposition, we introduce some of the for-
nuclear spin polarizatioCIDEP and CIDNP)involving  mal procedures that will be needed in Paper Il in the present
relative translational diffusion of radical paﬂ‘%.AnOther paper, where the details are much Simp|er_ Whereas this
useful approach, but more difficult to execute numerically ismakes the derivation in this paper somewhat more involved,
the method of cumulant expansidhBreed has applied this  we believe it helps to set the stage for Paper II, wherein the
method to ESR, and recently Brthweilef’to NMR using a  present two-spin analysis will be extended to the thermody-
sixth-order expansion. One case that has not yet been agamic limit (i.e., for an infinitely large number of spiré
equately analyzed iS that Of Spin relaxation by dipOlar inter'and macroscopic V0|umev' but with concentrationC
action between two spin-bearing molecules engaged in rela= N/v remaining finite). The present study in Paper | for just
tive translational diffusion. In the motional narrowing regime o spins does not simply lend itself to the thermodynamic
the solutions are well-knowh'*~3In fact, they are usually |imit.
extended to the interaction of many spin-bearing molecules  The relatively simple problem of two diffusing spin-
in a dilute nonviscous solution by simple additivity of the pearing molecules is still of practical interest. In particular,
pairwise interactions:*** by restricting the relative translational diffusion to an inner
In this paper and a companion papéihereinafter re-  adig| limit, r i,=d, and an outer oney.y, one achieves a
ferred to as Paper | and Paper II, respectively, we address thgmple model for a flexible biradical in which radical moi-
issue of dipolar relaxation between spin bearing molecules iRiies at either end are tethered to restrict their maximum
separation ta .. Such models have previously been stud-
2Electronic mail: jpf@msc.cornell.edu ied in the context of CIDNP and CIDEP, where, however,
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the primary spin-d_ependgnt interaction of interest was an iso- Hor=A0,l W+ A, (2.2a)
tropic exchange interactiofi:!® Here we are interested in _ .
magnetic resonance line shapes, as well as HiRe- whereA(); is the resonant frequency offset for thk spin

induction delay)and spin echo experiments, for the caseWith respect to the oscillating rradio frequencymagnetic
where we restrict the primary spin—spin interaction to thefi€ld @i, i.e.,AQi=0;—wy. Eq.(2.2a)for the case of like
intermolecular dipolar interactiofialthough we comment on SPins becomes

how the analysis may be modified in order to include the

_ 2
exchange interaction). This is a topic of growing interest in HO,R—AQ“(z 1], (2.2b)

the ESB study of bgabeled macromolecules, such agjere, we consider the high-field approximation and retain
proteins” and polymers; only the secular terms of the dipolar interaction Hamiltonian,

In the motional narrowing regime, the line broadening ispgmely
homogeneous, and it will not be refocused in an echo. In the
rigid limit the broadening is inhomogeneous, and for the case YBZ)(0,¢) 1
of dipolar interaction between two like spins it gives rise toH*2=H{? =y ——— I<Zl)l(22)——(l(+1)l<_2)+I&l)lf))},
classical Pake patterns. This broadening may be refocused by ' 4

. i . . (2.3)

a solid echd. In order to clarify the changing behavior from
homogeneous to inhomogeneous broadening we also obtaihere x=\/(16m/5)y*% is the coupling constant, is the
the solid echoes in the slow motional regime and comparélistance between the sping{’)(6,) is the spherical har-
them with the FID’s. We further consider the role of the monic of rank two and order zero, and the polar anglasd
radial separation on whether the dipolar interaction is com« describe the orientation of the radial vectoconnecting
pletely or only partially averaged. the two spins in the lab frame, in which the dc magnetic field

This paper is organized as follows. In Sec. Il we developis taken along the axis. The equation of motion for the
the expressions needed for the system of two interactingensity matrix in the rotating frameg(r; t) is
spins. Here we expand the density matrix in the “symmetry-
adapted” basis set of eigenoperators originally introduced by ~ dpgr(r;t) . 12 .
Banwell and Prima&® and we consider the coupled equa- ot = —i[HortHR? ,pr(r;t)]. (2.4)
tions of motion for the coefficients of the expansion. Expan-

sion of the overall density matrix into an eigenoperator basisone can write the free-induction dece/D) signal in terms

allows one to separate the quantum variables of the systegwfe 22;33; m:rgej\;?rgfaifg; ' t:se classical random variable
from the stochastic classical variables, and then allows on y ang '

to follow more easily the mutiple-coherence pathways eve ] 1)L 1(2) )

in the presence of relaxation. The FID signal is then Writter:b(t)oc(Mx(r' D) =TrL (157 + 57 pr(ri 1))]

as a time-ordered ensemble average over the sum of the two =TH (1 ()4 (2))< ()]
isochromat components. In Sec. Ill the formal relationship of 2 +)APRLE
this result to the appropriate SLE is described, and the FT D 1) pr(r; t))]. (2.5)

method of solution of the SLE is given. It involves a combi-

nation of eigenfunction expansions for the orientational partlhus, we seek the solution of the ensemble-averaged density
of r and finite-differences for the magnitude,n a manner ~ matrix, {pg(r; t)).

