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A many-body analysis of the effects of the matrix protons
and their diffusional motion on electron spin resonance line shapes
and electron spin echoes

Alexander A. Nevzorov and Jack H. Freeda)

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853

~Received 9 March 2001; accepted 8 May 2001!

The method for treating the evolution of the density matrix developed in the accompanying paper
for many-spin systems is applied here for calculating magnetic resonance signals of a spinA
interacting with a bath ofN identical spinsB. Spins B are assumed to have much smaller
gyromagnetic ratios than the spinA ~e.g., the former are nuclear spins,I and the latter is an electron
spin, S!. The experimentally observed quadratic dependence of the spin-echo envelope decay on
concentration and time is explained from considering the dipolar coupling of spinA to all the B
spins in the presence ofB–B dipolar interactions. It is shown that the spin-echo envelope decay in
the rigid limit is due to the interaction of theA spin with the coherent many-body states of the
coupled spinsB via the nuclear flip-flop termsI 6I 7 , which becomes a dissipative mechanism in the
thermodynamic limit. This represents a more rigorous analysis than simplified models based on an
incoherent version of ‘‘spin diffusion,’’ and it leads to good quantitative agreement with experiment.
Moreover, this analysis represents a unified description of both the modulation and decay of the
A-spin echoes. Spin echoes and line shapes for theA–BN systems are also calculated for finite
motions which randomize theB spins. Even for very slow motions~modeled as translational
diffusion! an effective mechanism for spin-echo envelope decay is generated, which readily
overtakes the coherent mechanism in importance. The intensity distribution for the forbidden
components in theA-spin line shape resulting from multiquantum transitions of theB spins caused
by the pseudosecular interaction termsSzI 6 , is calculated. In the rigid limit it is found to behave
like a Poisson distribution. ©2001 American Institute of Physics.@DOI: 10.1063/1.1382817#
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I. INTRODUCTION

In the present paper we investigate the relaxation o
single spinA having a large gyromagnetic ratio~e.g., an
electron!interacting with a bath ofN identical spins having
much lower gyromagnetic ratios,B ~e.g., protons!. We fur-
ther develop the direct-product superoperator method
posed in the previous paper1 for calculating magnetic reso
nance signals in many-body systems. In our earlier work1–3

a system of like spins was considered. Due to the high s
metry of the problem, it was sufficient to consider only t
secular part of the dipolar Hamiltonian. The final expressio
were reduced to motionally averaged exponential functi
which effectively correspond to two-body interactions tak
to the Nth power, provided that the motions are stocha
cally independent. In the case of unlike spins, additio
terms in the dipolar Hamiltonian usually need to be cons
ered, including induced nuclear spin-flip transitions of t
bath spins and off-resonance effects. This may make obt
ing closed-form analytical solutions no longer possib
Therefore, in order to make the problem tractable, additio
simplifications may be necessary.

In much of this work we focus on the solid-state lim
which is still of practical importance. As is well-known i
ESR, in the solid-state limit the matrix protons cause:~i!

a!Electronic mail: jhf@ccmr.cornell.edu
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Electron-spin echo envelope modulation~ESEEM!, and~ii!
an irreversible decay of the electron spin echo amplitu
The ESEEM theory is well developed.4,5 A treatment of the
echo envelope decay was proposed nearly three dec
ago.6–8 It was based on the theory of Klauder and Anderso9

of a random-field modulation at the electron caused by r
dom flip-flops of the neighboring pairs of proton spins due
nuclear ‘‘spin diffusion.’’ However, the proton–proton inte
actions are coherent, so the simplification of introducing
random flip–flops is only a crude approximation. A mo
accurate approach requires that all the protons, as well as
electron, be considered together as a single many-body q
tum system. It is expected that the electron interactions w
this coherent ‘‘bath’’ of protons should have a dissipati
effect in the thermodynamic limit, i.e., in the limit of a
infinitely large bath. This should yield a decay of th
electron-spin echo amplitude versus time~i.e., aT2-type de-
cay!. However, there are subtle aspects of such a complic
picture requiring detailed examination. Our many-bo
analysis is shown to compare very favorably with ESR e
periments in frozen systems.

