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Direct-product formalism for calculating magnetic resonance signals
in many-body systems of interacting spins
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Modern applications of nuclear magnetic resonance and electron spin resonance, and especially
quantum computing problems call for more effective formalisms to describe relaxation and
evolution of various orders of coherence in the presence of motions of the interacting spins. Here we
suggest a formulation for the description of multiquantum spin states based on direct-product
structures that take into account the inherent permutation symmetries and quantum coherences of a
multispin system. Convenient recursion relations are obtained for the matrix representations of the
N-body Hamiltonian superoperator and pulse propagators. This allows one to obtain compact
expressions for the evolution of magnetic resonance signals when the dipolar interactions amongst
spin-bearing molecules are modulated by their motions. These expressions include the
free-induction decay and solid echoes, as well as the decay of higher-order coherences under the
assumption of statistical independence of the motions of the spin-bearing molecules. Exact results,
not requiring this assumption, are obtained for the case of the truncated dipolar Hamiltonian.
Important phenomena that arise in multispin systems, such as instantaneous diffusion and spectral
diffusion arising from motions, are studied more rigorously by solving the equation for the time
evolution of the spin-density states. The many-body magnetic-resonance signals in the presence of
motions are obtained by solving the appropriate stochastic Liouville equations. These solutions may
be compared to solid-echo experiments to extract translational diffusion coefficients even in the
slow motional regime. ©2001 American Institute of Physics.@DOI: 10.1063/1.1382816#
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I. INTRODUCTION

The von Neumann equation for the evolution of the sp
density operator represents the most general way of trea
many-spin systems. However, in most cases the conventi
treatments restrict its solution either to the solid limit~i.e.,
when the overall Hamiltonian is time-independent!, or to the
fast-motional~or Redfield!limit. In the solid limit the solu-
tion can be written in terms of matrix transformations of t
equilibrium density matrix, whereas in the latter case o
usually truncates the formal series solution for the den
operator at second-order commutators. In more general t
ments, e.g., when motions of the spins become sufficie
slow ~or if there is noa priori knowledge about their time
scale!, it becomes necessary to introduce superoper
corresponding to the operation of commutation.1–6 There-
fore, to treat the many-spin problem in a general way,
utilize a matrix representation for the Hamiltonian sup
operator~Liouvillian! in order to calculate the time-evolutio
of the density operator for a many-body system.7 Naturally,
in such a representation the multispin density states~the
many-body density matrix! are written as vectors, on whic
the superoperator matrices~supermatrices!operate.7 In this
case the von Neumann equation for the overall many-b
density matrix just becomes a system of coupled linear
ferential equations which can in principle be solved by st
dard matrix methods.

In the present paper, hereinafter referred to as Pap

a!Electronic mail: jhf@ccmr.cornell.edu
2400021-9606/2001/115(6)/2401/15/$18.00
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we suggest a direct-product formalism for calculating ma
netic resonance signals in a many-body system of sp
1/2. Direct-product structures allow one to most easily e
press the interactions amongst various spins in terms
many-body interaction matrices, and can be used to de
the multiquantum spin-state vectors, on which these matr
operate. One of the first applications of the direct product
the description of multispin states is found in Onsager’s
proach to the solution of the two-dimensional Ising mode8

Direct-product operators have recently been used to re
sent pure density states9,10 and the total Hamiltonian operato
of a many-spin system.11 However, algebraic properties o
Hamiltonian supermatrices have not been investigated in
ficient detail. Here we factorize matrix representations
the Zeeman and dipolar superoperators into direct~or Kro-
necker!products8 in terms of convenient recursion relation
We show that, in the eigenoperator basis of the unpertur
Zeeman Hamiltonian superoperator,1 the multispin density
states can also be factorized in terms of direct-product st
tures that naturally take into account all possible multiqu
num coherences. As will be shown by several examples, s
a formalism allows one to calculate the magnetic resona
signals in various cases by merely applying the main mu
plication property of the direct product to superoperators
many times as needed, viz.,~A^B!~a^b!5~Aa!^~Bb!. As
an illustration of the method, we rederive the earlier resu7

for the free induction decay~FID! arising in a system of
identical interacting spins of 1/2 by applying the direc
1 © 2001 American Institute of Physics
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product methodology in conjunction with generalized cum
lant expansions.2,7,12

Most modern NMR and ESR experiments are not limit
to just the acquisition of the free-induction decay~FID! sig-
nal. However, the calculation of multiple-pulse sequences
conventional methods often yields results that are too d
cult to study analytically, especially in many-body system
This also includes the evolution of higher-order multip
quantum coherences produced by the pulses, a matter
was too complicated to be successfully treated by our ea
method.7 Therefore, the formalism is further developed
order to include the effects of additional pulses. The so
echo and Hahn echo pulse sequences in a many-body sy
of identical spins are analyzed from first principles givi
rise to motionally generated spectral diffusion and the p
nomenon of instantaneous diffusion.13 We also investigate
the relaxation of multiple quantum coherences. Exact res
are obtained for a truncated dipolar Hamiltonian, i.e., c
taining theI z

( i )I z
( j ) terms only. When the assumption of st

chastic independence of the motions of the spin-bearing m
ecules is made as in Ref. 7, then the results are genera
for the complete secular dipolar Hamiltonian, i.e., involvi
the 3

2 I z
( i )I z

( j )2 1
2 I ( i )I ( j ) terms.14

We wish to emphasize that only through the formalis
developed in this paper has it been possible to generate
new results in this work and in an accompanying wor15

hereinafter referred to as Paper II. Despite our frequent
of the assumption of stochastic independence of moti
~SIM! the many-body spin system is a formidable one, es
cially when taken over the whole motional range. Only
the new methodology have we been able to provide the
rect results for spin-echo experiments, which necessarily
volves the effects of higher order coherences. As we note
our previous work,7 these results are required to analyze su
experiments in solutions of like spins of 1/2, where the
polar interaction is significant, and where the slow motio
regime is achieved, e.g., for ESR studies on radicals in m
erately viscous fluids~i.e., whereDT,1026 cm2/s, whereDT

is the translational diffusion coefficient for relative diffusio
of two spin-bearing molecules!. Our new results supersed
the overly approximate results of Ref. 7.

The assumption of SIM is to our mind appropriate f
discussing fluids: Nonviscous, viscous, or frozen. As
have previously shown, our theory bridges the gap betw
the two limiting theories for the continuous wave~cw! line-
widths: Motional narrowing theory and the Anderson sta
tical model for dilute spin systems.14 These classic theorie
are based on theAnsatzof independently summing up th
effects of two-body interactions. Our results, appropri
over the whole motional range, show that the SIM assum
tion is sufficient to recover these limiting theories. Thu
while retaining this assumption, we also explore the res
for more concentrated solutions, which take the~near!solid-
state lineshapes from Lorentzian to Gaussian.

In Paper II, the direct-product formalism is used to d
scribe spin relaxation in anA–BN system, e.g., an electro
spin bearing molecule dissolved in a solvent of proton c
taining molecules. The direct-product formalism was ess
tial for us to obtain all the results reported therein, given
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more complicated spin-Hamiltonian, which includes o
resonance effects and multiquantum transitions of theBN

system. In addition to describing the effects of motion
modulation of the many-body dipolar interactions on theA
spin using the SIM assumption, we also treat the cohe
effects of ‘‘spin-diffusion’’ in a solid crystalline lattice ofB
spins, wherein the SIM assumption is inapplicable. This c
clearly shows the value of the direct-product formalism
coherent many-body problems.

