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Spin relaxation by dipolar coupling: From motional narrowing
to the rigid limit
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A coupled system of two molecules bearing spins of 1/2, which are allowed to diffuse relative to
each other, is considered. By using a symmetry-adapted basis operator set, the overall density matrix
equation is decoupled into two equations for the time-resolved isochromat components, the sum of
which yields the observed signal. The appropriate stochastic Liouville equation is solved by a
combination of eigenfunction expansion and finite-differences for the angular and radial relative
motions, respectively. A full range of spectra from classic Pake patterns in the rigid limit to
motionally narrowed Lorentzians is recovered. As an extension of the above approach, the
solid-echo experiment is described in terms of the ensemble-averaged isochromats. Homogeneous
transverse relaxation times (T2) as a function of the translational diffusion coefficient (DT) are
obtained from simulating SECSY~spin-echo correlation spectroscopy! signals, which show distinct
T2 minima vsDT . The present method of separating the quantum and stochastic classical variables
constitutes a useful approach for treating multiquantum statistical systems, and it can be generalized
to an arbitrary number of spins as shown in a companion paper. In the present study we obtained the
usual linear dependence ofT2 on DT in the motional narrowing~or Redfield!limit, whereas in the
slow motional regime aDT

21/2 dependence is observed, consistent with studies of rotational
diffusion. Varying the distance of maximum separation between the two spins (r max) has virtually
no effect on the location of theT2 minimum with respect toDT , implying that the onset of slow
motion is essentially independent ofr max. © 2000 American Institute of Physics.
@S0021-9606~00!02803-8#
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I. INTRODUCTION

General solutions to the problem of spin relaxation fro
the motional narrowing regime, where Bloch–Wangsne
Redfield theory applies,1,2 to the rigid limit have been avail
able for some time.3–6 The most powerful approach is base
on solving the stochastic Liouville equation~SLE!. This ap-
proach has been applied to cases of slow-tumbling in E
~electron spin resonance!and NMR ~nuclear magnetic
resonance!,5,6 as well as to chemically induced electronic a
nuclear spin polarization~CIDEP and CIDNP!involving
relative translational diffusion of radical pairs.4,7 Another
useful approach, but more difficult to execute numerically
the method of cumulant expansions.8 Freed9 has applied this
method to ESR, and recently Bru¨schweiler10 to NMR using a
sixth-order expansion. One case that has not yet been
equately analyzed is that of spin relaxation by dipolar int
action between two spin-bearing molecules engaged in r
tive translational diffusion. In the motional narrowing regim
the solutions are well-known.1,11–13In fact, they are usually
extended to the interaction of many spin-bearing molecu
in a dilute nonviscous solution by simple additivity of th
pairwise interactions.1,12,13

In this paper and a companion paper,14 hereinafter re-
ferred to as Paper I and Paper II, respectively, we addres
issue of dipolar relaxation between spin bearing molecule

a!Electronic mail: jhf@msc.cornell.edu
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dilute solution that are diffusing relative to one another,
which we bridge the gap between the motional narrow
regime and the rigid limit. In this paper, we just consider tw
spin-bearing molecules in relative motion, and in Paper II
address the many-body problem. While the first case of
spin-bearing molecules can be solved by direct application
the SLE, the many-body problem is inherently much mo
complex, requiring a more sophisticated procedure in or
to derive a soluble form of the appropriate SLE. For pu
poses of clarity of exposition, we introduce some of the f
mal procedures that will be needed in Paper II in the pres
paper, where the details are much simpler. Whereas
makes the derivation in this paper somewhat more involv
we believe it helps to set the stage for Paper II, wherein
present two-spin analysis will be extended to the thermo
namic limit ~i.e., for an infinitely large number of spinsN
and macroscopic volume,V, but with concentrationC
[N/V remaining finite!. The present study in Paper I for ju
two spins does not simply lend itself to the thermodynam
limit.

The relatively simple problem of two diffusing spin
bearing molecules is still of practical interest. In particul
by restricting the relative translational diffusion to an inn
radial limit, r min5d, and an outer oner max, one achieves a
simple model for a flexible biradical in which radical mo
eties at either end are tethered to restrict their maxim
separation tor max. Such models have previously been stu
ied in the context of CIDNP and CIDEP, where, howev
3 © 2000 American Institute of Physics
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the primary spin-dependent interaction of interest was an
tropic exchange interaction.15,16 Here we are interested i
magnetic resonance line shapes, as well as FID~free-
induction delay!and spin echo experiments, for the ca
where we restrict the primary spin–spin interaction to
intermolecular dipolar interaction,~although we comment on
how the analysis may be modified in order to include
exchange interaction!. This is a topic of growing interest
the ESR study of bilabeled macromolecules, such
proteins17 and polymers.18

In the motional narrowing regime, the line broadening
homogeneous, and it will not be refocused in an echo. In
rigid limit the broadening is inhomogeneous, and for the c
of dipolar interaction between two like spins it gives rise
classical Pake patterns. This broadening may be refocuse
a solid echo.2 In order to clarify the changing behavior from
homogeneous to inhomogeneous broadening we also o
the solid echoes in the slow motional regime and comp
them with the FID’s. We further consider the role of th
radial separation on whether the dipolar interaction is co
pletely or only partially averaged.