In the nuclear magnetic resonance~NMR! case, a theory
for the nuclear spin-lattice relaxation (T1) in solids in the
presence of paramagnetic impurities was developed y
ago.10–12 It is based on modeling the transfer of magnetiz
tion between the nuclear spins as diffusive in nature, and
this process that has been termed spin diffusion. Rece
6 © 2001 American Institute of Physics
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however, the coherent nature of this phenomenon has b
recognized. Bru¨schweiler and Ernst13,14 have considered lin-
ear chains of spins of 1/2 from first principles~i.e., as a
single quantum system!with a dipolar Hamiltonian involv-
ing the spin-flipping terms, i.e.,I 6

( i )I 7
( j ) for nuclei i and j. In

the solid-state limit, this leads to a nonergodic quasiequi
rium behavior of the longitudinal magnetization of the sp
~i.e., when the final state of the system cannot be descr
by a single temperature!; whereas the spin-diffusionAnsatz
would predict ergodic behavior. In the present paper, ho
ever, we discuss the free-induction decay~FID! and spin ech-
oes of an electron spin embedded in a bath of interac
nuclear spins, and this necessarily directs our attention
T2-type processes.

In addition, we shall investigate what happens when
temperature is raised and motions are introduced. This
matter of great importance for ESR experiments in visc
media for which no useful theory has existed up to
present time.5–8 In this analysis we assume random motion
corresponding to the assumption of stochastic independ
of the motions that we have previously utilized,1–3 so posi-
tional correlations amongst the matrix protons are lost.
first show rigorously that any effects of the spin diffusion
the matrix protons~i.e., theB–B interactions!vanish in the
fast motional limit, as expected. Then for slow to interme
ate translational diffusion rates, we calculate the magne
resonance signals from theA ~electron!spin interacting with
B spins~protons!by solving a system of coupled stochas
Liouville equations, as described in Appendix A. In Appe
dix B, an analytic expression for the distribution of inten
ties corresponding to the forbidden ESR transitions, wh
are multiquantum in nuclear spins, is obtained in the so
state limit.

II. DIRECT-PRODUCT FORMULATION OF THE
PROBLEM IN THE SUPEROPERATOR
REPRESENTATION

The dipolar interaction Hamiltonian in the rotating fram
for an A–BN system is chosen as

HA–B
~1i ! 5x0F0~r1i !SzI z

~ i !1x1@F2~r1i !SzI 1
~ i !

1F1~r1i !SzI 2
~ i !#, ~2.1a!

HB–B
~ i j ! 5xF0~r i j !@ I z

~ i !I z
~ j !2 1

4~ I 1
~ i !I 2

~ j !1I 2
~ i !I 1

~ j !!#. ~2.1b!

As usual, we neglect in Eq.~2.1a! the electron spin-flip
terms, since these transitions are of too high energy to
important except for very fast motions.15 The pseudosecula
SzI 6 terms are in general significant,15 leading to electron-
spin echo envelope modulation,4,5 and are therefore, retained

Spin A is chosen here to be the first spin, and the c
pling constants are given by:x0[A(16p/5)gAgB\, x1

[A(6p/5)gAgB\, x[A(16p/5)gB
2\. The functions that

depend on the distancer between the spins are expressed
terms of the spherical harmonics as
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F0~r !5
Y0

~2!~u,f!

r 3 , F2~r !5
Y1

~2!* ~u,f!

r 3 ,

~2.2!

F1~r !5
Y1

~2!~u,f!

r 3 .

The equation of motion for the spin-density vectorg(t) ~the
density matrix equation in the eigenoperator representati!,
cf. Eq. ~2.7! of Paper I1 now becomes

]g~ t !

]t
52 i ~DV1Hx!g~ t !. ~2.3!

The (N11)-body frequency offset~coherence!matrix is
given by the representation of the Zeeman Hamiltonian
peroperator in the eigenoperator space, cf. Eq.~5.2! of Paper
I,1 viz.,

DV5DVA^ $E%N1E^ DVB
~N!5E^ DVB

~N! , ~2.4!

since spinA is assumed to be on resonance,DVA50. The
N-body offset matrixDVB

(N) for spinsB is also given by an
equation of the type of Eq.~5.2! of Paper I. The representa
tion of the many-body interaction Hamiltonian superopera
in the eigenoperator basis becomes@here we can use the
recursion relation, Eq.~3.7! of Paper I,1 directly#

Hx5E^ (
2< i , j

N11

xC~ i j !F~r i j !1 (
m51

N

Pm@x0C0F0~r1m11!

1x1D1F2~r1m11!1x1D2F1~r1m11!#

^ $E%N21Pm
21.