related to the methods of Hwang & Frééébr dipolar inter- For a system of two spins of 1/2, one can construct six-
actions in the motional narrowing regime and Zientara &teen eigenoperatois, of the superoperator form of the un-
Freed® for CIDEP with an anisotropic exchange interaction. perturbed Hamiltonia,, which Banwell and Primas call

In Sec. IV we derive expressions for spin-echo experimentéhe symmetry-adapted basis $&such that

using the solid echo as the primary example. In Sec. V we

describe the results of model simulations of line shapes, HpE=[Ho,E.]=unQE.. (2.6)

FIDSi' and solid echoes, and in Sec. VI we summarize OURpese eigenoperators are linearly independent and orthonor-
conclusions. mal with respect to the Frobenius trace metric, viz.

Il. EQUATIONS FOR SPIN-ISOCHROMAT (Ec.E.)=THEE.)=5.. (2.7)
COMPONENTS WITHIN THE EIGENOPERATOR

BASIS: THE FID SIGNAL However, to calculate the FID signal, we need to consider,

following Banwell and Primas, only those eight that have
For a system of two interacting spins, one can write thenonzero Frobenius projectiorisf. Eq. (2.7)] on operators
spin Hamiltonian as a sum of the time-independent Zeemah, 12, 1M andI®, cf. Eq.(2.5). These eigenoperators
part and the time-dependent perturbation due to the dipolaall have u==*1 and are given by the following direct prod-

interaction between the spins. That is ucts of single-spin operators:
H=Hy+H™2, (2.1) Ei=1M12, Ep=1111,
where the unperturbed Zeeman Hamiltonkég in the rotat- (2.8a)
: . E,=1@1® E,=1@1@
ing frame is 2= e 4= 14"
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corresponding tu=+1, and (2.11a)and(2.11b), and Egs2.11c)and(2.11d). If the vec-
tor r is a random function of time, we get the following
Es=1M112, E;=1M1%), equations for the twoensemble-averagedpin-isochromat

(2.8p)  components:
Ee=1210,  Eg=171%)

3 [t
corresponding tqw=—1, where g+(t)=exp(—iAQt)<exp) —iz)(fodt'F(r(t'))D
_(o 1) _(o o) xg.(0), (2.12a)
“=lo o) "7l1 o 5
(2.9) SN S )
N 1 O) . (0 0) g_(t)=exp |AQt)<exp) +|4Xfodt F(r(t ))D
a=2 + = ) =s31—-1,= )
’ 0o o) FF 0 1 xg_(0), (2.12b)

which are easily related to the Pauli spin matrices. As fol-Here g (t)=g,(t)+g,(t), g_(t)=gs(t)+gs(t), g.(t)

lows from Eq.(2.5) and their trace properties, the group of —(q (r;t)). We have written the isochromat components as
operators havinge=+1 can be considered separately from time-ordered exponentials for the convenient description of
those withu=—1 for the purposes of finding the FID signal. thejr ensemble-averaging to be performed in the next section.

Therefore, we decompose the relevant subspace of the ovef the high-temperature approximation, immediately after a
all density matrix into two linear combinations of the four nonselectiver/2 pulse, one has

eigenoperators

b p(o+)=—@[Hylm|<y2>]—>|<+1>—|<_1)+|<f>—|<_2>
pr(r= 3 grDE., (2.10) T

:E1+E2+E3+E4_E5_E6_E7_E8. (213)

The u==*1 part will yield a component oscillating atA()

in the rotating frame. The total FID signal corresponding to
pu=+1 can then be written as a sum of the two isochromat
components

where eithema=1 andb=4 or elsea=5 andb=8, and the
coefficientsg.(r; t) are functions of time. Substituting Eq.
(2.10) into the equation for the density matri2.4), and
calculating the commutators &, with H*?), one obtains
the following system of equations for the first four compo-
nentsg.(r; t) in the rotating frame, after making use of the

orthonormality of the eigenoperators, E8.7) GH=9:+(+g-()