This paper is organized as follows. In Sec. II we deve
the expressions needed for the system of two interac
spins. Here we expand the density matrix in the ‘‘symmet
adapted’’ basis set of eigenoperators originally introduced
Banwell and Primas,19 and we consider the coupled equ
tions of motion for the coefficients of the expansion. Expa
sion of the overall density matrix into an eigenoperator ba
allows one to separate the quantum variables of the sys
from the stochastic classical variables, and then allows
to follow more easily the mutiple-coherence pathways e
in the presence of relaxation. The FID signal is then writ
as a time-ordered ensemble average over the sum of the
isochromat components. In Sec. III the formal relationship
this result to the appropriate SLE is described, and
method of solution of the SLE is given. It involves a comb
nation of eigenfunction expansions for the orientational p
of r and finite-differences for the magnitude,r, in a manner
related to the methods of Hwang & Freed12 for dipolar inter-
actions in the motional narrowing regime and Zientara
Freed20 for CIDEP with an anisotropic exchange interactio
In Sec. IV we derive expressions for spin-echo experime
using the solid echo as the primary example. In Sec. V
describe the results of model simulations of line shap
FID’s, and solid echoes, and in Sec. VI we summarize
conclusions.

II. EQUATIONS FOR SPIN-ISOCHROMAT
COMPONENTS WITHIN THE EIGENOPERATOR
BASIS: THE FID SIGNAL

For a system of two interacting spins, one can write
spin Hamiltonian as a sum of the time-independent Zeem
part and the time-dependent perturbation due to the dip
interaction between the spins. That is

H5H01H ~1,2!, ~2.1!

where the unperturbed Zeeman HamiltonianH0 in the rotat-
ing frame is
Downloaded 06 Sep 2002 to 128.253.229.132. Redistribution subject to 
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H0,R5DV1I z
~1!1DV2I z

~2! , ~2.2a!

whereDV i is the resonant frequency offset for theith spin
with respect to the oscillating rf~radio frequency!magnetic
field v rf , i.e.,DV i5V i2v rf . Eq. ~2.2a!for the case of like
spins becomes

H0,R5DV@ I z
~1!1I z

~2!#. ~2.2b!

Here, we consider the high-field approximation and ret
only the secular terms of the dipolar interaction Hamiltonia
namely

H ~1,2!5HR
~1,2!5x

Y0
~2!~u,f!

r 3 F I z
~1!I z

~2!2
1

4
~ I 1

~1!I 2
~2!1I 2

~1!I 1
~2!!G ,
~2.3!

where x[A(16p/5)g2\ is the coupling constant,r is the
distance between the spins,Y0

(2)(u,f) is the spherical har-
monic of rank two and order zero, and the polar anglesu and
f describe the orientation of the radial vectorr connecting
the two spins in the lab frame, in which the dc magnetic fie
is taken along thez axis. The equation of motion for the
density matrix in the rotating frame,rR(r; t) is

]rR~r; t !

]t
52 i @H0,R1HR

~1,2! ,rR~r; t !#. ~2.4!

One can write the free-induction decay~FID! signal in terms
of an ensemble-average over the classical random variabr,
denoted by angular brackets, as

G~ t !}^Mx~r; t !&5Tr@~ I x
~1!1I x

~2!!^rR~r; t !&#

5Tr@ 1
2~ I 1

~1!1I 1
~2!!^rR~r; t !&#

1Tr@ 1
2~ I 2

~1!1I 2
~2!!^rR~r; t !&#. ~2.5!

Thus, we seek the solution of the ensemble-averaged de
matrix, ^rR(r; t)&.

For a system of two spins of 1/2, one can construct s
teen eigenoperatorsEe of the superoperator form of the un
perturbed HamiltonianH0 , which Banwell and Primas cal
the symmetry-adapted basis set,19 such that

HD
x Ee[@H0 ,Ee#5mVEe . ~2.6!

These eigenoperators are linearly independent and ortho
mal with respect to the Frobenius trace metric, viz.

~Ee ,Ee8![Tr~Ee
†Ee8!5dee8 . ~2.7!

However, to calculate the FID signal, we need to consid
following Banwell and Primas, only those eight that ha
nonzero Frobenius projections@cf. Eq. ~2.7!# on operators
I 1

(1) , I 1
(2) , I 2

(1) , andI 2
(2) , cf. Eq. ~2.5!. These eigenoperator

all havem561 and are given by the following direct prod
ucts of single-spin operators:

E15I 1
~1!I a

~2! , E35I 1
~1!I b

~2! ,
~2.8a!

E25I 1
~2!I a

~1! , E45I 1
~2!I b

~1! ,
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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corresponding tom511, and

E55I 2
~1!I a

~2! , E75I 2
~1!I b

~2! ,
~2.8b!

E65I 2
~2!I a

~1! , E85I 2
~2!I b

~1! ,

corresponding tom521, where

I 15S 0 1

0 0D , I 25S 0 0

1 0D ,

~2.9!

I a[ 1
211I z5S 1 0

0 0D , I b[ 1
212I z5S 0 0

0 1D ,

which are easily related to the Pauli spin matrices. As f
lows from Eq.~2.5! and their trace properties, the group
operators havingm511 can be considered separately fro
those withm521 for the purposes of finding the FID signa
Therefore, we decompose the relevant subspace of the o
all density matrix into two linear combinations of the fo
eigenoperators

rR~r; t !5 (
e2a

b

ge~r; t !Ee , ~2.10!

where eithera51 andb54 or elsea55 andb58, and the
coefficientsge(r; t) are functions of time. Substituting Eq
~2.10! into the equation for the density matrix~2.4!, and
calculating the commutators ofEe with H (1,2), one obtains
the following system of equations for the first four comp
nentsge(r; t) in the rotating frame, after making use of th
orthonormality of the eigenoperators, Eq.~2.7!

