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Modern applications of nuclear magnetic resonance and electron spin resonance, and especially
quantum computing problems call for more effective formalisms to describe relaxation and
evolution of various orders of coherence in the presence of motions of the interacting spins. Here we
suggest a formulation for the description of multiquantum spin states based on direct-product
structures that take into account the inherent permutation symmetries and quantum coherences of a
multispin system. Convenient recursion relations are obtained for the matrix representations of the
N-body Hamiltonian superoperator and pulse propagators. This allows one to obtain compact
expressions for the evolution of magnetic resonance signals when the dipolar interactions amongst
spin-bearing molecules are modulated by their motions. These expressions include the
free-induction decay and solid echoes, as well as the decay of higher-order coherences under the
assumption of statistical independence of the motions of the spin-bearing molecules. Exact results,
not requiring this assumption, are obtained for the case of the truncated dipolar Hamiltonian.
Important phenomena that arise in multispin systems, such as instantaneous diffusion and spectral
diffusion arising from motions, are studied more rigorously by solving the equation for the time
evolution of the spin-density states. The many-body magnetic-resonance signals in the presence of
motions are obtained by solving the appropriate stochastic Liouville equations. These solutions may
be compared to solid-echo experiments to extract translational diffusion coefficients even in the
slow motional regime. ©2001 American Institute of Physic§DOI: 10.1063/1.1382816

I. INTRODUCTION we suggest a direct-product formalism for calculating mag-

The von Neumann equation for the evolution of the spin-"€lic_résonance signals in a many-body system of spins
density operator represents the most general way of treatinjg{z- Direct-product structures allow one to most easily ex-
many-spin systems. However, in most cases the conventionfl€ss the interactions amongst various spins in terms of
treatments restrict its solution either to the solid lifie., ~ Many-body interaction matrices, and can be used to define
when the overall Hamiltonian is time-independewi to the  the multiquantum spin-state vectors, on which these matrices
fast-motional(or Redfield)limit. In the solid limit the solu- operate. One of the first applications of the direct product for
tion can be written in terms of matrix transformations of thethe description of multispin states is found in Onsager’s ap-
equilibrium density matrix, whereas in the latter case oneproach to the solution of the two-dimensional Ising mdtlel.
usually truncates the formal series solution for the denSit}Direct_product operators have recent]y been used to repre-
operator at second-order commutators. In more general treadent pure density stafe’¥ and the total Hamiltonian operator
ments, e.g., when motions of the spins become sufficientlyt 5 many-spin systert. However, algebraic properties of
slow (or if there is noa priori knowledge about their time 4, mjiionjan supermatrices have not been investigated in suf-

scale), it b_ecomes necessary o introduce §uperoperat01ri§iem detail. Here we factorize matrix representations for
corresponding to the operation of commutattoh.There- . : .

. . the Zeeman and dipolar superoperators into difectkro-
fore, to treat the many-spin problem in a general way, we K duct& in t f ient . lati
utilize a matrix representation for the Hamiltonian super-nec erjproducts in terms of convenient recursion relations.

operator(Liouvillian) in order to calculate the time-evolution V& show that, in the eigenoperator basis of the unperturbed

of the density operator for a many-body systeaturally, Zeeman Hamiltonian superoperatothe multispin density
in such a representation the multispin density stdtee  States can also be factorized in terms of direct-product struc-

many-body density matrjxare written as vectors, on which tures that naturally take into account all possible multiquat-
the superoperator matriceésupermatricesbperate? In this  num coherences. As will be shown by several examples, such
case the von Neumann equation for the overall many-bodg formalism allows one to calculate the magnetic resonance
density matrix just becomes a system of coupled linear difsignals in various cases by merely applying the main multi-
ferential equations which can in principle be solved by stanyplication property of the direct product to superoperators as
dard matrix methods. many times as needed, viZA®B)(a®b)=(Aa)®(Bb). As

In the present paper, hereinafter referred to as Paper hn jllustration of the method, we rederive the earlier résult
for the free induction decayFID) arising in a system of
¥Electronic mail: jAf@ccmr.cornell.edu identical interacting spins of 1/2 by applying the direct-
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product methodology in conjunction with generalized cumu-more complicated spin-Hamiltonian, which includes off-

lant expansion$.1? resonance effects and multiquantum transitions of Bre
Most modern NMR and ESR experiments are not limitedsystem. In addition to describing the effects of motional

to just the acquisition of the free-induction dedd@fD) sig-  modulation of the many-body dipolar interactions on the

nal. However, the calculation of multiple-pulse sequences bgpin using the SIM assumption, we also treat the coherent

conventional methods often yields results that are too diffi-effects of “spin-diffusion” in a solid crystalline lattice oB

cult to study analytically, especially in many-body systems.spins, wherein the SIM assumption is inapplicable. This case

This also includes the evolution of higher-order multiple clearly shows the value of the direct-product formalism for

quantum coherences produced by the pulses, a matter theeherent many-body problems.

was too complicated to be successfully treated by our earlier

method’ Therefore, the formalism is further developed in

order to include the effects of additional pulses. The soliddl. THE EIGENOPERATOR METHOD FOR SOLVING

echo and Hahn echo pulse sequences in a many-body systdiiE DENSITY-MATRIX EQUATION

of identical spins are analyzed from first principles giving

. . o We seek the solution of the density matrix equation,
rise to motionally generated spectral diffusion and the phe-

nomenon of instantaneous diffusibhWe also investigate dp(t) ) _ ) N i)
the relaxation of multiple quantum coherences. Exact results  ~ 5~ — [H.p(O]= —I[Ho,p(t)]—lgj [H™p(0)],
are obtained for a truncated dipolar Hamiltonian, i.e., con- (2.1)

taining thelg)l(zj) terms only. When the assumption of sto- .

chastic independence of the motions of the spin-bearing mof™! the fornt

ecules is made as in Ref. 7, then the results are generalized

for the complete secular dipolar Hamiltonian, i.e., involving P(t):% 9(a(VE(q - (22)

the 2110 —11M10) terms?* o : i) :

We wish to emphasize that only through the formalismHere the_pa|rW|se Interaction Hgmntonl_ah’é may be in

developed in this paper has it been possible to generate k neral tlme-de_penden_t, the spin-density coefficigps )

new results in this work and in an accompanying work re some functlon_s of ime as vyell, and thg, are a _set of
§a5|s operators with a numbering schefagthat is intro-

hereinafter referred to as Paper Il. Despite our frequent us . . . .
of the assumption of stochastic independence of motion uced in the next section. For a systemoparticles of spin

(SIM) the many-body spin system is a formidable one, espe—/z’ oper%torf{s} can be \_/vrltten as a product of spin
. : operators?® each acting on its own spin

cially when taken over the whole motional range. Only by

the new methodology have we been able to provide the cor-

rect results for spin-echo experiments, which necessarily in- E{e}:_l:[

volves the effects of higher order coherences. As we noted in =t

our previous workK, these results are required to analyze suchHere {€} denotes a permutation sdt}={e;,€;,...ey}, €

experiments in solutions of like spins of 1/2, where the di-=+, &, 8, or —, 1 andl _ are the conventional raising and

polar interaction is significant, and where the slow motionallowering spin operators, and the polarization operatgrs

regime is achieved, e.g., for ESR studies on radicals in modand| ; are defined ds

|<€‘i>. (2.3)

erately viscous fluid§.e., whereD;< 10 ° cn?/s, whereD ¢ | =14 =11, (2.4)

is the translational diffusion coefficient for relative diffusion “ 2P ‘ )

of two spin-bearing moleculgsOur new results supersede AS follows from the trace properties of , |, I, andls,
the overly approximate results of Ref. 7. the operators of Eq2.3) form a complete orthonormal basis