II. THE EIGENOPERATOR METHOD FOR SOLVING
THE DENSITY-MATRIX EQUATION

We seek the solution of the density matrix equation,

]r~ t !

]t
52 i @H,r~ t !#52 i @H0 ,r~ t !#2 i(

i , j

N

@H ~ i j !,r~ t !#,

~2.1!

in the form7

r~ t !5(
$e%

g$e%~ t !E$e% . ~2.2!

Here the pairwise interaction HamiltoniansH ( i j ) may be in
general time-dependent, the spin-density coefficientsg$e%(t)
are some functions of time as well, and theE$e% are a set of
basis operators with a numbering scheme$e% that is intro-
duced in the next section. For a system ofN particles of spin
1/2, operatorsE$e% can be written as a product ofN spin
operators,16 each acting on its own spini,

E$e%5)
i 51

N

I e i

~ i ! . ~2.3!

Here $e% denotes a permutation set,$e%5$e1 ,e2 ,...eN%, e i

51, a, b, or 2, I 1 andI 2 are the conventional raising an
lowering spin operators, and the polarization operatorsI a

and I b are defined as1

I a5 1
21I z , I b5 1

22I z . ~2.4!

As follows from the trace properties ofI 1 , I 2 , I a , andI b ,
the operators of Eq.~2.3! form a complete orthonormal bas
set in operator space with the Frobenius trace metric defi
as

~E$e% ,E$e8%![Tr~E$e%
† E$e8%!5d$e%,$e8% , ~2.5!

where the dagger † denotes the Hermitian conjugate.
Let us consider the following dipolar interaction Ham

tonian:

H ~ i j !5xF~r i j !@ I z
~ i !I z

~ j !2 1
4 ~ I 1

~ i !I 2
~ j !1I 2

~ i !I 1
~ j !!#,

~2.6!

F~r i j ![
Y0

~2!~V i j !

r i j
3 ,

wherex[A(16p/5)/g2\ is the coupling constant,r i j is the
distance between thei th and j th spins, andV i j is the orien-
tation of the vectorr i j connecting the two spins with respe
to the main magnetic field. Here the time dependence
H ( i j ) may be implicitly contained in the classical variabl
r i j . By using the orthogonality property of the eigenope
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tors, one obtains an equivalent of the von Neumann equa
for the density matrix in the eigenoperator representation
couples the functionsg$e%(t). That is

]g$e%~ t !

]t
52 i (

$e8%
FDV$e%$e8%1x(

i , j

N

C
$e%$e8%
~ i j ! F~r i j !G

3g$e8%~ t !. ~2.7!

Here the~diagonal!matrix of frequency offsetsDV is the
representation of the Zeeman–Hamiltonian superoperato
its eigenoperator basis, and is given by

DV$e%$e8%5d$e%$e8%Tr~E$e%
† @H0 ,E$e8%# !. ~2.8!

The matrixC( i j ) represents the interaction Hamiltonian b
tween spini and spinj in the eigenoperator basis, and
defined by

xC
$e%$e8%
~ i j ! F~r i j !5Tr~E$e%

† @H ~ i j !,E$e8%# !. ~2.9!

The explicit form ofC( i j ) clearly depends on the commut
tion relations between the basis operators and the interac
Hamiltonian,H ( i j ).

Equation~2.7! allows one to formally solve for the evo
lution of the motionally averaged~over all realizations of a
Brownian motion, e.g., translational diffusion in variabl
r i j ! components of the density matrix in the eigenopera
representation even if the interaction istime-dependent, viz.

g~ t !5^e
O

2 iDVt2 ix( i 1, j 1

N C~ i 1 j 1!*0
t dt1F~r i 1 j 1

~ t1!!
&g~0!. ~2.10!

Here the symbol ‘‘O’’ stands for the Dyson time-orderin
which accounts for the fact that the superoperator matr
may not commute at different times, and the triangu
brackets denote motional averaging.

III. DIRECT-PRODUCT REPRESENTATION OF
SUPEROPERATOR MATRICES AND SPIN-DENSITY
STATES IN THE N-BODY PROBLEM

The first step in constructing the matrices for t
Hamiltonian superoperator and the vector describing the
tial spin-density state~which we shall call the starting vector
is the choice of the bookkeeping scheme for the eigenop
torsE$e% . As a numbering scheme for the eigenoperators
choose a quaternary tree structure constructed by ana
with binary trees as depicted in Fig. 1. The spins are nu
bered from the left to the right, i.e., the first operator is u
derstood to act on spin 1, the second—on spin 2, etc.
indexe runs from the top to the bottom at a givenN, and one
can, therefore, omit the curly brackets in Eqs.~2.7!–~2.9!,
sincee is no longer a permutation set but a consecutive nu
bering index according to the method of generating the q
ternary tree. Note that the ‘‘length’’ of each eigenopera
~i.e., the number of single-spin operators! is constant and is
equal toN. Note also that the ordering for individual sp
operators is chosen to be:I 1 , I a , I b , I 2 .

We start with defining the properties of the vector spa
of time-dependentmultispin density statesg(t) on which the
V andC-matrices operate. In general, a density-state ve
Downloaded 09 Sep 2002 to 128.253.229.132. Redistribution subject to 
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for an N-spin problem shall be sought as a linear combi
tion of direct-product structures each of them having len
N, viz.,

gN~ t !5 (
e1 ,e2 ,...eN

f e1 ,e2 ,...eN
~ t !ie1

^ ie2
^¯^ ieN

, ~3.1!

where the coefficientsf e1 ,e2 ,...eN
(t) are functions of time and

e i51, a, b, or 2 for spins of 1/2, by analogy with Eq
~2.3!. Here the symbol ‘‘̂ ’’ is used to designate the direc
~or tensor, or outer, or Kronecker! product. Specifically, for
any two matricesA andB of any size~including vectors!the
direct product is defined by17

A^ B[S a11B a12B ¯ a1nB

A A A A

am1B am2B ¯ amnB
D . ~3.2!

We have also introduced the density-state vectorsie corre-
sponding to each individual spin that are defined, accord
to the chosen ordering of the operatorsI 1 , I a , I b , and I 2

for spins of 1/2 by

i15S 1
0
0
0
D ; ia5S 0

1
0
0
D ; ib5S 0

0
1
0
D ; i25S 0

0
0
1
D .

~3.3!

Let us consider a system ofN equivalent spins of 1/2,
removed from equilibrium by an initial nonselective (p/2)x

pulse. Let us call the difference between the number of
eratorsI 1 and the number of operatorsI 2 in a given eigen-
operator theorder of coherence18 of this eigenoperator,m.
Clearly, the presence of the operatorsI a or I b does not affect
m. In the high-temperature approximation, the starting vec
gN(0) corresponding to the eigenoperators that have o

FIG. 1. Quaternary tree numbering scheme for constructing the eigenop
tor basis for the Hamiltonian superoperator representation.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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one operatorI 1(m511) and all possible combinations o
operatorsI a and I b , is readily seen to be given forN11
spins in terms of the recursion formula

gN11
~11!~0!5~ ia1 ib! ^ gN

~11!~0!1 i1 ^ $ ia1 ib%N, ~3.4!

where the second term on the right gives the contribution
i1 from theN11th spin, and the first term just increases t
product operator dimension from 4N to 4N11. There is also a
counter-rotating component corresponding tom521 which
can be considered separately from them51 component for
calculating a pure FID signal. For the sake of compactnes
notation, we shall further omit the indexm whenever pos-
sible and include it as a superscript only when it becom
necessary. We have also used curly bracket notation to
ignate the direct product repeatedN times,

~3.5!