. 3 [t ,
ag4(r;1) _ _ . . =q exp(—lAQt)<exp, _IZXJ dt’'F(r(t ))}
7t =—1A019:(r; 1) —ixF(r 1) [291(r; 1) +202(r; 1) ], 0
3 [t
(2.11a) +exp +izxf dt’F(r(t’))D, (2.14)
0
ago(rit) T o . : B B
=—iAQ,05(r;t)—ixF(r;t)[39.(r; t)+ 3g5(r; t)], where the initial intensities are given lay, (0)=g_(0)=q
at 2 11b =i#Q/4kT. The u=—1 components are related to those
(2.11b) with u=+1 by complex conjugation, since the bracketed
part in Eq.(2.14)is real.
dga(r;t)
ot
Ill. EVALUATION OF ENSEMBLE-AVERAGED
=—iAQ,05(r; ) —ixF(r;t)[ = 2ga(r;t)— 2g4(r; )], ISOCHROMAT COMPONENTS BY THE STOCHASTIC
LIOUVILLE EQUATION (SLE)
(2.11¢)
The ensemble-averaged ordered exponentials in Egs.
3ga4(r; 1) (2.12a)and (2.12b)can be written as
ot
3 [t
=—iAQ,04(r;t) —ixF(r; )[— 295(r; ) — 294(r; V)], <e><Fb I'zXfodt’F(f(t'))D
(2.11d) . ]
3 t t th
where F(r) =Y{(6,¢)/r3, with the time dependence im- =1+ > (Ii—)() f dtlf 1dt2"'f 1dtn
plicitly contained in the random variables 6, and ¢. The n=1 4 0 0 0
components havingu=—1 will evolve according to the
same equations except for the reversed signs at their corre- X f d3r1f d3r2~~j d3r F(ry)F(ry)---F(ry,)
sponding coefficient§i.e., let —i—+i in Egs.(2.11)]. For
the case of identical spirjsf. Eq. (2.2b)], one can add Egs. XPn(r,ty;ro,ts;...ry,th), (3.1
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wherep,(rq,tq;rs,ts;...1y,t,) is then’th order joint prob- 5
ability, which for a Markov process is equal to J drg.(r,t)=g.(t)
Pn(r,ty;ra,ta5...ryty) =qgexp —iAQt)

=P(ry,tafro,tp) - P(rp_1,th-1lrn t)Ped rnstn)  (3.2)

with pefry,ty) the equilibrium probability density and
P(ro_1,th_1|rn.t,) the conditional probability that given a
spin is atr, at timet,, it will be atr,_; att,_;. The
isochromat components in E¢3.1) can be calculated by For a stationary Markov procegse., Pe((r, t) = pe(r], the
solving the SLE?! for the auxiliary functiong..(r,t) such  auxiliary functiong-.(r,t) is formally given in terms of a
that series expansion

3t
><<exp) Ilzxfodt’F(r(t’))D. (3.3)

3\ (t
g+<r,t>=qexr(—imt){peq(m wioy) [t ErF ot Py

3 \?t ty
I'ZX) jodtlfo dtzf dgrlf droF(r)F(r)P(rt]ry, t) P(ry,tyro,t) pedra)

+
3 \3t ty ta
+ 1i—)() fdtlf dtzf dt3f d3r1f d3r2f d3rgF(r)F(ry)F(rg)
4 0 0 0
XP(r,t|ry,t) P(ro,ty|ry, 1) P(ro tofrs,ta) pedra) +-++ |, (3.4)
|
where the normalized conditional probabili(r,t|r;,t;) Comparing Eqs(3.1)—(3.3) we see that we should also
satisfies the equation require that at=0, g (r,t) be equal to the equilibrium dis-
tribution, viz.
AP(r t|rq,ty)
T:Frp(rit“l!tl)i (35) gt(ryo):qpeq(r)- (37)

For convenience in numerical solution, we shall impose the
with the initial condition P(r,t|ry,t))[¢=;,=8(r—r1) and  reflecting wall boundary conditio&?
I’ pedr) =0. Using the expression for the joint probability
for a Markov process, Eq3.2), one is able to show that ag:(r,t)‘ agi(r,t)\
integration ofg-(r,t) overr yields the ensemble-averaged or o
ordered exponential, Eq3.1). Then by differentiating Eq.
(3.4) with respect to time, followed by subtracting the result whered=r ,,;, andr ., are the distances of the closest ap-
of the action of the operatdr,, using Eq.(3.5) with its  proach and the maximum separation between the two spin
conditions, one can show that.(r,t) satisfies the corre- particles, respectively. Note that F(r) is a real function,
sponding SLE then it follows from Eq.(3.6) that the two FID isochromats
are related by complex conjugation, namely

