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Dipolar relaxation in a many-body system of spins of 1/2
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The method utilized in Paper[0. Chem. Phys112, 1413(2000)]for treating the density matrix
equation for a two-spin system in the presence of the dipolar interaction that is randomly modulated
by translational diffusion, is extended to a many-body system of identical spins of 1/2. Generalized
cumulant expansions are used, which allow one to take full advantage of the statistical independence
of the motions of spins. In the high-temperature approximaggmpropriate for dilute solutionsfor

a single nonselective pulse, the symmetry of the problem allows one to obtain a compact ordered
binomial expression for the free-induction decay signal that is related to the two-particle solution,
and it still contains the two spin-isochromat components. The latter are evaluated by solving the
corresponding stochastic Liouville equation, which allows one to recover in a unified way the two
limiting cases including Anderson’s result for statistical broadening in a rigid lattice and the
classical Torrey—Bloembergen—Redfield expression for the motional narrowing, as corrected by
Hwang and Freed. The line shape expression in the thermodynamic limit, i.e., for large numbers of
particles in a macroscopic volume, is obtained. It is found that the many-body dipolar line shapes
are very close to Lorentzians over the entire motional range studied, with the linewidths
proportional to the spin concentration, as predicted earlier for the limiting cases. Linewidths plotted
versus the values of the translational diffusion coefficient clearly show the solid-state limit, the
motional-narrowing limit, and the intermediate region. The method is extended to describe the
behavior of the many-body system in a solid-echo sequence. This enables one to obtain the
homogeneous',’s over the whole range of motions. A minimum T} is found at approximately

the same value of translational diffusion coefficient as was found for the two-spin case in Paper I.
© 2000 American Institute of Physids50021-9606(00)02903-2]

I. INTRODUCTION theory of Andersort;® which also yields simple Lorentzians

o _ _over a broad frequency range. However, in the latter case the

The problem of the description of spectral line shapes iNspectra are inhomogeneously broadened.
the presence of dipolar interaction amongst a collection of |, this paper we examine more rigorously the many-
spins is well knov_vgl in magnetic resonance Spectroscopyyaqy effects on spectral line shapes and observed time-
Since there is am ~ dependence of the magnitude of the regolved signals. The emphasis is placed on spin relaxation
dipolar coupling orr, the vector connecting any two spins. p yranslational diffusion, which modulates the dipolar inter-
the calculation of spectral line shapes in such spin systems ig ions between spins. Our general method yields a soluble
essentially a many-body problem. Indeed, if only a selected,chastic Liouville equation procedure for the many-body
pair of spins were considered, the equilibrium probability o ohjem in the thermodynamic limit, which allows one to
density for the distribution i would be inversely propor- 5 ate spectra over the whole motional regime and to re-
tional to the sample volum¥, thus yielding a negligible  .,yer hoth the solid-state limit and the motional narrowing
effect of th_e dipolar interaction on spectral Ilne_ shapes forregime as limiting cases. Our procedure may be summarized
macroscopicV. Our goal, therefore, is to consider all the 5561 16,s, In Sec. 11, we expand the density matrix in a set
spins as a single many-body system and to find the thermgs; gjgenoperators of the unperturbed Hamiltoniah Paper
dynamic limit for the spectral line shape as the number of ; o ' ret 6), which enables us to conveniently separate the
EmesN—mo, V‘:jh'le at t:? samef tlmff—wol. In earlier V‘;ﬁrk ;. Quantum spin variables from the classical stochastic vari-
y Torrey, under conditions of motional narrowing, the ef- S : eni :
fect of multiple spins was treated by first solving the two- ables, L.e.ry 1,J=1....[NIn theN-spin case. Then we obtain
a system of coupled differential equations for the expansion

spin problgm and then introducing md hoc fa;hion the coefficients, the solution of which can be written in terms of
concentration factor rendering the many-body interaction as, ,rqered exponential. In Sec. Ill, we show that the

a sum ofN two-body interactions for thél+ 1th particle.™ = gnqemple-average of the latter can be written in terms of
This yielded Lorentzian line shapes with the spin-lattice, ., nected averages, or cumulaht®which allows one to

=11 =711 i i . . . .
Ri=T, ", and transverseR,=T, ", relaxation rates which i, the solution for the observed magnetic resonance signal
depend linearly on concentration. In solids, magnetic resoy, tarms of a time-ordered binomial sum of the two spin

nance line shapes can be calculated using the statisticlochromats related to the solution of the two-body problem.
Finally, in Sec. IV the Markov methdflis used to find the
3Electronic mail: jfr@msc.cornell.edu thermodynamic limit for the line shape expression winen
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—oo, V—oo, This leads to an integral equation for the many-It should be noted that the the density matrix contains both
body signal in terms of the two-spin signal, that was calcu-explicit and implicit time dependence, the latter arising from
lated in Paper f. The integral equation is then solved by stochastic modulation through the vectors. We seek the

straightforward numerical method&;f. Sec. V), and the

continuous-wavécw) line shapes are described in Sec. VII.
In this work we use the high-temperature approximation to
lowest order and do not consider any higher-order effects of

solution of the density matrix equation in the form

p(t)=§ 91q(DE(q, (2.5)

the sort studied elsewhete’? This may also be taken as where the coefficientg(t) are functions of time, and the
implying dilute solutions. Here we show that the cw line E, are a set of basis operators with numbering schéshe
shape is a Lorentzian over the whole motional range. Wéhat are introduced as follows. For a systenNgbarticles of
also show rigorously that the linewidth is linearly propor- spin 1/2, operatorg,,, can be written as a direct product of
tional to the concentration of spins in the sample over theéN spin operators corresponding to different partities

whole motional range.

The methodology is generalized to the solid-echo experi-
ment in Secs. V and VI. In Sec. VIl we investigate how

N
E{e}:H |(Ei,). (26)
=1 !

motion quenches the echo formation. By simulating theyere{e} denotes a permutation set which provides a certain

SECSY (spin-echo correlation spectroscopspectra based

numbering prescription for the eigenoperatorge}

on the solid echo, we are able to decompose the total Lorent={¢, ¢,,...e\}, €=a, B, +, or —. 1, andl_ are conven-

zian linewidths into _their homogeneous. and inhomogeneougonm raising and lowering spin operators and the polariza-
components. In addition, we show how increasing concentrajon operatord ,, and| ;4 are defined as Ref. 14, cf. Paper |

tion quenches the echo even when there is almost no appre-
ciable motion because of the fractional power-law depen-

dence of the homogeneolds on the motional rate. This
effect is distinct from instantaneous diffusfomhich reflects
the fact that a standarg pulse will not refocus dipolar in-
teractions between like spins.

II. COUPLING OF THE FREE-INDUCTION DECAY
COMPONENTS WITHIN THE EIGENOPERATOR BASIS

Here we consider a system bf particles of spins 1/2
which diffuse in a sample of volumé. The Hamiltonian for
such a system in the rotating frame can be written as

N
HR:HO,R+2 H(I])

i<

(2.1

Here the double sum is taken over ldlbpinsi andj forming
distinct pairs such that<j. For like spins the unperturbed
Zeeman Hamiltonia g is given by

N N

Hor=2, (Qi—wp!Y=A02> 1. (2.2)
i=1 i=1

(2.7

As follows from the trace properties of , I _, 1, andlz,

the operators of Eq2.6) form a complete orthonormal basis
set in operator space with the Frobenius trace metric defined
as

—1 —1_
l=3+1, lg=1-1,.

et _
(Eg E{er)=THE4E(e) = 014 e (2.8)

where the dagger T denotes the Hermitian conjugate. By us-
ing the above orthogonality property of the basis operators,
one obtains a system of equations which couple the(Fi2
induction decaycomponentgy;,(t). That is

39 (1)
at

(i)
CraeyF(rigeny ().
(2.9)

The matrix of frequency offsets is given byHq,E;q]
=AQ04E(4, and the matrxC!) is defined by

Xy F(rip) = TH(E[[HW ).