The recursion formula, Eq.~3.4!, has a simple meaning
On the one hand, it is easy to see that~in the high-
temperature approximation! the starting vector in the direct
product representation havingm511 corresponds to the sum
( i 51

N I 1
( i ) in the usual spin-operator space~since I a1I b51!.

On the other hand, by adding one more spin to the syst
N→N11, we increase the dimension of the space by a f
tor of 4. Since the total order of coherence is constant~i.e.,
m511!, we shall only have products ofgN(0) with ia1 ib ,
the latter term adding no coherences, andi1 with all possible
combinations ofia and ib as given by the direct-produc
binomial $ ia1 ib%N . By applying the recursion relationN
21 times, the general formula for the initial multisp
density-state vector becomes
Downloaded 09 Sep 2002 to 128.253.229.132. Redistribution subject to 
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gN~0!5 (
m50

N21

$ ia1 ib%m
^ i1 ^ $ ia1 ib%N212m. ~3.6!

Direct-product structures of the above type~i.e., (k$A%k

^ B^ $A%N2k! we shall call the ‘‘dressed direct-produc
sums.’’ Thus, the starting vector for theN-body problem con-
sists of a sum ofN direct-product structures, each of the
having ‘‘length’’ N.

The matrices corresponding to the interaction Ham
tonian superoperator in the eigenoperator representation
also given by a recursion formula as

(
i , j

N11

xCN11
~ i j ! F~r i j !

5E^ (
2< i , j

N11

xCN
~ i j !F~r i j !

1 (
m51

N

Pm~xC2^ $E%N21!Pm
21F~r1m11!. ~3.7!

The above equation has again a rather clear meaning: A
tion of a new spin increases the size of the spin space b
factor of 4 ~which is taken care of in terms of the dire
multiplication by the 434 unit matrixE from the left!plusN
additional permutations to account for the interactions of
‘‘new’’ spin ~‘‘spin 1’’! with the remainingN spins located at
positionsr1m11 relative to spin 1. In Eq.~3.7!, the matrixC2

is the two-spin 16 by 16 interaction matrix, the elements
which can be found by explicitly calculating the commut
tors of the interaction Hamiltonian with the eigenoperato
Eq. ~2.9!. For instance, for the case of the dipolar interacti
Eq. ~2.6!, C2 is given by
~3.8!
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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where we have included the corresponding eigenoperator
the right side to indicate their ordering scheme. We shall
make much use of the explicit form for the matrixC2 , but
will exploit in more detail its eigensystem~cf. the next sec-
tion!. Now,Pm are 4N11 by 4N11 permutation matrices suc
that

P151,

P25P23,

P35P34P23,
~3.9!

P45P45P34P23,

¯ ,

PN5PN11NPNN21¯P23.

Here the role of individual matricesPi i1 1 is to permute the
i th andi 11th elements, numbered from the left, in a dire
product sequence consisting of several subvectorsai of
length 4, viz.,

Pi i1 1a1^¯^ ai ^ ai 11^¯5a1^¯^ ai 11^ ai ^¯ .
~3.10!

Equation ~3.7! can be illustrated for the case of thre
spins leading to three distinct pairwise interacti
io

ts

in

Downloaded 09 Sep 2002 to 128.253.229.132. Redistribution subject to 
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t

-

C-matrices. They will be acting on coherent spin states gi
by direct product structures of the forma^b^c ~describing
various multispin states of the many-body system!, where the
ordering corresponds to spins 1, 2, and 3, respectively.
matricesC(1,2) andC(2,3) are self-evident, and are given by

C~1,2!5C2^ E, C~2,3!5E^ C2 . ~3.11!

The remaining matrixC(1,3) can be obtained from matrix
C(1,2), for example, by permuting spins 2 and 3 in the vec
a^ b^ c first, then acting by the matrixC(1,2), and then per-
muting spins 2 and 3 again to return to the original numb
ing scheme. This is equivalent to transforming the mat
C(1,2) as

C~1,3!5P2C~1,2!P2
21

5P2~C2^ E!P2
21

5~E^ P!~C2^ E!~E^ P!, ~3.12!

whereP is a 16316 permutation matrix such that

P~a^ b!5b^ a, P~A^ B!P215B^ A, ~3.13!

for any four-dimensional~4D! vectorsa andb, and for any
434 matricesA andB. The matrixP is explicitly given by
P5

¨

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

©
. ~3.14!
en
s.
ion
Note that clearlyPC2P215C2 since interchanging the two
spins does not change anything in a two-body interact
C25C2

T . Again, the explicit form of the matrixP will not be
used here; it is sufficient to know that such a matrix exis

Thus, together with the 4 by 4 unit matrix(E), C2 andP
fully determine all the possible interactions in a multi-sp
system.
n,

.

For N identical spins, one has clearly for anym

PmgN~0!5gN~0!, ~3.15!

since the direct product structure of the starting vector giv
by Eq. ~3.6! is invariant under any permutation of the spin

It can be checked directly that the matrix representat
of the two-body dipolar superoperator, Eq.~3.8!, correspond-
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ing to the HamiltonianI z
(1)I z

(2)21/4(I 1
(1)I 2

(2)1I 2
(1)I 1

(2)), can be factorized in terms of direct products of 4-by-4 matrices, v

C25~ I z^ e! ^ ~ I z^ e!2~e^ I z! ^ ~e^ I z!2 1
4 @~ I 1 ^ e! ^ ~ I 2 ^ e!2~e^ I 1! ^ ~e^ I 2!

1~ I 2 ^ e! ^ ~ I 1 ^ e!2~e^ I 2! ^ ~e^ I 1!#, ~3.16!

where e is a 2-by-2 unit matrix. Thus, theN-body superoperator in 4N dimensions represents the dressed sum of 3N(N
21)/2 direct products, each of them having the corresponding operators at positionsi and j. That is

~3.17!
he
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a
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wheree5z, 1, or 2, xe5x for e5z and is~2x/4! other-
wise, and the symbolT designates the matrix transpose.

IV. MANY-BODY FID AND EFFECTS OF THE
EXCHANGE TERMS

In this section, we shall re-derive the solution to t
motionally averaged free-induction decay signal of E
~2.10!, which can be performed more efficiently~and more
elegantly! by using the direct-product formalism as com
pared to its initial derivation in Appendix I of Ref. 7. W
shall show that the starting vector has very simple eigenva
properties in the case of nonselective excitation~like spins!.

For practical purposes, it is convenient to break the
polar Hamiltonian superoperator, Eq.~3.16!, into the sum of
the diagonal and the exchange parts

C25C2
diag1C2

ex, ~4.1a!

where

C2
diag5 3

2 @~ I z^ e! ^ ~ I z^ e!2~e^ I z! ^ ~e^ I z!#,
~4.1b!

C2
ex52 1

2 $~ I z^ e! ^ ~ I z^ e!2~e^ I z! ^ ~e^ I z!

1 1
2 @~ I 1 ^ e! ^ ~ I 2 ^ e!2~e^ I 1! ^ ~e^ I 2!

1~ I 2 ^ e! ^ ~ I 1 ^ e!2~e^ I 2! ^ ~e^ I 1!#%.

Note that in the usual operator notation this separation
equivalent to writing the Hamiltonian of Eq.~2.6! as

H ~ i j !5Hdiag~ i j !1Hex~ i j !5 3
2 xF~r i j !@ I z

~ i !I z
~ j !2 1

3 I ~ i !I ~ j !#.
~4.2!

These parts have the following properties with respect to
spin-density states, which can be checked directly from
~4.1b!:

C2
diagi6 ^ ia56 3

4 i6 ^ ia , ~4.3a!