]g1~r; t !

]t
52 iDV1g1~r; t !2 ixF~r; t !@ 1

2g1~r; t !1 1
4g2~r; t !#,

~2.11a!

]g2~r; t !

]t
52 iDV2g2~r; t !2 ixF~r; t !@ 1

4g1~r; t !1 1
2g2~r; t !#,

~2.11b!

]g3~r; t !

]t

52 iDV1g3~r; t !2 ixF~r; t !@2 1
2g3~r; t !2 1

4 g4~r; t !#,

~2.11c!

]g4~r; t !

]t

52 iDV2g4~r; t !2 ixF~r; t !@2 1
4g3~r; t !2 1

2 g4~r; t !#,

~2.11d!

where F(r) [Y0
(2)(u,f)/r 3, with the time dependence im

plicitly contained in the random variablesr, u, andf. The
components havingm521 will evolve according to the
same equations except for the reversed signs at their c
sponding coefficients@i.e., let 2 i→1 i in Eqs. ~2.11!#. For
the case of identical spins@cf. Eq. ~2.2b!#, one can add Eqs
Downloaded 06 Sep 2002 to 128.253.229.132. Redistribution subject to 
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~2.11a!and~2.11b!, and Eqs.~2.11c!and~2.11d!. If the vec-
tor r is a random function of time, we get the followin
equations for the twoensemble-averagedspin-isochromat
components:

g1~ t !5exp~2 iDVt !K exp0F2 i
3

4
xE

0

t

dt8F~r ~ t8!!G L
3g1~0!, ~2.12a!

g2~ t !5exp~2 iDVt !K exp0F1 i
3

4
xE

0

t

dt8F~r ~ t8!!G L
3g2~0!, ~2.12b!

Here g1(t)[g1(t)1g2(t), g2(t)[g3(t)1g4(t), ge(t)
[^ge(r; t)&. We have written the isochromat components
time-ordered exponentials for the convenient description
their ensemble-averaging to be performed in the next sect
In the high-temperature approximation, immediately afte
nonselectivep/2 pulse, one has

r~01 !52
\V

4kT
@ I y

~1!1I y
~2!#→I 1

~1!2I 2
~1!1I 1

~2!2I 2
~2!

5E11E21E31E42E52E62E72E8 . ~2.13!

The m561 part will yield a component oscillating at6DV
in the rotating frame. The total FID signal corresponding
m511 can then be written as a sum of the two isochrom
components

G~ t !5g1~ t !1g2~ t !

5q exp~2 iDVt !K exp0F2 i
3

4
xE

0

t

dt8F~r ~ t8!!G
1exp0F1 i

3

4
xE

0

t

dt8F~r ~ t8!!G L , ~2.14!

where the initial intensities are given byg1(0)5g2(0)5q
[ i\V/4kT. The m521 components are related to tho
with m511 by complex conjugation, since the bracket
part in Eq.~2.14! is real.

III. EVALUATION OF ENSEMBLE-AVERAGED
ISOCHROMAT COMPONENTS BY THE STOCHASTIC
LIOUVILLE EQUATION „SLE…

The ensemble-averaged ordered exponentials in E
~2.12a!and ~2.12b!can be written as9

K exp0F7 i
3

4
xE

0

t

dt8F~r ~ t8!!G L
511 (

n51

` S 7 i
3

4
x D nE

0

t

dt1E
0

t1
dt2¯E

0

tn21
dtn

3E d3r1E d3r2¯E d3rnF~r1!F~r2!¯F~rn!

3pn~r1 ,t1 ;r2 ,t2 ;...rn ,tn!, ~3.1!
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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wherepn(r1 ,t1 ;r2 ,t2 ;...rn ,tn) is the n’th order joint prob-
ability, which for a Markov process is equal to

pn~r1 ,t1 ;r2 ,t2 ;...rn ,tn!

5P~r1 ,t1ur2 ,t2!¯P~rn21 ,tn21urn ,tn!peq~rn ,tn! ~3.2!

with peq(rn ,tn) the equilibrium probability density and
P(rn21 ,tn21urn ,tn) the conditional probability that given
spin is at rn at time tn , it will be at rn21 at tn21 . The
isochromat components in Eq.~3.1! can be calculated by
solving the SLE3,21 for the auxiliary functionsg6(r, t) such
that
ty
t
d
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lt

-

e

E

e
o

Downloaded 06 Sep 2002 to 128.253.229.132. Redistribution subject to 
E d3rg 6~r, t !5g6~ t !

5q exp~2 iDVt !

3K exp0F7 i
3

4
xE

0

t

dt8F~r ~ t8!!G L . ~3.3!

For a stationary Markov process@i.e., peq(r, t)5peq(r)], the
auxiliary function g6(r, t) is formally given in terms of a
series expansion
g6~r, t !5q exp~2 iDVt !Fpeq~r !1S 7 i
3

4
x D E

0

t

dt1E d3r1F~r1!P~r, tur1 ,t1!peq~r1!

1S 7 i
3

4
x D 2E

0

t

dt1E
0

t1
dt2E d3r1E d3r2F~r1!F~r2!P~r, tur1 ,t1!P~r1 ,t1ur2 ,t2!peq~r2!

1S 7 i
3

4
x D 3E

0

t

dt1E
0

t1
dt2E

0

t2
dt3E d3r1E d3r2E d3r3F~r1!F~r2!F~r3!

3P~r, tur1 ,t1!P~r1 ,t1ur2 ,t2!P~r2 ,t2ur3 ,t3!peq~r3!1¯G , ~3.4!
o
-

the

p-
spin

is
m-
where the normalized conditional probabilityP(r, tur1 ,t1)
satisfies the equation

]P~r, tur1 ,t1!