N
= —iAQ{s}g{e}(t)—iXiZj

(2.10)

The explicit form ofCU:)) clearly depends on the commuta-
tion relations between the basis operators and the Hamil-
tonian describing the interaction among the spin particles. In
the case of the dipolar interaction in the high-field approxi-

Here we consider the high-field approximation and retainmation, Eq.(2.3), one obtains the following commutation

only the first term of the dipolar Hamiltonian, namely

) YR o
Hgn:H(u):XOﬁ;[|(21>|<Zn_%(|<+|>|g>+|g>|<+n)],
(2.3)

where y=\/[(167/5)y?% is the coupling constant,; is the
distance between thih andjth spins,(};; is the orientation
of the vectorr;;
main magnetic field. If;; and/or(};; are random functions

1]

of time, the dipolar interaction gives rise to line broadening.
The equation of motion for the many-body density matrix is

ap(t NG
F:?(t ) :_i[HO’P(t)]_igj [HW,p(1)]. (2.4)

connecting the two spins with respect to the

properties for different types of pairwise combinations
100
L |

[HOD 1 OH]=[HD, 101
=[HD, 1O
=[H, 1D D=0,

[HO D =2 xF (i GIETD+ 11D,

[HO D=5 xFr GIEE) + 1Y), @11

[HO P T=xF () IO D=5 01D,

[T )= xF (i G = 211D,
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WhereF(r”) Y(Z)(Q”)/r Thus in the case of the Hamil- which can be proved by induction with respectNoln terms
tonian given by Eq(2.3), the matrice<C(")) are real and of the above nomenclature the expression for the FID, Eq.
symmetric. Out of the possibleMtime-dependent coeffi- (2.12), becomes

cients gq(t) of Eq. (2.5), most do not contribute to the _

observable_3|gnal. Indeed,_ the observable free induction de- G(t)= z 2 ggg},m)(t)_ (2.16)
cay (FID) signal can be written as m=0 {e}

N N As one can see from the commutation relations, @2dl1),
p>, I“)) => 9ig(0 > Tr(Eyl").  (2.12)  the mixture ofa, B, +, and — terms gives rise to the cou-
=1 tel =1 pling amongst the coefﬁuentg{e}m)(t) and g(k+ M=,

Therefore, a nonzero contribution to the observed signathat is amongst those that have the same vaIUedeerm
arises from the coefficientg;(t) corresponding to the op- Therefore, one can rewrite E¢2.9) for the separate FID
eratorsE that containonly oneoperatorl ;. and a mixture  componentg{;™(t) as the following block-matrix diagram:
of polarization operatork, andl 5. Others will yield a zero

G(t)=Tr

trace upon multiplication by ah_. Moreover, as can be (k, m)
seen from the commutation properties, they will be couplec 1= k+m=N-1
via H) to those coefficients which correspond to operators ) }””“1“1“'““‘ )
having the total number of operatots that exceeds the (O//{//Z; }{” LD
number of operators_ by +1. The difference between the ) N2 cee
number of operator, andl _ in an eigenoperatdg., we wWN-3 }(,*,a,a,um“_,
shall gall the coherence mdem,_[HO,Ef‘E}]:MAQEfg}. o
Thus, in calculating a pure FID signal only the components N }{z,zu... LI k)
corresponding tu=+1 are important(the counter-rotating 9g® _ 22 x g(f)
component corresponding jo=—1 is related to it by com- ! L =N-3 (4, N-4) }(UW LIL1)
plex conjugation, cf. Paper I). We, therefore, rearrange the
set{e} into four subsets, and we introduce the following no- (z,~.5>}(1,1am LILI)
menclature for the operato, with u=1 that are neces- .
sary to calculate the observed FID signal, E2,12), from :
Eq. (2.9): z=o.° ”
k,m {11 ...1111}{
E=Ef" Eg{i}:{i’}B{i"mi’"}f} L )
)62 g D100 0y 0D 05 (2.17)
“o BB BT which describes the time evolution of the overall vector of
I(ibl(iﬁﬂ)l('w)l( " |<i;’) (2.13) coefﬁcientsg(t). In Eq. (2.17)we have rearranged the total
+ 0+ - ' vector g(t) into N parts or sub-vectorsg(t), 1=0,1,...N

wherem+m’ + 2k+1=N, m denotes the number of opera- — 1, that decouple from each other, so we can consider them
tors|,, k is the number of pairs, | _, set{i}, denotes all separately. Note f[hat oqu the compoqents that correspond to
the possible choices ah particles out of a totaN for m  the shaded areage., with k=0) contribute to the observ-
operators ,,, and so on. Two indicek andm are sufficient @bl FID signal.

for the classification of the basis operat&%'}m) and for the

establishment of the general character of couplings amongst

the corresponding coefﬁmen'g;(k M (t). Strictly speaking, Ill. ENSEMBLE-AVERAGED SOLUTION USING THE

one should also have an addmonal ingexorresponding to GENERALIZED CUMULANTS

the coherence index of the eigenoperator. However, since
only the eigenoperators having=+1 are important for cal-
culating the FID signal, this index is omitted here. The num-
ber of such operators with givdnandm is

For the case of like spingyQ;,=AQ for all {¢}, one
can eliminate the first term on the right-hand side of )
by performing the transformation into the interaction repre-
sentation
N! N! (k,m)
NoINGINLIN_T - mi(N—2k—m—1)! (k+1)!KI (2.14) 9 o
km) ) Below we shall solve for thg (t), but we shall drop the
And the total number of operatoBEg havingu=+1for  carat symbol for simplicity i |n notation. One is in fact inter-
N particles of spin 1/2 is given by ested in an ensemble-averaged solution for the overall vector

(=™ (e 140 (3.1)

[N— /2] N okt of coefficients,g(t), which is given by an ordered matrix
oN—p ok )( K K 22k exponential for each of its decoupled subvectg(s)
k=0 M
t
2N 2N g|(t):<eXPo —ix 2 C“l'”f dt1F<ri1j1<tl>>}>g.<0).
N+ “IN+1) 2.15) h
K u=1 (3.2)
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Here the time orderin@ is required due to noncommutativ- In Eq. (3.6) the indexing of pairs has been omitted in the
ity of the matricesC(!): g,(0) is the initial magnetization cumulants since all pairs behave equivalently. The cumulant
immediately after the first#/2), pulse, and the sum is taken average over all pairs is thus replaced by an average over one
over spind ; andj, such thai;<j;. In the high-temperature pair since motions of different pairs are assumed to be sto-
approximation, immediately after a nonselectiver/Z),  chastically independent. Actually, to obtain E&.6) from
pulse the first nonconstant term of the density matrix correEqg. (3.5) we only require that at least ong j is uncorre-

sponding tou=1 is given by lated from the others in each cumulant average. When we
o N pass to the thermodynamic limit.e., N—~) in the next
pl(o):_szW E |<+'>:2*qu E%m), (3.3)  section, then even if there is a finite number of correlated
{e} My their contribution would be expected to be negligible.
whereq=7%Q/kT. Thus, for thdth block of Diagram 1 the TheCl("” in Eq. (3.6) still retain the many-body aspects.

components of the initial magnetization vectg0) are  But, it is shown in Appendix A thag;(0) is an eigenvector
equal to 1 forg{%™(t) and are zero for all others witk  of the matrix sume{L c{")" for each block in Eq(2.17)
#0. The number of nonzero componentsgpft) for given  with the corresponding eigenvalue given by

| =m is determined from Eq(2.14)and is equal to

N
N! | 2, (€)' (0)=[1()"+(N=1=D(=H"g(0).  (3.7)
m! (N—2k—m—1)!(k+ 1)IK!|,_ )

The expression for the FID, E¢2.16), can then be calcu-

:N< N—l) :N< N—l)_ (3.4) lated yielding

m |
The expression for the ensemble-averaged time-dependent G(t E E g OI)
magnetization vector can be further rewritten in terms of the —0 {e tef ¢

connected averages or generahzed cumufants — 2 Ngexp(—iAQY)

9|(t)=eXFb[nE BRI X.NE:N(N )expo{z iy

i1<l1i2<l2  in<ip <
o - - t t th—
XC|(I1J1)C|(I2J2)."Cfln]n)f dtlJ' 1dt2"‘f ldtn
o Jo 0 XD+ (N=1=1)(=H"IKn(1) |- (3.8)
><(F(filjl(tl))F(rizjz(tz))‘“F(rinjn(tn))>c} 0(0), (See also Sec. VI where more details are given for the more
general case.)
(3.5) Here we have used E@.4) to determine the lengths of

the nonzero componeng%':'}m)(t), havingk=0 andm=l1,
that yield the relative intensities for eadj(t). Also, the
ordered cumulant functioK ,(t) is defined by

where subscript stands for the cumularitonnectedpver-
age. Here we follow Kubo’s prescription for constructing
generalized cumulants, in which the orderi@gs preserved
for both cumulants and the exponent to account for noncom- t ty th 1
mutativity of theC-matrices. n(t)—f dtlf dt, f dt,