C2
diagi6 ^ ib57 3

4 i6 ^ ib , ~4.3b!

C2
diagia ^ ib50, ~4.3c!

C2
diagi1 ^ i250, ~4.3d!

C2
exi6 ^ ia57 1

4 @ i6 ^ ia2 ia ^ i6#, ~4.3e!
Downloaded 09 Sep 2002 to 128.253.229.132. Redistribution subject to 
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C2
exi6 ^ ib56 1

4 @ i6 ^ ib2 ib ^ i6#, ~4.3f!

C2
exia ^ ib5 1

4 @ i1 ^ i22 i2 ^ i1#, ~4.3g!

C2
exi1 ^ i25 1

4 @ ia ^ ib2 ib ^ ia#. ~4.3h!

It is important to note that the exchange terms result in
tisymmetric direct-product combinations with respect to
terchanging the two spins. Other important relations are

C2
diag,ex$ ia1 ib%25C2

diag,exia,b ^ ia,b

5C2
diag,exi1,2 ^ i1,250, ~4.4!

where the density-state vectors for individual spins,i1,2 and
ia,b are defined in Eq.~3.3!, and the two-body supermatrice
C2

diag,exare given by Eq.~4.1b!. ForN identical spins of 1/2,
the starting vectorgN(0) corresponding tom561, Eq.~3.6!,
can be decomposed into a sum of orthogonal vectorsgl ,N(0)

~4.5!

wherel denotes the number of vectorsia in each of the direct
products of lengthN of which gl ,N(0) is composed. It is then
easy to show that, for the case of a nonselective excita
~like spins!, the exchange terms have a vanishing effect
the starting vectorgN(0), cf. Eqs.~4.3e!–~4.3g!. That is, for
any i andj we have:Cex(i j )gl ,N(0)50, since the correspond
ing statesi6 , ia , and ib , occur in gl ,N(0) in all possible
symmetric permutations. More generally, forany vectorsa
andb we have

C2
ex~a^ b1b^ a!50. ~4.6!

By using the cumulant expansion2,3,12of the exponential
operator of Eq.~2.10!, one can calculate the FID signal for
system of interacting spins of 1/2, if the motions of the sp
are stochastically independent, cf. Ref. 7
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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G~ t !

Z
5gN

T~0!^e
O

2 i DVt2 ix( i 1, j 1

N C~ i 1 j 1!*0
t dt1F~r i 1 j 1

~ t1!!
&gN~0!

5gN
T~0! expOH (

n51

`

~2 ix!n(
i , j

N

@C~ i j !#n

3E
0

t

dt1E
0

t1
dt2¯E

0

tn21
dtn

3^F~r ~ t1!!F~r ~ t2!!¯F~r ~ tn!!&cJ gN~0!. ~4.7!

Here Z[22N\v/kT[22Nq, the factor arising from the
high-temperature expansion of the equilibrium density m
trix. SinceCdiag(ij) andCex(i j ) commute for the samei and j,
we can use the binomial expansion,

@C~ i j !#n5 (
p50

N S n
pD @Cdiag~ i j !#n2p@Cex~ i j !#p. ~4.8!

But from Eq.~4.6! it follows that only the terms withp50
survive, a consequence of the assumption of stochastic
independent motions in Eq.~4.7!. Application of Eqs.
~4.3a!–~4.3c! and ~4.4! directly gives the eigenvector prop
erties of the componentsgl ,N(0) of the starting vectorgN(0),

(
i , j

N

@C~ i j !#ngl ,N~0!

5(
i , j

N

@Cdiag~ i j !#ngl ,N~0!

5 l ~1 3
4!

n1~N212 l !~2 3
4!

n]gl ,N~0!, ~4.9!

since for a given vectorgl ,N(0) there will be l terms cor-
responding to pairsi1 ^ ia , each yielding a factor of
(13/4)n, and N2 l 21 terms corresponding to pairsi1
^ ib , each yielding a factor of (23/4)n.

The above eigenvalue property of the starting vector a
means that there are no new orders of coherence prod
during the evolution of the multispin system with the inte
action Hamiltonian given by Eq.~2.10!. Since the number o
all the possible eigenvectorsgl ,N(0) is given in terms of the
binomial coefficients ( l

N21) as N( l
N21), the expression for

the N-spin FID becomes

G~ t !

Z
5gN

T~0! expOH (
n51

`

~2 ix!n(
i , j

N

@C~ i j !#n

3E
0

t

dt1E
0

t1
dt2¯E

0

tn21
dtn

3^F~r ~ t1!!F~r ~ t2!!¯F~r ~ tn!!&cJ gN~0!

5NOK expOF2 i
3

4
xE

0

t

dt8F~r ~ t8!!G
1expOF i

3

4
xE

0

t

dt8F~r ~ t8!!G L N21

. ~4.10!
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As follows from Eq.~4.10!, the averaged many-body FID
expressed in terms of a two-body signal when the motion
the spin pairs are stochastically independent. The two-b
FID can be evaluated by the method of the stochastic Li
ville equation.3,5,19,20In the thermodynamic limit,N, V→`
~whereV is the sample volume!Eq. ~4.10!becomes~see Ref.
7 for details!

G~ t !5G~0!expNE
0

t dt8

V

]g2~ t8!

]t8
. ~4.11!

Thus, the signal arising from collective interactions ofN
spins relaxes to its equilibrium much faster than the cor
sponding two-body signalg2(t), since on average any tw
spins spend most of the time away from each other w
V→`. That is, for nearly all times of interest~on the many-
body time scale!, it is sufficient just to know the short-tim
behavior of the two-body signal.

Plots of the many-body line shapes at different conc
trations of spins are shown in Fig. 2. Calculations have b
performed by using Eq.~4.11! as described in Ref. 7 for an
ultraslow motional regime corresponding to the value
the relative translational diffusion coefficient ofDT

51024 g2\/d. The numbers of spins have been chosen to
N5104, 105, 106, and 107 and the ratio of the distance o
maximum separation to the distance of minimal approa
has been set tor max/rmin5100. Convergence to the thermo
dynamic limit has been checked as described in Ref. 7. If
distance of minimal approach is chosen to ber min[d55 Å,
the above values ofN correspond to concentrations of spin
C of: ~a! 1.931019, ~b! 1.931020, ~c! 1.931021, and ~d!
1.931022cm23, respectively. As can be seen from Fig. 2, E
~4.11!describes a transition from Lorentzian line shapes c
responding to low~a! concentrations, to Gaussian line shap
corresponding to high~d! concentrations of spins. An inter
mediate regime@plots ~b! and ~c!# can also be seen. Fits o
the calculated spectra to the Lorentzian@plots ~a! and ~b!#
and Gaussian@plots ~c! and ~d!# functions are shown by
dashed lines for comparison.

V. DIRECT-PRODUCT FORMALISM FOR
CALCULATING THE EVOLUTION OF VARIOUS
ORDERS OF COHERENCE FOR MULTIPLE PULSES

From the following formal equation for the evolution o
the density matrix components in the eigenoperator repre
tation, one can calculate motionally averaged signals co
sponding to various orders of coherence in the presence o
intermediate pulseX:

g~ t !5^e
O

2 i DV~ t2t!2 ix( i 1, j 1

N C~ i 1 j 1!*t
t dt1F~r i1 j 1

~ t1!!

3Xe
O

2 i DVt2 ix( i 1, j 1

N C~ i 1 j 1!*0
tdt1F~r i1 j 1

~ t1!!