=0, (3.8)

r=d I=Thax

(?gi—(r't):_‘ +i3 TIAQt __ % —iAQt
it i[AQ=xizxF(r)]g=(r,t) +Tg.(r,1). g.(r,t)e*M=g*(r,t)e . (3.9)

(3.6)  The total spectral function of two particles of spins 1/2 is
glculated by Fourier transforming the spin isochromat com-

Thus, the ensemble-averaged spin-isochromat componen(fonents. Eqs(2.12a)and (2.12b), and is given by

are obtained by solving the SLE, E@.6), followed by in- P
tegration overr, cf. Eq. (3.3). Note that Eq(3.6) is essen- ~ - ~
tially identical to the expression introduced by Kafor the o1, 0= AD) =04 (10— AD) +9_(r, 0= AQ)
purpose of path-averaging exponentials of the type of Eq. =9.(o—AQ)+T* (1, —w+AQ).
(3.1). In addition, the time-ordered structuregf(r,t) [cf.
Eqg. (3.4)] allows Eq.(3.6) to be generalized for the case (3.10)
whenF(r) is an operator or a superoperator. This leads to éHence, below we shall just solve fgr, (r,t) or g(r,t) and
general SLE for the density matri¢® drop the subscript “+" for the FID components.
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Let I', now be the translational diffusion operator ex- g2 (r, )
pressed in spherical polar coordinates, with the diffusion co- +C$T'{'+2)—r3— : (3.13)
efficient, D+. For simplicity, we ignore any other interac-
tions between the two particles. iifis therelative distance
between two identical spin-bearing particles, thep be-
comes twice the diffusion coefficient for the individual Where we have taken into account the initial condition given

particles' By Fourier transforming the SLE, E3.6), one by Eq.(3.7), and the coupling coefficiemﬁ;'/) are given in

obtains terms of the Clebsch—Gordan coefficients
g(r,0) +iwg(r, ) +T9(r, ) =i[AQ+5XF(1)]G(r, ®).
(3.11)
We solve Eq(3.11)by using a spherical harmonic expansion C<|,|'>:f sinodadaY V(0. 6 Y@ (0. 4)Y (6
for the angular part o§(r, »), while discretizing the radial m $Ym(6.8)"Y57(6.6)Ym (6. 6)
part of I', by finite-differences as discussed in Refs. 12 and 5 (2I'+1)
20. We look for the solution of Eq3.11)in the form = ,
- ¢3.11) Smm \/47 2D (1'2001"210)
- w)
9(r, )= E > gm( v W(g, ). (3.12) x(1'2m’ 0|1 2Im). (3.14)
=0 m=-1I

By substituting Eq(3.12)into Eqg.(3.11)and making use of

the orthogonality of the spherical harmonics one obtains  ag can be seen from Eq3.13), coefficients with different
q\/_r 81 00moti(w— AQ)g(')(r w) values ofm are uncoupled from each other, and coefficients
with evenl’s only couple to those with evels, and oddl’s

#  1(1+1) 0 only couple to odd’s. As a result, we just need to consider
T2 7z |9m (@) terms withm=0 and| even, since only the terg’)(r, w) is
1-2) 0 nonzero upon integration over space, cf. E33). Therefore,
_|3 o (11-2) 9m (r w) o O (T, ) the line shape problem reduces to the solution of the follow-
2X| ®m Cm rs ing block-matrix equation:
X20 _|((.O_AQ)I+W2 X24 0 0
0 X42 —I(w—AQ)|+W4 X46 0
0 0 Xsa —i(0—AQ)I+ Wy 0
0 0 0 0 om0 AW,
g(O) r
g(z) 0
g® 0
X e =qvém 0 (3.15)
g(l-max> 0