Up to this point our many-body formulation has been
relatively general and not yet in a form that can lead to XAF(r(t))F(r(ty) - F(r(ty))e. (3.9)
useful solutions. We now introduce the important assump-
tion that the relative motions of the different pairs of spinsOne can express the ordered exponential in (Bd) as an

are stochastically independent, i.e.,(F(riljl(tl)) ordered product of two exponentials, viz.
XF(ri,,(t2))) = (F(rij, (1)) )}(F(rij,(t2))) unlessi;=i, B
andj;=j,. Also we assume that at any tinh¢he spins are eXPo| > (i) "+ (N=1—1)(—3 ”]Kn(t)]
randomly  distributed.  This usually means that n=1
(F(ri,j,(t1)))=0 or can be redefined to obtain this result. %
Thus, the cumulants in Ed3.5) will vanish’ unlessi;=i, =0 expp IE (—i%X)”Kn(t)}
=--i,andj;=j,=-j, leading to n-1
i N -~ t t - i
g|(t)=exp;,[2 (—ixy)"> [cf'”]“f dtlf 1o|t2~-- X exppo (N—l—l)nEl(ﬂ%x)”Kn(t) , (310
n=1 i<j 0 0 =

th 1 where the nature of the time-ordering prescription of the
f dtn(':(r(tl))':(r(tz))'"F(f(tn))>c] 9(0). product may be obtained from expanding and comparing
0 terms on both sides of E¢3.10) cf. Ref. 7). It is then easy
(3.6) to see that Eq(3.8) can be rewritten in a binomial form
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[’

2, (150" Kn(1) |+ expo

© N—-1
n; (—i2x) K (1) ] : (3.11)

G(t)=2Nquxp(—iAQt)O{ exm

Equation(3.11)is a remarkable result, which means that thethe FID signal fromN identical spins of 1/2 is given by a
FID for N particles of spins 1/2 can be simply written as asingle exponential, the decay of which is simply proportional
time-ordered binomial sum ofN— 1)th degree of the corre- to the the concentration of spin€, in the sample, and the
sponding ensemble-averaged spin isochromats from a singietensity is proportional to the number of spims,
pair of particlescompare Eq(3.11)to Eq.(2.14) of Paper Another important special case is when motions become
I]. The only assumption that has been made is that the morery slow. In this case the cumulant expansion of the en-
tions of all particles are stochastically independent. In fact, irsemble averaged exponentials, E2j11), can be rewritten as
deriving Eq.(3.11) we did not even assume any specific ordinary exponentials, oscillating with a constant frequency
form for the F(r(t)) or the detailed nature of the stochastic 3/4xF(r), which are integrated over. That is
process responsible for its modulation. In treating the N
guantum-mechanical spin variables the only requirementgxpo E (ii §X) K (t)}
were: (i) Identical spins of 1/2 andi) a purely secular form n=1 4 "
for the spin Hamiltonian of Eq2.1). The particular form of
the spin-part of Eq(2.3), relevant for the dipolar interac- +ij E XJtdt’F(r(t’))D
tions, merely determined the eigenvalue of 3/4 that shows up 47 J)o
in Eq. (3.11). e

To recover the motional narrowing regime as a limiting = f v exyd +i3yF(n)t]. (3.13)
case, one can truncate the cumulant expansion of the expo-
nential in Eq.(3.11)at the second order. Assuming for sim- The resulting FID signal can then be written as
plicity that the system is on resonanc&{}=0, and that ) No1

(F(r(1)))=0, this yields the well-known resait® G(t)zZNqN[ f % [e 1 (FMXF( L l(FXF

©

=<expo

(3.14)

One can evaluate E@3.14)in the thermodynamic limitN
—o andV—o, by rewriting it as

gN
G(t)=7 Oexp| —(N—-1)

9 t ty
X—= x| dy dt2<F(r(t1))F(r(t2))>c} +oo
16 fo fo G(t)“Iimq—N[1—£2wf sinadaf redr

Now 2 2N —
qN 9 2 t—oo
=76X _(N_l)l_GX J dT(t_T) N—1
0 X[l_ei(B/A)XF(r)t]] ' (3.15)
X(F(r(0)F(r(n)) so that the concentration of spi@=N/V is kept constant.

Calculation of Eq.(3.15) yields a single exponential with a
decay rate of (2%/3y3)y?%C, which constitutes the well-

gN 9 ,
=7 & - (N=1) 55 X0, (3.12) known Anderson resuft*®

2 32X

whereJ(0)=2[yd=(F(r(0))F (r( 7))) is the zero-frequency
spectral density for translational diffusion. The explicit ana-
lytical expression forJ(0) has been calculated by Torrgy,
and corrected later by Hwang and Fréetho have treated
the excluded volume more rigorously. For the translational  Equation(3.11)can be evaluated in the limiting case of
diffusion with coefficientDr and the distance of minimum - an infinite number of particles in a manner analogous to the
approachd, the simplified treatment yieldsl(0)=(2/15)  Markov method used in the ESR of solitlsFor simplicity
X(1N)(2/dDr), cf. Eq.(114"), p. 302 of Ref. 2. In the more e shall assume that the system is on resonak@es 0, and
rigorous treatment, the coefficient 2/15 should be repficedrewrite the cumulant expansions, E(.11), in terms of
by 4/27. Here we have explicitly included the sample vol-ensemble-averaged ordered exponentials using the first
ume,V, which arises from the averaging of the two-particle equality in Eq.(3.13)
correlation function of Eq(3.12)with respect to the equilib- 3
t
—i —Xf dt’F(r(t’))D
47 )o
3 t N—1
i —Xf dt’F(r(t’))D] . (4.1)
47 J)o

rium probability density. Also, we have defind; as the G(t)=(2NqN)O[<exp3
Downloaded 06 Sep 2002 to 128.253.229.132. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

IV. THERMODYNAMIC LIMIT OF THE MANY-BODY
LINE SHAPE AS N—o®, V—x

relative diffusion coefficient. WherD+ is replaced by P,
whereD is the diffusion coefficient for individual particles,
then the original formula of Ref. 2 is recovered. This shows
rigorously that under the conditions of motional narrowing,

+<expo
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Letting N=2 we recover the FID signal from a single pair of where the prime indicates ensemble-averaging with respect
particles which consists of two-spin isochromats, cf.to the unnormalized equilibrium distribution. By substituting
Eq. (2.14) of Paper I. If not for the ordering@ in front  for the volume,V=N/C, one can take the limiN—», so

of the binomial expression, Eq(4.1), the functions Eg.(4.5)becomes

(exp[ Fidx[tdt'F(r(t"))]) could be immediately evaluated
by solving the corresponding stochastic Liouville equationas Gty = |im anN ')

c
EEPYITEINTTS)

described in Paper |. However, for the case of a very large Noo 2

number of particles the obstacle of having this additional ,
ordering can be eliminated. For this purpose, we shall find % <1_expo i § Xftdt,F(r(t,))D
the statistical limit for Eq(4.1) at N—o while at the same 4% )o

time V—o. As will shortly be seen, the lim¥—o can be

;1) N—1
treated by introducing a slightly different notation for an B . E Jt , ,
ensemble average. T 1-expli a4 X odt F(r(t))

The ordered exponentials are averaged by means of joint 46
probability densities. For example, for a stationary Markov (4.6)
process, the joint probability density is given by: If the potentialU(r) vanishes afr|—o, then the integral

of Eq. (4.6) approaches unity, and one obtains as a final
Pn(r,ty;ra, a5y ty) result, in a manner analogous to the Markov metHodthat
:P(r1,t1|r21t2)'"P(rnflvtnflhnvtn)pecﬁrnvtn)a G _qN o C
(4.2) ()=~ Oexp —3
where per,,tn) is the equilibrium probability density, _ . 3 v, , '
P(r,_1.tn_1|rn.ty) is a conditional probability densitgcf. X[\ 1-exp) — 4 X odt Frt))
Paper I). The Boltzmann equilibrium distribution is given by
3 [t !
+(1- i~ F(r(t’ 4.7
Pe 1. 1) =Ped ) < M XJodt (rt ))D H @
_ exd —U(X,y,2)/kT] where we have used the f&tthat
fgxfgyfgzdx dy dzexd —U(X,Y,z)/KT] FNIN i
(4.3) lim1==F7) =& (4.8)

Here we are interested in just the stationpgy(r) consistent  provided that the limit off (N) exists and is finite.
with thermodynamic equilibrium for the many-body system.  Equation(4.7) is still written in a rather symbolic man-
By substituting the variables, the normalization coefficient inner which contains ensemble-averaged ordered exponentials.