&g~0!, ~5.1!

where the diagonal coherence matrixDV treats the off-
resonance effects. Its representation in the eigenoperato
sis is given by Eq.~2.8!, which can be rewritten as a sum
‘‘dressed’’ direct-product structures by analogy with th
C-matrices and the starting vectorg(0),
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 2. Plots of the many-body line
shapes at different concentrations o
spins:~a! 1.931019, ~b! 1.931020, ~c!
1.931021, and~d! 1.931022 cm23, cf.
the text. A transition from a Lorentzian
regime @low concentrations,~a!# to a
Gaussian regime@high concentrations,
~d!# can be seen. An intermediate re
gime corresponds to plots~b! and ~c!.
Dashed lines show fits to Lorentzia
@plots ~a! and~b!# and Gaussian@plots
~c! and ~d!# functions.
N21
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DV5 (
i 50

$E% i
^ DVi 11^ $E%N212 i . ~5.2!

Here the offset matrix for thei th spin is given by

DVi5Dv iS 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 21

D , ~5.3!

whereDv i5v i2v rf . Note that in the case of like spins, th
C-matrices commute with the coherence matricesDV,
which can be checked directly by computing the commuta

@C2 ,E^ DVi1DVi ^ E#50. ~5.4!

The elements of the pulse propagator matrixXT in the eigen-
operator space are defined as

X$e%$e8%[Tr@E
$e8%
†

R~u!E$e%R
21~u!#

5Tr@E$e%R
21~u!E$e8%

†
R~u!#. ~5.5!

In the direct-product representation, the overallnonselective
pulse propagator acts on each spin individually, and can
simply written as

XN5X^ X^ X^¯5$X%N. ~5.6!

Clearly, in the case ofselectivepulses theX-matrices corre-
sponding to unaffected spins should be replaced by unit
trices E. The pulse propagatorX for individual spins for a
(p/2)y pulse is given by
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Xy5
1

2 S 21 1 1 21

1 1 1 1

21 1 21 1

D , ~5.7!

and for a (p/2)x pulse

Xx5
1

2 S 1 i 2 i 1

i 1 1 2 i

2 i 1 1 i

1 2 i i 1

D . ~5.8!

Since the exchange terms are not affected by a pu
XCex(i j )X215Cex(i j ), one may repeat the arguments of t
previous section for the case of intermediate pulses. In
case of like spins one may, therefore, consider the trunc
version of the dipolar Hamiltonian containing only theI z

( i )I z
( j )

terms, and subsequently replace the coupling constantx by
3x/2. We shall also consider the pure resonance case,Dv
50, as before. The eigenoperator representation of the t
cated dipolar Hamiltonian superoperator matrix then sim
becomes diagonal, and can be rewritten as

C25~ I z^ e! ^ ~ I z^ e!2~e^ I z! ^ ~e^ I z!

5 1
2 ~A^ B1B^ A!, ~5.9!

where the auxiliary matricesA andB are given by
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



ey
p

w

n

s

ion
nd-

ain-
the

il-

mo-

-

m

2409J. Chem. Phys., Vol. 115, No. 6, 8 August 2001 Direct-product formalism for NMR
A5 A12A2 ,
~5.10a!

A1[S 1

0

0

0

D , A2[S 0

0

0

1

D ,

B5B12B2 ,
~5.10b!

B1[S 0

1

0

0

D , B2[S 0

0

1

0

D .

In order to make use of the recurrence relation, Eq.~3.7!,
directly, let us consider a system containingN11 identical
spins instead ofN. Since all the matrices are diagonal, th
commute with each other, and the time-ordered matrix ex
nential forN11 spins in Eq.~5.1!can be simply rewritten in
terms of ordinary matrix exponentials as

e
O

2 ix( i , j
N11C~ i j !*0

t dt8F~r i j ~ t8!!

5E^ e2 ix(2< i , j
N11 C~ i j !*0

t dt8F~r i j ~ t8!!

3e2 ix(m51
N Pm~C2^ $E%N21!Pm

21*0
t dt8F~r1m11~ t8!!. ~5.11!

To compute the matrix exponential of the second term,
write explicitly the sum over the permutations, viz.,

(
m51

N

Pm~C2^ $E%N21!Pm
21

5 1
2 ~A^ B^ $E%N211A^ E^ B^ $E%N221¯

1A^ $E%N21
^ B1B^ A^ $E%N21

1B^ E^ A^ $E%N221¯1B^ $E%N21
^ A!. ~5.12!

We then apply the following property of the matrix expone
tial of a dressed direct-product sum,8

eA^ E^¯^ E1E^ B^¯^ E1¯1E^ E^¯^ Z

5eA
^ eB

^¯^ eZ, ~5.13!

which is valid for any matricesA,B,...Z of the same size a
the unit matrixE. The result is

e2 ix(m51
N Pm~C2^ $E%N21!Pm

21*0
t dt8F~r1m11~ t8!!

5A1 )
m51

N

^ e2 i ~x/2!B*0
t dt8F~r1m11~ t8!!

1A2 )
m51

N

^ e1 i ~x/2!B*0
t dt8F~r1m11~ t8!!

1B1 )
m51

N

^ e2 i ~x/2!A*0
t dt8F~r1m11~ t8!!

1B2 )
m51

N

^ e1 i ~x/2!A*0
t dt8F~r1m11~ t8!!. ~5.14!
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From the recurrence relation, Eq.~3.4!, and by using the
above equation, one obtains a very important express
which describes evolution of the starting vector correspo
ing to the first-order~or single-quantum,m561! coherence,

g~61!~ t !5e2 ix( i , j
N C~ i j !*0

t dt8F~r i j ~ t8!!g~61!~0!

[ (
m51

N

gm
~61!~ t !

5 (
m51

N

~e7 ik1m~ t !ia1e6 ik1m~ t !ib!

^¯^ ~e7 ikm21m~ t !ia1e6 ikm21m~ t !ib!

^ i6 ^ ~e7 ikmm11~ t !ia1e6 ikmm11~ t !ib!

^¯^ ~e7 ikmN~ t !ia1e6 ikmN~ t !ib!, ~5.15!

where the functionski j (t) are defined by

ki j ~ t ![
x

2 E
0

t

dt8F~r i j ~ t8!!, ~5.16!

and the summation in Eq.~5.15! is carried out fori , j . It is
sufficient to verify Eq.~5.15! just for the first spin and then
apply permutation symmetry arguments to obtain the rem
ing terms for the rest of the identical spins. For instance,
first exponential operator of Eq.~5.11! has no effect on the
evolution of coherence of the first spin (i 51), i1 ^ $ ia
1 ib%N, and for the second exponential operator one has

e2 ix(m51
N Pm~C2^ $E%N21!Pm

21*0
t dt8F~r1m11~ t8!!i1 ^ $ ia1 ib%N

5A1i1 )
m51

N

^ e2 i ~x/2!B*0
t dt8F~r1m11~ t8!!~ ia1 ib!

5 i1 )
m51

N

^ ~e2 ik1m11~ t !ia1e1 ik1m11~ t !ib!, ~5.17!

i.e., in agreement with the first term of Eq.~5.15!.
Note that in the case of the truncated dipolar Ham

tonian the time evolution is contained only in theia,b terms,
which allows one to obtain the exact result, Eq.~5.15!. If the
motions of the spins are stochastically independent, the
tional averaging of the direct products in Eq.~5.15!followed
by projection onto the vectorg(11)T(0) yields immediately
the binomial result, Eq.~4.10!, even without using cumu
lants.

Next, we apply an intermediate (p/2)y pulse~which cor-
responds to a standard solid-echo experiment! to see what
happens to ourN-spin system. The observed single-quantu
coherence signal is given by
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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G~ t !