Here 0 designates a null matrix, is a unit matrix, and the m=0. The matricesX, ., and X, ,, are equal as follows
size of each block depends on the discretization of the radidtom the properties of the Clebsch—Gordan coefficients. The
part fromrg=d to r,=r,ax With Step sizeAr. The vector matrices on the diagon&V, are obtained by taking into ac-
approximatingr is given by ¢g.r;.r,,...r,)" and g® count the boundary conditions, E®.8) and the condition of
=[gM(ro),g"(r1),9M(r,),...d"(r,)1". The indexm has the conservation of the overall probability, cf. Ref. 12. We
been omitted since one is only interestedgﬁ;?(r,w) with have forw,
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3 ¢ 2D Ar\  D4l(1+1) 2D+
iy T I S _ 0 0 0
'7x rs Arz( d) rs Ar?
D+ 3 c“")+2DT+DTI(I+1) D+ 0 0
CAr? X AT T ~Ar?
D+ 3 ¢ 2Dy D4l(I+1)
0 —_— -v—+ — + ———— 0 0
W= Ar? "X T T A rs
3 ¢ 2D D4l(I+1) Dt
0 0 0 =Y —=— + — + ——— -
X T A r2_, Ar?
2D 3 ¢ 2D, Ar\ D4l(1+1)
0 0 0 TAr Yo S D
(3.16)
Whereas the matrice¥, |, , are given by
3 ch1+2)
i~y ——3— 0 0 0 0
4 ry
3 ch1+2
0 i—x 0 0 0
4t 3
3 ch1+2)
0 0 i ——— 0 0 3.17
X 1+2= I4X r2 . ( )
3 ch1+2)
0 0 0 iy 0
a4t 3,
3 cll+2)
rn
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FIG. 1. Modulation of dipolar line shapes by translational diffusion for two

Spin relaxation by dipolar coupling 1419

IV. EVOLUTION OF ISOCHROMAT COMPONENTS IN
THE CASE OF ADDITIONAL PULSES

We have discussed so far the case of the@mtinuous
wave) spectrum, or alternatively the FID modulation by the
dipolar interaction. We now extend the eigenoperator expan-
sion method for additional pulsésf. Refs. 24 and 25 for an
alternative approach). Since it is well-known thatrgulse
will not refocus the dipolar interaction, let us consider a
solid-echo experimerft, which involves a second pulse
(m/2), that is applied along the rotatingaxis at timer. If
the pulse is nonsclective, the eigenoperators hauirg. in-
volved in the density matrix expansion, cf. E8.10), will be
transformed by the pulse action as

N P =1 1P =190 @ 1P — 12 =127,
(4.1a)

D= D=1 1P 1 P 1 P41 P+,
(4.1b)

plus the permutation of indices 1 and 2. Here we have used
the relations! ,—15=2I, andl ,+1,=1. From Eqgs.(4.1a)
and(4.1b) one can easily obtain the corresponding relations
for operators havingu=—1. Moreover, one can see from
Egs.(4.1a)and(4.1b), the additional £/2), pulse mixes the
componentgy (r; t) having u=1 with those havingu=—1.

If the system is on resonance, i.AQ=0, it is well-knowrf

that the components with=0,+2 corresponding to zero and
double quantum coherences, will not be excited by the sec-

spins of 1/2. Line shapes are simulated as a function of the diffusion coefoNd pulse. Thus, in order to calculate the solid-echo signal it

ficient D (in units of y?4/d) and the ratio of the maximum separation with
respect to the distance of minimal approagh,,/d for values of 1.1, 1.5, 2,
and 5 from top to bottom. The values f@r; andr ,,/d are chosen as

indicated. Equatiori2.14) has been used, evaluated by the stochastic Liou-

ville equation method, E¢3.6). The entire motional range from classical

is sufficient to consider the eigenoperator subspace with
p==1. To describe the effect of a hard or nonselective pulse
we introduce a pulse propagator matixwhich transforms
the eigenoperatois,, €=1,...,8 according to Eq$4.1a)and

Pake patterns to motionally narrowed Lorentzians is recovered. For thé¢4.1b), and relates the “vector” consisting of coefficients of

valuer ., /d=5, magnified inset6~50 times in each linear dimensipare
included to show that dipolar doublets collapse at lower valueB-pin
comparison with pure rotation, i.e., whep,/d~1. Note that the abscissa

corresponds to units of angular frequen@ye., w) from —%yzﬁ/d?’ to
+32 921103 in all cases.

Coeﬁicientsg%)(r,w) can then be found by numerically in-

verting the block-matrix equation. The spectrum can be com-

puted by using Eq(3.12) followed by integration overr,
yielding:

6(w)=f d*ro(r, w)

O(r,o)

 Yn(6.9)

=
— H 2
_I:E()m:2—1 fsmadé'dq’;fr dr

(3.18)

=\/Ef rdrg(r,w).

the density matrix expansion, E(.10), before and imme-

diately after the pulse
g(r; 7+)=Xg(r; 7). (4.2)

Calculation of the elements of the matixfrom Egs.(4.1a)
and(4.1b)yields

1 -1 1 1 -1 -1 -1 1
-1 1 1 1 -1 -1 1 -1
1 1 1 -1 -1 1 -1 -1
1 1 -1 1 -1 -1 -1
x=1
-1 -1 -1 1 -1 1 1
-1 -1 1 -1 -1 1 1 1
-1 1 -1 -1 1 1 1 -1
1 -1 -1 -1 1 1 -1 1

(4.3)

Here the elements of the mati are arranged according to

Calculated spectra are plotted in Fig. 1 for different values ofe=1,...,8. Note that Eq(4.3) represents only the part of the

the diffusion coefficientD; and ratior,,/d. In order to

full matrix X corresponding tqu==*=1 which is needed to

converge and to obtain a smooth spectrum, several hundrexlculate the observed signal.

points are sufficient for the discretizationm$pace; whereas
the value ofL 5 can be kept at around 20.