Eq. (4.3) can be recast in the following way: It can further be rewritten in the form
Ly (Ly (L2 gN toogg(t")
f f f dx dy dzexd —U(x,y,z)/KT] G(t)= > expp Cf dt’ -
o Jo Jo 0 at
N aN o ag(t)
=VJ f f dédndZexd —U(Ly&,Lyn,L,0)/KT] =—ex CJ dt' ———|, (4.9
0JoJo Y 2 0 ot
=VI(L,Ly,L,), (4.4) whereg(t)=[g,(t)+g_(t)]/2, and the individual spin iso-
chromats are given by
with é=x/L,, etc. Using the expression for the ensemble- ,
averaged time-ordered gqunenﬁﬁq. (3.1) of Paper IJone 9. ()= exp| Ti E xftdt":(r(t,))
can pull out the normalization integral from the ensemble 47 Jo
averaging in Eq(4.1) and write that 3 . ,
:<exp{1i ZXJ dt’F(r(t’))D . (4.10)
0
(Loly.Ly) Correspondence between E@$.7) and (4.9) can be estab-
3 ¢ , lished by differentiating with respect to time the formal se-
X <1—eX|:b —i— Xf dt’F(r(t’))D ries solution given by Eq.3.4) of Paper 1.By comparing the
0 expression for G(t). Eq4.1) with its thermodynamic limit,
3 ¢ 71y N—1 Eqg. (4.9), we have found that in the limit of a large number
+<1—expo 7 XJOdt'F(f(t'))D “ : of particles the time ordering in G(t) becomes unnecessary

Note thatG(t) decays to 0 wher—«, as it should,
(4.5)  since it describes an FID signal. Indeed
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= ., 09(t")

G(x)=ex Cj dt' ——

0 at

=exg C(—9(0)—iwg(w)|,-0)]
=exd —Cg(0)],
whereg(w) is the Fourier transform of(t). But g-(0) is

(4.11)
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We can now consider the kernel of the integral equation as
just a delta function, which yields

G(0)

Gl ~rEg0ir-Tw’

(4.17)

equal to the integral of the unnormalized Boltzmann equilib-i.e., the many-body spectral function is given by a Lorentz-

rium distribution over volumeV, cf. Sec. Ill of Paper I,
which yields atN—o andV— o

G(=)= lim exg—Cg(0)]
N— o
Voo

C
=ex%——5[940>+g<0ﬂ]

= lim eXp[—Cf d3r exp[—U(r)/kT]]

N—o
Vo

= lim exgd —NI(3V)]=0,

N—
V—oo

(4.12)

where the integral is defined in Eq.4.4). Equation(4.9)
can be rewritten in terms of a differential equation @t),
viz.

96 ag(t)
—CT G(1).

pn (4.13)

By performing the Fourier—Laplace transform of E4.13),
one can write that

Lo~ iC [+ - ~
iwG(w)— > f_m (w—w'")g(w—0')G(w')dw’

=[Cg(0)—1]G(0). (4.14)

Thus, it is sufficient to know just the two-spin line shape

function g(w) and the concentratio@ to solve forG(w).

Equation(4.14)can be transformed into a matrix equation by

discretizing the convolution kernel with respectd@and o',
and then inverted numerically.
It is easy to see that the solution of E4.14)is expected

ian with half-widthCg(0)/7’, or in the absence of any po-
tential CV/7'=N/7", whereN—c and 7' —® (or V—o

and 7' — ), cf. Eq. (4.10). Equation4.17), of course, de-
scribes the line shape only qualitatively, since one still has to
solve for 7 as a function of volume/ and the diffusion
coefficient D until one converges to the thermodynamic
limit.

V. TREATMENT OF MULTIPLE PULSES USING THE
EIGENOPERATOR BASIS: SOLID-ECHO
SEQUENCE

In this section, we consider effects of multiple nonselec-
tive hard pulses applied to a many-body spin system. As an
illustrative example, let us consider a solid echo experiment
involving an intermediate+/2), pulse, viz.

(5.1)

NE

t
) — acquire.
y

Immediately after the intermediate pulse, the density matrix
in the rotating frame becomes

pwﬂ=%gHMRWEmRH®, (5.2)

where R(0) is the rotation operator. In the rotating frame,
R(6) is equal to exp@=|)) with g=m/2 for the case of
solid echo. In general, the rotation of an eigenoper&iQy
will yield a linear combination of the eigenoperatdgs,,
that form a complete basis set

to be close to a Lorentzian. First we note that the two-spin
spectral fungtiorﬁ(w) is expected to be much narrower than

the N-body G(w), and therefore, it is not unreasonable to ~ R(OEgR™1(0)= > X(a(enEjery - (5.3)
approximate it by an infinitesimally narrow Lorentzian, viz. (e}
- The elements of the pulse propagator ma¥ixin the eigen-
Jw—w )~g(0)m, 7' —0, (4.15)  operator space can be defined as
(Here we are ignoring the infinitesimal “Pake doublet” for N L
simplicity.) Substituting Eq(4.15)into Eq.(4.14)and using Xienen=TrE; \R(OER™ ()]
the identity [ *2G(w')dw’ =27G(0), we obtain ~
=T E4R H(O)E,,R(6)]. (5.4)
- Cg(0) [+= 7’ =,
l0G(w) = 207" J_ol-i(w—w')7 G(o")do To relate the compopengqe}(t) before 'and immediately af-
ter the pulse, we write a new expansion for the density ma-
~—G(0). (4.16)  trix p(7+) in terms of the eigenoperators
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where the equivalence of Ed5.8) to Eq. (5.7) may be
P(T‘*‘):% 9iea(7+)E(q- (5.5)  shown by expanding out the exponential operators.

Comparing Egs(5.2) and(5.5) and making use of E(5.3)

we find the relation between the vector of COGfﬁCiGntSVL MULTIPLE PULSES: TIME ORDERING AND THE
g(7+) andg(7) GENERALIZED CUMULANT EXPANSION

g(7+)=Xg(7). (5.6) The next step is to perform the ensemble averaging of
the ordered exponential of E¢5.8) by taking into account
After the pulse, the vector of coefficients continues to evolvehe statistical independence of the motions of spins, as has
as given by Eq(2.9) for each element, but with a time shift been done for the case of a pure FID. Using the standard
of t— 7+ and with the initial conditions at+ determined by ~ procedure for constructing generalized cumuldnosie ob-
Eq. (5.6). Therefore, the overall vectgy(t) in the rotating tains that
frame, at times> 7+ is given by

N
g(t) :<e7iAQ(tfT)e;ixii’\iqlc(i1J'1>It,dt1F(riljl(t1)) < expp| — iXilqu cliy) f:dtll:(riljl(tl))}
_i —iysN_ cUddfTdeFr o (ty) N N .
X Xe 'AQTeOX i1<iy odtaFtry j, (ty >g(0)| XeX% _IXE XC(Iljl)X_lf dtlF(riljl(tl)):|>
(5.7) 11<J1 ) 0t
where AQ is the offset matrix. Note that in the above ex- :eXFb< expo —i)(ilz<j1 Cliay) detlF(riljl(tl))

pression the pulse propagatér in general may mix all
blocks of theC-matrix, including the components with dif- o 7
ferent coherence indeces as opposed to a pure free- +XC('1“)X_1J dt;F(ri;,(t1)
induction decay. As will shortly be seenm2 pulse results 0

in mixing of the components witp=*1. Now, the diagonal

matrix AQ containing frequencies(Q—w,) commutes Wherec stands for the cumulant averaging. No';e that the
with the block-diagonal matrixC, since AQ is just a con- time orderingO also takes care of the fact that 1" and

non

stant matrix for eachuth block of C, and we can write that XC("1")X ! do not in general commute. Indeed, integrals of
the type [{dt"[idt’ cannot be time-ordered since in this

—1> , (6.1)

N

. i (iqdq) gt o Y
g(t)=e i800=ne Wiy<i,© LA, (1) caset’=t" everywhere, and thus("1") can never be to the
O . N . .
) B right of XC("1")X 1 after the ordering is performed for the
% e*ixzilq1XC“11“X_1f8dtlF(’i111(t1>>>Xe—ing(0) second time. If the motions of spins are statistically indepen-
o ' dent, by expanding the second ordered exponential in Eq.
(5.8) (6.1), one obtains
|
% n N N N
eXFbE (_lX)nE 2 e 2 2 2 C(iljl)...C(ipjp)XC(ip+1jp+1)...C(injn)x_l
n=1 p=0i1<j1  1p<ipip+1<ip+1  in<In

t ty g r tho 1
x [ty [t [ty [T AR 0B GG F T ()

T

o n N
—exp >, (—iy)"> > [CiDPx[cliDnPx
n-1 p=0 i<]j

t ty 1 T tho1
Xfrdtl"'frp dtpfo dtp+l'“fo dto(F(r(ty)--F(r(t))F(r(tpe)) F(r(ty))c. (6.2)

Using the ordering prescription, one can obtain the expansion of the ordered exponential up to various.oREsicting
ourselves for illustrative purposes mo=0,1,2 one obtains from E6.2) that
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n

N
2 [CiDIPx[CliD]—PX

i<j

exn)n; (—ix)"

p=0

t th—
1f dtl"'fp
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"dt det ftn*ldt
p 0 p+1 0 n