The assumption of SIM is to our mind appropriate for S€t in operator space with the Frobenius trace metric defined

discussing fluids: Nonviscous, viscous, or frozen. As weaS
have pre_vic_n_Jst shovyn, our theory pridges the gap_between (Ejg,Eer) =T EL}E{e'}): e (et (2.5)
the two limiting theories for the continuous wawew) line-
widths: Motional narrowing theory and the Anderson statis-Where the dagger T denotes the Hermitian conjugate.
tical model for dilute spin systemé.These classic theories L€t us consider the following dipolar interaction Hamil-
are based on thAnsatzof independently summing up the tonian:
effects of two-body interactions. Our results, appropriate HOD =y E(rO[1510— 20104 10p0))]
over the whole motional range, show that the SIM assump- Whiz fz o adiy Te T D
tion is sufficient to recover these limiting theories. Thus, YE)Z)(Q”.)
while retaining this assumption, we also explore the results F(rij)ET,
for more concentrated solutions, which take thear)solid- 1
state lineshapes from Lorentzian to Gaussian. where y=\/(167/5)/y?% is the coupling constant,; is the

In Paper Il, the direct-product formalism is used to de-distance between thi¢h andjth spins, and);; is the orien-
scribe spin relaxation in aA—By system, e.g., an electron tation of the vector;; connecting the two spins with respect
spin bearing molecule dissolved in a solvent of proton conto the main magnetic field. Here the time dependence of
taining molecules. The direct-product formalism was essenH() may be implicitly contained in the classical variables
tial for us to obtain all the results reported therein, given ther;; . By using the orthogonality property of the eigenopera-

(2.6)

Downloaded 09 Sep 2002 to 128.253.229.132. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 115, No. 6, 8 August 2001 Direct-product formalism for NMR 2403

tors, one obtains an equivalent of the von Neumann equation¥ =1 N=2 N=3
for the density matrix in the eigenoperator representation that ; L L
couples the functiongy(t). That is Ll-e T [11 —-
R T LIl <=-
99;4(1) ! T T
€ _ (i)
T—_|z AQ{E}{E/}‘I‘XE C{E}{E,}F(rij)
{er} 1< I, 11 ==z
X gron(t 2.7) py— LLL =
%erp(t)- ' P T e
Here the(diagonal) matrix of frequency offseta\Q) is the Tfed =<o
representation of the Zeeman—Hamiltonian superoperator in’ B
its eigenoperator basis, and is given by 93
1 ~ &l —_ LLL,
AQ{E}{E,}: 5{5}{5’}Tr(E{e}[HOrE{e’}])- (28) \'\\\\\\7\\ 25:{,:
. T~ LIT
The matrixC(1) represents the interaction Hamiltonian be- ~—= 1 '
tween spini and spinj in the eigenoperator basis, and is \1}‘;
defined by ’-’-
XCio o F (1) = THE[G[HID E o)), (2.9) T

The explicit form ofc(i) clearly depends on the commuta- FIG. 1. Quaternary tree numbering scheme for constructing the eigenopera-
tion relations between the basis operators and the interactioff basis for the Hamiltonian superoperator representation.
Hamiltonian,H (1),

Equation(2.7) allows one to formally solve for the evo-
lution of the motionally averagetbver all realizations of a for an N-spin problem shall be sought as a linear combina-

Brownian motion, e.g., translational diffusion in variablestion of direct-product structures each of them having length
rij) components of the density matrix in the eigenoperatoi, viz.,

representation even if the interactiontiime-dependent, viz.,

(tl))>g(0) (210) gN(t): 2 fel,ez,...eN(t)iel®i62®'”®ieN1 (31)

€1,€60,...€N

i _i,sN (iqjq)t )
ia0t-iyzN_ o fiay rer
= 1501 0 !

Here the symbol “O” stands for the Dyson time-ordering, where the coefficients, ., .. (t) are functions of time and

which accounts for the fact that the superoperator matriceg — 4, g, or — for spins of 1/2, by analogy with Eq.

may not commute at different times, and the triangular 3) Here the symbol &” is used to designate the direct

brackets denote motional averaging. (or tensor, or outer, or KronecKeproduct. Specifically, for
any two matrice#\ andB of any size(including vectorsthe
direct product is defined By

ljl

Ill. DIRECT-PRODUCT REPRESENTATION OF

SUPEROPERATOR MATRICES AND SPIN-DENSITY a;B  apB - a,B
STATES IN THE N-BODY PROBLEM AoB=| : : i, (3.2)
The first step in constructing the matrices for the amB amB - amnB

Hamiltonian superoperator and the vector describing the ini
tial spin-density statéwhich we shall call the starting vector)
is the choice of the bookkeeping scheme for the eigenoper
torsE;, . As a numbering scheme for the eigenoperators w
choose a quaternary tree structure constructed by analo
with binary trees as depicted in Fig. 1. The spins are num- 1
bered from the left to the right, i.e., the first operator is un- 0
derstood to act on spin 1, the second—on spin 2, etc. The .= ol io=
0

We have also introduced the density-state vectprsorre-
sponding to each individual spin that are defined, according
% the chosen ordering of the operatdrs, 1,, 15, andl _

ggr spins of 1/2 by

index e runs from the top to the bottom at a giviip and one
can, therefore, omit the curly brackets in E¢28.7)-(2.9), (3.3)
sincee is no longer a permutation set but a consecutive num-
bering index according to the method of generating the qua- Let us consider a system of equivalent spins of 1/2,
ternary tree. Note that the “length” of each eigenoperatorremoved from equilibrium by an initial nonselective /),
(i.e., the number of single-spin operatois constant and is pulse. Let us call the difference between the number of op-
equal toN. Note also that the ordering for individual spin eratorsl ; and the number of operatofs in a given eigen-
operators is chosen to be; , I, I, | . operator theorder of coherenc€ of this eigenoperator.