The first term on the right-hand side of Eq.~2.5!corresponds
to the interactions ofB spins within the bath, and is given b
Eqs. ~3.16! and ~3.17! of Paper I.1 The second term corre
sponds to the interactions of spinA with the B spins of the
bath. Note that the superoperator formulation, Eq.~2.3! al-
lows Hx to be time-dependent, where the time depende
may be implicitly contained in the classical variablesr. The
two-spinC-matrix describing the secular terms of the inte
action of spinA with spins B ~corresponding to theSzI z

terms!is fully diagonal, and can be factorized as

C05
1

2 S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 21

D ^ S 0 0 0 0

0 1 0 0

0 0 21 0

0 0 0 0

D
1

1

2 S 0 0 0 0

0 1 0 0

0 0 21 0

0 0 0 0

D ^ S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 21

D
[ 1

2 ~S8^ S1S ^ S8!. ~2.6!

The two-spinD-matrices~corresponding to theSzI 6 terms!
are related by the matrix transpose,D25D1

T , and can be
also factorized into two parts
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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D15
1

2 S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 21

D ^ S 0 1 1 0

0 0 0 1

0 0 0 1

0 0 0 0

D
1

1

2 S 0 0 0 0

0 1 0 0

0 0 21 0

0 0 0 0

D ^ S 0 21 1 0

0 0 0 1

0 0 0 21

0 0 0 0

D
[ 1

2 ~S8^ D1S ^ D8!. ~2.7!

The matrices of Eqs.~2.6! and ~2.7! can be obtained by a
laborious calculation of the commutation relations of theSzI z

and SzI 6 terms with the eigenoperatorsSeI e , e51,a,
b,2. Note that any mixed inner product of the two matr
terms is zero in both Eqs.~2.6! and ~2.7!.

In the absence of motions, the formal solution of E
~2.3! can be written as

g~ t !5e2 i ~DV1Hx!tg~0!. ~2.8!

SincegB!gA theB-spins are way off resonance, so they a
not rotated by the radio frequency~rf! pulses. This allows
one to write the first-order coherence starting vector incl
ing bothm511 andm521 components simply as

g~0!5g1~0!2g2~0!5~ i12 i2! ^ $ ia1 ib%N. ~2.9!

This corresponds to having the entire initial magnetization
the X–Y plane concentrated at spinA, or r(0)}Sy . The
reader is reminded here that the curly brackets denote a
rect product repeatedN times. Using the propertiesS8i6
56 i6 andS i650, Eq. ~2.8! can be simplified to

g~ t !5 i1 ^ e2 i ~HA–B
x

1HB–B
x

!t$ ia1 ib%N

2 i2 ^ e2 i ~H̃A–B
x

1HB–B
x

!t$ ia1 ib%N. ~2.10!

Here the reduced Hamiltonian supermatrices are given b

HA–B
x 5 (

m51

N

$E%m21
^ FDVB1

x0

2
SF0~r1m11!

1
x1

2
DF2~r1m11!1

x1

2
DTF1~r1m11!G

^ $E%N2m, ~2.11a!

H̃A–B
x 5 (

m51

N

$E%m21
^ FDVB2

x0

2
SF0~r1m11!

2
x1

2
DF2~r1m11!2

x1

2
DTF1~r1m11!G

^ $E%N2m, ~2.11b!

HB–B
x 5x (

2< i , j

N11

C~ i j !F0~r i j !, ~2.11c!

where the tilde simply means changing the sign everywh
except for the nuclear Zeeman term,DVB . Thus, zero pro-
Downloaded 08 Jan 2010 to 128.253.229.158. Redistribution subject to A
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jections of the starting vector reduce the number of matri
that need to be considered for calculating the evolution of
magnetization for spinA.

III. SPIN-ECHO ENVELOPE DECAY DUE TO THE
MATRIX PROTONS IN A – B N SYSTEMS

The results presented in this paper can be regarded
many-body formulation of the electron spin-echo envelo
modulation ~ESEEM! theory5 for spins of 1/2, where the
Larmor frequencies of theB spins,VB result in a modulation
of the echo amplitude. We shall see that the interacti
among theB spins yield an additional loss of the echo am
plitude, apart from the motional contribution which is di
cussed in Sec. V.

To calculate the effect of the intermediatepx pulse in a
Hahn-echo experiment, we use Eq.~5.1! of Paper I in the
absence of motions

G~ t !

