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Dipolar relaxation in a many-body system of spins of 1/2
Alexander A. Nevzorov and Jack H. Freeda)

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853

~Received 25 August 1999; accepted 22 October 1999!

The method utilized in Paper I@J. Chem. Phys.112, 1413~2000!# for treating the density matrix
equation for a two-spin system in the presence of the dipolar interaction that is randomly modulated
by translational diffusion, is extended to a many-body system of identical spins of 1/2. Generalized
cumulant expansions are used, which allow one to take full advantage of the statistical independence
of the motions of spins. In the high-temperature approximation~appropriate for dilute solutions!, for
a single nonselective pulse, the symmetry of the problem allows one to obtain a compact ordered
binomial expression for the free-induction decay signal that is related to the two-particle solution,
and it still contains the two spin-isochromat components. The latter are evaluated by solving the
corresponding stochastic Liouville equation, which allows one to recover in a unified way the two
limiting cases including Anderson’s result for statistical broadening in a rigid lattice and the
classical Torrey–Bloembergen–Redfield expression for the motional narrowing, as corrected by
Hwang and Freed. The line shape expression in the thermodynamic limit, i.e., for large numbers of
particles in a macroscopic volume, is obtained. It is found that the many-body dipolar line shapes
are very close to Lorentzians over the entire motional range studied, with the linewidths
proportional to the spin concentration, as predicted earlier for the limiting cases. Linewidths plotted
versus the values of the translational diffusion coefficient clearly show the solid-state limit, the
motional-narrowing limit, and the intermediate region. The method is extended to describe the
behavior of the many-body system in a solid-echo sequence. This enables one to obtain the
homogeneousT2’s over the whole range of motions. A minimum inT2 is found at approximately
the same value of translational diffusion coefficient as was found for the two-spin case in Paper I.
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I. INTRODUCTION

The problem of the description of spectral line shapes
the presence of dipolar interaction amongst a collection
spins is well known in magnetic resonance spectrosco
Since there is anr 23 dependence of the magnitude of th
dipolar coupling onr, the vector connecting any two spin
the calculation of spectral line shapes in such spin system
essentially a many-body problem. Indeed, if only a selec
pair of spins were considered, the equilibrium probabil
density for the distribution inr would be inversely propor-
tional to the sample volumeV, thus yielding a negligible
effect of the dipolar interaction on spectral line shapes
macroscopicV. Our goal, therefore, is to consider all th
spins as a single many-body system and to find the ther
dynamic limit for the spectral line shape as the number
spinsN→`, while at the same timeV→`. In earlier work
by Torrey, under conditions of motional narrowing, the e
fect of multiple spins was treated by first solving the tw
spin problem and then introducing inad hoc fashion the
concentration factor rendering the many-body interaction
a sum ofN two-body interactions for theN11th particle.1–3

This yielded Lorentzian line shapes with the spin-lattic
R1[T1

21, and transverse,R2[T2
21, relaxation rates which

depend linearly on concentration. In solids, magnetic re
nance line shapes can be calculated using the statis
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theory of Anderson,4,5 which also yields simple Lorentzian
over a broad frequency range. However, in the latter case
spectra are inhomogeneously broadened.

In this paper we examine more rigorously the man
body effects on spectral line shapes and observed ti
resolved signals. The emphasis is placed on spin relaxa
by translational diffusion, which modulates the dipolar inte
actions between spins. Our general method yields a sol
stochastic Liouville equation procedure for the many-bo
problem in the thermodynamic limit, which allows one
calculate spectra over the whole motional regime and to
cover both the solid-state limit and the motional narrowi
regime as limiting cases. Our procedure may be summar
as follows. In Sec. II, we expand the density matrix in a
of eigenoperators of the unperturbed Hamiltonian~cf. Paper
I, i.e., Ref. 6!, which enables us to conveniently separate
quantum spin variables from the classical stochastic v
ables, i.e.,r i j i , j 51,...N in theN-spin case. Then we obtai
a system of coupled differential equations for the expans
coefficients, the solution of which can be written in terms
an ordered exponential. In Sec. III, we show that t
ensemble-average of the latter can be written in terms
connected averages, or cumulants,7–9 which allows one to
find the solution for the observed magnetic resonance sig
in terms of a time-ordered binomial sum of the two sp
isochromats related to the solution of the two-body proble
Finally, in Sec. IV the Markov method10 is used to find the
thermodynamic limit for the line shape expression whenN
5 © 2000 American Institute of Physics
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→`, V→`. This leads to an integral equation for the man
body signal in terms of the two-spin signal, that was cal
lated in Paper I.6 The integral equation is then solved b
straightforward numerical methods,~cf. Sec. IV!, and the
continuous-wave~cw! line shapes are described in Sec. V
In this work we use the high-temperature approximation
lowest order and do not consider any higher-order effect
the sort studied elsewhere.11,12 This may also be taken a
implying dilute solutions. Here we show that the cw lin
shape is a Lorentzian over the whole motional range.
also show rigorously that the linewidth is linearly propo
tional to the concentration of spins in the sample over
whole motional range.

The methodology is generalized to the solid-echo exp
ment in Secs. V and VI. In Sec. VII we investigate ho
motion quenches the echo formation. By simulating
SECSY ~spin-echo correlation spectroscopy! spectra based
on the solid echo, we are able to decompose the total Lor
zian linewidths into their homogeneous and inhomogene
components. In addition, we show how increasing concen
tion quenches the echo even when there is almost no ap
ciable motion because of the fractional power-law dep
dence of the homogeneousT2 on the motional rate. This
effect is distinct from instantaneous diffusion4 which reflects
the fact that a standardp pulse will not refocus dipolar in-
teractions between like spins.

II. COUPLING OF THE FREE-INDUCTION DECAY
COMPONENTS WITHIN THE EIGENOPERATOR BASIS

Here we consider a system ofN particles of spins 1/2
which diffuse in a sample of volumeV. The Hamiltonian for
such a system in the rotating frame can be written as

HR5H0,R1(
i , j

N

H ~ i j !. ~2.1!

Here the double sum is taken over allN spinsi andj forming
distinct pairs such thati , j . For like spins the unperturbe
Zeeman HamiltonianH0,R is given by

H0,R5(
i 51

N

~V i2v rf!I z
~ i !5DV(

i 51

N

I z
~ i ! . ~2.2!

Here we consider the high-field approximation and ret
only the first term of the dipolar Hamiltonian, namely

HR
~ i j !5H ~ i j !5x

Y0
~2!~V i j !

r i j
3 @ I z

~ i !I z
~ j !2 1

4~ I 1
~ i !I 2

~ j !1I 2
~ i !I 1

~ j !!#,

~2.3!

wherex[A(16p/5)g2\ is the coupling constant,r i j is the
distance between theith and jth spins,V i j is the orientation
of the vectorr i j connecting the two spins with respect to t
main magnetic field. Ifr i j and/orV i j are random functions
of time, the dipolar interaction gives rise to line broadenin
The equation of motion for the many-body density matrix

]r~ t !

]t
52 i @H0 ,r~ t !#2 i(

i , j

N

@H ~ i j !,r~ t !#. ~2.4!
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It should be noted that the the density matrix contains b
explicit and implicit time dependence, the latter arising fro
stochastic modulation through the vectorsr i j . We seek the
solution of the density matrix equation in the form

r~ t !5(
$e%

g$e%~ t !E$e% , ~2.5!

where the coefficientsg$e%(t) are functions of time, and the
E$e% are a set of basis operators with numbering scheme~e!,
that are introduced as follows. For a system ofN particles of
spin 1/2, operatorsE$e% can be written as a direct product o
N spin operators corresponding to different particles13

E$e%5)
i 51

N

I e i

~ i ! . ~2.6!

Here $e% denotes a permutation set which provides a cert
numbering prescription for the eigenoperators,$e%
5$e1 ,e2 ,...eN%, e i5a, b, 1, or 2. I 1 and I 2 are conven-
tional raising and lowering spin operators and the polari
tion operatorsI a and I b are defined as Ref. 14, cf. Paper

I a5 1
21I z I b5 1

22I z . ~2.7!

As follows from the trace properties ofI 1 , I 2 , I a , andI b ,
the operators of Eq.~2.6! form a complete orthonormal bas
set in operator space with the Frobenius trace metric defi
as

~E$e% ,E$e8%![Tr~E$e%
† E$e8%!5d$e%,$e8% , ~2.8!

where the dagger † denotes the Hermitian conjugate. By
ing the above orthogonality property of the basis operato
one obtains a system of equations which couple the FID~free
induction decay!componentsg$e%(t). That is

]g$e%~ t !

]t
52 iDV$e%g$e%~ t !2 ix(

i , j

N

C
$e%$e8%
~ i j ! F~r i j !g$e8%~ t !.

~2.9!

The matrix of frequency offsets is given by@H0 ,E$e%#
5DV$e%E$e% , and the matrixC( i j ) is defined by

xC
$e%$e8%
~ i j ! F~r i j !5Tr~E$e%

† @H ~ i j !,E$e8%# !. ~2.10!

The explicit form ofC( i , j ) clearly depends on the commuta
tion relations between the basis operators and the Ha
tonian describing the interaction among the spin particles
the case of the dipolar interaction in the high-field appro
mation, Eq.~2.3!, one obtains the following commutatio
properties for different types of pairwise combinatio
I e i

( i )I e j

( j ) :

@H ~ i j !,I a
~ i !I a

~ j !#5@H ~ i j !,I b
~ i !I b

~ j !#

5@H ~ i j !,I 1
~ i !I 1

~ j !#

5@H ~ i j !,I 2
~ i !I 2

~ j !#50,

@H ~ i j !,I 6
~ i !I a

~ j !#56xF~r i j !~
1
2I 6

~ i !I a
~ j !1 1

4I a
~ i !I 6

~ j !!,

@H ~ i j !,I 6
~ i !I b

~ j !#57xF~r i j !~
1
2I 6

~ i !I b
~ j !1 1

4I b
~ i !I 6

~ j !!, ~2.11!