We start with defining the properties of the vector spaceClearly, the presence of the operatbgsor | ; does not affect
of time-dependentultispin density stateg(t) on which the  u. In the high-temperature approximation, the starting vector
) and C-matrices operate. In general, a density-state vectogy(0) corresponding to the eigenoperators that have only

O or o
w
|
oOpr oo
O oo
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one operatoll , (w=+1) and all possible combinations of N-1
operatorsl,, and |z, is readily seen to be given fai+1 On(0)= 2 iatigm®is @i, it m. (3.6)
spins in terms of the recursion formula m=0

(0 =(i,tigegy V(0) +iy@fi,+igl",  (34)  Direct-product structures of the above tyfiee., S A
where the second term on the right gives the contribution o B&{A}N™) we shall call the “dressed direct-product
i, from theN+ 1th spin, and the first term just increases theSUms.” Thus, the starting vector for tiebody problem con-
product operator dimension fron¥4o 4N*1. There is also a sists of a sum oN direct-product structures, each of them
counter-rotating component correspondingute —1 which ~ having “length” N.
can be considered separately from fhel component for The matrices corresponding to the interaction Hamil-
calculating a pure FID signal. For the sake of compactness dpnian superoperator in the eigenoperator representation are
notation, we shall further omit the index whenever pos- @also given by a recursion formula as
sible and include it as a superscript only when it becomes
necessary. We have also used curly bracket notation to de%1 -
ignate the direct product repeatidtimes, XCNLaF (1))

i<j

Vol N+1 )
{RV=ReRe -eR=R]] oR. (3.5) :E®2;i<j XCF(rip)
. m=1 "
b | | + 3 Ma(xCoo BN DL F(rymey). (37)
The recursion formula, Eq3.4), has a simple meaning. m=1

On the one hand, it is easy to see tHat the high-

temperature approximatipthe starting vector in the direct- The above equation has again a rather clear meaning: Addi-
product representation having=+1 corresponds to the sum tion of a new spin increases the size of the spin space by a
ZiNzll(ﬁ in the usual spin-operator spatgncel ,+15=1).  factor of 4 (which is taken care of in terms of the direct
On the other hand, by adding one more spin to the systemnmultiplication by the 4xX4 unit matri¥ from the left)plusN
N—N+ 1, we increase the dimension of the space by a facadditional permutations to account for the interactions of the
tor of 4. Since the total order of coherence is constaat, “new” spin (“spin 1”) with the remaining\ spins located at
u=+1), we shall only have products gf(0) withi,+ig, positionsr 4, 1 relative to spin 1. In Eq(3.7), the matrixC,

the latter term adding no coherences, andvith all possible is the two-spin 16 by 16 interaction matrix, the elements of
combinations ofi, andig as given by the direct-product which can be found by explicitly calculating the commuta-
binomial {ia+iﬂ}'\'. By applying the recursion relatioNl tors of the interaction Hamiltonian with the eigenoperators,
—1 times, the general formula for the initial multispin Eq.(2.9). For instance, for the case of the dipolar interaction,
density-state vector becomes Eqg. (2.6),C, is given by

1(1)1(2)
12 1/4 M
-172 - 1/4 ?
1/4 -1/4 @
1/4 12 1@
1(1)1(2)
a o
) 72
1/4 -1/4 Ay f

-112 -1/4 A

C,= 14 -1 ;D@ (3.8)

B +
-1/4 1/4 ;0@

o

Iél) IéZ)
172 1/4 1&‘) 9

-1/4 1/4 Ifl) IEZ)
-1/4 -172 A A

1/4 12 1°r?

AR A5
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where we have included the corresponding eigenoperators di+matrices. They will be acting on coherent spin states given
the right side to indicate their ordering scheme. We shall noby direct product structures of the forawb®c (describing
make much use of the explicit form for the mat®¢, but  various multispin states of the many-body systewhere the

will exploit in more detail its eigensystefief. the next sec- ordering corresponds to spins 1, 2, and 3, respectively. The
tion). Now,IT,, are 4"+ by 4N** permutation matrices such matricesC(*? and C(?>® are self-evident, and are given by
that

C1?2=C,®E, C?3¥=E®C,. (3.11)

H]_: 1,

The remaining matrixC*® can be obtained from matrix
I1,=Ps3, c(®2) for example, by permuting spins 2 and 3 in the vector
I15=PaPss, a®bec first, then acting by the matri€>?, and then per-

(3.9) muting spins 2 and 3 again to return to the original number-

114= Py5P34P23, in(g ?cheme. This is equivalent to transforming the matrix

c12 as

(13— (L277-1
=Py inPun-1Pos. CH=11,C7,

Here the role of individual matrice;; | ; is to permute the =I1,(C,® E)H;1
ith andi + 1th elements, numbered from the left, in a direct- _
product sequence consisting of several subvectprof =(E2P)(C,2E)(EaP), (3.12)
length 4, viz., whereP is a 16<16 permutation matrix such that
Pit 110 @808, 10 = ® 08 ,108® . -
i+ 191 1 1 1 (3.10) P(a®b)=b®a, P(A®B)P 1=B®A, (3.13)

Equation(3.7) can be illustrated for the case of three for any four-dimensiona{4D) vectorsa andb, and for any
spins leading to three distinct pairwise interaction4xX4 matricesA andB. The matrixP is explicitly given by

1
1
1
1
1
1
1
1
P= 1 . (3.14)
1
1
1
1
1
1
1
|
Note that clearlyPC,P~*=C, since interchanging the two For N identical spins, one has clearly for any
spins does not change anything in a two-body interaction,
Hnon(0)=gn(0), (3.15)

C,= C;. Again, the explicit form of the matrif will not be

used here; it is sufficient to know that such a matrix exists.since the direct product structure of the starting vector given
Thus, together with the 4 by 4 unit mat(i&), C; andP by Eq.(3.6) is invariant under any permutation of the spins.

fully determine all the possible interactions in a multi-spin It can be checked directly that the matrix representation

system. of the two-body dipolar superoperator, £§.8), correspond-

Downloaded 09 Sep 2002 to 128.253.229.132. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



2406 J. Chem. Phys., Vol. 115, No. 6, 8 August 2001 A. A. Nevzorov and J. H. Freed

ing to the Hamiltonian (M1$2)—1/4(1 V1) + 1 @)y can be factorized in terms of direct products of 4-by-4 matrices, viz.,
C,=(1,@0)a(l,0e) —(exl,)®(exl,)—i[(l,®e)a(l_ce) —(ex] )@ (el _)
+(l_®e)x(l.,0e)—(exrl_)®(exl )], (3.16)

wheree is a 2-by-2 unit matrix. Thus, th&l-body superoperator in™dimensions represents the dressed sum N¢NB
—1)/2 direct products, each of them having the corresponding operators at pos#iots That is

H =y F(r;)[E®- - E® ([ 2e)RE®- - E® (L@ e)®E - ®F

—E®--E® (e®],) ®E®---E® (e®])) ®E---®E], (3.17)
S— N——’
ith position Jjth position
T
wheree=z, +, or —, x.=x for e=z and is(—x/4) other- ngit@iﬂz i%[ii®iﬁ—ig®ii], (4.3f)

wise, and the symbdl designates the matrix transpose.