Z
5g~11!T~0!^e2 ix( i 1, j 1

N C~ i 1 j 1!*t
t dt1F~r i 1 j 1

~ t1!!

3Xe2 ix( i 1, j 1

N C~ i 1 j 1!*0
tdt1F~r i 1 j 1

~ t1!!&g~11!~0!

5^gT~ t2t!Xg~t!&, ~5.18!

since theC-matrices are symmetric. To calculateXg~t!, we
note that

Xyi65 1
2 ~ i62 i7!2 1

2 ~ ia2 ib!, ~5.19a!

Xy~e2 iki j ~ t !ia1e1 iki j ~ t !ib!

5coski j ~ t !~ ia1 ib!1 i sinki j ~ t !~ i11 i2!. ~5.19b!

As one can see, the intermediate (p/2)y pulse produces a
whole variety of multiquantum coherences in the many-bo
system of interacting spins upon acting ong~t! which is
given by Eq.~5.15! evaluated att5t. If the motions of the
spin pairs are stochastically independent then the avera
over ki j (t) yields the same values. Thus, it is sufficient
calculate the effect of the pulse just for the first spin and th
multiply the intensity byN. After applying the pulse propa
gator to each subvector of Eq.~5.15!as given by Eqs.~5.19a!
and~5.19b!, followed by motional averaging and combini
the similar terms together, the overall echo signal becom

G~ t !5
qN

2
@^cosk~ t2t!cosk~t!&N211~N21!^sink~ t2t!

3sink~t!&^cosk~ t2t!&N22^cosk~t!&N22#. ~5.20!

Using the multiplication properties of the sine and cos
functions, the observed signal can be rewritten in terms
the two-body FID and echo as

G~ t !5
qN

2 F22~N21!^ECHOu0
t 1FIDu0

t &N21

1
~N21!

2
^ECHOu0

t 2FIDu0
t &

3^FIDut
t &N22^FIDu0

t&N22G , ~5.21!

where

FIDu0
t [

e2 i ~x/2!*0
t dt8F~r ~ t8!!1e1 i ~x/2!*0

t dt8F~r ~ t8!!

2
, ~5.22a!

ECHOu0
t [

e2 i ~x/2!*0
t dt8s~ t8!F~r ~ t8!!1e1 i ~x/2!*0

t dt8s~ t8!F~r ~ t8!!

2
.

~5.22b!

Here thes-function is defined by:s(t)511, t.t, ands(t)
521, t,t. It is noteworthy that whenN52 the observed
signal consists entirely of the echo. As the number of sp
increases, multiple quantum coherences produced in ac
dance with Eq.~5.19b! suppress the echo formation. Th
constitutes a well-known fact in solid-state NMR. At th
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point one has to compare Eq.~5.21! with Eq. ~6.15! in Ref.
7. The latter has been derived for the case of a reduced b
operator set havingm561, which implies neglecting any
higher-order coherences produced by the second pulse.21 By
contrast, in deriving Eq.~5.21! we have used the full basi
set as well as the full form of the pulse propagator,X. For a
very large number of spins, one can use the Markov ave
ing method7,22,23 to obtain fort.t

G~ t !5
qN

2 H e~C/2!*0
t dt8]ge~ t8!/]t81]gf ~ t8!/]t8

1
C

2
@ge~ t !2gf~ t !#eC*0

t dt8]gf ~ t8!/]t8J
5

qN

2
eC*0

t dt8]gf ~ t8!/]t8H eC/2@ge~ t !2gf ~ t !#

1
C

2
@ge~ t !2gf~ t !#J , ~5.23!

wherege(t) andgf(t) are the motionally averaged echo an
FID for the two-spin problem, respectively, which can
evaluated by the method of stochastic Liouville equation
described in Ref. 20. In the solid-state limit, the averag
becomes just integration over volume,14 and Eq.~5.23! at
t.t becomes

G~ t !5
qN

2
e2t/T2* S e~ t2ut22t!u/2T2* 1

t2ut22tu
2T2*

D . ~5.24!

At low enough concentrations of spins the relaxation tim
T2* is given by the classic Anderson formula,24 1/T2*
54p2g2\C/9). At higherC a more complicated nonlinea
behavior in time is found, which becomes Gaussian in
limit, cf. Fig. 2 and Appendix B of Paper II.15 When t52t
Eq. ~5.24!becomes

G~2t!5
qN

2 S e2t/T2* 1
t

T2*
e22t/T2* D . ~5.25!

The effect of echo suppression can be seen by compa
Eq. ~5.25! with the result when generation of higher-ord
coherences is neglected, which predicts no decay att52t
when the translational diffusion coefficient,DT→0 for the
solid echo, cf. Ref. 7. Note that the first part of Eq.~5.25!
corresponds to just a single-exponential decay, but we
find the existence of a second term, which is seen to deca
twice the rate of the first term. However, the second part m
not be always observed experimentally ift!T2* .

Plots of many-body spin-echoes forN identical spins of
1/2 calculated by using Eq.~5.23! at different values of the
translational diffusion coefficientDT are presented in Fig. 3
~solid lines!. The evaluation of the averaged random-ph
exponentials for the FID and echo components has been
formed as described in Ref. 20. Even at the rigid limit (DT

51026g2\/d) there is no full echo refocusing, and at suf
ciently long delay times no echo is expected at all. Note t
the echo maximum does not occur at exactlyt52t. Increas-
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ing the diffusion rate not only further decreases the e
amplitude, but also shifts it towards the timet when the
pulse is applied. Dashed lines show the pure echo signal,
the one considered in Ref. 7. In contrast to the more gen
expression, Eq.~5.23!, the latter can be fully refocused att
52t in the rigid limit. Because of the technical limitation
of the previous theory,7 the earlier treatment did not includ
the formation of higher-order coherences after the sec
pulse. Instead, a truncated basis operator set~i.e., corre-
sponding tom561! was used which was insufficient for
rigorous consideration of higher-order coherences that
formed after the refocusing pulse.~These results, shown a

FIG. 3. Spin-echoes calculated at different values of the translational d
sion coefficientDT ~in units of g2\/d56.5431026 cm2/s for electrons if
r min5d55 Å! as shown in different panels. The number of spins and
ratio of the distance of maximum separation to the distance of mini
approach have been chosen to beN5104 and r max/rmin5100, respectively,
which corresponds to a concentration of spins of 1.931019 cm23. Even near
the rigid limit (DT51026g2\/d) there is no complete echo refocusin
Increasing the diffusion rate further decreases the echo and shifts its m
mum to the left of t52t. Dashed lines show the pure echo signal f
comparison, i.e., expC* 0

t dt8@]ge(t8)/]t8#, cf. the text.
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dashed lines in Fig. 3, are compared with the new result
this work.! However, when motions of the spins are suf
ciently fast the two expressions become motionally av
aged, which results in their similar behavior, cf. Fig. 3.

Figure 4 shows the echo behavior as a function of
delay time,t calculated at various values of the diffusio
coefficient,DT . For electron spin-bearing molecules havin
the distance of minimal approach ofd55 Å, the range from
DT51024 to 1021 in units of g2\/d converts to from 6.5
310210 to 6.531027 cm2 s21, which represents the range o
translational diffusion rates in lipid membranes and oth
viscous solvents. The calculations for Fig. 4 have been p
formed for a concentration of spins 1.931019cm23 ~32
mM!. The time scale for each plot then corresponds to ab
1.9 ns per unit time for electron spins. As can be seen,
preciable echo amplitudes are anticipated fort’s lying on a
hundred-nanosecond time scale or less, which still should
measurable experimentally.25 From Fig. 4 it is clear that a
detailed comparison between experimental results and
theory presented here would be required to extract the
perimentalDT . ~Concentration-dependent studies would
also helpful.!