@H ~ i j !,I a
~ i !I b

~ j !#5xF~r i j !~
1
4I 1

~ i !I 2
~ j !2 1

4I 2
~ i !I 1

~ j !!,

@H ~ i j !,I 1
~ i !I 2

~ j !#5xF~r i j !~
1
4I a

~ i !I b
~ j !2 1

4I b
~ i !I a

~ j !!,
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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whereF(r i j )[Y0
(2)(V i j )/r i j

3 . Thus in the case of the Hamil
tonian given by Eq.~2.3!, the matricesC( i , j ) are real and
symmetric. Out of the possible 4N time-dependent coeffi
cients g$e%(t) of Eq. ~2.5!, most do not contribute to th
observable signal. Indeed, the observable free induction
cay ~FID! signal can be written as

G~ t !5TrS r(
i 51

N

I 2
~ i !D 5(

$e%
g$e%~ t !(

i 51

N

Tr~E$e%I 2
~ i !!. ~2.12!

Therefore, a nonzero contribution to the observed sig
arises from the coefficientsg$e%(t) corresponding to the op
eratorsE$e% that containonly oneoperatorI 1 and a mixture
of polarization operatorsI a and I b . Others will yield a zero
trace upon multiplication by anI 2 . Moreover, as can be
seen from the commutation properties, they will be coup
via H ( i j ) to those coefficients which correspond to operat
having the total number of operatorsI 1 that exceeds the
number of operatorsI 2 by 11. The difference between th
number of operatorsI 1 and I 2 in an eigenoperatorE$e% we
shall call the coherence indexm, @H0 ,E$e%

m #5mDVE$e%
m .

Thus, in calculating a pure FID signal only the compone
corresponding tom511 are important,~the counter-rotating
component corresponding tom521 is related to it by com-
plex conjugation, cf. Paper I!. We, therefore, rearrange
set$e% into four subsets, and we introduce the following n
menclature for the operatorsE$e% with m51 that are neces
sary to calculate the observed FID signal, Eq.~2.12!, from
Eq. ~2.9!:

E$e%[E$e%
~k,m!5E

$$ i %a$ i 8%b$ i 9%1$ i-%2%
~k,m!

5I a
~ i 1!I a

~ i 2!
¯I a

~ i m!I
b

~ i 18!
I

b

~ i 28!
¯I

b

~ i
m8
8 !

I
1

~ i 19!
I

1

~ i 29!
¯

I
1

~ i k9!
I

1

~ i k119 !
I

2

~ i 1-!
I

2

~ i 2-!
¯I

2

~ i k
-!

, ~2.13!

wherem1m812k115N, m denotes the number of opera
tors I a , k is the number of pairsI 1I 2 , set$ i %a denotes all
the possible choices ofm particles out of a totalN for m
operatorsI a , and so on. Two indicesk andm are sufficient
for the classification of the basis operatorsE$e%

(k,m) and for the
establishment of the general character of couplings amo
the corresponding coefficientsg$e%

(k,m)(t). Strictly speaking,
one should also have an additional indexm corresponding to
the coherence index of the eigenoperator. However, s
only the eigenoperators havingm511 are important for cal-
culating the FID signal, this index is omitted here. The nu
ber of such operators with givenk andm is

N!

Na!Nb!N1!N2!
5

N!

m! ~N22k2m21!! ~k11!!k!
. ~2.14!

And the total number of operatorsE$e%
(k,m) havingm511 for

N particles of spin 1/2 is given by

2N2m (
k50

@N2m/2# S N
2k1m D S 2k1m

k D222k

5S 2N
N1m DU

m51
5S 2N

N11D , ~2.15!
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which can be proved by induction with respect toN. In terms
of the above nomenclature the expression for the FID,
~2.12!, becomes

G~ t !5 (
m50

N21

(
$e%

g$e%
~0,m!~ t !. ~2.16!

As one can see from the commutation relations, Eq.~2.11!,
the mixture ofa, b, 1, and2 terms gives rise to the cou
pling amongst the coefficientsg$e%

(k,m)(t) and g
$e8%
(k7,m61)(t),

that is amongst those that have the same value ofl[k1m.
Therefore, one can rewrite Eq.~2.9! for the separate FID
componentsg$e%

(k,m)(t) as the following block-matrix diagram

~2.17!

which describes the time evolution of the overall vector
coefficientsg(t). In Eq. ~2.17! we have rearranged the tota
vector g(t) into N parts or sub-vectors,gl(t), l 50,1,...N
21, that decouple from each other, so we can consider th
separately. Note that only the components that correspon
the shaded areas~i.e., with k50! contribute to the observ
able FID signal.

III. ENSEMBLE-AVERAGED SOLUTION USING THE
GENERALIZED CUMULANTS

For the case of like spins,DV$e%5DV for all $e%, one
can eliminate the first term on the right-hand side of Eq.~2.9!
by performing the transformation into the interaction rep
sentation

g$e%
~k,m!~ t !→ĝ$e%

~k,m!~ t !e2 iDVt. ~3.1!

Below we shall solve for theĝ$e%
(k,m)(t), but we shall drop the

carat symbol for simplicity in notation. One is in fact inte
ested in an ensemble-averaged solution for the overall ve
of coefficients,g(t), which is given by an ordered matri
exponential for each of its decoupled subvectorsgl(t)

gl~ t !5K expOF2 ix (
i 1, j 1

N

Cl
~ i 1 j 1!E

0

t

dt1F~r i 1 j 1
~ t1!!G L gl~0!.

~3.2!
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Here the time orderingO is required due to noncommutativ
ity of the matricesC( i j ); gl(0) is the initial magnetization
immediately after the first (p/2)x pulse, and the sum is take
over spinsi 1 and j 1 such thati 1, j 1 . In the high-temperature
approximation, immediately after a nonselective (p/2)x

pulse the first nonconstant term of the density matrix co
sponding tom51 is given by

r1~0!5222N
\V

kT (
i 51

N

I 1
~ i !522Nq(

$e%
E$e%

~0,m! , ~3.3!

whereq5\V/kT. Thus, for thelth block of Diagram 1 the
components of the initial magnetization vectorgl(0) are
equal to 1 forg$e%

(0,m)(t) and are zero for all others withk
Þ0. The number of nonzero components ofgl(t) for given
l 5m is determined from Eq.~2.14!and is equal to

N!

m! ~N22k2m21!! ~k11!!k!U
k50

5NS N21
m D5NS N21

l D . ~3.4!

The expression for the ensemble-averaged time-depen
magnetization vector can be further rewritten in terms of
connected averages or generalized cumulants7

gl~ t !5expOH (
n51

`

~2 ix!n (
i 1, j 1

N

(
i 2, j 2

N

¯ (
i n, j n

N

3Cl
~ i 1 j 1!Cl

~ i 2 j 2!
¯Cl

~ i nj n!E
0

t

dt1E
0

t1
dt2¯E

0

tn21
dtn

3^F~r i 1 j 1
~ t1!!F~r i 2 j 2

~ t2!!¯F~r i nj n
~ tn!!&cJ gl~0!,

~3.5!

where subscriptc stands for the cumulant~connected!aver-
age. Here we follow Kubo’s prescription for constructin
generalized cumulants, in which the orderingO is preserved
for both cumulants and the exponent to account for nonc
mutativity of theC-matrices.

Up to this point our many-body formulation has be
relatively general and not yet in a form that can lead
useful solutions. We now introduce the important assum
tion that the relative motions of the different pairs of spi
are stochastically independent, i.e.,^F(r i 1 j 1

(t1))
3F(r i 2 j 2

(t2))&5^F(r i 1 j 1
(t1))&^F(r i 2 j 2

(t2))& unless i 15 i 2

and j 15 j 2 . Also we assume that at any timet the spins are
randomly distributed. This usually means th
^F(r i 1 j 1

(t1))&50 or can be redefined to obtain this resu
Thus, the cumulants in Eq.~3.5! will vanish7 unlessi 15 i 2

5¯ i n and j 15 j 25¯ j n leading to

gl~ t !5expOH (
n51

`

~2 ix!n(
i , j

N

@Cl
~ i j !#nE

0

t

dt1E
0

t1
dt2¯

E
0

tn21
dtn^F~r ~ t1!!F~r ~ t2!!¯F~r ~ tn!!&cJ gl~0!.

~3.6!
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In Eq. ~3.6! the indexing of pairs has been omitted in th
cumulants since all pairs behave equivalently. The cumu
average over all pairs is thus replaced by an average over
pair since motions of different pairs are assumed to be
chastically independent. Actually, to obtain Eq.~3.6! from
Eq. ~3.5! we only require that at least oner i k j k

is uncorre-
lated from the others in each cumulant average. When
pass to the thermodynamic limit~i.e., N→`! in the next
section, then even if there is a finite number of correla
r i kj k

, their contribution would be expected to be negligibl

TheCl
( i , j ) in Eq. ~3.6! still retain the many-body aspects

But, it is shown in Appendix A thatgl(0) is an eigenvector
of the matrix sums( i , j

N @Cl
( i , j )#n for each block in Eq.~2.17!

with the corresponding eigenvalue given by

(
i , j

N

@Cl
~ i , j !#ngl~0!5@ l ~ 3

4!
n1~N212 l !~2 3

4!
n#gl~0!. ~3.7!

The expression for the FID, Eq.~2.16!, can then be calcu
lated yielding

G~ t !5 (
l 20

N21

(
$e%

g$e%
~0,l!~ t !