Cli,®ig=z[i,®i_—i_®i], (4.3g)
IV. MANY-BODY FID AND EFFECTS OF THE . S
EXCHANGE TERMS Coi @i =5[1,®i5—14®i,]. (4.3h)

In this section, we shall re-derive the solution to thelt is important to note that the exchange terms result in an-
motiona”y averaged free-induction decay Signa| of eqlsymmetrlc direCt-prOd}JCt Combin.ations with re;pect to in-
(2.10), which can be performed more efficientgnd more terchanging the two spins. Other important relations are
elegantly) by using the direct-product formalism as com- Cdiag,g){i 4 }2=Cdiag’e)i i
pared to its initial derivation in Appendix | of Ref. 7. We 2 @ B 2 apTap
shall show that the starting vector has very simple eigenvalue = (;fzﬁagf”i+ _®i, =0, (4.4)
properties in the case of nonselective excitaiiidke spins). . o ]

For practical purposes, it is convenient to break the di\vhere the density-state vectors for individual spins, and
polar Hamiltonian superoperator, E@.16), into the sum of Iééﬁaare defined in Eq(3.3), and the two-body supermatrices

2

the starting vectogy(0) corresponding tae==*1, Eq.(3.6),

_ di .
Co=C5%+ C5Y, (4.1a)  canbe decomposed into a sum of orthogonal ve@gg$0)
where gv(0)=2 >
diag__ 3 ! over all permutations
Co=3[(1,@e)a(l,0e)—(exl)®(exl,)],
Co=—L{(1,00)8 (1,06 — (e2],)®(e31)) (4.1b) i ®i,®i,Q0 ®i,QigRi® Qi
+i[(l.2e)(l_e)—(ex] )@ (ex]_) I vectors
N—-1
+(1_ - _ .
(- eee(l, 06— (el )o(e®l )]} =E g 1(0), (4.5)
Note that in the usual operator notation this separation is =0
equivalent to writing the Hamiltonian of E@2.6) as wherel denotes the number of vectagsin each of the direct

(i) — pydiagii) 4 pyexi) %XF(rij)[l (Zi)l(zj)_ Ly, products c;]f Iengt]]tm\l c;f whr:ch g|,N(O)f|s compolsed_. Itis th.en.
4.2) easy to show that, for the case of a nonselective excitation
(like spins), the exchange terms have a vanishing effect on
These parts have the following properties with respect to thehe starting vectogy(0), cf. Egs.(4.3e)-(4.3g). That is, for
spin-density states, which can be checked directly from Eganyi andj we have:C®()g, (0)=0, since the correspond-
(4.1b): ing statesi., i,, andig, occur ing, y(0) in all possible

Cgiaqi ®i,=*2i.i,, (4.33) symmetric permutations. More generally, fany vectorsa
andb we have
Co™. ®iz=F3i.0i,, 4.3b
2 1=®lp= T+ al=Blp (4.3b) C(a®b+b®a)=0. (4.6)
C39 ,i,=0, 4.3 : . :
2 1a®lp (4.30) By using the cumulant expansioih'?of the exponential
Cda9 . @i_=0, (4.3d)  operator of Eq(2.10), one can calculate the FID signal for a
o g system of interacting spins of 1/2, if the motions of the spins
CYix®i,=Fi[1=®i,—1,®i.], (4.3e)  are stochastically independent, cf. Ref. 7
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G(t) As follows from Eq.(4.10), the averaged many-body FID is

—ia0t-iysN_. clifidtF(r ; (ty)

T=QL(0)<GO sk O T gy(0) expressed in terms of a two-body signal when the motions of
the spin pairs are stochastically independent. The two-body
> N B FID can be evaluated by the method of the stochastic Liou-

=gn(0) expoi >, (—ix)">, [V ville equation®>**2%|n the thermodynamic limitN, V— o

n=1 = (whereV is the sample volumegq. (4.10)becomegsee Ref.

t ty th_1 7 for details)
X [ dt dt f dt

fo o T o T G(t)=G(0 thdt,&gzw) 4.11

(t)=G(0)exp Vo (4.11)

X<F(r(t1))':(r(t2))'"F(r(tn))>C] In(0). (4.7 Thus, the signal arising from collective interactions Nf

spins relaxes to its equilibrium much faster than the corre-
Here Z=2"Nhw/kT=2"Ng, the factor arising from the sponding two-body signai,(t), since on average any two
high-temperature expansion of the equilibrium density maspins spend most of the time away from each other when

trix. Since C%390) and C*() commute for the sameandj,  V—c. That is, for nearly all times of interegon the many-
we can use the binomial expansion, body time scale), it is sufficient just to know the short-time
N behavior of the two-body signal.
i n iag(ii)n— ii Plots of the many-body line shapes at different concen-
(= diag(ij)n—pr cexii)1p y y p
[C] pgo (p [c e (4.8) trations of spins are shown in Fig. 2. Calculations have been

) ) performed by using Eq4.11) as described in Ref. 7 for an
But from Eq.(4.6) it follows that only the terms withb=0  iraslow motional regime corresponding to the value of
survive, a consequence of the assumption of stochasticallye relative translational diffusion coefficient oD
independent motions in Eq(4.7). Application of Eqgs. —1074+2/d. The numbers of spins have been chosen to be
(4.3a)~(4.3c) and (4.4) directly gives the eigenvector prop- N=10% 10°, 10°, and 13 and the ratio of the distance of
erties of the componengs (0) of the starting vectogy(0),  maximum separation to the distance of minimal approach

N has been set t0,,/rmin=2100. Convergence to the thermo-
D [C]g, (0) dynamic limit has been checked as described in Ref. 7. If the
i< distance of minimal approach is chosen torhg=d=5A,
N the above values dfl correspond to concentrations of spins
= [ciagin]ng (0 C of: (a) 1.9%x10'°, (b) 1.9%10%, (c) 1.9x10?%, and (d)
2 [ 1"9,n(0) 5 % : :
<] 1.9x10?2cm 3, respectively. As can be seen from Fig. 2, Eq.

_ an s (4.11)describes a transition from Lorentzian line shapes cor-
=12 (N=1=D (=2 a8 (0), (4.9) responding to lowa) concentrations, to Gaussian line shapes

since for a given vectog, y(0) there will bel terms cor- ~ corresponding to higlid) concentrations of spins. An inter-

responding to pairsi,®i,, each yielding a factor of Mediate regimgplots (b) and(c)] can also be seen. Fits of

(+3/4)", and N—I—1 terms corresponding to pairs. the calculated spectra to the Lorentzigolots (a) and (b)]

®igz, each yielding a factor of 3/4)". and Gaussiarjplots (c) and (d)] functions are shown by
The above eigenvalue property of the starting vector alsélashed lines for comparison.

means that there are no new orders of coherence produced

during the evolution of the multispin system with the inter-

action Hamiltonian given by Eq2.10). Since the number of \y DIRECT-PRODUCT FORMALISM FOR

all the possible eigenvectogg y(0) is given in terms of the CALCULATING THE EVOLUTION OF VARIOUS

binomial coefficients Y1) as N(M;1), the expression for ORDERS OF COHERENCE FOR MULTIPLE PULSES

the N-spin FID becomes ) ) )
From the following formal equation for the evolution of

G(t) - N . the density matrix components in the eigenoperator represen-
_ AT E : nz (ij)n L K .
7 (0 exmy 2 (Zix) = [C] tation, one can calculate motionally averaged signals corre-
sponding to various orders of coherence in the presence of an
t ty th-1 intermediate pulse:
X dtl dtz . dtn A
0 0 0 g(t):<egiAQ(tfT)*iXEi'\iq1C(i111)frd‘1F(’i111(t1))
X <F(r(tl))F(r(t2))' : 'F(r(tn))>c] on(0) % Xe(;iAQT*i)(E:\‘lq1C(ilj1)f3d‘1':(ri111(11))>g(0), 5.1)
3 t ; _
=NO( expo —i—XJ dtF(r(t") where the diagonal coherence r_natu_hﬂ treqts the off
4% Jo resonance effects. Its representation in the eigenoperator ba-