The vector-coefficieng(r;7) at time 7 just before the
pulse can be written by formally resolving Eq2.11)
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U R N (U} (4.4) G(t):q< expy

3 ‘ ! ’ 3 ’ ’ ’
_IZXJTdt F(r(t ))+|fo0dt F(r(t"))

where the initial magnetization vector is given bg(0)
=q(1,1,1,1,-1,-1,-1,—-1)" since after the first €/2), texp
pulse the magnetization is along the rotatingxis, andl,

=(l.—1_)/2i. The dipolar interaction matri& is obtained

from Egs. (2.11a)}(2.11d) as well as from the equivalent =q<exp)
equations for the case @f=—1. It represents the numerical
coefficients ofg.(r;t) in these equations. In the basis of
eigenoperator§,, e=1,2,...,8, theC-matrix is equal t&°

3 t ! li 3 T ! li
+IZXdet F(r(t ))—lZ)(J’Odt F(r(t"))

3 [t
—|ZXJOdt’s(t’)F(r(t’))}

+exp

3 t
+iZ)(J'0dt’S(t’)F(r(t’))}>, (4.8)

where we have introduced the pulse functggt), such that
s(t)y=+1 if t>7 ands(t)=—1 if 0<t<r. It should be
noted that the ensemble-averaged isochromat components in
Eq. (4.8) are analogous to the phase functions introduced by

NI
INTEN

Bl
NI=

-1 -1 Klauder and Andersoff. Here, they arise naturally as a di-
rect consequence of the transformation of the symmetry-
-3 —3 adapted eigenoperator basis in a pulse sequence, which de-
C= . : (4.5)  termines the specific form @(t). If one were off-resonance,
2 4 an additional factor of c¢AQ7) would appear in front of Eq.
-+ -4 (4.8), representing oscillations between the first-order coher-

ence, and the zeroth- and second-order coherences.

3 i The spin-isochromat components in the presence of
101 pulses of the type used in the solid echo can be evaluated in
4 2

terms of a modified SLE by analogy with the FID compo-
nents of Eq(2.14)upon replacing the functioR (r(t)) with
The matrix of frequency offsetd(2 is also obtained from s(t)F(r(t)) in Eq. (3.1) f. Ref. 24 for an alternative ap-
Egs.(2.11) and the associated equations for—1, and is  proach). Constructing a formal series expansion for the aux-

equal to iliary functiong.(r,t), cf. Eq.(3.4), it can be shown that the
latter satisfies a modified stochastic Liouville equation, viz.
(Q— oyl 0 ag-(r,t
AQ= " @e) Y pg o-FinFmste. . 49)

0 —(Q-wpl)’ at

Note that for a ¢r/2), pulse att = 7, for the spin Hamiltonian
wherel designates the 4 by 4 unit matrixjs the 4 by 4 null  of Egs. (2.1)-(2.3), the stochastic Liouville operator &t
matrix. > 7 and the operator atQt<<r are related by complex con-
Finally, using Eqs(4.2) and(4.4), the overall vector of jugation. Therefore, the overall solutiontat  can be writ-
the ensemble-averagedomponentsg(t) in the rotating ten in operator form as
frame_ at. timest>r can be represented by the following g (r ) =exf L. (t— ) ]exg L* 7]g-(1.0), (4.10)
equation:
wherelL . =T",Fi3xF(r) is the stochastic Liouville operator.
Equation(4.10) can be solved in the time domain by first
finding the eigenvalues and eignevectors of the stochastic
CiAQa—iXCITUE () Liouville operator in the matrix representation described in
X Xe % 7e 10 )9(0). (4.7)  sec. Ill. It is convenient here to use a form of the Lanczos
algorithm  appropriate  for complex nonsymmetric

We shall further consider the on-resonance case whefialrices?***We actually used, for calculations, the stan-