522Nq exp~2 iDVt !

3 (
l 50

N21

NS N21
l DexpOH (

n51

`

~2 ix!n

3@ l ~ 3
4!

n1~N212 l !~2 3
4!

n#Kn~ t !J . ~3.8!

~See also Sec. VI where more details are given for the m
general case.!

Here we have used Eq.~3.4! to determine the lengths o
the nonzero componentsg$e%

(k,m)(t), having k50 andm5 l ,
that yield the relative intensities for eachgl(t). Also, the
ordered cumulant functionKn(t) is defined by

Kn~ t ![E
0

t

dt1E
0

t1
dt2¯E

0

tn21
dtn

3^F~r ~ t1!!F~r ~ t2!!¯F~r ~ tn!!&c . ~3.9!

One can express the ordered exponential in Eq.~3.8! as an
ordered product of two exponentials, viz.

expOH (
n51

`

~2 ix!n@ l ~ 3
4!

n1~N212 l !~2 3
4!

n#Kn~ t !J
5O expOF l (

n21

`

~2 i 3
4x!nKn~ t !G

3expOF ~N212 l ! (
n51

`

~1 i 3
4x!nKn~ t !G , ~3.10!

where the nature of the time-ordering prescription of t
product may be obtained from expanding and compar
terms on both sides of Eq.~3.10! ~cf. Ref. 7!. It is then easy
to see that Eq.~3.8! can be rewritten in a binomial form
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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G~ t !522NqN exp~2 iDVt !OH expOF (
n51

`

~ i 3
4x!nKn~ t !G1expOF (

n51

`

~2 i 3
4x!nKn~ t !G J N21

. ~3.11!
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Equation~3.11! is a remarkable result, which means that t
FID for N particles of spins 1/2 can be simply written as
time-ordered binomial sum of (N21)th degree of the corre
sponding ensemble-averaged spin isochromats from a s
pair of particles@compare Eq.~3.11! to Eq. ~2.14! of Paper
I#. The only assumption that has been made is that the
tions of all particles are stochastically independent. In fact
deriving Eq. ~3.11! we did not even assume any speci
form for theF(r( t)) or the detailed nature of the stochas
process responsible for its modulation. In treating
quantum-mechanical spin variables the only requireme
were:~i! Identical spins of 1/2 and~ii! a purely secular form
for the spin Hamiltonian of Eq.~2.1!. The particular form of
the spin-part of Eq.~2.3!, relevant for the dipolar interac
tions, merely determined the eigenvalue of 3/4 that shows
in Eq. ~3.11!.

To recover the motional narrowing regime as a limiti
case, one can truncate the cumulant expansion of the e
nential in Eq.~3.11!at the second order. Assuming for sim
plicity that the system is on resonance,DV50, and that
^F(r( t))&50, this yields the well-known result2,15

G~ t !5
qN

2
O expOF2~N21!

3
9

16
x2E

0

t

dt1E
0

t1
dt2^F~r ~ t1!!F~r ~ t2!!&cG

5
qN

2
expF2~N21!

9

16
x2E

0

t→`

dt~ t2t!

3^F~r ~0!!F~r ~t!!&G
5

qN

2
expF2~N21!

9

32
x2J~0!t G , ~3.12!

whereJ(0)52*0
`dt^F(r(0))F (r( t))& is the zero-frequency

spectral density for translational diffusion. The explicit an
lytical expression forJ(0) has been calculated by Torrey1

and corrected later by Hwang and Freed3 who have treated
the excluded volume more rigorously. For the translatio
diffusion with coefficientDT and the distance of minimum
approachd, the simplified treatment yields:J(0)5(2/15)
3(1/V)(2/dDT), cf. Eq.~1148!, p. 302 of Ref. 2. In the mor
rigorous treatment, the coefficient 2/15 should be replac3

by 4/27. Here we have explicitly included the sample v
ume,V, which arises from the averaging of the two-partic
correlation function of Eq.~3.12!with respect to the equilib-
rium probability density. Also, we have definedDT as the
relative diffusion coefficient. WhenDT is replaced by 2D,
whereD is the diffusion coefficient for individual particles
then the original formula of Ref. 2 is recovered. This sho
rigorously that under the conditions of motional narrowin
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the FID signal fromN identical spins of 1/2 is given by a
single exponential, the decay of which is simply proportion
to the the concentration of spins,C, in the sample, and the
intensity is proportional to the number of spins,N.

Another important special case is when motions beco
very slow. In this case the cumulant expansion of the
semble averaged exponentials, Eq.~3.11!, can be rewritten a
ordinary exponentials, oscillating with a constant frequen
3/4xF(r), which are integrated overr. That is

expOF (
n51

` S 6 i
3

4
x D n

Kn~ t !G
5K expOF6 i

3

4
xE

0

t

dt8F~r ~ t8!!G L
5E d3r

V
exp@6 i 3

4xF~r !t#. ~3.13!

The resulting FID signal can then be written as

G~ t !522NqNH E d3r

V
@e2 i ~3/4!xF~r !t1ei ~3/4!xF~r !t#J N21

.

~3.14!

One can evaluate Eq.~3.14! in the thermodynamic limit,N
→` andV→`, by rewriting it as

G~ t !} lim
N→`

qN

2 H 12
C

2N
2pE sinuduE

2`

1`

r 2dr

3@12ei ~3/4!xF~r !t#J N21

, ~3.15!

so that the concentration of spinsC5N/V is kept constant.
Calculation of Eq.~3.15! yields a single exponential with a
decay rate of (2p2/3A3)g2\C, which constitutes the well-
known Anderson result.2,4,16

IV. THERMODYNAMIC LIMIT OF THE MANY-BODY
LINE SHAPE AS N˜`, V˜`

Equation~3.11!can be evaluated in the limiting case
an infinite number of particles in a manner analogous to
Markov method used in the ESR of solids.17 For simplicity
we shall assume that the system is on resonance,DV50, and
rewrite the cumulant expansions, Eq.~3.11!, in terms of
ensemble-averaged ordered exponentials using the
equality in Eq.~3.13!

G~ t !5~22NqN!OH K expOF2 i
3

4
xE

0

t

dt8F~r ~ t8!!G L
1K expOF i

3

4
xE

0

t

dt8F~r ~ t8!!G L J N21

. ~4.1!
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Letting N52 we recover the FID signal from a single pair
particles which consists of two-spin isochromats,
Eq. ~2.14! of Paper I. If not for the orderingO in front
of the binomial expression, Eq.~4.1!, the functions

^expO@7i 3
4x*0

t dt8F(r( t8))#& could be immediately evaluate
by solving the corresponding stochastic Liouville equation
described in Paper I. However, for the case of a very la
number of particles the obstacle of having this additio
ordering can be eliminated. For this purpose, we shall fi
the statistical limit for Eq.~4.1! at N→` while at the same
time V→`. As will shortly be seen, the limitV→` can be
treated by introducing a slightly different notation for a
ensemble average.

The ordered exponentials are averaged by means of
probability densities. For example, for a stationary Mark
process, the joint probability density is given by:

pn~r1 ,t1 ;r2 ,t2 ;...rn ,tn!

5P~r1 ,t1ur2 ,t2!¯P~rn21 ,tn21urn ,tn!peq~rn ,tn!,

~4.2!

where peq(rn ,tn) is the equilibrium probability density
P(rn21 ,tn21urn ,tn) is a conditional probability density~cf.
Paper I!. The Boltzmann equilibrium distribution is given b

peq~r, t !5peq~r !

5
exp@2U~x,y,z!/kT#

*0
Lx*0

Ly*0
Lzdx dy dzexp@2U~x,y,z!/kT#

.

~4.3!

Here we are interested in just the stationarypeq(r) consistent
with thermodynamic equilibrium for the many-body syste
By substituting the variables, the normalization coefficient
Eq. ~4.3! can be recast in the following way:

E
0

LxE
0

LyE
0

Lz
dx dy dzexp@2U~x,y,z!/kT#

5VE
0

1E
0

1E
0

1

dj dh dz exp@2U~Lxj,Lyh,Lzz!/kT#

[VI~Lx ,Ly ,Lz!, ~4.4!

with j[x/Lx , etc. Using the expression for the ensemb
averaged time-ordered exponential@Eq. ~3.1! of Paper I#one
can pull out the normalization integral from the ensem
averaging in Eq.~4.1! and write that

G~ t !5~22NqN!OH 22
1

VI~Lx ,Ly ,Lz!

3F K 12expOF2 i
3

4
xE

0

t

dt8F~r ~ t8!!G L 8

1K 12expOF i
3

4
xE

0

t

dt8F~r ~ t8!!G L 8G J N21

,

~4.5!
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where the prime indicates ensemble-averaging with res
to the unnormalized equilibrium distribution. By substitutin
for the volume,V5N/C, one can take the limitN→`, so
Eq. ~4.5! becomes

G~ t !5 lim
N→`

qN

2
OH 12

C

2NI~A3 N/C!

3F K 12expOF2 i
3

4
xE

0

t

dt8F~r ~ t8!!G L 8

1K 12expOF i
3

4
xE

0

t

dt8F~r ~ t8!!G L 8G J N21

.

~4.6!

If the potentialU(r) vanishes atur u→`, then the integralI
of Eq. ~4.6! approaches unity, and one obtains as a fi
result, in a manner analogous to the Markov method,10,17that

G~ t !5
qN

2
O expH 2

C

2

3F K 12expOF2 i
3

4
xE

0

t

dt8F~r ~ t8!!G L 8

1K 12expOF i
3

4
xE

0

t

dt8F~r ~ t8!!G L 8G J , ~4.7!

where we have used the fact18 that

lim
N→`

F12
f ~N!

N GN

5eN→`
2 lim f ~N!