XCE(r(ty)) - F(r(tp) F(r(tpa))--F(r(ty)))cX exp(—iAQ7)g(0)

o

1+Zl(—i)(

:
J;

n N
x> 2
P=0j'<j

N
E [C(i’i’)]n’[c(ij)]n*px[c(ij)]pr

ri<]

t
lf dt/l

tn7 o0 o0
fo At (F(r(t D) F(r(t a))el F(r(t) - F(r(t) e+ > 21<
n,:l n=
><X[C“’j')]”'[C<‘i)]”X’lftdt’l---f '“'*p'*ldt'n,,p,det'n,,p,H---f
T 0 0

th-1
fo dtn(':(f(t'l))‘"F(f(t'n/))>c<F(r(t1))‘"F(f(tn))>c+"'] X exp(—i1AQ7)g(0).

t
r

n N
. . t
" pgo 2 [C(”)]pX[C“')]”_pX_lf dt,-

t'
J' n ldt,n/f
T T

tp—l T
dty | dtpa-

At (F(r(t) - F(r () F(r(tps ) - F(r(tn))ot ) El (—ix)" (—ix)"
n'=1nN=

!
ty

tnfpfl T
dtl'“ dtn—p dtn—p+1"'
T 0
n’ N N
PG PILDIDIESIN (Sl L
p’:l ir<]-r i<j

U1 U
dt,n/ o dtl'"

(6.3)

The consistency of the ordering application can be checkedV

by letting X=1, which corresponds to a pure FID signal. In

> [CIVPX[C{]"Pexg —iAQT)g (0)

this case the previous time-ordered ensemble-averaged expo-

nential, Eq.(3.6), is recovered. The latter essentially follows
from applying the following integral identities:

t T t
[ .
T 0 0
t t’! t T T t
[ae [fas [ae [favs [ [ar
T T T 0 0 0
t t’
:J dt'J dv. (6.4b)
0 0
t tr trr t tr T
J'dt’f dt”f dt”’+f dt’f dt"f dt”
T T T T T 0
t T t” T t/ 7
+fdt’f dt”f dt"'+f dt’f dt”f dt”
T 0 0 0 0 0
t '[’ tn
:f dt’f dt”f dt”, (6.4c)
0 0 0

and so on.

In Appendix B it is shown that, for a nonselective hard
pulse, each subpart of the starting vector-coefficgg(@) is
an eigenvector of the matrix suly;[C"D]PX[C-D]"~P,
where| denotes the number of operatdrs in the corre-
sponding eigenoperator subggf)’ . That is to say

=cog AQD[I(3)P(~ "
HIN=1=D)(= (D" 1g(0)

=cogAQT)(H"[(= D" PI+(~1)P(N=-1-1)]g(0),
(6.5a)

Xg(0)=9(0). (6.5b)

Validity of Eq. (6.5b) also follows from the fact that a pure
oscillating signal, which has the initial magnetization along
they axis, is not affected by an intermediate pulse around the
y axis in the rotating frame. We shall further consider the
case whem\(=0, i.e., when the system is exactly on reso-
nance, and define the following integral operators:

T t
|1E(_i%X)f0dt1: IZE(_i‘s_‘X)detl’ (6.6a)

t T t
=(-i%0 [[at—(-i30 [ ‘at=-i20 [ atsit.
(6.6b)

where thes-function is defined as followss(t)=+1 if t

>7ands(t)=—1 if 0<t<r. The following short-hand no-

tation is also introduced:
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{I(F(t)F(ta) - F(th))c O{1}m- --{1}"2{1}™
= (—I—X) jdtlf dt, fd'[ :Oi[[l{l}ni
Xs(t1)s(tp): - s(ty)(F(t1)F(ta) - -F(ty))c Mt + NNy
n = > Oflp}Mm™ T2 MmP(—1)P{14}P. (6.9)
3 t ty th-1 p=0
= _| Z ) fodtl 0 dt2"‘fo dtn
X S(t1)S(tp) - s(ty)(F(ty) F(ta) -F(tn))e, (6.7)  We shall now prove by mathematical induction that thth

which can be further rewritten dsompare also with Eqs. €™M ©f the expansion, EG6.3) can be factorized as

(6.4a)-(6.4c)]
{I}n<F(tl)F(t2)' "F(tn)>c [| +(- 1)nm(N_1_|)]. [| +(—l)n2(N—l—|)]

A tp- T X[+ (=1)"(N=1—1)]O{1} m---{1}"2{]}M
:(_i?_‘X)ano dtl___J'p 1dth0dtp+1~- [1+(=1)"( )JO{1}m--{1}"2{1}

toes =0l [1+(=1)"(N=1-D{1}", (6.10)
JO dity(— )" P(F(ty)F(to):-F(to)) :

from which the ordered cumulant exponential function can
_OE 12" P DPIXF()F (L) F(t)c. be recollected later.
The m=0 andm=1 terms are evident from the eigen-
(6.8) value properties of the starting vectgi(0). Applying the
The ordered product of integral operators acting on variousrdering for them+ 1th term of the expansion and operating
cumulant partitionings; ,n,, ..., n, can also be written sym- on the starting vectog,(0), andusing its eigenvalue prop-

bolically as[cf. Egs.(5.15a)(5.15c)] erties, we obtain
Nm
nE 121 2 ,2 [ (=) 4 (N=1=D)]OfI ™[] [1+(=1)"(N=1-D}{1}"
Mm+1 Nm
+ E [(=1)PI+(=1)"m+17P(N=1—1)]JO{I}"m+17H{I }pH (=DM +(N=1-DJ{I}", (6.11)

whereN,,=n;+n,+---+n,. Substitutingp—p—N,,, in the second term and using the notation of &9), we can add up
the two terms yielding

o0 m+1 Nm

E E E > H[I+(—1>“i<N—1—|>10{|2}”m+1p§0{Iz}”m+fp(—1)P{ll}p

Nm+1=1 Np=1 np=1n;=1

Nm+1 m

+ 2 (=P N (= N2 PN = 1= D) ITT [1(=2)" 4+ (N=1=1)]JO{1 o} Nme1P{1 3P
— m+1 i=1
m+1 N+ 1 m+1
=II [1+(=DMN=1-D] 2 OfiNmraP(=1)P{1 }P=0O [T [I+(=1)"(N-1-DH}1}", (6.12)
i=1 p=0 i=1
which completes the proof by induction. Collecting back the ordered cumulant exponential function, we get

0expn§1 [+ (= D)"(N=1-DI{IYF(t)F(ty) - -F(ty)e

tho1
—eXFbE (—)TDHM+(= DN 1—|)]fdt1f dt,- f dt,S(ty)s(to) - -s(tn)(F(t)F(ta) - -F(ty))e.  (6.13)
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Thus, one can rewrite E@5.7) in terms of usual ensemble-averaged exponentials by usin¢GER)

N N
<exrb —ix‘z C(iljl)JtdtlF(riljl(tl)) X expp —inz C(Mh)f dtlF(riljl(tl))}>g|(0)=O
i1<i1 T i1<J1 0
3 t I 3 t N—1-I
><<9Xpo —i ZXfodtls(tl)F(r(tl))> <ebu i ZXJOdtls(tl)F(r(tl)) > g(0). (6.14)

Summing over the componeng%')(t) having total statistical weight oN(Nl_l), Eq. (3.4), one can finally rewrite the
observed solid-echo signal in the rotating frame on resonance

+ expo

3 t
—i ijodt’s(t’)F(r(t’))

3 t N—-1
G(t)=(2‘NqN)O<ex;:b i 2 XJ’Odt’s(t’)F(r(t’))D , (6.15)

i.e., a binomial expression is again obtained, as in the case oftio N/7’ may be regarded as a homogeneous relaxation
a pure many-body FID signal, E¢4.1). The latter is easily rate,TZTl in the limit N—« and 7'—~. In Eq. (6.17), the
obtained from Eq.(6.15) by settings(t)=1 everywhere. inhomogeneous line broadening gets refocused, whereas the
However, the derivation of Eq6.15)could be also regarded homogeneous line broadening yields the decay of the echo
as a formal check of the consistency of the introduced timeamplitude. From the behavior of the echo signal described
ordering “O” for treating the ensemble averaging of expo-

nential operators, which in general do not commute but are

applied during different periods of time, i.e., one is from 0 to et 2
7 and the other is fronr to t. D,=10 10 1.0
Equation(6.15) can be extended to the limit of a large
number of particles exactly in the same way as it was done
for the FID signal by using the Markov method. Taking the
limit N—o, V—oo yields
Gait) = gN C
(t)= 5 ex 5
A
3 t !
X <1—expO —i ZXI dt’s(t’)F(r(t’))D
0
3 t '
+({ 1—exp|i ZXJ' dt’s(t")F(r(t")) ,
0

(6.16)
which is to be compared with Eq4.7). The ensemble- J\

averaged exponentials are evaluated by solving the appropri
ate modified stochastic Liouville equation taking into ac-
count thes-function as described in Papefdf. Egs.(4.9)
and(4.10) of Paper I].