AQ=0. If we were to letAQ#0, then coherences with dardmATLAB (MathWorks, Inc.)package implementing the
4=0,=2 would also be excited, thereby requiring the fu”ArnoIdis(r)nethod, which is closely related to the Lanczos
16X 16 matrix forms ofC, AQ, andX. One sees from the Method:

structure ofC given by Eq.(4.5), consisting of 2X2 blocks,

that each consecutive pair of elements in the starting vectoy- SPECTRAL LINE SHAPES AND ECHO AMPLITUDES

g(0) forms an eigenvector of the corresponding block of theg\:F-Lﬁilgllq\lESENCE OF TRANSLATIONAL

matrix C with eigenvaluest3/4. This fact greatly simplifies

the calculations of the matrix exponentials. Performing the  Cw signals from two particles of spin 1/2 which diffuse
necessary matrix multiplication and summing over the com+elative to each other, obtained from the Fourier transform of
ponents ofg(t) having u=1, one obtaingcf. Egs.(2.5)and  Eg.(2.14)using the method of Sec. Ill, are presented in Fig.
(2.14)] 1. The motion of the spin pair is characterized by the coef-

_ S\ /A= iAQ(t—7) —ixCfldt'F(r(t"))
g(t)=(g(r;t)=(e e,
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2 2100 a0
! FIG. 3. The FID signal has been subtracted here from the solid-echo signal

FIG. 2. Simulation of solid echoes for two spins of 1/2 as a function of the(cf. Fig. 2) thereby showing pure echoes and secondary echoes. No appre-

diffusion coefficientD (in units of y?4/d) and the ratio of the maximum  Ciable echo signal is observed at fast motions, where line broadening is

separation to the distance of minimal approagh,/d for values of 1.1, 1.5, homogeneous. Increasing the ratig,,/d yields greater residual signal,

2, 3, and 5 from top to bottom. The echo signal is calculated by using Eqwhich is clearly seen in the intermediate motional regime. The amplitude of

(4.10) integrated over volume as implied by E@.8). The secondz/2), the refocused signal first grows with,,,/d, and then decreases. The echo

pulse is applied at timer as indicated. Apparent similarity between the maximum shifts withD, and does not always occur at, 2xcept for very

motionally narrowed Lorentzians and the line shapes narrowed by increasslow motions. The abscissa and values gf/d are as in Fig. 2.

ing the ratior .5, /d, cf. Fig. 1, is removed by refocusing the inhomogeneous

line broadening in the latter case; whereas at higher motional rates line

broadening is homogeneous and cannot be refocused.

10 I" 1 ¥ L] T
i calculated envelope
08 [ SR apparent exponential decay | -
z ¢ ".
2 : )
Bé’ 06 a 3 .
=l \
Q
N
E o4 1
=)
P4
0.2 4
0.0 1 L t .
80 100 120

1 dW

FIG. 4. (a) lllustrative SECSY spectrum for two interacting spin dipoles of 1/2. The spectrum is calculateg,féd=1.1 andD+=10"*. Horizontal axes
correspond to the frequency range-o2+?%/d3. (b) Echo envelopes v for the w,=0 slice showing exponential fits used to estimate homogeriBgas
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FIG. 5. Homogeneous transverse relaxation tirfigs,as a function of the diffusion coefficierid,;, plotted for different values of the ratio of the maximum
separation to the distance of minimal approagh,/d. The T, values are obtained as illustrated in Fig. 4. Distifigtminima are observed at aboDt;
=0.05y?%/d. Increasing n»x/d does not shift the position of the minimum, implying that the transition to the motional narrowing regime is not affected by
the distance of separation between the spins. Limiting behdgieen by the formsAD;l’2+ B and ADy) is shown by dashed lines. In the fast motional
regime the line broadening is homogeneous and is directly proportiori} td.e., as given by the motional narrowing theory.

ficient D for their relative diffusion, the distance of their increased, it was not practical to show results fgg,/d
closest approactl, and their maximum separatiop,,. The  >5.
line shape may be described as a function of two dimension-  Figure 2 shows simulations of the solid-echo signals for
less parameter®+/d?y andr ., /d, cf. Eq.(3.11). For sim-  various Dy and ratiosr ,,/d. To obtain these results, Eg.
plicity we have converted to dimensionless units by setting4.10) has been used followed by averaging overThe
d=1, y*4/d3=1. In this system of units the diffusion coef- (w/2), pulse is applied at time=20d%»*% in all cases.
ficient D+ must be multiplied byy?#/d to obtain its actual Figure 2 shows both FID-like and echolike behavior ob-
value; (in the case of electron spins on molecules for whichtained from a single expression. Even though some spectra
the distance of closest approach between their centets is ook the same when plotted vs frequency, cf. Fig. 1, the
=10A, this coefficient is equal to 3.2720 ®cn?s™*; for  corresponding echo signals allow one to unequivocally dis-
two protons it is 7.55340 2cn?s Y). tinguish them according to the motional rate of sginsand