]t
5G rP~r, tur1 ,t1!, ~3.5!

with the initial condition P(r, tur1 ,t1)u t5t1
5d(r2 r1) and

G rpeq(r) 50. Using the expression for the joint probabili
for a Markov process, Eq.~3.2!, one is able to show tha
integration ofg6(r, t) over r yields the ensemble-average
ordered exponential, Eq.~3.1!. Then by differentiating Eq
~3.4!with respect to timet, followed by subtracting the resu
of the action of the operatorG r , using Eq.~3.5! with its
conditions, one can show thatg6(r, t) satisfies the corre
sponding SLE

]g6~r, t !

]t
52 i @DV6 i 3

4xF~r !#g6~r, t !1G rg6~r, t !.

~3.6!

Thus, the ensemble-averaged spin-isochromat compon
are obtained by solving the SLE, Eq.~3.6!, followed by in-
tegration overr, cf. Eq. ~3.3!. Note that Eq.~3.6! is essen-
tially identical to the expression introduced by Kac22 for the
purpose of path-averaging exponentials of the type of
~3.1!. In addition, the time-ordered structure ofg6(r, t) @cf.
Eq. ~3.4!# allows Eq. ~3.6! to be generalized for the cas
whenF(r) is an operator or a superoperator. This leads t
general SLE for the density matrix.3,23
nts

q.

a

Comparing Eqs.~3.1!–~3.3! we see that we should als
require that att50, g6(r, t) be equal to the equilibrium dis
tribution, viz.

g6~r,0!5qpeq~r !. ~3.7!

For convenience in numerical solution, we shall impose
reflecting wall boundary conditions12,20

]g6~r, t !

]r U
r 5d

5
]g6~r, t !

]r U
r 5r max

50, ~3.8!

whered[r min and r max are the distances of the closest a
proach and the maximum separation between the two
particles, respectively. Note that ifF(r) is a real function,
then it follows from Eq.~3.6! that the two FID isochromats
are related by complex conjugation, namely

g1~r, t !eiDVt5g2* ~r, t !e2 iDVt. ~3.9!

The total spectral function of two particles of spins 1/2
calculated by Fourier transforming the spin isochromat co
ponents. Eqs.~2.12a!and ~2.12b!, and is given by

g̃tot~r, v2DV![g̃1~r, v2DV!1g̃2~r, v2DV!

5g̃1~r, v2DV!1g̃1* ~r, 2v1DV!.

~3.10!

Hence, below we shall just solve forg1(r, t) or g(r, t) and
drop the subscript ‘‘1’’ for the FID components.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Let G r now be the translational diffusion operator e
pressed in spherical polar coordinates, with the diffusion
efficient, DT . For simplicity, we ignore any other interac
tions between the two particles. Ifr is the relative distance
between two identical spin-bearing particles, thenDT be-
comes twice the diffusion coefficient for the individu
particles.1 By Fourier transforming the SLE, Eq.~3.6!, one
obtains

g~r,0!1 ivg̃~r, v!1G rg̃~r, v!5 i @DV1 3
4xF~r !#g̃~r, v!.

~3.11!
We solve Eq.~3.11!by using a spherical harmonic expansi
for the angular part ofg̃(r, v), while discretizing the radia
part of G r by finite-differences as discussed in Refs. 12 a
20. We look for the solution of Eq.~3.11! in the form

g̃~r, v!5(
l 50

`

(
m52 l

l gm
~ l !~r ,v!

r
Ym

~ l !~u,f!. ~3.12!

By substituting Eq.~3.12! into Eq. ~3.11!and making use of
the orthogonality of the spherical harmonics one obtains

qA4prd l ,0dm,01 i ~v2DV!gm
~ l !~r ,v!

1DTF ]2

]r 22
l ~ l 11!

r 2 Ggm
~ l !~r ,v!

5 i
3

4
xFcm

~ l ,l 22!
gm

~ l 22!~r ,v!

r 3 1cm
~ l ,l !

gm
~ l !~r ,v!

r 3
di

Downloaded 06 Sep 2002 to 128.253.229.132. Redistribution subject to 
-

d

1cm
~ l ,l 12!

gm
~ l 12!~r ,v!

r 3 G , ~3.13!

where we have taken into account the initial condition giv

by Eq.~3.7!, and the coupling coefficientscm
( l ,l 8) are given in

terms of the Clebsch–Gordan coefficients

cm
~ l ,l 8!5E sinududfYm

~ l !~u,f!* Y0
~2!~u,f!Ym

~ l 8!~u,f!

5dm,m8A 5

4p

~2l 811!

~2l 11!
^ l 8200u l 82l0&

3^ l 82m80u l 82lm&. ~3.14!

As can be seen from Eq.~3.13!, coefficients with different
values ofm are uncoupled from each other, and coefficie
with evenl’s only couple to those with evenl’s, and oddl’s
only couple to oddl’s. As a result, we just need to conside
terms withm50 andl even, since only the termg0

(0)(r, v) is
nonzero upon integration over space, cf. Eq.~3.3!. Therefore,
the line shape problem reduces to the solution of the follo
ing block-matrix equation:
S 2 i ~v2DV!I1 W0 X02 0 0 ¯ 0

X20 2 i ~v2DV!I1 W2 X24 0 ¯ 0

0 X42 2 i ~v2DV!I1 W4 X46 ¯ 0

0 0 X64 2 i ~v2DV!I1 W6 ¯ 0

¯ ¯ ¯ ¯ ¯ ¯

0 0 0 0 ¯ 2 i ~v2DV!I1 WLmax

D
3S g~0!

g~2!

g~4!

g~6!