For very slow motions, i.e., d3;—0, in averaging the
exponentials in Eqs(6.15) and (6.16) we can hope to ap-
proximate the two-spin stochastic Liouville operatorlas J

~—1/7"Fi3xF(r), where 7 is an effective diffusional re-
laxation time with7”~1«D%, (cf. Fig. 5 of Paper | where
a=1/2). (However, more generally we can expetitto de-  -10°Yha* 0 1077 W’

pend on the value of andr, cf. Ref. 19 for related caseslr) FIG. 1. Many-body line shapes for spins of 1/2 in the thermodynamic limit
this limit, the homogeneous line broadening is expected to bgs a function of the diffusion coefficieri; (in units of y24/d), and con-
much less than the inhomogeneous line broadening. Theentration of spinsC of 1.2, 2.4, and 4in units of 16° cm™?) from top

solid-echo signal could then be written approximately as down. The valugs fo€ amd!)T are as indicated. The ratig,,/d Was_set to
100, after checking that this led to convergent results; tbevas varied by
gN N |t—27'| varying the number of spind\. Concentrations were calculated frath
G(t)x—exp — = t]expg — ——|- (6.17) =N/V, whereV=(47/3)r3_, whered was arbitrarily set to 10 A. Line
2 7 T3 shapes are close to Lorentzians over the entire motional range for all con-
. 1 i . centrations considered. Increasing the concentration of spins yields a pro-
Here the l_ﬂhomogeneOlTi =R3 is given in the thermo-  portional increase in spectral linewidths; whereas increasing the diffusion
dynamic limit by the Anderson formula, cf. Sec. lll, and the rate D; results in motional narrowing.
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FIG. 2. Line shapes and spectral linewidtR3, (inset)in the thermodynamic limit as a function of the diffusion coeffciBrtcalculated for the concentration
of spins C=2.4x10"%cm 2 with d=10A. Line shapes have been fit to a Lorentzian function, from which the line broadening R§rmhas been
determined. The plot oR} vs D+ (inset)shows the behavior of linewidths over the whole motional range considered.

qualitatively by Eq.(6.17), one can see that even in the limit also needs to discretize the convolution kernel of @ql4)

of very slow motions, one can expect a decay of the echavith 4000 frequency points. Interestingly, the,,/d re-
amplitude in a multiple-spin system, i.e., the many-bodyquired for convergence was not found to depend appreciably
echo may not be refocused completely at Bowever, be- on D¢, implying that the significant volume of spins sur-
low we shall only use the more general expression, Edrounding a test spin remains the same, independent of mo-
(6.16) without assuming any simplified limiting form of the tional rate. Line shapes are very close to Lorentzians over the
type of Eq.(6.17). We shall indeed find that the above motional rates considered. This was checked by fitting them
simple argument has some qualitative validity, but moreyo Lorentzian functiongsee below). Increasing the concen-
quantitativelyT, * is glven by a fractional power law some- tration yields a proportional increase in widths.

what different fromD7. To further explore the many-body line shape function,
spectral linewidths were calculated as a function of the dif-
VII. SIMULATIONS OF MANY-BODY SPECTRAL LINE fusion coefficient at a fixed concentration, and are shown in
SHAPES AND ECHOES IN THE PRESENCE OF Fig. 2 (C=2.4x10"%cm™3, d=10A). The linewidths were
TRANSLATIONAL DIFFUSION determined by nonlinear least-square fits of the line shapes to

Figure 1 shows the line shapes in the thermodynami@ Lorentzian function. As can be seen from Fig. 3 plotted on
limit associated with a large number of particles allowed tod semilogarithmic scalénset), the curve has the form of a
diffuse in a large volume. The ensemble-averaged orderegigmoidal function with a characteristic point of transition to
exponentials have been calculated by the stochastic Liouvillghe “quasi-solid state™ limit at a value of the diffusion co-
equation methodcf. Paper ). Convergence of the spectraéfficientD+ of ~0.05(in units of y*4/d). For electron spin-
has been checked by increasing the number of partibles, bearing molecules for which the distance of closest approach
and the ratia,,/d, while keeping the concentratioB,con-  between their centers =10 A, this value ofD converts
stant.[Here we may use dimensionless units @ri.e.,C  to 1.64x10 “cn?s !, which is typical for spin labels in
=N/V, whereV=(47/3)(r max/d)°]. It was found that if the moderately viscous liquidge.g., liquid crysta®). For C
number of particledN is more than 100, then an,,/d of ~ =2.4x10%cm 2 one has a value dR} of 2.61x10*s™ 1.
about 100 is sufficient to obtain a converged line shape. On®ne would need higher concentrations to obtain an observ-
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10" | tration of electron spins ofC=5x10%¥cm ° (or ~8
X 10 3M), the second pulse must be applied no later than
600 ns after the first pulsénot shown), which is easily
achieved by pulsed ESR methods. However, this should be
regarded only as a rough estimate, since in the present analy-
sis additional factors leading to a loss of refocusiegy.,
additional homogeneous line broadening, noise,),eb@ave
] not been taken into account.

The above effect of concentration on the refocusing of
the echo is illustrated in Fig. 4. Here the echo envelopes, i.e.,
intensities measured wg=27, are plotted at various con-
J\N/VW centrations ranging fromC=2.4x10"%cm 3 to 2.4

x10"¥cm 3 (d=10A). As can be seen, at highthe decay

of the echo envelope is much faster, thus resulting in no echo
at sufficiently long7’s. (The actual procedure we used was to
calculate the SECSY signal, then Fourier transform it with
’ respect tot,, and then to study thé, dependence of the
w,=0 slice, cf. Paper I, Sec. V.)

Figure 5 shows the homogeneous relaxation tieas
U 0t 2x 10°d A a function of the diffusion coefficierid  plotted for different
time, ¢ concentrations of spinS. TheT, values have been obtained
by fitting the echo envelopdgf. Fig. 4) to single exponen-
tial functions. This method of determining,’s corresponds
to the SECSY technique as described in Pagef.IFig. 4(a)

0t = 2x 10 % and its discussion in that pagefhe data in Fig. 5 have been
time, ¢ rescaled with respect to concentration, so that a departure
“time at which pulse is applied s 10 times shorter from linear dependence on concentratiohabout 10%)an

FIG. 3. Simulation of the solid echoes fbr spins of 1/2 in the thermody- be seen. Thl_s, occurs in the slow motloqal r?glme’ which also
namic limit as a function of diffusion coeffciem; (in units of y%4/d) and ~ Shows a limiting dependence on the diffusion rate that goes
concentration of sping;, of 2.4, 4.8, 12, 24in units of 13° cm™~3) from top as D;O.SZ (vs the DT_O'5 dependence found for a two-spin

down, at exagt resonance. Aslncreases, the signal decays faster, yleldlng case in Fig. 5 of Papeb.IBy contrast, in the motional nar-
no echo at higher concentrations. However, by decreasing the #tirae

which the second pulse is applied, one recovers the echo égaimset). ~ 'OWiNg regime homogeneous relaxation times depend lin-
The abscissa is in units of time from 0 to<20° d%/ y?4; inset from 0 to  early on both the concentratio and D;. Note that in-

2x10" d¥ y*h. creasingC does not shift thel, minimum. In addition, the
T, minimum for a system of multiple spins is shallower than
that for a two-spin systertcf. Fig. 5 of Paper I).
able effect. Thus, increasin@ by a factor of 200 (8 Finally, a comparison of the spectral linewidttR} ,
X10°°M) yields anRj of 5.22x1(°s™*, which should be  \ith the decay rate of the echo envelof, is shown in
measurablé! In the case of proton NMRnuclear magnetic Fig. 6 (C=2.4x10"%cm 2, d=10A). Here the log—log
resonance)Dr of 0.05 translates into 3.780° *CnPs ™. ¢ a1 has heen used to show the solid-state limit, the inter-
This would mean thgt slow motlona_l gffects set in only for ediate region, and the motional-narrowing limit. In the fast
extremely slow motions characteristic of hlgh—molecularmotional limit (larger D values), line broadening is fully

weight polymers or diffusion in solids. % s
Figure 3 shows many-body solid echoes at exact resohomogeneous, anR, approachesz; . The curve then be

nance. The distance of minimum approach has been taken fgmes linear W'Fh a slope QH V.Vh.'Ch co_rresponds o the
bed=10A. For illustrative purposes only, we have included motpnal-narrgwmg, or Redf!elq limit as given by 56.1_2).

a nonzero carrier frequency. Increasing the concentration ofhe intermediate motional limit occurs near the position of
spins yields a decrease in the echo amplitude. Thus, going‘e R, minimum, i.e.,~D1=0.05, and spans about two or-
from C=2.4%10%cm 3 to C=2.4x10cm 2 results in ers of magnitude iD;. As D;—0, R; values approach
almost no detectable echo signal in the latter case even in t€ limiting Anderson expression for linewidths given by Eq.
very slow motional regimel;=10"%). Increasing the dif- (3.15), wherea®R, further decreases witb;. Thus, in the
fusion rate also yields a decrease in the echo amplitude, s§ow motional limit there is a clear separation betw&gn,

that it becomes impossible to refocus the dipolar interactionvhich mostly consists of inhomogeneous line broadening,
for faster motions. This happens for smales as C gets ~andR;, which may be regarded as homogeneous line broad-
larger. Refocusing of the echo at largér can still be ening. Note that abt=0.05,R,~R3 ; thus, for the above
achieved by applying the second/@), pulse much earlier. example of electron spins wii~8X 10*M, R, would be
For instance, we find that in order to get an appreciable reabout 5<10° s™1, which can be a significant contribution to
focusing of the echo signal near the rigid limit, for a concen-the homogeneous linewidifi.
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FIG. 4. Effect of concentration on echo refocusing. Here the echo envelopes are calculated at various concentrations as indicated for a very slow motional rate
(D7=10"*y?#/d). The intensities are measured from a SECSY simuldiiénPaper |, Fig. 4a)] that is Fourier transformed just with respectt;o Then
the slices atw,=0 were plotted as a function of the delay time=27. Increasing concentration results in no echo at sufficiently l8sg

VIll. SUMMARY AND CONCLUSIONS —o0 andV— oo, under the assumption of a stationary process

(i.e., a system at equilibrium), a simple integral equation, Eq.