As can be seen in Fig. 1, at low valuesdf the line  their allowed separation,,,. As can be seen, increasing the
shape consists of two distinct isochromats which merge agate of the motion yields a decay of the echo amplitudes. In
D increases, finally yielding a Lorentzian line shape correthe motional-narrowing regimeD+=1, line broadening is
sponding to the motional narrowing regimer lf,./d is close  completely homogeneous, hence the signal decay is not af-
to unity, the line shape is that of the broad classic dipolafected at all by the refocusing pulse. The decay rates given
Pake powder pattern. By contrast, increasing the value dfy T,' decrease as./d increases, which is expected,
I'max/d narrows the spectra as a result of the reduced influsince the effective dipolar interaction is reduced. Echo for-
ence of the dipolar interaction, since on average the twenation at 2z is most clearly seen for very slow motions
particles become more separated. As the ratig/d be- (D;~10 %) where the broadening is mostly inhomoge-
comes larger, Lorentzian line shapes are obtained at smalleeous. Moreover, the echo formation is clearest for interme-
values of the diffusion coefficienD; in comparison with diate values of ,,,/d. For smaller values the sharpness of
pure rotational diffusion, i.e., when,,/d~1. However, the Pake doublets seen in the specti@mFig. 1)interferes
near the rigid limit D+~10"%) the two isochromats can still with this, and for larger values af,,,/d the dephasing from
be resolved upon magnifying the frequency scale by aboud<t< 7 is slow due to smaller effective dipolar interaction.
50 times(insets). Given the greatly reduced widths ag, is As the motional rate increases, the refocused echorag 2
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reduced in magnitude due to the development of a finitaepresenting the relative positions of the two spins. This ap-
homogeneouﬁ'z’l. In order to better isolate these various proach was extended to spin echoes, in particular the solid
effects we next show figures théj display only the echo- echo sequence, which refocuses the dipolar interaction. This
like effect and alsdii) track the homogeneoaicg1 asDtis  methodology will be seen to enable convenient generaliza-
varied. tion to the many-body case in Paper Il. In the present case
Figure 3 shows the result of subtraction of the FID sig-one observes line shapes that range from familiar Pake dou-
nals from the signals in Fig. 2 obtained using the solid-echdlets in the rigid limit to motionally averaged Lorentzians in
pulse sequence. Near the rigid limit, one observes a cledhe fast motional regime. Under conditions of motional nar-
echo formation occurring at a time equal to exactly twice therowing theT, obeys the usual linear dependence upon
time of the second pulse. As the ratig,,/d increases, the whereas in the slow motional limit the homogeneduysis
echo decay times become longer, as already noted. As tHeund to vary asD{l’Z. In this work r was restricted to a
diffusion rate increase®.g.,Dt~10 2) the echo maximum maximum magnitude,,y, in order to obtain finite values of
shifts towards longer times with greatey,,/d. Further in-  T,. Increasing n,yenabled the diffusion to average the Pake
crease irD+ yields a decrease in the amplitude of the echodoublets somewhat more effectively, wheréelgs shows a
which vanishes completely in the motional-narrowing limit. minimum vsD+ that occurs at aboud+=0.05 (in units of
Next, theT, values have been obtained from simulating they?#/d?), a value that appears to be insensitive i@,.
SECSY (spin echo correlation spectroscofy*' >3 two- The results of this paper can probably best be used to
dimensional spectra, Fig. 4(a), by using Eq4.8) and study dipolar interactions between flexible biradicals, as
(4.10). Here, the, axis corresponds to twice the delay time mentioned in Sec. I. In the relevant case of nitroxide biradi-
7 between the first and second pulses in the solid-echo excals in ESR experiments, one would need to add the corre-
periment, and thé, axis is the acquisition time starting im- sponding hyperfine interactions of each nitroxide electron
mediately after 2, i.e.,t,=t—27. After a Fourier transfor- spin with the*N or *N nuclear spin. Whereas this makes
mation with respect tot,, the zero-frequency f=0) the analysis more complicated in spin-Liouville spacd,is
amplitudes have been measured as a functioty oWhen  otherwise a straightforward application of the methods de-
motions are slow, the early time behavior foIIowstiade- scribed in this paper.
pendence; whereas the longer time behavior is usually rea-
sonably approximated by a single exponential, consistent
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