¯

g~Lmax!

D 5qA4pS r

0

0

0

¯

0

D . ~3.15!
he
-

e

Here 0 designates a null matrix,I is a unit matrix, and the
size of each block depends on the discretization of the ra
part from r 05d to r n5r max with step sizeDr . The vector
approximating r is given by (r 0 ,r 1 ,r 2 ,...rn)T and g( l )

5@g( l )(r 0),g( l )(r 1),g( l )(r 2),...g( l )(r n)#T. The indexm has
been omitted since one is only interested ingm

( l )(r ,v) with
al
m50. The matricesX l ,l 12 and X l 12,l are equal as follows
from the properties of the Clebsch–Gordan coefficients. T
matrices on the diagonalW l are obtained by taking into ac
count the boundary conditions, Eq.~3.8!and the condition of
the conservation of the overall probability, cf. Ref. 12. W
have forW l
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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3

4
x

c~ l ,l !

r n
3 1

2DT

Dr 2 S 12
Dr

d D1
DTl ~ l 11!

r n
2

2 .

~3.16!

~3.17!
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W l51
i
3

4
x

c~ l ,l !

r 0
3 1

2DT

Dr 2 S 11
Dr

d D1
DTl ~ l 11!

r 0
2 2

2DT

Dr 2 0 ¯ 0

2
DT

Dr 2 i
3

4
x

c~ l ,l !

r 1
3 1

2DT

Dr 2 1
DTl ~ l 11!

r 1
2 2

DT

Dr 2 ¯ 0

0 2
DT

Dr 2 i
3

4
x

c~ l ,l !

r 2
3 1

2DT

Dr 2 1
DTl ~ l 11!

r 2
2 ¯ 0

¯ ¯ ¯ ¯ ¯

0 0 0 ¯ i
3

4
x

c~ l ,l !

r n21
3 1

2DT

Dr 2 1
DTl ~ l 11

r n21
2

0 0 0 ¯ 2
2DT

Dr 2

Whereas the matricesX l ,l 12 are given by

X l ,l 1251
i
3

4
x

c~ l ,l 12!

r 0
3 0 0 ¯ 0 0

0 i
3

4
x

c~ l ,l 12!

r 1
3 0 ¯ 0 0

0 0 i
3

4
x

c~ l ,l 12!

r 2
3 ¯ 0 0

¯ ¯ ¯ ¯ ¯ ¯

0 0 0 ¯ i
3

4
x

c~ l ,l 12!

r n21
3 0

0 0 0 ¯ 0 i
3

4
x

c~ l ,l 12!

r n
3

2 .
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Coefficientsgm
( l )(r ,v) can then be found by numerically in

verting the block-matrix equation. The spectrum can be co
puted by using Eq.~3.12! followed by integration overr,
yielding:

g̃~v!5E d3r g̃~r, v!

5(
l 50

`

(
m521

l E sinududfE r 2dr
gm

~ l !~r ,v!

r
Ym

~ l !~u,f!

5A4pE rdr g0
~0!~r ,v!. ~3.18!

Calculated spectra are plotted in Fig. 1 for different values
the diffusion coefficientDT and ratio r max/d. In order to
converge and to obtain a smooth spectrum, several hun
points are sufficient for the discretization ofr-space; whereas
the value ofLmax can be kept at around 20.

FIG. 1. Modulation of dipolar line shapes by translational diffusion for tw
spins of 1/2. Line shapes are simulated as a function of the diffusion c
ficient DT ~in units ofg2\/d) and the ratio of the maximum separation wi
respect to the distance of minimal approach,r max/d for values of 1.1, 1.5, 2,
and 5 from top to bottom. The values forDT and r max/d are chosen as
indicated. Equation~2.14!has been used, evaluated by the stochastic Li
ville equation method, Eq.~3.6!. The entire motional range from classic
Pake patterns to motionally narrowed Lorentzians is recovered. For
valuer max/d55, magnified insets~;50 times in each linear dimension! are
included to show that dipolar doublets collapse at lower values ofDT in
comparison with pure rotation, i.e., whenr max/d'1. Note that the absciss

corresponds to units of angular frequency~i.e., v! from 2
3
2 g2\/d3 to

1
3
2 g2\/d3 in all cases.
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IV. EVOLUTION OF ISOCHROMAT COMPONENTS IN
THE CASE OF ADDITIONAL PULSES

We have discussed so far the case of the cw~continuous
wave!spectrum, or alternatively the FID modulation by th
dipolar interaction. We now extend the eigenoperator exp
sion method for additional pulses~cf. Refs. 24 and 25 for an
alternative approach!. Since it is well-known that ap-pulse
will not refocus the dipolar interaction, let us consider
solid-echo experiment,2 which involves a second puls
(p/2)y that is applied along the rotatingy axis at timet. If
the pulse is nonsclective, the eigenoperators havingm51 in-
volved in the density matrix expansion, cf. Eq.~2.10!, will be
transformed by the pulse action as

I 1
~1!I a

~2!→ 1
4@ I a

~1!2I b
~1!1I 1

~1!2I 2
~1!#@ I a

~2!1I b
~2!2I 1

~2!2I 2
~2!#,

~4.1a!