(4.142, has been obtained for the many-body line shape func-
gon, G(w) in terms of the two-spin line shape functigtiw)

and the concentratiorG = N/V.

The main result in this work is the solution for the mag-
netic resonance line shape arising frohidentical particles
that bear spins of 1/2 and are undergoing dipolar interaction
which are modulated by their relative translational motion.

This result describes the whole motional range from the rigid_ 1he general expression for the many-body FID signal,
limit through the motional narrowing regime. The generalEd- (3-11) was generalized to the proto-typical solid echo

result for the FID, Eq(4.1), only required the assumption of PUISe sequence, E¢6.15), and then to the thermodynamic
the stochastic independence of the motions of the spins arftiit, EG. (6.16). The solution was rigorously developed for
the usual high temperature approximation, E}3). Equa- the case of exact resonance. This case guarantees that no new
tion (4.1) shows that the many-body solution fridentical orders of coherence besided are produced by nonselective
spins of 1/2 may be obtained from just a knowledge of thePulses in a system dfl identical spins of 1/2(This follows
behavior of a single pair of particles, and it is written as arigorously from the eigenvalue properties of the starting vec-
time-ordered binomial expression involving the two-spin iso-tor and the interaction matrices in the eigenoperator repre-
chromats associated with the two allowed transitions resultsentation.JThis result also depends on the high-temperature
ing from the interacting pair of spins of 1/2. In the very slow approximation for the equilibrium density matrix, as well as
motional limit, the line shape expression yields Anderson’sthe assumption of the statistical independence of the motions
statistical theory for line shapes in a rigid lattice. In the mo-of the spins. Removing either of these assumptions would
tional narrowing regime it is consistent with the well-known result in generating other orders of coherence, as is well-
Torrey results. In the thermodynamic limit, i.e., whéh  known in solid-state NMR?
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FIG. 5. Homogeneous relaxation timés,, for N spins of 1/2 in the thermodynamic limit as a function of the diffusion coeffieddnt calculated for three

different concentrations as indicated. The values at the higher concentration were rescaled accordingly in order to illustrate the departure from the linear

dependence of, on D1, as opposed td% . A T, minimum is seen at-D=0.05y?4/d, i.e., at about the same value as for the case of two spins of 1/2,
cf. Fig. 4 of Paper I. However, for multiple spins, tiig¢ minimum is shallower. Dashed lines show fits to limiting power-law behavidF,06n D+ in the
slow and fast motional limits.

Convergent calculations of the many-body line shapegated. In addition, the expansion of the density matrix in the
and echoes could readily be performed based on the stochaset of symmetry-adapted eigenoperators allows one to take
tic Liouville equation for two spin-bearing particles under- full advantage of the inherent symmetries of the problem,
going simple Brownian relative translational diffusion. Thesesuch as those associated with the statistical independence of
calculations showed that a Lorentzian line, whose width ighe motions of spins and with the nonselectivity of pulses for
proportional toC, is obtained over the whole motional range like spins.
and is in agreement with the Anderson solid-state limit and  We believe that the method of representing the commu-
the Redfield motional narrowing limit. The solid echo simu- tation superoperator in an eigenoperator space may be ex-
lations show characteristic echoes for very slow motionstended to more complex problems, including the relaxation
which are attenuated as the motional rate increases a@d/orof unlike spins and more involved pulse sequences. Among

becomes larger. In particular, the homogenebsis, which

the advantages of this method are: more transparent symme-

are associated with the echo decay show a power-law depetry properties of the interaction matrix and relatively simple

dence in the very slow motional regim@as Dy %%). Al-
though some departure from a linear dependenc‘gdfon
C is found at slow motionsunlike the case foll5 ~1), simi-
lar values are found for thB+’s that correspond to th&,
minima.

vector-matrix multiplications involved. Moreover, it may al-
low one to treat more complicated forms of the spin Hamil-
tonian, such as for spins greater that 1/2. In subsequent work
we intend to further explore the formal properties of the
many-body interaction Hamiltonian in the eigenoperator rep-

The present work may thus be seen as a unifying methotksentation for the purpose of developing a methodology for
which bridges limiting theories of many-body magnetic reso-treating multiple quantum coherences and cases of unlike
nance developed about four decades ago. The generalizedins.

cumulant method has proven to be a powerful tool for find-

The results in the present paper can best be studied in

ing ensemble-averaged FID or solid echo components in thdilute solutions of like spins of 1/2, where the dipolar inter-
case when motions of the spin-bearing particles are uncorrection is significant, and the slow motional regime may be
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FIG. 6. Comparison of homogeneous and total broadeffa@ndRj , respectively for multiple spins as a function of the diffusion coefficié» , plotted

on a logarithmic scale showing the solid state limit, the motional narrowing limit, and the intermediate motional region. Dashed lineRhd&atdated
using Egs.(3.12) and (3.15) for the Redfield(fast motional limit and the Andersor(solid-state)limit, respectively. TheR, maximum occurs in the
intermediate motional region; whereas in the motional narrowing Rjitand R, approach each other.

conveniently achieved. This would be the case for ESR studACKNOWLEDGMENTS
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dence ofD; %% for the homogeneous, in the viscous(or ’ ’

. . ) o ) Zax for insightful discussions. This work was supported by
slow motional)regime, this contribution would persist over a grants from the NSF and the NIH.

wide range of viscosities. An additional matter for study is
the practical case of a complex spin Hamiltonian that in-
cludes hyperfine couplings of the electron spin on each radAPPENDIX A: EIGENVALUES OF THE MATRIX SUMS,

cal to the magneti i is Wi ire2isLCI""1"

gnetic nuclei, when present. This will require=i<jL >/
generalization of our approach to more complex spin Hamil-  The first important observation we shall make is that the
tonians along the lines suggested in the previous paragrapAght-hand side of Eq(3.6) for g(t) is invariant under a
Finally we note that only intermolecular spin interactions permutation of any two particles. On the other hand, permut-
including intermolecular dipolar antHeisenberg)spin ex-  ing the two particles will at most switch two components of
change terms require a many-body approach; intramoleculahe left-hand sub-vector of coefficieng(t) that have the
spin interactions, that are usually modulated just by rotasame indicek and m. Making as many pairwise permuta-
tional tumbling, can be more simply treated by the effectivetions as necessary, one can then show tgt™(t)
two-body stochastic motional analyses of Paper | and refer=g™(t) for all € and €. In fact this is independent of
ences therein. whatever numbering system that is chosen to number the
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permutation setge}. Therefore, it is sufficient to calculate term which will cancel each other upon multiplying by a
only a single component aj(t), i.e.,g*™(t). column vector of all ones. Therefore, the result of action of
Let us now consider théh block of the matrixC{"?)  the matrixC{'") on the initial magnetization vectaj(0) is,
defined in Eq(2.10)and compute the result of the action of

the matrix on the initial magnetization sub-vectgy0). For

a given spin pairi(,j) one can schematically represent the

individual blocks of the matrixC{"") according to the classi- | e, ... 1 3,
fication scheme for the coefficien@égm)(t), cf. discussion : : 1 :

below Eq.(2.16) noting that only coefficientg*™(t) and ED e D, 1 3.,
g*1tm=1(t) are coupled byC{). Indicesk andmwil | | e )
then vary from 0 toN—1—1 and froml to 2l -N+1, re- 1 ©.-
spectively. One can represent the prod@Gft’’g (0) in the . ;

following form: X| 1 =] O
(k, m) 0 0
EDser ~(F Do 0 0
©.H 1 : A ) 0

O (;%)A,Em..(i%)a,e,,,
1,1- 1) 0 0 0

2,1-2) 0
Ci/g0) = X (A2)
303 ... 0
In order to comput@Cl(i’j)]ZgKO), we note that the col-
. . umns of the lower off-diagonal block containing nonzero
O : K elements will always correspond to zero rows of the diagonal
block of C{'"") with k=0 [denoted ag” and€” in Eq. (A2)].