We now generalize Eq.~5.20! to the evolution of coher-
ences of arbitrary order in a solid echo experiment. We w
a higher-order coherence signal as, cf. Eq.~5.18!,

Gm~ t !

Z
5g~m!T^e2 ix( i 1, j 1

N C~ i 1 j 1!*t
t dt1F~r i 1 j 1

~ t1!!

3Xe2 ix( i 1, j 1

N C~ i 1 j 1!*0
tdt1F~r i 1 j 1

~ t1!!&g~61!~0!

5^g~m!T~ t2t!Xg~61!~t !&. ~5.26!

Equation~5.26! is valid for any left-hand projection vecto
g(m). Let us consider for simplicity those coherent dens
statesg(m) that containm subvectorsi1 , e.g., g(m)5$ i1%m

^ $ ia1 ib%N2m plus all the permutations thereof. The sign
corresponding to such multiple-quantum coherences can

-

e
l

xi-
nt

.
in-
e-
FIG. 4. Many-body spin-echoes calculated at differe
values of delay timest @in units of (g2\/d3)2153.82
310210 s for electrons ifr min[d55 Å# and the transla-
tional diffusion coefficient DT ~in units of g2\/d
56.5431026 cm2/s! as shown in different panels
Longer delay times spread out the echo, whereas
creasing the translational diffusion rate further d
creases the echo amplitude.
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be obtained in exactly the same manner as has been don
the first-order coherence, Eq.~5.20!. A somewhat tedious bu
straightforward calculation yields fort.t

Gm~ t !

Z
5^g~m!T~ t2t!Xg~61!~t !&

5 i m212N2mS N
m D Fm^sin6k~t!&m21

3K cos(
m51

m

km~ t2t!cosk1~t!L N2m

1~N2m!

3K sin (
m51

m

6km~ t2t! )
m51

m

sin6km~t!L
3K cos(

m51

m

km~ t2t!L N2m21

^cosk~t!&N2m21G .

~5.27!

Here we have introduced the indexm ~instead of the previous
double indexij to simplify the expression! to designate sto-
chastic dependences~correlations!between the spin pairs
which determines the way the averaging should be p
formed on products involving sine and cosine functions. F
instance, when averaging the structures like^sin@k1(t2t)
1k2(t2t)1k3(t2t)#sink1(t)sink2(t)sink3(t)&, the functions
k1(t) andk1(t2t) must be correlated, and so on. TheGm(t)
for mÞ1 cannot be actually detected directly in a real expe
ment; an additionalp/2 pulse is needed to convert them ba
to the single-quantum coherence.26 Nevertheless, their evo
lution and initial intensities are still of interest. By compa
ing the expressions fork and2k, Eq. ~5.27!, it can be seen
that only odd-order coherences survive after the second p
due to the mutual cancelling of the even-order coheren

FIG. 5. Evolution of the triple-quantum coherence after the intermed
(p/2)y pulse in a solid-echo experiment after various pulse delay tim
t ~DT51026g2\/d, C51.931019 cm23!. The initial intensities of a triple-
order coherence,g(3)[(all permutations$ i1%3

^ $ ia1 ib%N23 do not exceed 0.1%
of the initial intensity of the first-order coherence,G1(0)51. However, due
to a large variety of multiple-quantum coherences, the echo loss meas
for the first-order coherence is still significant, cf. Fig. 3.
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arising from terms corresponding tom51 andm521 in the
starting ~right-hand!vector, cf. Eq.~5.26!. For instance, if
m53 one obtains from Eq.~5.27! in the thermodynamic
limit, N,V→`, but N/V5C

G3~ t !52
qN

2

1

223! H 3C2^sink~t!&2e2C*t
t dt8]gf ~ t8!/]t8

3eC/2*0
t dt8]ge~ t8!/]t81]gf ~ t8!/]t8

1S C

2 D 3

@3~cE2cF!~sE2sF!22~cE2CF!3#

3e3C*t
t dt8]gf ~ t8!/]t8eC*0

tdt8]gf ~ t8!/]t8J , ~5.28!

where

cE[^cos@k~ t2t!2k~t!#&85^ECHOu0
t &8,

cF[^cos@k~ t2t!1k~t!#&85^FIDu0
t &8,

~5.29!
sE[^sin@k~ t2t!2k~t!#&8,

sF[^sin@k~ t2t!1k~t!#&8.

In performing the above averaging in the thermodynam
limit we have used the following property of the Marko
method

@ 1
2 ^e1 i ~x/2!*0

t dt8F~r ~ t8!!&m1 1
2 ^e2 i ~x/2!*0

t dt8F~r ~ t8!!&m#N

5H 12m
C

N K 12
1

2
e1 i ~x/2!*0

t dt8F~r ~ t8!!

2
1

2
e2 i ~x/2!*0

t dt8F~r ~ t8!!L 8
1

m~m21!

4 S C

ND 2

3@^12e1 i ~x/2!*0
t dt8F~r ~ t8!!&82

1^12e2 i ~x/2!*0
t dt8F~r ~ t8!!&82#2¯J N

→exp2mC^12 1
2 e1 i ~x/2!*0

t dt8F~r ~ t8!!

2 1
2 e2 i ~x/2!*0

t dt8F~r ~ t8!!&8, ~5.30!

where the prime means taking the averaging over the un
malized equilibrium probability distribution, cf. Ref. 7 fo
details. Thus, the decay of a multiple quantum coherenc
proportional to its order,m. Higher powers ofmC/N have no
effect asN→`. As one can see from Eqs.~5.28!and~5.29!,
in the case of triple coherences there are now sine te
involved, but they are also directly related to the motiona
averaged exponentials that can be evaluated by solving
stochastic Liouville equation for the dipolar problem.20

Plots of the evolution of the triple-quantum coheren
calculated from Eq.~5.28!are shown in Fig. 5 as a functio
of pulse delay time,t. Because of the presence of dispersi
sine terms in Eq.~5.28!, the signal amplitude correspondin
to m53 can be negative. As one can see from the inset,
intensities of one given triple quantum coherence do not
ceed 0.1% of the single-quantum coherence@all plots are
normalized so thatG1(0)51#. However, due to a very large

e
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variety of multiple-quantum coherences, together they re
in a significant loss of the echo amplitude measured for
first-order coherence. For instance, there are other co
ences produced in a solid-echo pulse sequence, suc
g(m,k)5$ i1%m

^ $ i1 ^ i2%k
^ $ ia6 ib%N2m22k ~plus all the per-

mutations thereof!which have not been considered. How
ever, the calculation of the evolution of such coherence
still possible, and represents a straightforward generaliza
of the theory presented herein.

VI. INSTANTANEOUS DIFFUSION IN ORDINARY
ECHO EXPERIMENTS

To further investigate the nature of the echo loss
many-spin experiments, let us consider a collection ofNA

spins of typeA interacting withNB spins of typeB. We are
interested in what will happen if onlyNA spins are selec
tively flipped by an intermediatep-pulse. The evolution of
spin-density states before the pulse is still described by
~5.15!with N5NA1NB . The pulse propagator can be com
pactly written in this case as

XN5$X%NA^ $E%NB, ~6.1!

from which the choice of a numbering scheme for spinsA
andB becomes clear. For apx pulse, the matrixX is given
by

X~p!x
5S 1

1

1

1

D . ~6.2!