I 1
~1!I b

~2!→ 1
4@ I a

~1!2I b
~1!1I 1

~1!2I 2
~1!#@ I a

~2!1I b
~2!1I 1

~2!1I 2
~2!#,

~4.1b!

plus the permutation of indices 1 and 2. Here we have u
the relations:I a2I b52I z and I a1I b51. From Eqs.~4.1a!
and ~4.1b! one can easily obtain the corresponding relatio
for operators havingm521. Moreover, one can see from
Eqs.~4.1a!and~4.1b!, the additional (p/2)y pulse mixes the
componentsge(r; t) havingm51 with those havingm521.
If the system is on resonance, i.e.,DV50, it is well-known2

that the components withm50,62 corresponding to zero an
double quantum coherences, will not be excited by the s
ond pulse. Thus, in order to calculate the solid-echo sign
is sufficient to consider the eigenoperator subspace w
m561. To describe the effect of a hard or nonselective pu
we introduce a pulse propagator matrixX, which transforms
the eigenoperatorsEe , e51,...,8 according to Eqs.~4.1a!and
~4.1b!, and relates the ‘‘vector’’ consisting of coefficients
the density matrix expansion, Eq.~2.10!, before and imme
diately after the pulse

g~r; t1 !5Xg~r; t!. ~4.2!

Calculation of the elements of the matrixX from Eqs.~4.1a!
and ~4.1b!yields

X5 1
41

1 21 1 1 21 21 21 1

21 1 1 1 21 21 1 21

1 1 1 21 21 1 21 21

1 1 21 1 1 21 21 21

21 21 21 1 1 21 1 1

21 21 1 21 21 1 1 1

21 1 21 21 1 1 1 21

1 21 21 21 1 1 21 1

2 .

~4.3!

Here the elements of the matrixX are arranged according t
e51,...,8. Note that Eq.~4.3! represents only the part of th
full matrix X corresponding tom561 which is needed to
calculate the observed signal.

The vector-coefficientg~r;t! at time t just before the
pulse can be written by formally resolving Eqs.~2.11!
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g~r; t!5e2 iDVte
0
2 ixC*0

tdt8F~r ~ t8!!g~0!, ~4.4!

where the initial magnetization vector is given by:g(0)
5q(1,1,1,1,21,21,21,21)T since after the first (p/2)x

pulse the magnetization is along the rotatingy axis, andI y

5(I 12I 2)/2i . The dipolar interaction matrixC is obtained
from Eqs. ~2.11a!–~2.11d! as well as from the equivalen
equations for the case ofm521. It represents the numerica
coefficients ofge(r; t) in these equations. In the basis
eigenoperatorsEe , e51,2,...,8, theC-matrix is equal to26

C51
1
2

1
4

1
4

1
2

2 1
2 2 1

4

2 1
4 2 1

2

2 1
2 2 1

4

2 1
4 2 1

2

1
2

1
4

1
4

1
2

2 . ~4.5!

The matrix of frequency offsets,DV is also obtained from
Eqs. ~2.11! and the associated equations form521, and is
equal to

DV5S ~V2v rf!I 0

0 2~V2v rf!I
D , ~4.6!

whereI designates the 4 by 4 unit matrix,0 is the 4 by 4 null
matrix.

Finally, using Eqs.~4.2! and ~4.4!, the overall vector of
the ensemble-averagedcomponentsg(t) in the rotating
frame at timest.t can be represented by the followin
equation:

g~ t !5^g~r; t&5^e2 iDV~ t2t!e
0
2 ixC*t

t dt8F~r ~ t8!!

3Xe2 iDVte
0
2 ixC*0

tdt8F~r ~ t8!!
&g~0!. ~4.7!

We shall further consider the on-resonance case w
DV50. If we were to letDVÞ0, then coherences with
m50,62 would also be excited, thereby requiring the f
16316 matrix forms ofC, DV, andX. One sees from the
structure ofC given by Eq.~4.5!, consisting of 232 blocks
that each consecutive pair of elements in the starting ve
g~0! forms an eigenvector of the corresponding block of
matrix C with eigenvalues63/4. This fact greatly simplifies
the calculations of the matrix exponentials. Performing
necessary matrix multiplication and summing over the co
ponents ofg(t) havingm51, one obtains@cf. Eqs.~2.5! and
~2.14!#
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G~ t !5qK exp0F2 i
3

4
xE

t

t

dt8F~r ~ t8!!1 i
3

4
xE

0

t

dt8F~r ~ t8!!G
1exp0F1 i

3

4
xE

t

t

dt8F~r ~ t8!!2 i
3

4
xE

0

t

dt8F~r ~ t8!!G L
5qK exp0F2 i

3

4
xE

0

t

dt8s~ t8!F~r ~ t8!!G
1exp0F1 i

3

4
xE

0

t

dt8s~ t8!F~r ~ t8!!G L , ~4.8!

where we have introduced the pulse functions(t), such that
s(t)511 if t.t and s(t)521 if 0,t,t. It should be
noted that the ensemble-averaged isochromat componen
Eq. ~4.8! are analogous to the phase functions introduced
Klauder and Anderson.27 Here, they arise naturally as a d
rect consequence of the transformation of the symme
adapted eigenoperator basis in a pulse sequence, which
termines the specific form ofs(t). If one were off-resonance
an additional factor of cos~DVt! would appear in front of Eq.
~4.8!, representing oscillations between the first-order coh
ence, and the zeroth- and second-order coherences.