No1 sis is given by Eq(2.8), which can be rewritten as a sum of
i ;thdt'F(f(t'))D _ (4.10) “dressed” direct-product structures by analogy with the
0

+exp i :
C-matrices and the starting vectgf0),
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Lorentzian regime (low concentrations)

A. A. Nevzorov and J. H. Freed

Gaussian regime (high concentrations)

T T

c)

FIG. 2. Plots of the many-body line
shapes at different concentrations of
spins:(a) 1.9x10%, (b) 1.9x10%, (c)
1.9%10%, and(d) 1.9x10%%cm™3, cf.
the text. A transition from a Lorentzian
regime [low concentrations(a)] to a

12 . . . 12 .
10f a) 4 1o -
08 F 4 08|
06 4 06 |
041 E 04
02t - 02
00 | } } 0.0 }

08 |

0.6 |

04

02

0.0 1 L oo 0.0 1

T Gaussian regimghigh concentrations,
a (d)] can be seen. An intermediate re-
b gime corresponds to plot®) and(c).
Dashed lines show fits to Lorentzian
4 [plots (a) and(b)] and Gaussiafplots
(c) and (d)] functions.

-2x 10" ny wd’ 0 2510 ey wd®  -2my wd’ 0 2ny wd’
N _ 1 1 -1 -1
AQ= D {ENoAQ,  o{EIN 171, (5.2) 11 .
~ _ _
' =5 |, 1 uE (5.7)
Here the offset matrix for theth spin is given by
-1 1 -1 1
1 00 O
00 O and for a @/2), pulse
Aﬂi —Awi 00 0 0 , (53)
0 00 -1 1 i -1
whereA w;=w;— ;. Note that in the case of like spins, the 1 - (5.8)
C-matrices commute with the coherence matrick®, 20 -1 1 1 i '
which can be checked directly by computing the commutator 1 =i i 1

[C,,E®AQ+AQ,®E]=0. (5.4)

The elements of the pulse propagator maXixin the eigen-
operator space are defined as

T _
X{e}{er}ETl’[E{E;}R( Q)E{e}R 1(9)]
=TI[E(gR Y(O)E/,R(O)]. (5.5)

In the direct-product representation, the overalhselective

Since the exchange terms are not affected by a pulse,
XCex~1=Ce) one may repeat the arguments of the
previous section for the case of intermediate pulses. In the
case of like spins one may, therefore, consider the truncated
version of the dipolar Hamiltonian containing only tH81 ()
terms, and subsequently replace the coupling congtdoyt
3x/2. We shall also consider the pure resonance case,
=0, as before. The eigenoperator representation of the trun-

pulse propagator acts on each spin individually, and can beated dipolar Hamiltonian superoperator matrix then simply

simply written as
Xn=X@X@X®---={X}N, (5.6)

Clearly, in the case dfelectivepulses theX-matrices corre-

sponding to unaffected spins should be replaced by unit ma-

tricesE. The pulse propagatoX for individual spins for a
(m/2), pulse is given by

becomes diagonal, and can be rewritten as

Co=(l1,0e)(l,0e)—(exl,)®(exl,)

=1(A®B+B®A), (5.9

where the auxiliary matrice& andB are given by
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A=A;—A,, From the recurrence relation, E(B.4), and by using the
(5.10a) above equation, one obtains a very important expression
1 0 which describes evolution of the starting vector correspond-
0 0 ing to the first-ordefor single-quantumyu.=+1) coherence,
A= , A= ,
1 0 2 0
0 1 . N ij ’ ’ &+
g<i1)(t)=e"X2i<iC<J%dt F(rj(t')g(=1)(0)
B—Bl_Bz, N
1 0 N
B,= , B,= O
0 1 = 2 (e*! 1m(t)|a+e—' 1m(t)|B)
m=1
0 0
Fikm_ 1m(i *ikm_ 1m(D;
In order to make use of the recurrence relation, &37), ® @ (e iminiy et Ty
directly, let us consider a system containiNg- 1 identical ®i,® (e *mmul 4 e kmmiullj )
spins instead oN. Since all the matrices are diagonal, they Fikmn(i +ikmn(Di
commute with each other, and the time-ordered matrix expo- ®--@ (e MmN i, et i), (5.15)

nential forN+1 spins in Eq(5.1) can be simply rewritten in

terms of ordinary matrix exponentials as where the function (t) are defined by

e—ixzi’ﬁfjlc“iU},dt'F(rij(t’))
o

—E@e iXZpsis CI Gdt F(rjt')

t
kij(t)EgJ dt'F(ry (1)), (5.16)
X @ NG (BN DI I Famaa) | (5.11) ’

To compute the matrix exponential of the second term, we o i ) o
write explicitly the sum over the permutations, viz., and the summation in E@5.15)is carried out fori <j. Itis
sufficient to verify Eq.(5.15)just for the first spin and then

N Nelorr—1 apply permutation symmetry arguments to obtain the remain-
mE:l n(Coe{E}" DI, ing terms for the rest of the identical spins. For instance, the
first exponential operator of E@5.11) has no effect on the
=3 (A®BR{EN" 1+ AQE®B®{E}N"2+--- evolution of coherence of the first spin=(1), i, ®{i,

+ . N .
L AS{EN 1B+ BoAs{EIN1 igt", and for the second exponential operator one has

+BRE®AR{EN?+---+Be{EN"1®A). (5.12)

. N N—1yy7— 1/t 45/ Y. . .
We then apply the following property of the matrix exponen-€ D= Tln( Co AN Oy o0t F(am-a(t ))|+®{|a+IE}N

tial of a dressed direct-product siim, N
eAGEE - ®E+E®B® - GE+ - +EQED 6 Z :Ali+n£[l ®e’i(X’z)Bde"F(’1m+1“'))(ia+iﬁ)
=evePr - ®e?, (5.13) N
which is valid for any matrice#, B,...Z of the same size as i+n£[1 ® (e fam1lj et Hamaallig), (5.17)

the unit matrixE. The result is

—ixzN_ n(Coe{ENHI trldtF t') S . .
™ Wm=1lln(C21E} m JodF(Tamea i.e., in agreement with the first term of EG.15).