, ~4.8!

provided that the limit off (N) exists and is finite.
Equation~4.7! is still written in a rather symbolic man

ner which contains ensemble-averaged ordered exponen
It can further be rewritten in the form

G~ t !5
qN

2
expOFCE

0

t

dt8
]g~ t8!

]t8 G
5

qN

2
expFCE

0

t

dt8
]g~ t8!

]t8 G , ~4.9!

whereg(t)[@g1(t)1g2(t)#/2, and the individual spin iso-
chromats are given by

g6~ t !5K expOF7 i
3

4
xE

0

t

dt8F~r ~ t8!!G L 8

5K expF7 i
3

4
xE

0

t

dt8F~r ~ t8!!G L 8
. ~4.10!

Correspondence between Eqs.~4.7! and ~4.9! can be estab-
lished by differentiating with respect to time the formal s
ries solution given by Eq.~3.4! of Paper I.By comparing the
expression for G(t). Eq.~4.1! with its thermodynamic limit,
Eq. ~4.9!, we have found that in the limit of a large numb
of particles the time ordering in G(t) becomes unnecessa.

Note thatG(t) decays to 0 whent→`, as it should,
since it describes an FID signal. Indeed
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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G~`!5expFCE
0

`

dt8
]g~ t8!

]t8 G
5exp@C~2g~0!2 ivg̃~v!uv50!#

5exp@2Cg~0!#, ~4.11!

whereg̃(v) is the Fourier transform ofg(t). But g6(0) is
equal to the integral of the unnormalized Boltzmann equi
rium distribution over volumeV, cf. Sec. III of Paper I,
which yields atN→` andV→`

G~`!5 lim
N→`
V→`

exp@2Cg~0!#

5expH 2
C

2
@g1~0!1g2~0!#J

5 lim
N→`
V→`

expH 2CE d3r exp@2U~r !/kT#J
5 lim

N→`
V→`

exp@2NI~A3 V!#50, ~4.12!

where the integralI is defined in Eq.~4.4!. Equation~4.9!
can be rewritten in terms of a differential equation forG(t),
viz.

]G~ t !

]t
5C

]g~ t !

]t
G~ t !. ~4.13!

By performing the Fourier–Laplace transform of Eq.~4.13!,
one can write that

ivG̃~v!2
iC

2p E
2`

1`

~v2v8!g̃~v2v8!G̃~v8!dv8

5@Cg~0!21#G~0!. ~4.14!

Thus, it is sufficient to know just the two-spin line sha
function g̃(v) and the concentrationC to solve forG̃(v).
Equation~4.14!can be transformed into a matrix equation
discretizing the convolution kernel with respect tov andv8,
and then inverted numerically.

It is easy to see that the solution of Eq.~4.14!is expected
to be close to a Lorentzian. First we note that the two-s
spectral functiong̃(v) is expected to be much narrower tha
the N-body G̃(v), and therefore, it is not unreasonable
approximate it by an infinitesimally narrow Lorentzian, vi

g̃~v2v8!'g~0!
t8

12 i ~v2v8!t8
, t8→`. ~4.15!

~Here we are ignoring the infinitesimal ‘‘Pake doublet’’ fo
simplicity.! Substituting Eq.~4.15! into Eq. ~4.14!and using
the identity*2`

1`G̃(v8)dv852pG(0), weobtain

ivG̃~v!2
Cg~0!

2pt8
E

2`

1` t8

12 i ~v2v8!t8
G̃~v8!dv8

'2G~0!. ~4.16!
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We can now consider the kernel of the integral equation
just a delta function, which yields

G̃~v!'
G~0!

@Cg~0!/t8#2 iv
, ~4.17!

i.e., the many-body spectral function is given by a Loren
ian with half-widthCg(0)/t8, or in the absence of any po
tential CV/t85N/t8, where N→` and t8→` ~or V→`
and t8→`!, cf. Eq. ~4.10!. Equation~4.17!, of course, de-
scribes the line shape only qualitatively, since one still ha
solve for t8 as a function of volumeV and the diffusion
coefficient DT until one converges to the thermodynam
limit.

V. TREATMENT OF MULTIPLE PULSES USING THE
EIGENOPERATOR BASIS: SOLID-ECHO
SEQUENCE

In this section, we consider effects of multiple nonsele
tive hard pulses applied to a many-body spin system. As
illustrative example, let us consider a solid echo experim
involving an intermediate (p/2)y pulse, viz.

S p

2 D
x

t S p

2 D
y

t

acquire. ~5.1!

Immediately after the intermediate pulse, the density ma
in the rotating frame becomes

r~t1 !5(
$e%

g$e%~t!R~u!E$e%R
21~u!, ~5.2!

whereR(u) is the rotation operator. In the rotating fram
R(u) is equal to exp(iu(iIy

(i)) with u5p/2 for the case of
solid echo. In general, the rotation of an eigenoperatorE$e%
will yield a linear combination of the eigenoperatorsE$e8%
that form a complete basis set

R~u!E$e%R
21~u!5(

$e8%

X$e%$e8%E$e8% . ~5.3!

The elements of the pulse propagator matrixXT in the eigen-
operator space can be defined as

X$e%$e8%[Tr@E
$e8%
†

R~u!E$e%R
21~u!#

5Tr@E$e%R
21~u!E$e8%

†
R~u!#. ~5.4!

To relate the componentsg$e%(t) before and immediately af
ter the pulse, we write a new expansion for the density m
trix r~t1! in terms of the eigenoperators
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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r~t1 !5(
$e%

g$e%~t1 !E$e% . ~5.5!

Comparing Eqs.~5.2! and~5.5! and making use of Eq.~5.3!
we find the relation between the vector of coefficien
g(t1) andg(t)

g~t1 !5Xg~t!. ~5.6!

After the pulse, the vector of coefficients continues to evo
as given by Eq.~2.9! for each element, but with a time shi
of t2t1 and with the initial conditions att1 determined by
Eq. ~5.6!. Therefore, the overall vectorg(t) in the rotating
frame, at timest.t1 is given by

g~ t !5^e2 iDV~ t2t!e
O

2 ix( i 1, j 1

N C~ i 1 j 1!*t
t dt1F~r i 1 j 1

~ t1!!

3Xe2 iDVte
O

2 ix( i 1, j 1

N C~ i 1 j 1!*0
tdt1F~r i 1 j 1

~ t1!!
&g~0!,

~5.7!

whereDV is the offset matrix. Note that in the above e
pression the pulse propagatorX in general may mix all
blocks of theC-matrix, including the components with dif
ferent coherence indecesm as opposed to a pure free
induction decay. As will shortly be seen, ap/2 pulse results
in mixing of the components withm561. Now, the diagonal
matrix DV containing frequenciesm(V2v rf) commutes
with the block-diagonal matrixC, sinceDV is just a con-
stant matrix for eachmth block of C, and we can write that

g~ t !5e2 iDV~ t2t!^e
O

2 ix( i 1, j 1

N C~ i 1 j 1!*t
t dt1F~r i 1 j 1

~ t1!!

3e
O

2 ix( i 1, j 1

N XC~ i 1 j 1!X21*0
tdt1F~r i 1 j 1

~ t1!!
&Xe2 iDVtg~0!,

~5.8!
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where the equivalence of Eq.~5.8! to Eq. ~5.7! may be
shown by expanding out the exponential operators.

VI. MULTIPLE PULSES: TIME ORDERING AND THE
GENERALIZED CUMULANT EXPANSION

The next step is to perform the ensemble averaging
the ordered exponential of Eq.~5.8! by taking into account
the statistical independence of the motions of spins, as
been done for the case of a pure FID. Using the stand
procedure for constructing generalized cumulants,7 one ob-
tains that

K expOF2 ix (
i 1, j 1

N

C~ i 1 j 1!E
t

t

dt1F~r i 1 j 1
~ t1!!G

3expOF2 ix (
i 1, j 1

N

XC~ i 1 j 1!X21E
0

t

dt1F~r i 1 j 1
~ t1!!G L

5expOK expOF2 ix (
i 1, j 1

N

C~ i 1 j 1!E
t

t

dt1F~r i 1 j 1
~ t1!!

1XC~ i 1 j 1!X21E
0

t

dt1F~r i 1 j 1
~ t1!!G21L

c

, ~6.1!

where c stands for the cumulant averaging. Note that t
time orderingO also takes care of the fact thatC( i 8, j 8) and
XC( i 9, j 9)X21 do not in general commute. Indeed, integrals
the type *0

t dt9*t
t dt8 cannot be time-ordered since in th

caset8>t9 everywhere, and thusC( i 8, j 8) can never be to the
right of XC( i 9, j 9)X21 after the ordering is performed for th
second time. If the motions of spins are statistically indep
dent, by expanding the second ordered exponential in
~6.1!, one obtains
expO(
n51

`

~2 ix!n(
p50

n

(
i 1, j 1

N

¯ (
i p, j p

N

(
i p11, j p11

N

¯ (
i n, j n

N

C~ i 1 j 1!
¯C~ i pj p!XC~ i p11 j p11!

¯C~ i nj n!X21

3E
t

t

dt1¯E
t

tp21
dtpE

0

t

dtp11¯E
0

tn21
dtn^F~r i 1 j 1

~ t1!!¯F~r i pj p
~ tp!!F~r i p11 j p11

~ tp11!!¯F~r i nj n
~ tn!!&c

5expO(
n21

`

~2 ix!n(
p50

n

(
i , j

N

@C~ i j !#pX@C~ i j !#n2pX21

3E
t

t

dt1¯E
t

tp21
dtpE

0

t

dtp11¯E
0

tn21
dtn^F~r ~ t1!!¯F~r ~ tp!!F~r ~ tp11!!¯F~r ~ tn!!&c . ~6.2!