The spin-isochromat components in the presence
pulses of the type used in the solid echo can be evaluate
terms of a modified SLE by analogy with the FID comp
nents of Eq.~2.14!upon replacing the functionF(r( t)) with
s(t)F(r( t)) in Eq. ~3.1! ~cf. Ref. 24 for an alternative ap
proach!. Constructing a formal series expansion for the a
iliary function g6(r, t), cf. Eq.~3.4!, it can be shown that th
latter satisfies a modified stochastic Liouville equation, v

]g6~r, t !

]t
2G rg6~r, t !57 i 3

4xF~r !s~ t !g6~r, t !. ~4.9!

Note that for a (p/2)y pulse att5t, for the spin Hamiltonian
of Eqs. ~2.1!–~2.3!, the stochastic Liouville operator att
.t and the operator at 0,t,t are related by complex con
jugation. Therefore, the overall solution att.t can be writ-
ten in operator form as

g6~r, t !5exp@L6~ t2t!#exp@L6* t#g6~r,0!, ~4.10!

whereL6[G r7 i 3
4xF(r) is the stochastic Liouville operator

Equation~4.10! can be solved in the time domain by fir
finding the eigenvalues and eignevectors of the stocha
Liouville operator in the matrix representation described
Sec. III. It is convenient here to use a form of the Lancz
algorithm appropriate for complex nonsymmetric
matrices.5,28,29 We actually used, for calculations, the sta
dard MATLAB ~MathWorks, Inc.!package implementing the
Arnoldi method, which is closely related to the Lancz
method.30

V. SPECTRAL LINE SHAPES AND ECHO AMPLITUDES
IN THE PRESENCE OF TRANSLATIONAL
DIFFUSION

Cw signals from two particles of spin 1/2 which diffus
relative to each other, obtained from the Fourier transform
Eq. ~2.14!using the method of Sec. III, are presented in F
1. The motion of the spin pair is characterized by the co
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 2. Simulation of solid echoes for two spins of 1/2 as a function of
diffusion coefficientDT ~in units of g2\/d) and the ratio of the maximum
separation to the distance of minimal approach,r max/d for values of 1.1, 1.5,
2, 3, and 5 from top to bottom. The echo signal is calculated by using
~4.10! integrated over volume as implied by Eq.~4.8!. The second (p/2)y

pulse is applied at timet as indicated. Apparent similarity between th
motionally narrowed Lorentzians and the line shapes narrowed by incr
ing the ratior max/d, cf. Fig. 1, is removed by refocusing the inhomogeneo
line broadening in the latter case; whereas at higher motional rates
broadening is homogeneous and cannot be refocused.
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FIG. 3. The FID signal has been subtracted here from the solid-echo s
~cf. Fig. 2! thereby showing pure echoes and secondary echoes. No a
ciable echo signal is observed at fast motions, where line broadenin
homogeneous. Increasing the ratior max/d yields greater residual signal
which is clearly seen in the intermediate motional regime. The amplitud
the refocused signal first grows withr max/d, and then decreases. The ech
maximum shifts withDT , and does not always occur at 2t, except for very
slow motions. The abscissa and values ofr max/d are as in Fig. 2.
FIG. 4. ~a! Illustrative SECSY spectrum for two interacting spin dipoles of 1/2. The spectrum is calculated forr max/d51.1 andDT51024. Horizontal axes
correspond to the frequency range of62g2\/d3. ~b! Echo envelopes vst1 for thev250 slice showing exponential fits used to estimate homogeneousT2’s.
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FIG. 5. Homogeneous transverse relaxation times,T2 , as a function of the diffusion coefficient,DT , plotted for different values of the ratio of the maximum
separation to the distance of minimal approach,r max/d. The T2 values are obtained as illustrated in Fig. 4. DistinctT2 minima are observed at aboutDT

50.05g2\/d. Increasingr max/d does not shift the position of the minimum, implying that the transition to the motional narrowing regime is not affec
the distance of separation between the spins. Limiting behavior~given by the formsADT

21/21B andADT) is shown by dashed lines. In the fast motion
regime the line broadening is homogeneous and is directly proportional toDT , i.e., as given by the motional narrowing theory.
ir

io

in
f-

ich
is

a
re

la

flu
tw

al

ll
o

for
.

b-
ctra

the
is-

e
. In

t af-
ven
,

or-
s
e-

e-
of

n.
ficient DT for their relative diffusion, the distance of the
closest approachd, and their maximum separationr max. The
line shape may be described as a function of two dimens
less parameters:DT /d2x andr max/d, cf. Eq.~3.11!. For sim-
plicity we have converted to dimensionless units by sett
d51, g2\/d351. In this system of units the diffusion coe
ficient DT must be multiplied byg2\/d to obtain its actual
value; ~in the case of electron spins on molecules for wh
the distance of closest approach between their centersd
510 Å, this coefficient is equal to 3.2731026 cm2 s21; for
two protons it is 7.55310212cm2 s21).

As can be seen in Fig. 1, at low values ofDT the line
shape consists of two distinct isochromats which merge
DT increases, finally yielding a Lorentzian line shape cor
sponding to the motional narrowing regime. Ifr max/d is close
to unity, the line shape is that of the broad classic dipo
Pake powder pattern. By contrast, increasing the value
r max/d narrows the spectra as a result of the reduced in
ence of the dipolar interaction, since on average the
particles become more separated. As the ratior max/d be-
comes larger, Lorentzian line shapes are obtained at sm
values of the diffusion coefficientDT in comparison with
pure rotational diffusion, i.e., whenr max/d'1. However,
near the rigid limit (DT'1024) the two isochromats can sti
be resolved upon magnifying the frequency scale by ab
50 times~insets!. Given the greatly reduced widths asr max is
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increased, it was not practical to show results forr max/d
.5.