It is noteworthy that in the eigenoperator space the role
the matrixX is simply to interchangei1 with i2 and ia with
ib . With this in mind and using Eqs.~5.1!, ~5.15!, and~6.1!,
the absolute value of the nonvanishing projection of the
dinary echo signalGA(t) measured for spinsA can be writ-
ten as

uGA~ t !u
Z

5^g~11!T~ t2t!XNg~21!~t !&

5 (
m51

NA

^gm,A
~11!T~ t2t!$X%NAgm,A

~21!~t !&

3^gm,B
~0!T~ t2t!gm,B

~0!* ~t!& ~6.3!

~since a direct product of any two complex numbers is
number itself!. In the above expression we broke up to
spin-density vectors into the first-order coherence parts
responding to spinsA and the remaining~zero-order coher-
ence!parts for spinsB, cf. Eq. ~5.15!. As can be seen from
Eq. ~6.3!, there will be no refocusing ofA–A interactions,
since $X%NAgm,A

(21)(t)5gm,A
(11)(t); whereasA–B interactions

get refocused since the left-hand and right-hand side vec
corresponding to spinsB are related by complex conjuga
tion, cf. Eqs.~5.15! and ~6.3!. Carrying out the necessa
vector–vector multiplications involving the Kronecke
product algebra, we find thatGA(t) consists of a product o
two terms
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uGA~ t !u
Z

5NA^e2 i ~x/2!*0
t dt8F~r ~ t8!!

1e1 i ~x/2!*0
t dt8F~r ~ t8!!&NA21^e2 i ~x/2!*0

t dt8s~ t8!F~r ~ t8!!

1e1 i ~x/2!*0
t dt8s~ t8!F~r ~ t8!!&NB, ~6.4!

where stochastic independence of the motions has been
sumed. Thus, the ordinary echo consists of the product
decaying FID term corresponding toA–A interactions, and
an echo-refocusing term corresponding toA–B interactions.
In the solid-state thermodynamic limit, application of th
Markov method and integration over volume yields from E
~6.4!, cf. Refs. 7 and 14,

uGA~ t !u5
qNA

2
e2t/T2*

~AA!
e2ut22tu/T2*

~AB!
, ~6.5!

where 1/T2*
(AA)54p2gA

2\CA/9), 1/T2*
(AB)54p2gA

3gB\CB/9). The first exponential terms represents t
well-known effect of echo suppression referred to as inst
taneous diffusion in solid-state ESR. Lettingt52t we find
that Eq.~6.5!corresponds exactly to the classical formula f
instantaneous diffusion13,23,24developed previously in a mor
ad hocfashion. Here we have proved it rigorously by usin
the direct-product formalism for the case of the trunca
dipolar Hamiltonian. As can be seen from Eq.~6.5!, A–A
interactions suppress the echo arising fromA–B interac-
tions. It is worthwhile to emphasize that the nature of sig
loss in an ordinary echo experiment is different from that
the solid echo considered in the previous section, Eq.~5.21!.
In the former case it is due to the fact that interactio
amongst like spins cannot be refocused; whereas in the l
case the echo loss is due to the generation of multiple qu
tum coherences produced after the intermediate (p/2)y

pulse.

VII. CONCLUSIONS

We have considered herein a new approach to the s
tion of the density-matrix equation for a multispin syste
based on a direct-product formalism. Hamiltonian superm
trices have been introduced based on the Frobenius t
metric defined in the eigenoperator space of the unpertur
Zeeman–Hamiltonian superoperator. Algebraic properties
the supermatrices allow for a convenient direct~or Kro-
necker!product factorization, which makes the present a
proach particularly useful for the case of many-spin pro
lems. The superoperator approach makes it possible to ob
a solution even when the interaction Hamiltonian is tim
dependent, thus explicitly incorporating spin relaxati
into the theory. When the motions of the spins are stocha
cally independent, compact solutions can be obtained for
FID and echo signals due to the permutation symmetries
simple eigenvector properties of the superoperator matri
The motional averaging of the matrix-exponential form
can be performed by the method of the stochastic Liouv
equation~see Ref. 20, and Paper II15 for details!. This en-
ables one to take into account time correlations of all ord
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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and, therefore, calculate motional effects of arbitrary ti
scale.

The exponential forms of the superoperator matrices
be evaluated exactly for the case of the truncated diag
dipolar Hamiltonian, i.e., containing the termsI z

( i )I z
( j ) only.

However, the additional exchange terms@i.e., I ( i )I ( j )# have
been shown to have no effect~apart from the factor of 3/4
instead of 1/2 in the coupling constant! on the FID and ech-
oes of like spins engaged instochastically independent mo
tions. This is a generalization of the result of the Anders
statistical model for dilute solids. It is due also to the fa
that the exchange terms yield antisymmetric combinati
of the spin-density states, which mutually cancel each o
because of the permutation symmetry of the problem. W
the difference in Larmor frequencies becomes large, t
suppressing the effects of theI 6

( i )I 7
( j ) terms, only the first

~diagonal!part of the spin Hamiltonian of Eq.~2.6! is sig-
nificant, and this just introduces a simple 2/3 scaling fac
cf. Eqs.~2.6! and ~4.2!.27 In both cases, the FID decay wi
be predominantly governed by theI z

( i )I z
( j ) terms of the dipo-

lar Hamiltonian. In Paper II we deal with a case where
I 6

( i )I 7
( j ) terms are treated for a crystalline lattice, wherein

assumption of stochastic independence is made.
The results presented herein can be extended to the

istence of structure in the viscous or solid media to take i
account interactions with other molecules in the samp
More specifically, the effects of other molecules can be
cluded in the form of a structure factor describing the pa
correlation function in a mean-field approach.28 This would
affect the form of the diffusion operator in the stochast
Liouville equation used for the averaging of spin transitio
modulated by the dipolar interaction, while still being co
sistent with our assumption of stochastic independence o
motions of the spin-bearing molecules.

Previous results7 have been rederived more efficient
and more elegantly for the FID and solid echo for a ma
body system of identical spins of 1/2. Moreover, a mo
rigorous treatment of the many-body solid-echo, which w
not possible by using the previous framework,7 has been ac-
complished in the present paper. It has been found that
echo maximum does not occur at exactly twice the time
the pulse, and shifts towards earlier times. Generation
higher-order coherences after the second pulse greatly
presses the echo formation in a multiple-spin system,
there is no complete echo refocusing even at the rigid lim
Nevertheless, the results presented here can be used t
tract the diffusion coefficient,DT from detailed comparison
with experiment.

It has been shown that in the thermodynamic limit t
relaxation rate of a multiple-quantum coherence is prop
tional to its order,m. The results also indicate that in th
thermodynamic limit, i.e., at very large number of spins a
sample volume, only the short-time behavior on the tw
body time scale determines the relaxation of multiple-s
states to their equilibrium.

The well-known phenomenon of instantaneous diffus
in an ordinary echo experiment has been studied here f
first principles~i.e., from calculating the evolution of spin
density states!, and the effect of motional averaging has b
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included. In contrast to the solid echo pulse sequence,
echo maximum occurs here neart52t, and the echo loss is
due to the fact that dipolar interactions amongst like sp
cannot be refocused. Thus, a clear distinction between
nature of the loss of refocusing in the solid and ordina
echoes has been made in the present work.

The formalism presented herein may find its use in m
ern NMR and ESR many-body problems such as Quan
Computing10 and biophysical studies of membranes a
proteins.29 The expression for solid-state spin echoes can
of interest for measuring translational diffusion rates in v
cous media such as glasses, liquid crystals, and membra
The recursive nature of the direct-product factorization a
the relatively simple matrix-vector multiplications involve
~as opposed to the conventional matrix transformatio!
makes the present method convenient for computer im
mentations in the case of more complicated problems.
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