Using the ordering prescription, one can obtain the expansion of the ordered exponential up to various ordersm. Restricting
ourselves for illustrative purposes tom50,1,2 one obtains from Eq.~6.2! that
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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expO(
n51

`

~2 ix!n (
p50

n

(
i , j

N

@C~ i j !#pX@C~ i j !#n2pX21E
t

t

dt1¯E
t

tp21
dtpE

0

t

dtp11¯E
0

tn21
dtn

3^F~r ~ t1!!¯F~r ~ tp!!F~r ~ tp11!!¯F~r ~ tn!!&cX exp~2 iDVt!g~0!

5H 11 (
n51

`

~2 ix!n (
p50

n

(
i , j

N

@C~ i j !#pX@C~ i j !#n2pX21E
t

t

dt1¯E
t

tp21
dtpE

0

t

dtp11¯

E
0

tn21
dtn^F~r ~ t1!!¯F~r ~ tp!!F~r ~ tp11!!¯F~r ~ tn!!&c1 (

n851

`

(
n51

`

~2 ix!n8~2 ix!n

3 (
p50

n

(
i 8, j 8

N

(
i , j

N

@C~ i 8 j 8!#n8@C~ i j !#n2pX@C~ i j !#pX21E
t

t

dt81¯E
t

t8n821
dt8n8E

t

t8n8dt1¯E
t

tn2p21
dtn2pE

0

t

dtn2p11¯

E
0

tn21
dtn^F~r ~ t81!!¯F~r ~ t8n8!!&c^F~r ~ t1!!¯F~r ~ tn!!&c1 (

n851

`

(
n51

`

~2 ix!n8~2 ix!n (
p851

n8

(
i 8, j 8

N

(
i , j

N

@C~ i 8 j 8!#n82p8

3X@C~ i 8 j 8!#p8@C~ i j !#nX21E
t

t

dt81¯E
t

t8n82p821
dt8n82p8E

0

t

dt8n82p811¯E
0

t8n821
dt8n8E

0

t8n8dt1¯

E
0

tn21
dtn^F~r ~ t81!!¯F~r ~ t8n8!!&c^F~r ~ t1!!¯F~r ~ tn!!&c1¯J X exp~2 iDVt!g~0!. ~6.3!
ke
In
x
s

rd

e
ng
the
he
o-
The consistency of the ordering application can be chec
by letting X51, which corresponds to a pure FID signal.
this case the previous time-ordered ensemble-averaged e
nential, Eq.~3.6!, is recovered. The latter essentially follow
from applying the following integral identities:

E
t

t

dt81E
0

t

dt85E
0

t

dt8, ~6.4a!

E
t

t

dt8E
t

t8
dt91E

t

t

dt8E
0

t

dt91E
0

t

dt8E
0

t8
dt9

5E
0

t

dt8E
0

t8
dt9, ~6.4b!

E
t

t

dt8E
t

t8
dt9E

t

t9
dt-1E

t

t

dt8E
t

t8
dt9E

0

t

dt-

1E
t

t

dt8E
0

t

dt9E
0

t9
dt-1E

0

t

dt8E
0

t8
dt9E

0

t9
dt-

5E
0

t

dt8E
0

t8
dt9E

0

t9
dt-, ~6.4c!

and so on.
In Appendix B it is shown that, for a nonselective ha

pulse, each subpart of the starting vector-coefficientgl(0) is
an eigenvector of the matrix sum( i , j@C( i , j )#pX@C( i , j )#n2p,
where l denotes the number of operatorsI a in the corre-
sponding eigenoperator subsetE$e%

(0,l ) . That is to say
Downloaded 06 Sep 2002 to 128.253.229.132. Redistribution subject to 
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po-
(
i , j

N

@Cl
~ i j !#pX@Cl

~ i j !#n2p exp~2 iDVt!gl~0!

5cos~DVt!@ l ~ 3
4!

p~2 3
4!

n2p

1~N212 l !~2 3
4!

p~ 3
4!

n2p#gl~0!

5cos~DVt!~ 3
4!

n@~21!n2pl 1~21!p~N212 l !#gl~0!,

~6.5a!

Xg~0!5g~0!. ~6.5b!

Validity of Eq. ~6.5b! also follows from the fact that a pur
oscillating signal, which has the initial magnetization alo
they axis, is not affected by an intermediate pulse around
y axis in the rotating frame. We shall further consider t
case whenDV50, i.e., when the system is exactly on res
nance, and define the following integral operators:

I 1[~2 i 3
4x!E

0

t

dt1 , I 2[~2 i 3
4x!E

t

t

dt1 , ~6.6a!

I[~2 i 3
4x!E

t

t

dt12~2 i 3
4x!E

0

t

dt1[~2 i 3
4x!E

0

t

dt1s~ t1!,

~6.6b!

where thes-function is defined as follows:s(t)511 if t
.t ands(t)521 if 0,t,t. The following short-hand no-
tation is also introduced:
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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$I %n^F~ t1!F~ t2!¯F~ tn!&c

[
1

n! S 2 i
3

4
x D nE

0

t

dt1E
0

t

dt2¯E
0

t

dtn

3s~ t1!s~ t2!¯s~ tn!^F~ t1!F~ t2!¯F~ tn!&c

5S 2 i
3

4
x D nE

0

t

dt1E
0

t1
dt2¯E

0

tn21
dtn

3s~ t1!s~ t2!¯s~ tn!^F~ t1!F~ t2!¯F~ tn!&c , ~6.7!

which can be further rewritten as@compare also with Eqs
~6.4a!–~6.4c!#

$I %n^F~ t1!F~ t2!¯F~ tn!&c

5~2 i 3
4x!n(

p50

n E
t

t

dt1¯E
t

tp21
dtpE

0

t

dtp11¯

E
0

tn21
dtn~21!n2p^F~ t1!F~ t2!¯F~ tn!&c

5O(
p50

n

$I 2%
n2p~21!p$I 1%

p^F~ t1!F~ t2!¯F~ tn!&c .

~6.8!

The ordered product of integral operators acting on vari
cumulant partitioningsn1 ,n2 ,...,nm can also be written sym
bolically as@cf. Eqs.~5.15a!–~5.15c!#
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O$I %nm
¯$I %n2$I %nl

5O)
i 51

m

$I %ni

5 (
p50

nm1¯1n21n1

O$I 2%
nm1¯1n21n12p~21!p$I 1%

p. ~6.9!

We shall now prove by mathematical induction that themth
term of the expansion, Eq.~6.3! can be factorized as

@ l 1~21!nm~N212 l !#¯@ l 1~21!n2~N212 l !#

3@ l 1~21!n1~N212 l !#O$I %nm
¯$I %n2$I %n1

5O)
i 51

m

@ l 1~21!ni~N212 l !#$I %ni, ~6.10!

from which the ordered cumulant exponential function c
be recollected later.

The m50 andm51 terms are evident from the eigen
value properties of the starting vectorgl(0). Applying the
ordering for them11th term of the expansion and operatin
on the starting vectorgl(0), andusing its eigenvalue prop
erties, we obtain
(
nm1151

`

(
nm51

`

¯ (
n251

`

(
n151

` H @ l 1~21!nm11~N212 l !#O$I 2%
nm11)

i 51

Nm

@ l 1~21!ni~N212 l !#$I %ni

1 (
p51

nm11

@~21!pl 1~21!nm112p~N212 l !#O$I 2%
nm112p$I 1%

p)
i 51

Nm

@~21!ni l 1~N212 l !#$I %niJ , ~6.11!

whereNm[n11n21¯1nm . Substitutingp→p2Nm , in the second term and using the notation of Eq.~6.9!, we can add up
the two terms yielding

(
nm1151

`

(
nm51

`

¯ (
n251

`

(
n151

` H )
i 51

m11

@ l 1~21!ni~N212 l !#O$I 2%
nm11(

p50

Nm

$I 2%
Nm112p~21!p$I 1%

p

1 (
p5Nm11

Nm11

@ l ~21!p2Nm1~21!Nm112p~N212 l !#)
i 51

m

@ l ~21!ni1~N212 l !#O$I 2%
Nm112p$I 1%

pJ
5 )

i 51

m11

@ l 1~21!ni~N212 l !# (
p50

Nm11

O$I 2%
Nm112p~21!p$I 1%

p5O )
i 51

m11

@ l 1~21!ni~N212 l !#$I %ni, ~6.12!

which completes the proof by induction. Collecting back the ordered cumulant exponential function, we get

O exp(
n51

`

@ l 1~21!n~N212 l !#$I %n^F~ t1!F~ t2!¯F~ tn!&c

5expO(
n51

`

~2 ix!n@~ 3
4!

nl 1~2 3
4!

n~N212 l !#E
0

t

dt1E
0

t1
dt2¯E

0

tn21
dtns~ t1!s~ t2!¯s~ tn!^F~ t1!F~ t2!¯F~ tn!&c . ~6.13!
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Thus, one can rewrite Eq.~5.7! in terms of usual ensemble-averaged exponentials by using Eq.~6.13!

K expOF2 ix (
i 1, j 1

N

C~ i 1 j 1!E
t

t

dt1F~r i 1 j 1
~ t1!!GX expOF2 ix (

i 1, j 1

N

C~ i 1 j 1!E
0

t

dt1F~r i 1 j 1
~ t1!!G L gl~0!5O

3K expOF2 i
3

4
xE

0

t

dt1s~ t1!F~r ~ t1!!L l K expOF i
3

4
xE

0

t

dt1s~ t1!F~r ~ t1!!G L N212 l

gl~0!. ~6.14!