Figure 2 shows simulations of the solid-echo signals
various DT and ratiosr max/d. To obtain these results, Eq
~4.10! has been used followed by averaging overr. The
(p/2)y pulse is applied at timet520d3/g2\ in all cases.
Figure 2 shows both FID-like and echolike behavior o
tained from a single expression. Even though some spe
look the same when plotted vs frequency, cf. Fig. 1,
corresponding echo signals allow one to unequivocally d
tinguish them according to the motional rate of spinsDT and
their allowed separationr max. As can be seen, increasing th
rate of the motion yields a decay of the echo amplitudes
the motional-narrowing regime,DT*1, line broadening is
completely homogeneous, hence the signal decay is no
fected at all by the refocusing pulse. The decay rates gi
by T2

21 decrease asr max/d increases, which is expected
since the effective dipolar interaction is reduced. Echo f
mation at 2t is most clearly seen for very slow motion
(DT'1024) where the broadening is mostly inhomog
neous. Moreover, the echo formation is clearest for interm
diate values ofr max/d. For smaller values the sharpness
the Pake doublets seen in the spectrum~cf. Fig. 1! interferes
with this, and for larger values ofr max/d the dephasing from
0,t,t is slow due to smaller effective dipolar interactio
As the motional rate increases, the refocused echo at 2t is
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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reduced in magnitude due to the development of a fin
homogeneousT2

21. In order to better isolate these variou
effects we next show figures that~i! display only the echo-
like effect and also~ii! track the homogeneousT2

21 asDT is
varied.

Figure 3 shows the result of subtraction of the FID s
nals from the signals in Fig. 2 obtained using the solid-ec
pulse sequence. Near the rigid limit, one observes a c
echo formation occurring at a time equal to exactly twice
time of the second pulse. As the ratior max/d increases, the
echo decay times become longer, as already noted. As
diffusion rate increases~e.g.,DT'1022) the echo maximum
shifts towards longer times with greaterr max/d. Further in-
crease inDT yields a decrease in the amplitude of the ec
which vanishes completely in the motional-narrowing lim
Next, theT2 values have been obtained from simulating t
SECSY ~spin echo correlation spectroscopy!25,31–33 two-
dimensional spectra, Fig. 4~a!, by using Eqs.~4.8! and
~4.10!. Here, thet1 axis corresponds to twice the delay tim
t between the first and second pulses in the solid-echo
periment, and thet2 axis is the acquisition time starting im
mediately after 2t, i.e., t25t22t. After a Fourier transfor-
mation with respect tot2 , the zero-frequency (v50)
amplitudes have been measured as a function oft1 . When
motions are slow, the early time behavior follows at1

3 de-
pendence; whereas the longer time behavior is usually
sonably approximated by a single exponential, consis
with what was previously found for rotational modulatio
cases24 @cf. Fig. 4~b!#. TheT2 values were determined from
single-exponential fits to the longert1 behavior~cf. Ref 24!.
The homogeneousT2’s as a function of the diffusion coeffi
cient DT are plotted in Fig. 5. DistinctT2 minima are ob-
served nearDT50.05. Allowing the two spins to move far
ther apart from each other does not shift the position of
minimum, but influences the relativeT2 values as we have
already noted above. Note that at higher values ofDT the
behavior ofT2 is linear with respect toDT , i.e., as predicted
by motional narrowing theory; whereas aDT

21/2 dependence
is observed in the slow motional regime.24

Similar values of theT2 minima for a range of values o
r max/d suggests that the range of validity of motional na
rowing is hardly affected by the value ofr max. This may not
be so surprising in view of the fact that whereas the dipo
interaction decreases asx/r 3, its effective averaging by
pseudo-rotation~i.e., modulation of the orientation ofr! oc-
curs at the rate ofDT /r 2, thus contributing to the homoge
neousT2’s.

VI. CONCLUSIONS

In the present work, dipolar line shapes~and FID’s! for
two identical spins of 1/2 have been calculated over the c
plete range of relative translational motion by decompos
the relevant or detectable part of the spin density matrix i
a symmetry-adapted eigenoperator set, which yields the
servable signal as a sum of two ensemble-averaged spin
chromats. The latter are then evaluated in terms of appro
ate stochastic Liouville equations, in which the spin degr
of freedom are separated from the dynamics ofr, the vector
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representing the relative positions of the two spins. This
proach was extended to spin echoes, in particular the s
echo sequence, which refocuses the dipolar interaction.
methodology will be seen to enable convenient general
tion to the many-body case in Paper II. In the present c
one observes line shapes that range from familiar Pake d
blets in the rigid limit to motionally averaged Lorentzians
the fast motional regime. Under conditions of motional n
rowing theT2 obeys the usual linear dependence uponDT ,
whereas in the slow motional limit the homogeneousT2 is
found to vary asDT

21/2. In this work r was restricted to a
maximum magnitude,r max, in order to obtain finite values o
T2 . Increasingr max enabled the diffusion to average the Pa
doublets somewhat more effectively, whereasT2 shows a
minimum vsDT that occurs at aboutDT50.05 ~in units of
g2\/d3), a value that appears to be insensitive tor max.

The results of this paper can probably best be used
study dipolar interactions between flexible biradicals,
mentioned in Sec. I. In the relevant case of nitroxide bira
cals in ESR experiments, one would need to add the co
sponding hyperfine interactions of each nitroxide elect
spin with the14N or 15N nuclear spin. Whereas this make
the analysis more complicated in spin-Liouville space,3,5 it is
otherwise a straightforward application of the methods
scribed in this paper.
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