Z
5g1~0!Te2 i ~DV1Hx!~ t2t!X~p!x

e2 i ~DV1Hx!~t!g~0!.

~3.1!

The prefactorZ arises from the high-temperature approxim
tion of the equilibrium density operator and is given byZ
[22(N11)\VA /kT[22(N11)q. The X-matrix correspond-
ing to px pulse, acts on spin A only, viz.,

X~p!x
5S 1

1

1

1

D ^ $E%N. ~3.2!

Thus, the role of theX-matrix in this case is simply to swa
the m511 component with them521 component. Using
Eqs.~2.10!and ~3.1! one obtains for the echo signal

uG~ t !u
Z

5$ ia
T1 ib

T%Ne2 i ~HA–B
x

1HB–B
x

!~ t2t!

3e2 i ~HA–B
x

1HB–B
x

!t$ ia1 ib%N. ~3.3!

In general, one needs to consider all couplings of
B–B interactions to theA–B interactions. Since the matrice
in Eq. ~3.3! do not commute, a rigorous calculation of a
couplings amongstHA–B

x andHB–B
x represents a formidable

~if not impossible!task. In general, Eq.~3.3!can be rewritten
as a product of the exponential functions of the matric
involved and a commutator expansion containing powers
t. However, sincex!x0 ,x1 ~sincegB!gA!, it is expected
that t3 and higher-order commutator terms involving high
powers ofHB–B

x will start having an appreciable effect onl
at long enough times at which the signal has decayed alm
completely due to the lower-order terms. Thus, the spin
laxation of an electron interacting withN protons should be
mainly determined by the leadingt andt2 terms. It will be
illustrated below that this leads to an expansion in powers
gB /gA . We may, therefore, restrict ourselves to the first
der in HB–B

x and write that
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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e2 i ~HA–B
x

1HB–B
x

!t

5e2 iHA–B
x teO

2 i *0
t dt8 exp~ iHA–B

x t8!HB–B
x exp~2 iHA–B

x t8!

'e2 iHA–B
x te@HA–B

x ,HB–B
x

#t2/2e2 iHB–B
x t, ~3.4!

where the symbol ‘‘O’’ stands for the Dyson time-orderin
The approximate equality follows from the Zassenha
formula,16 which is used to expand the operator in the exp
nential in a series of commutators, keeping only the low
order powers oft.

We can then rewrite Eq.~3.3! as

G~ t !

Z
'$ ia

T1 ib
T%Ne2 iHB–B

x
~ t2t!e@HA–B

x ,HB–B
x

#~ t2t!2/2

3e2 iHA–B
x

~ t2t!e2 i H̃A–B
x te2@H̃A–B

x ,HB–B
x

#t2/2

3e2 iHB–B
x t$ ia1 ib%N. ~3.5!

The bath term,HB–B
x has no effect on the starting vecto

since C( i j )$ ia1 ib%N50, cf. Eq. ~4.4! of Paper I,1 and the
commutator with the tilde term coincides with that witho
the tilde term except for the opposite sign, cf. Eqs.~2.11a!
and ~2.11b!. At t52t we obtain the following simplified
expression for the echo envelope decay~neglecting for now
the off-resonance effects ofVB that lead to the relatively
small spin-echo envelope modulation!:

G~2t!

Z
'$ ia

T1 ib
T%Ne@HA–B

x ,HB–B
x

#t2/2e2 iHA–B
x te2 i H̃A–B

x t

3e@HA–B
x ,HB–B

x
#t2/2$ ia1 ib%N

'$ ia
T1 ib

T%Ne@HA–B
x ,HB–B

x
#t2

$ ia1 ib%N. ~3.6!

Thus, the coupling between theHA–B
x andHB–B

x terms yields
an additional quadratic dependence int; whereas the
exp@2iHA–B

x t#exp@2iH̃A–B
x t# term yields the ESEEM ef-

fects which will be calculated in Sec. VI.
Let us consider a simple radial model~effectively one-

dimensional!including all interactions of spinA with the B

FIG. 1. A spherically symmetric radial model describing interactions of
electron spin with the matrix protons separated by a distancea in a rigid
lattice. Only nearest-neighbor interactions between the protons are co
ered, whereas the electron is interacting with all the protons.
Downloaded 08 Jan 2010 to 128.253.229.158. Redistribution subject to A
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st

spins, and only nearest-neighbor interactions between thB
spins, Fig. 1. We will generalize it shortly to three dime
sions for the case of spherical symmetry. We shall retain o
the diagonal part of the dipolar Hamiltonian describing t
A–B interactions~i.e., containing the matrixS only!. As will
be seen later, the pseudosecularSzI 6