Summing over the componentsg$e%
(0,l )(t) having total statistical weight ofN( l

N21), Eq. ~3.4!, one can finally rewrite the
observed solid-echo signal in the rotating frame on resonance

G~ t !5~22NqN!OK expOF2 i
3

4
xE

0

t

dt8s~ t8!F~r ~ t8!!G1expOF i
3

4
xE

0

t

dt8s~ t8!F~r ~ t8!!G L N21

, ~6.15!
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i.e., a binomial expression is again obtained, as in the cas
a pure many-body FID signal, Eq.~4.1!. The latter is easily
obtained from Eq.~6.15! by setting s(t)51 everywhere.
However, the derivation of Eq.~6.15!could be also regarde
as a formal check of the consistency of the introduced tim
ordering ‘‘O’’ for treating the ensemble averaging of exp
nential operators, which in general do not commute but
applied during different periods of time, i.e., one is from 0
t and the other is fromt to t.

Equation~6.15! can be extended to the limit of a larg
number of particles exactly in the same way as it was d
for the FID signal by using the Markov method. Taking t
limit N→`, V→` yields

G~ t !5
qN

2
expH 2

C

2

3F K 12expOF2 i
3

4
xE

0

t

dt8s~ t8!F~r ~ t8!!G L 8

1K 12expOF i
3

4
xE

0

t

dt8s~ t8!F~r ~ t8!!G L 8G J ,

~6.16!

which is to be compared with Eq.~4.7!. The ensemble
averaged exponentials are evaluated by solving the appr
ate modified stochastic Liouville equation taking into a
count thes-function as described in Paper I@cf. Eqs. ~4.9!
and ~4.10!of Paper I#.

For very slow motions, i.e., asDT→0, in averaging the
exponentials in Eqs.~6.15! and ~6.16! we can hope to ap
proximate the two-spin stochastic Liouville operator asL6

'21/t97 i 3
4xF(r), where t9 is an effective diffusional re-

laxation time witht921}DT
a , ~cf. Fig. 5 of Paper I where

a51/2!. ~However, more generally we can expectt9 to de-
pend on the value oft andr, cf. Ref. 19 for related cases.!In
this limit, the homogeneous line broadening is expected to
much less than the inhomogeneous line broadening.
solid-echo signal could then be written approximately as

G~ t !}
qN

2
expS 2

N

t9
t DexpS 2

ut22tu
T2*

D . ~6.17!

Here the inhomogeneousT2*
215R2* is given in the thermo-

dynamic limit by the Anderson formula, cf. Sec. III, and th
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ratio N/t9 may be regarded as a homogeneous relaxa
rate, T2

21 in the limit N→` and t9→`. In Eq. ~6.17!, the
inhomogeneous line broadening gets refocused, wherea
homogeneous line broadening yields the decay of the e
amplitude. From the behavior of the echo signal describ

FIG. 1. Many-body line shapes for spins of 1/2 in the thermodynamic li
as a function of the diffusion coefficient,DT ~in units of g2\/d!, and con-
centration of spins,C of 1.2, 2.4, and 4~in units of 1016 cm23! from top
down. The values forC andDT are as indicated. The ratior max/d was set to
100, after checking that this led to convergent results; thenC was varied by
varying the number of spins,N. Concentrations were calculated fromC
5N/V, whereV5(4p/3)r max

3 , whered was arbitrarily set to 10 Å. Line
shapes are close to Lorentzians over the entire motional range for all
centrations considered. Increasing the concentration of spins yields a
portional increase in spectral linewidths; whereas increasing the diffu
rateDT results in motional narrowing.
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FIG. 2. Line shapes and spectral linewidths,R2* ~inset!in the thermodynamic limit as a function of the diffusion coeffcientDT calculated for the concentration
of spins C52.431016 cm23 with d510 Å. Line shapes have been fit to a Lorentzian function, from which the line broadening term,R2* , has been
determined. The plot ofR2* vs DT ~inset!shows the behavior of linewidths over the whole motional range considered.
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qualitatively by Eq.~6.17!, one can see that even in the lim
of very slow motions, one can expect a decay of the e
amplitude in a multiple-spin system, i.e., the many-bo
echo may not be refocused completely at 2t. However, be-
low we shall only use the more general expression,
~6.16! without assuming any simplified limiting form of th
type of Eq. ~6.17!. We shall indeed find that the abo
simple argument has some qualitative validity, but mo
quantitativelyT2

21 is given by a fractional power law some
what different fromDT

1/2.

VII. SIMULATIONS OF MANY-BODY SPECTRAL LINE
SHAPES AND ECHOES IN THE PRESENCE OF
TRANSLATIONAL DIFFUSION

Figure 1 shows the line shapes in the thermodyna
limit associated with a large number of particles allowed
diffuse in a large volume. The ensemble-averaged orde
exponentials have been calculated by the stochastic Liou
equation method~cf. Paper I!. Convergence of the spec
has been checked by increasing the number of particleN
and the ratior max/d, while keeping the concentration,C con-
stant.@Here we may use dimensionless units forC, i.e., C
5N/V, whereV5(4p/3)(r max/d)3#. It was found that if the
number of particlesN is more than 100, then anr max/d of
about 100 is sufficient to obtain a converged line shape. O
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also needs to discretize the convolution kernel of Eq.~4.14!
with 4000 frequency points. Interestingly, ther max/d re-
quired for convergence was not found to depend apprecia
on DT , implying that the significant volume of spins su
rounding a test spin remains the same, independent of
tional rate. Line shapes are very close to Lorentzians over
motional rates considered. This was checked by fitting th
to Lorentzian functions~see below!. Increasing the conce
tration yields a proportional increase in widths.

To further explore the many-body line shape functio
spectral linewidths were calculated as a function of the d
fusion coefficient at a fixed concentration, and are shown
Fig. 2 ~C52.431016cm23, d510 Å!. The linewidths were
determined by nonlinear least-square fits of the line shape
a Lorentzian function. As can be seen from Fig. 3 plotted
a semilogarithmic scale~inset!, the curve has the form of
sigmoidal function with a characteristic point of transition
the ‘‘quasi-solid state’’ limit at a value of the diffusion co
efficientDT of ;0.05~in units ofg2\/d!. For electron spin-
bearing molecules for which the distance of closest appro
between their centers isd510 Å, this value ofDT converts
to 1.6431027 cm2 s21, which is typical for spin labels in
moderately viscous liquids~e.g., liquid crystals20!. For C
52.431016cm23 one has a value ofR2* of 2.613104 s21.
One would need higher concentrations to obtain an obs
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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able effect. Thus, increasingC by a factor of 200 (8
31023 M) yields anR2* of 5.223106 s21, which should be
measurable.21 In the case of proton NMR~nuclear magnetic
resonance!,DT of 0.05 translates into 3.78310213cm2 s21.
This would mean that slow motional effects set in only f
extremely slow motions characteristic of high-molecu
weight polymers or diffusion in solids.

Figure 3 shows many-body solid echoes at exact re
nance. The distance of minimum approach has been take
bed510 Å. For illustrative purposes only, we have includ
a nonzero carrier frequency. Increasing the concentratio
spins yields a decrease in the echo amplitude. Thus, g
from C52.431016cm23 to C52.431017cm23 results in
almost no detectable echo signal in the latter case even in
very slow motional regime (DT51024). Increasing the dif-
fusion rate also yields a decrease in the echo amplitude
that it becomes impossible to refocus the dipolar interac
for faster motions. This happens for smallerDT as C gets
larger. Refocusing of the echo at largerC can still be
achieved by applying the second (p/2)y pulse much earlier.
For instance, we find that in order to get an appreciable
focusing of the echo signal near the rigid limit, for a conce

FIG. 3. Simulation of the solid echoes forN spins of 1/2 in the thermody-
namic limit as a function of diffusion coeffcientDT ~in units ofg2\/d! and
concentration of spins,C, of 2.4, 4.8, 12, 24~in units of 1016 cm23! from top
down, at exact resonance. AsC increases, the signal decays faster, yieldi
no echo at higher concentrations. However, by decreasing the timet, at
which the second pulse is applied, one recovers the echo again~cf. inset!.
The abscissa is in units of time from 0 to 23105 d3/g2\; inset from 0 to
23104 d3/g2\.
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tration of electron spins ofC5531018cm23 ~or ;8
31023 M!, the second pulse must be applied no later th
600 ns after the first pulse~not shown!, which is easily
achieved by pulsed ESR methods. However, this should
regarded only as a rough estimate, since in the present an
sis additional factors leading to a loss of refocusing~e.g.,
additional homogeneous line broadening, noise, etc.!, have
not been taken into account.

The above effect of concentration on the refocusing
the echo is illustrated in Fig. 4. Here the echo envelopes,
intensities measured vst152t, are plotted at various con
centrations ranging from C52.431016cm23 to 2.4
31018cm23 (d510 Å). As can be seen, at highC the decay
of the echo envelope is much faster, thus resulting in no e
at sufficiently longt’s. ~The actual procedure we used was
calculate the SECSY signal, then Fourier transform it w
respect tot2 , and then to study thet1 dependence of the
v250 slice, cf. Paper I, Sec. V.!

Figure 5 shows the homogeneous relaxation timesT2 as
a function of the diffusion coefficientDT plotted for different
concentrations of spinsC. TheT2 values have been obtaine
by fitting the echo envelopes~cf. Fig. 4! to single exponen-
tial functions. This method of determiningT2’s corresponds
to the SECSY technique as described in Paper I@cf. Fig. 4~a!
and its discussion in that paper#. The data in Fig. 5 have bee
rescaled with respect to concentration, so that a depar
from linear dependence on concentration~of about 10%!can
be seen. This occurs in the slow motional regime, which a
shows a limiting dependence on the diffusion rate that g
as DT

20.32 ~vs the DT
20.5 dependence found for a two-spi

case in Fig. 5 of Paper I!. By contrast, in the motional nar
rowing regime homogeneous relaxation times depend
early on both the concentration,C and DT . Note that in-
creasingC does not shift theT2 minimum. In addition, the
T2 minimum for a system of multiple spins is shallower th
that for a two-spin system~cf. Fig. 5 of Paper I!.