N Note that in the case of the truncated dipolar Hamil-
=A, H ® e 1(X2BIGdUF(rypn.a(t) tonian the time evolution is contained only in the; terms,
m=1 which allows one to obtain the exact result, Eg.15). If the
N motions of the spins are stochastically independent, the mo-
+A, 1 ® et i(X2BIdU F(rymy (1) tional averaging of the direct products in E§.15)followed
m=1 by projection onto the vectay™1)7(0) yields immediately
N the binomial result, Eq(4.10), even without using cumu-
+B, [] ®e 1W2AS Frim 1) lants.
m=1 Next, we apply an intermediater(2), pulse(which cor-
N responds to a standard solid-echo experimnémtsee what
+B, H ®e+i(X/2)Adet'F(rlm+l(t'))_ (5.14) happens to quN-spin §ystem. The observed single-quantum
m=1 coherence signal is given by
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? — g(+1)T(0)<e—i)(Ei’\iqlc(iljUftTdtlF(riljl(tl))

X Xe_iXEiNl<j1C(i1j1)f6dt1':(ri111(t1))>g(+1)(0)

=(g(t— 7)Xg(7)),

since theC-matrices are symmetric. To calculatg(7), we
note that

(5.18)

Xyii:%(it_ii)_%(ia_iﬁ)1 (5.19a)
Xy(e*‘kij“)icﬁ—e“kii(UiB)
=coskK;;(t)(i,+ig) +i sink;(t) (i, +i_). (5.19b)

As one can see, the intermediate/2), pulse produces a
whole variety of multiquantum coherences in the many-body

system of interacting spins upon acting gfr) which is

given by Eq.(5.15) evaluated at= 7. If the motions of the
spin pairs are stochastically independent then the averaging
over k;;(t) yields the same values. Thus, it is sufficient to

A. A. Nevzorov and J. H. Freed

point one has to compare E.21)with Eqg. (6.15)in Ref.

7. The latter has been derived for the case of a reduced basis
operator set havinge=+1, which implies neglecting any
higher-order coherences produced by the second ptiBg.
contrast, in deriving Eq(5.21) we have used the full basis
set as well as the full form of the pulse propagarfFor a

very large number of spins, one can use the Markov averag-
ing method?>?3to obtain fort>r

G(t)= ?{ (CI2)Jodt! dge(t')at’ +ags(t')/at'

C o
+ g[ge(t)—gf(t)]ecfédt agr(t))lat ]

_ ﬂew},dt'ag«t’)/at’[ CI0e() - gy(1)]
2

C
+ g[ge(t)—gf(t)]], (5.23)

caICl_JIate the_ effect_ of the pulse just fo_r the first spin and thefvhereg,(t) andg;(t) are the motionally averaged echo and
multiply the intensity byN. After applying the pulse propa- FID for the two-spin problem, respectively, which can be

gator to each subvector of E¢p.15)as given by Eq95.19a)

evaluated by the method of stochastic Liouville equation as

and(5.19b), followed by motional averaging and combining described in Ref. 20. In the solid-state limit, the averaging
the similar terms together, the overall echo signal becomeshecomes just integration over volurfeand Eq.(5.23) at

aN _ .
G(t)= 7[<cosk(t— r)cosk(7))N "1+ (N—1)(sink(t— 7)

x sink(7))(cosk(t— 7))N"%(cosk(7))N72]. (5.20)

t> 1 becomes

gN

t—[t—27]
G()=—- —_—

. 24
Tk (5.24)

e—t/Tg e(t—|t—27)|/2T’2* +

Using the multiplication properties of the sine and cosineAt low enough concentrations of spins the relaxation time
functions, the observed signal can be rewritten in terms o3 is given by the classic Anderson formdfa,1/T}

the two-body FID and echo as

N
G(t)= q7 2-(N"D(ECHQ,+FID|g)N 1

(N-1)
2

+ (ECHQO,—FID|})

X(FID|"YN=2(FID|)N 2], (5.21)
where
e (X Gdt F(r(t") 4 o +i(x/2[pdt F(r(t)))
FID|y= > , (5.22a)
e~ 1 (X odt's(t)F(r(t") 4 o +i(x/2)fpdt's(t ) F(r(t"))
ECHQ =

2
(5.22b)

Here thes-function is defined bys(t)=+1, t>7, ands(t)

=47%y?hC/9v3. At higherC a more complicated nonlinear
behavior in time is found, which becomes Gaussian in the
limit, cf. Fig. 2 and Appendix B of Paper i Whent=2~

Eq. (5.24) becomes

qN T T *
G27r)=—|e "2+ e 272,
2 T3

(5.25)

The effect of echo suppression can be seen by comparing
Eqg. (5.25) with the result when generation of higher-order
coherences is neglected, which predicts no decay=&r
when the translational diffusion coefficierid—0 for the
solid echo, cf. Ref. 7. Note that the first part of £§.25)
corresponds to just a single-exponential decay, but we do
find the existence of a second term, which is seen to decay at
twice the rate of the first term. However, the second part may
not be always observed experimentallyrik T3 .

Plots of many-body spin-echoes firidentical spins of
1/2 calculated by using Ed5.23) at different values of the
translational diffusion coefficierD are presented in Fig. 3
(solid lines). The evaluation of the averaged random-phase

=—1,t<7. It is noteworthy that whemN=2 the observed exponentials for the FID and echo components has been per-
signal consists entirely of the echo. As the number of spindormed as described in Ref. 20. Even at the rigid linft(
increases, multiple quantum coherences produced in accor10 ®y?%4/d) there is no full echo refocusing, and at suffi-
dance with Eq.(5.19b) suppress the echo formation. This ciently long delay times no echo is expected at all. Note that
constitutes a well-known fact in solid-state NMR. At this the echo maximum does not occur at exatty?2r. Increas-
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dashed lines in Fig. 3, are compared with the new results of
this work.) However, when motions of the spins are suffi-
ciently fast the two expressions become motionally aver-
aged, which results in their similar behavior, cf. Fig. 3.
Figure 4 shows the echo behavior as a function of the
delay time, 7 calculated at various values of the diffusion
coefficient,D+. For electron spin-bearing molecules having
the distance of minimal approach @5 A, the range from
D;=10"%to 10 ! in units of y?4/d converts to from 6.5
x 10 1°t0 6.5x10 ' c?s ™%, which represents the range of
translational diffusion rates in lipid membranes and other
viscous solvents. The calculations for Fig. 4 have been per-
, , , : — formed for a concentration of spins Xa0®cm™ (32
o 250 r 500 ] 730 1000 1250 mM). The time scale for each plot then corresponds to about
21 (o wd) 1.9 ns per unit time for electron spins. As can be seen, ap-
preciable echo amplitudes are anticipated ferlying on a
FIG. 3. Spin-echoes calculated at different values of the translational diffuhundred-nanosecond time scale or less, which still should be
sion coefficientD+ (in units of y*h/d=6.54x10"6 cr¥/s for electrons it measurable experimentafly.From Fig. 4 it is clear that a
fmn=d=5A) as shown in different panels. The number of spins and they i comparison between experimental results and the
ratio of the distance of maximum separation to the distance of minimal .
approach have been chosen toNbe 10° andr ., /r,;,=100, respectively, theory presented here would be required to extract the ex-
which corresponds to a concentration of spins oi119'°cm™3. Even near ~ perimentalD ;. (Concentration-dependent studies would be
the rigid limit (Dy=10"%y?4/d) there is no complete echo refocusing. also helpful.)