Indeed, as follows from the commutation relations, operators
(A1)  havingk=1 are obtained from operators wit=0 when the
combinationd {19 or 1914 are encountered, which cannot

Here the nonzero elements of the maf@{!) are contained > " . - .
arise in the upper diagonal block describing the couplings

within the squares. Clearly, the result of the multiplicationb - binati h@l(” q
with blocks havingk=2 will yield zeroes identically. There- PStWeen operators containing combinatiohs’l,” an

(1 () (7)) (3 () inli
fore, it is just necessary to discuss the blocks wkth0  '+15 [°f|+(! @ and!Z’I ;"] Therefore, when multiplied by
and 1. the matrixC}'"/’ for the second time, the lower half of the

In Eq. (A1) the diagonal block wittk=0 will reflect resulting vector corresponding to#0 will still consist of
couplings amongst operators of the same typeZ€rO€s, since nonzero eIement; in rafvsr &' of the Iovvgr
ff-diagonal blocks will be multiplied by zeroes at positions

|1yl o141 gl g-+1 5, which contain exactly one operator ! nai bi \ : _
|, m=| operatorsl,, and N—1-1| operatorsl ; corre- and €” arising from the previous action of the matrix
1 )

sponding to the different spins. As follows from the commu-C{"”. This means that the spin-flip terms in the dipolar
tation relations, cf. Eqg2.11), the block wittk=0 contains Hamiltonian likel 10) " apart from a numerical factor of 3/4

2 (N—1) nonzero rows, which correspond to twice the num-in the interaction constant, do not affect the observable FID
ber of distinct pairs that one can form with the operatars signal after a single nonselectiVﬂ!Z_ pulse. By _contrast, the
and the remainingN— 1) operatord , andl ;. For a given eth (Orzf'th) component ofg,(0) with k=0 will become
spin pair §,j), each nonzero row of the block will cortain (*3/4)°. Repeating this operation times and summing
exactly two numbers;-1/2 and+1/4, where the plus sign OVer all spin pairs containingml pairwise combinations
corresponds to the operation 1 or 1910 and a minus '_(+')|(cf) each yielding one (3/4) and N—1—m) combina-
sign to the operation o)1) or 119) . Let us denote the tons |(i)_|2) yielding one
positions of these two nonzero numbéess) and (e,€'), re-  (—3/4)", one obtains for any that

spectively, wheree is the index of the original coefficient

g™ (t) ande’ is the index of the coefficierg®™(t) that is N

obtained by switching of particlésand;j. Now, the lower left [ > [C,("”]”g|(0)] =13+ (N=1-1)(=H"].
off-diagonal (i.e., the[(0,]),(1))]) block in Eq. (A1) will =l

reflect couplings between operators of two different types,

namely, 1 1 1 Il lg-lg and 10,1, 1 lglglg.

The operators of the former type havikg=1 can be num- Applying the permutation symmetry argument given in the
bered by its own prescriptiof$}. According to the commu- first paragraph of this Appendix, we conclude tgg0) is an
tation relations, each nonzero row of the off-diagonal blockeigenvector of the matrix sunﬁq[cf"”]”, with an eigen-
e.g., rowssandd’, will contain one+1/4 term and one-1/4  value given by Eq(A3).

€

(A3)
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APPENDIX B: EIGENVALUES OF THE MATRIX SUMS,  the number of operators, in an eigenoperator subsgf?’
s LCiTPXICf )P having zero pair$.|_, i.e., k=0.
As a result of a single nonselectiven/2 pulse around
We shall now prove that for a nonselective or hard pulsethey axis applied at time, the eigenoperatoriég':'m) corre-
each sub-vector of the starting vectp(0) is an eigenvector sponding tou=1 will transform in the rotating frame as
of the matrix sumz{.; c(tD1px[clDn=P, wherel denotes  follows:

(i1) y(in) (i3) (i4) 7(i5) _ - (1) (i1) (i1) (i1)
0L 009, g N 00400

X (I(ofz)+1(ﬁiz)+1(+i2)+](j2)). . .(1(053)+1(Bi3)_1(+i3)_1(j3)). ..

m terms

(=159 109 15— 1y (105 1 = 19 4 1)

2k terms

(B1)

with an analogous expression for eigenoperators havingame values at positions corresponding to the permutations
n=—1. Note that the signs of both the transformation to theof the two spins ,j) and (i), i.e., (=3/4)""P. When the
rotating frame and the rotations by the pulse have been rerector [C("1)]"~P g(0) is further multiplied byX, for the
versed here to get directly the elements of maXthand not  ositions in the resulting vector that correspond to combina-
of its transpose, cf. Eg5.3). As can be seen from E®1),  ionq containing 10 " the matrix multiplication over coef-

a (m/2), pulse mixes, in principle, all the components of theficients att D19 and 1919 will yield zeroes; whereas the

vector-coefficientg(t) with different coherence indicey. o _ (D) 1)
However, in the high-temperature approximation, cf. Eq.SUMS OVer positions corresponding K1 or 19157 of

(3.3), only the elements of the starting vecm(0) corre-  [C!"’1"~P g(0) will be doubled. By contrast, for positions of

sponding tk=0 are nonzero, and, for the initial magnetiza- the resulting vector pertaining 1%, the sums over po-

tion after the firstm/2 pulse along the axis, are equalapart  sitions havingl V1% or 119 will vanish, while the sums

from the factor of 2N Q/2i kT) to either+1 for u=+1, 0r  over pairsl V10 and1 P19 will double. As can also be seen

;1f0:jﬂ=—1éWhéih sfig;ifigantlly Sig‘P"ﬁeS the calculation. from Egs. (B2c) and (B2d), the matrix multiplication over

ccording to Eq(B1), individual products containing spiins " : G )y (i

andj willi]/ield ?h(e fgllowing compbinations after thegscfcond pozl'glonf, corresppndmg tbg)l.g) or I(*)I(*J) of the vector

[Cc:DIN=P g(0) will always yield zeros. Therefore, for a

pulse: given spin pair {,j) the result of action of the matriX on
o L1010 and =100 vector [CUD]"~P g(0) will be just an exchange of values
[|<+'>|<Cg>](,7r,2)ﬁ —I@IZ) and 101 0) (B2a)  (—3/4)"P and (+3/4)""P at the nonzero positions of the
s =B vector [C(H)]""P ¢(0). These values need to be further
101D and + 191D weighted by twice the sum over all permutations for the
[Iﬂ)lg)](#,z)ya[ I_(i)lti)a and —I_(j)lt“)ﬁ (B2b)  remainingN—2 spins, including the sign of each permuta-
e =B tion with which it appears in EqB1). But this sum is for-
{D]) 4190 mally just the sum over the coefficients of the polynomial
[|<ai>|<ﬁi>](w/2) _,[ * & i)an = ﬁ(j) 0 (B2c)  represented in E¢B1), which can be readily obtained from
v [ —IE and =11 Eq. (B1) by letting all the remainindN—2 polarization op-
) - eratorsl , andl z equal to unity and the remaining lowering
. FIOD and =11 o
MM *la * B and raising operators, andl_ to be all zeros. Thus, fdk
[T a2, =) )0 g 2101 (B2d) : ; ,
=lely and +liy. =0 this sum is equal to 2" Nx2N~2=1/2 and is zero for

k# 0. Summing over the contributions from the components
g s . i =+ i iti

will yield zeroes upon further multiplication by the matrices correspondlng to botta_ L havmg a_n addltlonall factgr of

[CUD]P as follows from the commutation relations, Eq, SXP(~1A07), and tox=-1 with exp(iAl)), and invoking

(2.11), and, therefore, can be disregarded. The result of tHf'® Permutation symmetry arguments similar to those used

matrix multiplication of the initial vectorg(0) by matrices  earlier to find eigenvalues of the matrix sug.;[C{"’]",
[C(:D]"~P is discussed in detail in Appendix A. In particu- cf. Appendix A, one has for thith block of the coefficients

lar, for givenk andm the vectorf CU:)]"~P g(0) contains the g?:}”‘)(t) that

Other combinations containing’1, 1910, and 1§19
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N
2 [Cl(i,j)]px[cl(iyj)]n*p exp —iAQ7)g(0)

i<j
=cog AQD[I(HP(~H"P
+(N=1=1)(=DP(H"P1g(0). (B3)

As can be seen from EqB3), it includes a factor of

cos(AQy) which diminishes the amplitude of the echo signal
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