Finally, a comparison of the spectral linewidths,R2* ,
with the decay rate of the echo envelope,R2 , is shown in
Fig. 6 ~C52.431016cm23, d510 Å!. Here the log–log
scale has been used to show the solid-state limit, the in
mediate region, and the motional-narrowing limit. In the fa
motional limit ~larger DT values!, line broadening is fully
homogeneous, andR2 approachesR2* . The curve then be-
comes linear with a slope of21 which corresponds to the
motional-narrowing, or Redfield limit as given by Eq.~3.12!.
The intermediate motional limit occurs near the position
the R2 minimum, i.e.,;DT50.05, and spans about two o
ders of magnitude inDT . As DT→0, R2* values approach
the limiting Anderson expression for linewidths given by E
~3.15!, whereasR2 further decreases withDT . Thus, in the
slow motional limit there is a clear separation betweenR2* ,
which mostly consists of inhomogeneous line broadeni
andR2 , which may be regarded as homogeneous line bro
ening. Note that atDT50.05, R2'R2* ; thus, for the above
example of electron spins withC'831023 M, R2 would be
about 53106 s21, which can be a significant contribution t
the homogeneous linewidth.19
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FIG. 4. Effect of concentration on echo refocusing. Here the echo envelopes are calculated at various concentrations as indicated for a very slow m
(DT51024g2\/d). The intensities are measured from a SECSY simulation@cf. Paper I, Fig. 4~a!# that is Fourier transformed just with respect tot2 . Then
the slices atv250 were plotted as a function of the delay timet152t. Increasing concentration results in no echo at sufficiently longt’s.
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VIII. SUMMARY AND CONCLUSIONS

The main result in this work is the solution for the ma
netic resonance line shape arising fromN identical particles
that bear spins of 1/2 and are undergoing dipolar interact
which are modulated by their relative translational motio
This result describes the whole motional range from the ri
limit through the motional narrowing regime. The gene
result for the FID, Eq.~4.1!, only required the assumption o
the stochastic independence of the motions of the spins
the usual high temperature approximation, Eq.~3.3!. Equa-
tion ~4.1! shows that the many-body solution forN identical
spins of 1/2 may be obtained from just a knowledge of
behavior of a single pair of particles, and it is written as
time-ordered binomial expression involving the two-spin is
chromats associated with the two allowed transitions res
ing from the interacting pair of spins of 1/2. In the very slo
motional limit, the line shape expression yields Anderso
statistical theory for line shapes in a rigid lattice. In the m
tional narrowing regime it is consistent with the well-know
Torrey results. In the thermodynamic limit, i.e., whenN
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→` andV→`, under the assumption of a stationary proce
~i.e., a system at equilibrium!, a simple integral equation,
~4.14!, has been obtained for the many-body line shape fu
tion, G̃(v) in terms of the two-spin line shape functiong̃(v)
and the concentration,C5N/V.

The general expression for the many-body FID sign
Eq. ~3.11! was generalized to the proto-typical solid ec
pulse sequence, Eq.~6.15!, and then to the thermodynam
limit, Eq. ~6.16!. The solution was rigorously developed f
the case of exact resonance. This case guarantees that n
orders of coherence besides61 are produced by nonselectiv
pulses in a system ofN identical spins of 1/2.~This follows
rigorously from the eigenvalue properties of the starting v
tor and the interaction matrices in the eigenoperator rep
sentation.!This result also depends on the high-temperat
approximation for the equilibrium density matrix, as well
the assumption of the statistical independence of the mot
of the spins. Removing either of these assumptions wo
result in generating other orders of coherence, as is w
known in solid-state NMR.22
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FIG. 5. Homogeneous relaxation times,T2 , for N spins of 1/2 in the thermodynamic limit as a function of the diffusion coeffiecientDT , calculated for three
different concentrations as indicated. The values at the higher concentration were rescaled accordingly in order to illustrate the departure from
dependence ofT2 on DT , as opposed toT2* . A T2 minimum is seen at;DT50.05g2\/d, i.e., at about the same value as for the case of two spins of
cf. Fig. 4 of Paper I. However, for multiple spins, theT2 minimum is shallower. Dashed lines show fits to limiting power-law behavior ofT2 on DT in the
slow and fast motional limits.
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Convergent calculations of the many-body line sha
and echoes could readily be performed based on the stoc
tic Liouville equation for two spin-bearing particles unde
going simple Brownian relative translational diffusion. The
calculations showed that a Lorentzian line, whose width
proportional toC, is obtained over the whole motional rang
and is in agreement with the Anderson solid-state limit a
the Redfield motional narrowing limit. The solid echo sim
lations show characteristic echoes for very slow motio
which are attenuated as the motional rate increases andC
becomes larger. In particular, the homogeneousT2’s, which
are associated with the echo decay show a power-law de
dence in the very slow motional regime~as DT

20.32!. Al-
though some departure from a linear dependence ofT2

21 on
C is found at slow motions~unlike the case forT2*

21!, simi-
lar values are found for theDT’s that correspond to theT2

minima.
The present work may thus be seen as a unifying met

which bridges limiting theories of many-body magnetic res
nance developed about four decades ago. The genera
cumulant method has proven to be a powerful tool for fin
ing ensemble-averaged FID or solid echo components in
case when motions of the spin-bearing particles are unco
Downloaded 06 Sep 2002 to 128.253.229.132. Redistribution subject to 
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lated. In addition, the expansion of the density matrix in t
set of symmetry-adapted eigenoperators allows one to
full advantage of the inherent symmetries of the proble
such as those associated with the statistical independen
the motions of spins and with the nonselectivity of pulses
like spins.

We believe that the method of representing the comm
tation superoperator in an eigenoperator space may be
tended to more complex problems, including the relaxat
of unlike spins and more involved pulse sequences. Am
the advantages of this method are: more transparent sym
try properties of the interaction matrix and relatively simp
vector-matrix multiplications involved. Moreover, it may a
low one to treat more complicated forms of the spin Ham
tonian, such as for spins greater that 1/2. In subsequent w
we intend to further explore the formal properties of t
many-body interaction Hamiltonian in the eigenoperator r
resentation for the purpose of developing a methodology
treating multiple quantum coherences and cases of un
spins.

The results in the present paper can best be studie
dilute solutions of like spins of 1/2, where the dipolar inte
action is significant, and the slow motional regime may
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 6. Comparison of homogeneous and total broadening~R2 andR2* , respectively! for multiple spins as a function of the diffusion coefficientDT , plotted
on a logarithmic scale showing the solid state limit, the motional narrowing limit, and the intermediate motional region. Dashed lines indicateR2* calculated
using Eqs.~3.12! and ~3.15! for the Redfield~fast motional! limit and the Anderson~solid-state!limit, respectively. TheR2 maximum occurs in the
intermediate motional region; whereas in the motional narrowing limitR2* andR2 approach each other.
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conveniently achieved. This would be the case for ESR s
ies on radicals, where slow motional effects set in even
moderately viscous fluids. Given the weak power dep
dence ofDT

20.32 for the homogeneousT2 in the viscous~or
slow motional!regime, this contribution would persist over
wide range of viscosities. An additional matter for study
the practical case of a complex spin Hamiltonian that
cludes hyperfine couplings of the electron spin on each r
cal to the magnetic nuclei, when present. This will requ
generalization of our approach to more complex spin Ham
tonians along the lines suggested in the previous paragr
Finally we note that only intermolecular spin interactio
including intermolecular dipolar and~Heisenberg!spin ex-
change terms require a many-body approach; intramolec
spin interactions, that are usually modulated just by ro
tional tumbling, can be more simply treated by the effect
two-body stochastic motional analyses of Paper I and re
ences therein.
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APPENDIX A: EIGENVALUES OF THE MATRIX SUMS,
( i< j

N
†Cl

„ i , j …
‡

n

The first important observation we shall make is that
right-hand side of Eq.~3.6! for gl(t) is invariant under a
permutation of any two particles. On the other hand, perm
ing the two particles will at most switch two components
the left-hand sub-vector of coefficientsgl(t) that have the
same indicesk and m. Making as many pairwise permuta
tions as necessary, one can then show thatge

(k,m)(t)
5ge8

(k,m)(t) for all e and e8. In fact this is independent o
whatever numbering system that is chosen to number
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permutation sets$e%. Therefore, it is sufficient to calculat
only a single component ofgl(t), i.e., ge

(k,m)(t).
Let us now consider thelth block of the matrixCl

( i , j )

defined in Eq.~2.10!and compute the result of the action
the matrix on the initial magnetization sub-vector,gl(0). For
a given spin pair (i , j ) one can schematically represent t
individual blocks of the matrixCl

( i , j ) according to the classi
fication scheme for the coefficientsg$e%

(k,m)(t), cf. discussion
below Eq.~2.16! noting that only coefficientsge

(k,m)(t) and
ge8

(k71,m61)(t) are coupled byCl
( i , j ) . Indices k and m will

then vary from 0 toN212 l and from l to 2l 2N11, re-
spectively. One can represent the productCl

( i , j )gl(0) in the
following form:

~A1!

Here the nonzero elements of the matrixCl
( i , j ) are contained

within the squares. Clearly, the result of the multiplicati
with blocks havingk>2 will yield zeroes identically. There
fore, it is just necessary to discuss the blocks withk50
and 1.