( i ) terms of the Hamil-
tonian do not appreciably contribute to the echo amplitude
the rigid limit, causing relatively small amplitude modulatio
effects in the thermodynamic limit. Clearly, the secular p
of HB–B

x corresponding to theI z
( i )I z

( j ) terms of the dipolar
Hamiltonian commutes with the secular part ofHA–B

x @or
HA–B

x(sec)#, corresponding to theSzI 6
( i ) terms, and thus has n

effect. Furthermore,HB–B
x commutes with the offset matrice

containingDVB , cf. Eq.~5.4! of Paper I.1 The flip–flop part
of HB–B

x @or HB–B
x(FF)#, corresponding to theI 6

( i )I 7
( j ) terms, is

given by, cf. Eq.~3.17!of Paper I,1

HB–B
x~FF !52

x

4 (
m51

N21

F0~rm11m12!$E%m21
^ @~ I 1 ^ e!

^ ~ I 2 ^ e!2~e^ I 1! ^ ~e^ I 2!# ^ $E%N2m21

1F0~rm11m12!$E%m21
^ @~ I 2 ^ e!

^ ~ I 1 ^ e!2~e^ I 2! ^ ~e^ I 1!# ^ $E%N2m21. ~3.7!

With Eq. ~3.7! we can calculate the commutator of E
~3.6!,

@HA–B
x~sec! ,HB–B

x~FF !#5
xx0

2 (
m51

N21

F0~rm11m12!$E%m21

^ @F0~r1m11!S ^ E1F0~r1m12!

3E^ S,C2# ^ $E%N2m21

52
xx0

8 (
m51

N21

F0~rm11m12!@F0~r1m11!

2F0~r1m12!#$E%m21
^ @~ I 1 ^ e!

^ ~ I 2 ^ e!1~e^ I 1! ^ ~e^ I 2!

2~ I 2 ^ e! ^ ~ I 1 ^ e!2~e^ I 2! ^ ~e^ I 1!#

^ $E%N2m21. ~3.8!

Here the indexm is used to number the spins along th
radius, cf. Fig. 1, and the matrixC2 corresponds to two-body
interactions between theB spins. In deriving Eq.~3.8! the
following commutation relations have been taken into a
count:

@S,~ I 1 ^ e!#5~ I 1 ^ e!,

@S,~e^ I 1!#52~e^ I 1!,
~3.9!

@S,~ I 2 ^ e!#52~ I 2 ^ e!,

@S,~e^ I 2!#5~e^ I 2!.

We then use the following property of the matrix expone
tial:

id-
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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$ ia
T1 ib

T%2exx0t2/2F0~rm11m12!@F0~r1m11!S^ E1F0~r1m12!E^ S,C2#

3$ ia1 ib%254 cos2H xx0t2

8
F0~rm11m12!

3@F0~r1m11!2F0~r1m12!#J , ~3.10!

which can be quickly obtained by usingMathematica, for
example. The noncommutativity of the matrices in Eq.~3.8!
would yield orders higher thanx ~and, consequently, highe
orders int2!, and thus can be neglected forN→` ~infinite
bath!, cf. the discussion before Eq.~3.4!. This makes it pos
sible to generalize Eq.~3.10! to

$ ia
T1 ib

T%Ne2@HA–B
x~sec! ,HB–B

x~FF !
#t2

$ ia1 ib%N

→
N→`

2N11 )
m51

N21

cos2H xx0t2

8
F0~rB–B!

3@F0~r1m11!2F0~r1m12!#J
'2N11 )

m51

N21

cos2H 3

8

xx0t2

a2

@Y0
~2!~V!#2

r m11
4 J , ~3.11!

the proof of which is straightforward, but is too long to b
reproduced here. AtN→` we take the natural logarithm o
Eq. ~3.11!, replace the summation by integration overr1m ,
and then generalize the integration to three dimensions
cording to the following scheme:

(
m51

N21

→
12DE dr

a →
32DE dV

4p E
0

`

W~r !
dr
a 5E dV

4p E
0

` 2r 3dr

3a4 ,

~3.12!

wherea is the distance between the spins in the rigid latti
The weighting functionW(r )5 2

3(r /a)3 takes into accoun
the fact that as the distancer increases, the number of po
sible pathways through which the magnetization can tra
also increases.17 As a crude estimate, one can assume that
number of new pathways created for a givenr is proportional
to the number of spinsdN(r ) confined within the spherica
volume elementr 2drdV with r 5ma and dr5a, i.e.,
dN(r )}m2dV. In the case of three-site flips in a cubic la
tice, the proportionality factor is equal to 2~the existing
paths plus two new paths for each spin!. The weighting fu
tion W(r ) in Eq. ~3.12!can then be easily obtained from i
recursion relation,W(r m)dV5W(r m21)dV12dN(r m).