Increasing the diffusion rate further decreases the echo and shifts its maxi- We now generalize Eq5.20)to the evolution of coher-
mum to the left oft=27. Dashed lines show the pure echo signal for )

comparison, i.e., ex@f Lt [agy(t')/at'], cf. the text. ences of arbitrary order in a solid echo experiment. We write
a higher-order coherence signal as, cf. Eql8),

G(n)

ing the diffusion rate not only further decreases the echo
amplitude, but also shifts it towards the timrewhen the
pulse is applied. Dashed lines show the pure echo signal, i.e.,
the one considered in Ref. 7. In contrast to the more general
expression, Eq(5.23), the latter can be fully refocusedtat
=27 in the rigid limit. Because of the technical limitations =(gWT(t—7)Xg =V (7). (5.26)

of the previous theorythe earlier treatment did not include

the formation of higher-order coherences after the seconéquation(5.26)is valid for any left-hand projection vector
pulse. Instead, a truncated basis operator (set, corre- g¥). Let us consider for simplicity those coherent density
sponding tou=+1) was used which was insufficient for a statesg® that containu subvectorsi, , e.g.,g®¥={i }*
rigorous consideration of higher-order coherences that ar®{ia+iﬁ}’\““ plus all the permutations thereof. The signal
formed after the refocusing puls€lhese results, shown as corresponding to such multiple-quantum coherences can then

G“(t) (t1)

_iysN (i)t S
:g(M)T<e 'X2i1<jlc 11f7.dt1':(r|111

« Xe—iXziNl<].lc“111)fgdt1F(riljl(t1))>g(t1)(0)

-6 4 -3
D,=10 \ D, =10 D,=10
0.8} 3 |
. 06p
T
04+ - +
02t 1 | FIG. 4. Many-body spin-echoes calculated at different
_ values of delay times [in units of (y?4/d%)~1=3.82
00 R SR R % 10" 1%s for electrons ifr ,;;,=d=5 A] and the transla-
a2 e a0 tional diffusion coefficientD; (in units of y*4/d
sl D,=10 | D,=10 | D,=10 | =6.54x10"%cn?/s) as shown in different panels.
Longer delay times spread out the echo, whereas in-
ol creasing the translational diffusion rate further de-
2 creases the echo amplitude.
1G]
04}
0.2}
00250 500 750 1000 0 20 500 750 1000 0 250 500 750 1000 1250

11 (yndy!
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LT LT arising from terms corresponding fo=1 andu=—1 in the
starting (right-hand)vector, cf. Eq.(5.26). For instance, if
pu=3 one obtains from EQq(5.27) in the thermodynamic
limit, N,V—o, butN/V=C

N 1 / "
Gg(t) - q? ﬁ : 3C2<S|nk( T)>2€2Cf:,dt agg(t")/aot

2.0x10° [

3

1.5x10° -

1.0x10° [~

a

5.0x10" -

G0

« eC/Zdet’ age(t! )t +ag(t' )l at!

0.0

C 3
+ 5) [3(ce—Cp)(Se—Sp)?—(ce—Cp)?]

4

-5.0x107 -

t .
L ‘ ; L % e3Cdet'ﬁgf(t')/ﬁt'ecfgdt'(?gf(t’)/(/t' , (5.28)
[4] 125 250 375 500 625 750 875 1000

t1oF vy

-1.0x10°

where

FIG. 5. Evolution of the triple-quantum coherence after the intermediate _ R ’_ tyr
(m/2), pulse in a solid-echo experiment after various pulse delay times, CE_<C0${ K(t—=7)—k( T)]> —(ECqu) !
7(D1=10"%y?#4/d, C=1.9x10"°cm™3). The initial intensities of a triple-
order coherenc@®== 5 permutationbi+ @ {i,+igh" % do not exceed 0.1%
of the initial intensity of the first-order coherend®, (0) =1. However, due . ,
to a large variety of multiple-quantum coherences, the echo loss measured SE=<S'r[k(t_ 7) —k( 7')]> )
for the first-order coherence is still significant, cf. Fig. 3. .
sp=(sink(t—7)+k(7)])".

In performing the above averaging in the thermodynamic

be obtained in exactly the same manner as has been done #pit we have used the following property of the Markov
the first-order coherence, EG.20). A somewhat tedious but Method
straightforward calculation yields fae>

ce=(cogk(t—7)+k(7)])' =(FID|5)’,
(5.29)

[ (et 10T FIr Dy uy 1 ig=itv2) odt Frt)yuN

GL(t) . C 1
_"Z =<g(“)T(t—7-)Xg(*l)(T)) _ 1_'“N<l_EeH(X/Z)IBdt,F(r(t,))
—1on—pu N , - 1 oot " u(p—1)(C\?
=jr 12N ﬂ( ) sin=k(7))y* 1 _ Z e iU F(r(t) MeE =
o 1U“< (T)> 29 0 + 4 N
I N-pu a2 LAY F(r () 1 2
X[(1—e""'¥9)o
><<cos2 km(t—r)coskl(r)> +(N—p) < )
m=1 N
s t ’ ,
. ., +(1— e 0MRTGAUF(r(t )y 2]_...]
><<sin2 +kn(t—7) [1 sinikm(7)> L
m=1 m=1 —exp—uC(1l— %e+l(x/2)fodt F(r(t")
s N=p-1 : | ’
><<cosZ km(t—T)> (cosk(r))N"#1], — e (WD), (5.30)
m=1

where the prime means taking the averaging over the unnor-

(5:27) " malized equilibrium probability distribution, cf. Ref. 7 for
Here we have introduced the index(instead of the previous details. Thus, the decay of a multiple quantum coherence is
double indexj to simplify the expressionto designate sto- proportional to its ordery. Higher powers ofuC/N have no
chastic dependencesorrelations)between the spin pairs, effect asN—. As one can see from Eq&.28)and(5.29),
which determines the way the averaging should be perin the case of triple coherences there are now sine terms
formed on products involving sine and cosine functions. Foiinvolved, but they are also directly related to the motionally
instance, when averaging the structures lifgik,(t—7)  averaged exponentials that can be evaluated by solving the
+ko(t— 1)+ kg(t— 7)Isinky(7)sinky(7)sinky(7)), the functions stochastic Liouville equation for the dipolar probléf.
kq(7) andk,(t—7) must be correlated, and so on. T@g(t) Plots of the evolution of the triple-quantum coherence
for u#1 cannot be actually detected directly in a real experi-calculated from Eq(5.28) are shown in Fig. 5 as a function
ment; an additionad/2 pulse is needed to convert them backof pulse delay times. Because of the presence of dispersive
to the single-quantum coherer®eNevertheless, their evo- sine terms in Eq(5.28), the signal amplitude corresponding
lution and initial intensities are still of interest. By compar- to u=3 can be negative. As one can see from the inset, the
ing the expressions fdcand —k, Eq.(5.27), it can be seen intensities of one given triple quantum coherence do not ex-
that only odd-order coherences survive after the second pulssed 0.1% of the single-quantum coherefhak plots are
due to the mutual cancelling of the even-order coherencesormalized so tha,(0)=1]. However, due to a very large
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variety of multiple-quantum coherences, together they resultG ,(t)|
in a significant loss of the echo amplitude measured for the—— =
first-order coherence. For instance, there are other coher-

N (e~ (/2T odt Fr(t!))