In Eq. ~A1! the diagonal block withk50 will reflect
couplings amongst operators of the same ty
I 1I aI a¯I aI bI b¯I b , which contain exactly one operato
I 1 , m5 l operatorsI a , and N212 l operatorsI b corre-
sponding to the different spins. As follows from the comm
tation relations, cf. Eqs.~2.11!, the block withk50 contains
2 (N21) nonzero rows, which correspond to twice the nu
ber of distinct pairs that one can form with the operatorsI 1

and the remaining (N21) operatorsI a and I b . For a given
spin pair (i , j ), each nonzero row of the block will cortai
exactly two numbers,61/2 and61/4, where the plus sign
corresponds to the operation onI 1

( i )I a
( j ) or I 1

( j )I a
( i ) and a minus

sign to the operation onI 1
( i )I b

( j ) or I 1
( j )I b

( i ) . Let us denote the
positions of these two nonzero numbers~e,e! and ~e,e8!, re-
spectively, wheree is the index of the original coefficien
ge

(k,m)(t) ande8 is the index of the coefficientge8
(k,m)(t) that is

obtained by switching of particlesi andj. Now, the lower left
off-diagonal ~i.e., the @(0,l ),(1,l )#! block in Eq. ~A1! will
reflect couplings between operators of two different typ
namely, I 1I 1I 2I a¯I aI b¯I b and I 1I aI a¯I aI bI b¯I b .
The operators of the former type havingk51 can be num-
bered by its own prescription$d%. According to the commu-
tation relations, each nonzero row of the off-diagonal blo
e.g., rowsd andd8, will contain one11/4 term and one21/4
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term which will cancel each other upon multiplying by
column vector of all ones. Therefore, the result of action
the matrixCl

( i , j ) on the initial magnetization vectorgl(0) is,

~A2!

In order to compute@Cl
( i , j )#2gl(0), wenote that the col-

umns of the lower off-diagonal block containing nonze
elements will always correspond to zero rows of the diago
block of Cl

( i , j ) with k50 @denoted ase9 ande- in Eq. ~A2!#.
Indeed, as follows from the commutation relations, operat
havingk51 are obtained from operators withk50 when the
combinationsI a

( i )I b
( j ) or I a

( j )I b
( i ) are encountered, which canno

arise in the upper diagonal block describing the couplin
between operators containing combinationsI 1

( i )I a
( j ) and

I 1
( i )I b

( j ) @or I 1
( j )I a

( i ) andI 1
( j )I b

( i )#. Therefore, when multiplied by
the matrixCl

( i , j ) for the second time, the lower half of th
resulting vector corresponding tokÞ0 will still consist of
zeroes, since nonzero elements in rowsd or d8 of the lower
off-diagonal blocks will be multiplied by zeroes at position
e9 and e- arising from the previous action of the matr
Cl

( i , j ) . This means that the spin-flip terms in the dipol
Hamiltonian likeI 1

( i )I 2
( j ) , apart from a numerical factor of 3/4

in the interaction constant, do not affect the observable F
signal after a single nonselectivep/2 pulse. By contrast, the
eth ~or e8th! component ofgl(0) with k50 will become
(63/4)2. Repeating this operationn times and summing
over all spin pairs containingm5 l pairwise combinations
I 1

( i )I a
( j ) each yielding one (3/4)n, and (N212m) combina-

tions I 1
( i )I b

( j ) yielding one
(23/4)n, one obtains for anye that

H(
i , j

N

@Cl
~ i , j !#ngl~0!J

e

5@ l ~ 3
4!

n1~N212 l !~2 3
4!

n#.

~A3!

Applying the permutation symmetry argument given in t
first paragraph of this Appendix, we conclude thatgl(0) is an
eigenvector of the matrix sums( i , j@Cl

( i , j )#n, with an eigen-
value given by Eq.~A3!.
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APPENDIX B: EIGENVALUES OF THE MATRIX SUMS,
( i< j

N
†Cl

„ i , j …
‡

pX†Cl
„ i , j …

‡

n 2p

We shall now prove that for a nonselective or hard pul
each sub-vector of the starting vectorgl(0) is an eigenvector
of the matrix sum( i , j

N @Cl
( i , j )#pX@Cl

( i , j )#n2p, wherel denotes
in
th

r

he

q

a-

.
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s
q.
t
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the number of operatorsI a in an eigenoperator subsetE$e%
(0,l )

having zero pairsI 1I 2 , i.e., k50.
As a result of a single nonselective2p/2 pulse around

the y axis applied at timet, the eigenoperatorsE$e%
(k,m) corre-

sponding tom51 will transform in the rotating frame a
follows:
~B1!
ions

na-
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with an analogous expression for eigenoperators hav
m521. Note that the signs of both the transformation to
rotating frame and the rotations by the pulse have been
versed here to get directly the elements of matrixX, and not
of its transpose, cf. Eq.~5.3!. As can be seen from Eq.~B1!,
a (p/2)y pulse mixes, in principle, all the components of t
vector-coefficientg(t) with different coherence indices,m.
However, in the high-temperature approximation, cf. E
~3.3!, only the elements of the starting vectorg~0! corre-
sponding tok50 are nonzero, and, for the initial magnetiz
tion after the firstp/2 pulse along thex axis, are equal~apart
from the factor of 22N\V/2i kT! to either11 for m511, or
21 for m521, which significantly simplifies the calculation
According to Eq.~B1!, individual products containing spinsi
and j will yield the following combinations after the secon
pulse:

@ I 1
~ i !I a

~ j !#~2p/2!y
→H 6I 6

~ i !I a
~ j ! and 6I 6

~ i !I b
~ j !

2I 6
~ j !I a

~ i ! and I 6
~ j !I b

~ i !,
~B2a!

@ I 1
~ i !I b

~ j !#~2p/2!y
→H 6I 6

~ i !I a
~ j ! and 6I 6

~ i !I b
~ j !

I 6
~ j !I a

~ i ! and 2I 6
~ j !I b

~ i !,
~B2b!

@ I a
~ i !I b

~ j !#~2p/2!y
→H I 6

~ i !I a
~ j ! and I 6

~ i !I b
~ j !

2I 6
~ j !I a

~ i ! and 2I 6
~ j !I b

~ i !,
~B2c!

@ I 1
~ i !I 2

~ j !#~2p/2!y
→H 7I 6

~ i !I a
~ j ! and 6I 6

~ i !I b
~ j !

6I 6
~ j !I a

~ i ! and 7I 6
~ j !I b

~ i !.
~B2d!

Other combinations containingI 6
( i )I 6

( j ) , I a
( i )I a

( j ) , and I b
( i )I b

( j )

will yield zeroes upon further multiplication by the matrice
@C( i , j )#p as follows from the commutation relations, E
~2.11!, and, therefore, can be disregarded. The result of
matrix multiplication of the initial vectorg~0! by matrices
@C( i , j )#n2p is discussed in detail in Appendix A. In particu
lar, for givenk andm the vector@C( i , j )#n2p g~0! contains the
g
e
e-

.

he

same values at positions corresponding to the permutat
of the two spins (i , j ) and (j ,i ), i.e., (63/4)n2p. When the
vector @C( i , j )#n2p g~0! is further multiplied byX, for the
positions in the resulting vector that correspond to combi
tions containingI 1

( i )I a
( j ) , the matrix multiplication over coef-

ficients atI 1
( i )I a

( j ) and I 1
( j )I a

( i ) will yield zeroes; whereas the
sums over positions corresponding toI 1

( i )I b
( j ) or I 1

( j )I b
( i ) of

@C( i , j )#n2p g~0! will be doubled. By contrast, for positions o
the resulting vector pertaining toI 1

( i )I b
( j ) , the sums over po-

sitions havingI 1
( i )I b

( j ) or I 1
( j )I b

( i ) will vanish, while the sums
over pairsI 1

( i )I a
( j ) andI 1

( j )I a
( i ) will double. As can also be see

from Eqs. ~B2c! and ~B2d!, the matrix multiplication over
positions corresponding toI a

( j )I b
( j ) or I 1

( i )I 2
( j ) of the vector

@C( i , j )#n2p g~0! will always yield zeros. Therefore, for a
given spin pair (i , j ) the result of action of the matrixX on
vector @C( i , j )#n2p g~0! will be just an exchange of value
(23/4)n2p and (13/4)n2p at the nonzero positions of th
vector @C( i , j )#n2p g~0!. These values need to be furth
weighted by twice the sum over all permutations for t
remainingN22 spins, including the sign of each permut
tion with which it appears in Eq.~B1!. But this sum is for-
mally just the sum over the coefficients of the polynom
represented in Eq.~B1!, which can be readily obtained from
Eq. ~B1! by letting all the remainingN22 polarization op-
eratorsI a and I b equal to unity and the remaining lowerin
and raising operatorsI 1 and I 2 to be all zeros. Thus, fork
50 this sum is equal to 2322N32N2251/2 and is zero for
kÞ0. Summing over the contributions from the compone
corresponding to bothm511, having an additional factor o
exp(2iDVt), and tom521 with exp(iDVt), and invoking
the permutation symmetry arguments similar to those u
earlier to find eigenvalues of the matrix sum( i , j

N @Cl
( i , j )#n,

cf. Appendix A, one has for thelth block of the coefficients
g$e%

(k,m)(t) that
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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(
i , j

N

@Cl
~ i , j !#pX@Cl

~ i , j !#n2p exp~2 iDVt!gl~0!

5cos~DVt!@ l ~ 3
4!

p~2 3
4!

n2p

1~N212 l !~2 3
4!

p~ 3
4!

n2p#gl~0!. ~B3!

As can be seen from Eq.~B3!, it includes a factor of
cos~DVt! which diminishes the amplitude of the echo sign
detected at the first-order coherence, since the remaining
of the signal is distributed amongst higher-order coheren
In this case, full forms of the matricesC( i , j ), X, and DV
must be considered in order to derive Eq.~B3! rigorously,
which will be a subject of the next paper.
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