ences produced in a solid-echo pulse sequence, such as +e+i<x/2)f5dt’F<r<t’))>NA—l<e—i(x/2>f5dt’5<t’>F<r<t’>>
g ={i, Pefi, ®i_}@{i,xig"N #~2< (plus all the per- o
mutations thereofwhich have not been considered. How- + e (X2 odUsEIF(r(t))yNg (6.4)

ever, the calculation of the evolution of such coherences is

still possible, and represents a straightforward generalizatiofere stochastic independence of the motions has been as-
of the theory presented herein. sumed. Thus, the ordinary echo consists of the product of a

decaying FID term corresponding #-A interactions, and
an echo-refocusing term correspondingAteB interactions.
VI INSTANTANEOUS DIFFUSION IN ORDINARY In the solid-state th_ermody_namlc limit, appll_canon of the
ECHO EXPERIMENTS Markov method and integration over volume yields from Eq.
(6.4), cf. Refs. 7 and 14,
To further investigate the nature of the echo loss in N
many-spin experiments, let us consider a collectiorNgf 1GA(D)|= g Aeft/T§<AA>ef|tf27\/T§<AB>, (6.5)

spins of typeA interacting withNg spins of typeB. We are 2

interested in what will happen if onliN, spins are selec- (AA)_ 4 2. 2 *(AB)_ 4 2
tively flipped by an intermediater-pulse. The evolution of wherg 1‘/;3 h_i_ﬂ VAR CAl9V3, | LTy =4y, h
spin-density states before the pulse is still described by Eq. 7B Ce/9v3. The first exponential terms represents the

(5.15)with N=N,+Ng. The pulse propagator can be com- ell-known effect of echo suppression referred to as instan-
pa.ctly written in ?his gése as taneous diffusion in solid-state ESR. Lettitg 27 we find

that Eq.(6.5) corresponds exactly to the classical formula for
Xn={X} 2@ {E}"e, (6.1)  instantaneous diffusidf?®2*developed previously in a more
ad hocfashion. Here we have proved it rigorously by using
the direct-product formalism for the case of the truncated
dipolar Hamiltonian. As can be seen from H.5), A—A
interactions suppress the echo arising frémB interac-
1 tions. It is worthwhile to emphasize that the nature of signal
1 loss in an ordinary echo experiment is different from that for
(6.2)  the solid echo considered in the previous section,(EQ1).
In the former case it is due to the fact that interactions
1 amongst like spins cannot be refocused; whereas in the latter
It is noteworthy that in the eigenoperator space the role of@se the echo loss is due to the generation of multiple quan-
the matrixX is simply to interchange, withi_ andi, with ~ tum coherences produced after the intermediate2),
iz. With this in mind and using Eq¢5.1), (5.15), and(6.1), pulse.
the absolute value of the nonvanishing projection of the or-
dinary echo signaG,(t) measured for spinéd can be writ-

from which the choice of a numbering scheme for spis
andB becomes clear. For a, pulse, the matrixX is given

by

Xim), =

ten as VII. CONCLUSIONS
M:@ﬂn(t_ IXng " P(1) We have considered herein a new approach to the solu-
VA tion of the density-matrix equation for a multispin system
Np based on a direct-product formalism. Hamiltonian superma-
= > (o, DTt — ) {X}Nagl D7) trices have been introduced based on the Frobenius trace
m=1 ' '

metric defined in the eigenoperator space of the unperturbed

0T 0)% Zeeman—Hamiltonian superoperator. Algebraic properties of
X(Gmp (t= 1) (7)) 6.3 the supermatrices allow for a convenient dir¢ot Kro-
(since a direct product of any two complex numbers is anecker)product factorization, which makes the present ap-
number itself). In the above expression we broke up totaproach particularly useful for the case of many-spin prob-
spin-density vectors into the first-order coherence parts colems. The superoperator approach makes it possible to obtain
responding to spiné and the remainingzero-order coher- a solution even when the interaction Hamiltonian is time-
ence)parts for spinsB, cf. Eq.(5.15). As can be seen from dependent, thus explicitly incorporating spin relaxation
Eq. (6.3), there will be no refocusing di—A interactions, into the theory. When the motions of the spins are stochasti-
since {X}Nagl, A)(7) =g'y A)(7); whereasA-B interactions cally independent, compact solutions can be obtained for the
get refocused since the left-hand and right-hand side vectofsSID and echo signals due to the permutation symmetries and
corresponding to spinB are related by complex conjuga- simple eigenvector properties of the superoperator matrices.
tion, cf. Egs.(5.15) and (6.3). Carrying out the necessary The motional averaging of the matrix-exponential forms
vector—vector multiplications involving the Kronecker- can be performed by the method of the stochastic Liouville
product algebra, we find th&,(t) consists of a product of equation(see Ref. 20, and Paperilfor details). This en-
two terms ables one to take into account time correlations of all orders
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and, therefore, calculate motional effects of arbitrary timeincluded. In contrast to the solid echo pulse sequence, the
scale. echo maximum occurs here ndar 27, and the echo loss is
The exponential forms of the superoperator matrices cadue to the fact that dipolar interactions amongst like spins
be evaluated exactly for the case of the truncated diagonaiannot be refocused. Thus, a clear distinction between the
dipolar Hamiltonian, i.e., containing the term®1{) only.  nature of the loss of refocusing in the solid and ordinary
However, the additional exchange terfie., 1)10)] have  echoes has been made in the present work.
been shown to have no effe@part from the factor of 3/4 The formalism presented herein may find its use in mod-
instead of 1/2 in the coupling constaan the FID and ech- ern NMR and ESR many-body problems such as Quantum
oes of like spins engaged Btochastically independent mo- Computing® and biophysical studies of membranes and
tions. This is a generalization of the result of the Andersorproteins?® The expression for solid-state spin echoes can be
statistical model for dilute solids. It is due also to the factof interest for measuring translational diffusion rates in vis-
that the exchange terms yield antisymmetric combinationgous media such as glasses, liquid crystals, and membranes.
of the spin-density states, which mutually cancel each otheFhe recursive nature of the direct-product factorization and
because of the permutation symmetry of the problem. Whethe relatively simple matrix-vector multiplications involved
the difference in Larmor frequencies becomes large, thuéas opposed to the conventional matrix transformajions
suppressing the effects of tné;jn(:i) terms, only the first Makes the present method convenient for computer imple-
(diagonal)part of the spin Hamiltonian of Eq2.6) is sig- mentations in the case of more complicated problems.
nificant, and this just introduces a simple 2/3 scaling factor,
cf. Egs.(2.6) and (4.2)2" In both cases, the FID decay will ACKNOWLEDGMENTS
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?’In the case of an admixture of spims having a concentration of,

interacting with spinsA’ with a concentratiorC,, , one may generalize
Eq. (4.11) in the case of nonselective excitation toG,(t)
~ (ANA/2)exiCp J St [agf(t' )/t 1+ Ca [ bt [l (')t )], where
the coupling constant corresponding to #hA’ interactions is related to
that of theAA interactions byxy*A") = 2/3y(*A). Furthermore, neglecting
the presumably small secorilihear in concentrationterm in Eq.(5.23)
[cf. discussion after Eq5.25)], one may generalize E$.23)in a similar
way:

cu [t
+7A dt
0

at’ at’

|

The appropriate expression @iy, (t) is obtained by permuting andA’.
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