One can then write an expression for the spin-echo
plitude decay due to the irreversible loss ofx2y magnetiza-
tion of theA-spin due to its coupling to the infinite bath o
matrix protons
Downloaded 08 Jan 2010 to 128.253.229.158. Redistribution subject to A
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G~2t!}expE dV

4p E
0

` 2r 3dr

3a4

3 ln cos2H 3

8

xx0t2

a2

@Y0
~2!~V!#2

r 4 J
5exp2

p

20

gB

gA
~CgAgB\t!2, ~3.13!

whereC[a23 is the number density of protons in the sol
matrix. In obtaining Eq.~3.13! we have used the orthonor
mality property of the spherical harmonics and the followi
integral18

E
0

` ln cos2 bx

x2 dx52pubu. ~3.14!

Note that Eq.~3.13! contains the prefactorgB /gA!1,
which yields a time scale separation between the faster de
of the many-body electron FID which is determined by ju
the exp(2iHA–B

x t) term @e.g., Eq.~3.3! with the role of the
p-pulse ignored#, and the slower decay of the electron sp
echo envelope due to proton spin diffusion. Thus, the
sumption leading to Eq.~3.4! appears justifieda posteriori.

At this point it is worthwhile to compare our result t
that of Milov et al.7 Their theory is simply based on a ran
dom modulation of the local field at the electron due to ra
dom flips of pairs of the proton spins that are distant from
electron. Rewriting their Eq.~14! in the form of our Eq.
~3.13!one has

G~2t!}exp21.4
gB

gA
~CgAgB\t!7/4. ~3.15!

Milov et al.show that in fact a square-law dependence of
echo decay is experimentally observed in bothC andt, and
they obtain the relatively close power of 7/4 given by E
~3.15!. In our treatment the square-law dependence follo
naturally from considering the coupling of theSzI z

( i ) terms
to the I 6

( i )I 7
( j ) nuclear flip–flop terms treated up to th

first-order commutators. Assuming the dependenceG(2t)
}exp(2AC2t2), Milov et al. report a factor of A57
310235cm6/s2 measured from fitting the experimental dat
Substituting the numerical values for gyromagnetic ratios
electron and proton in Eq.~3.13! we get A55.9
310235cm6/s2, which is a rather good agreement with e
periment. It should be noted that we did not arbitrarily intr
duce any random process for the frequency modulation.
stead, we have obtained the final result, Eq.~3.13! directly
by solving the equation for the many-spin density opera
which emphasizes the coherent nature of spin diffusion.

IV. VANISHING EFFECT OF THE CORRELATIONS
AMONG THE MATRIX PROTONS ON THE ELECTRON
FID IN THE REDFIELD LIMIT

A noteworthy limiting case is the well-known Redfield
or fast motional limit. To solve the equation for the evolutio
of the density states, we go to the interaction-picture rep
sentation,

g~ t !5e2 iDVtĝ~ t !, ~4.1!
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for which the formal solution averaged over motions b
comes

ĝ~ t !5K expO2 i E
0

t

dt8eiDVt8Hx~ t8!e2 iDVt8L g~0!. ~4.2!

The exponential operator can be simplified greatly by us
the formula for the exponential function of a sum ov
‘‘dressed’’ direct-product structures,19

eA^ E^¯^ E1E^ B^¯^ E1¯1E^ E^¯^ Z5eA
^ eB

^¯^ eZ,
~4.3!

which yields
s
c-

s.
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e2 iDVt5e2 iDVAt
^ e2 iDVBt

^ e2 iDVBt
^ e2 iDVBt

¯

5E^ $e2 iDVBt%N. ~4.4!

The frequency-offset matrix exponentials, exp(2iDVBt)
commute with theC-matrices~since they are both diagonal!.
For theD-matrices we use the following property:

DÁ~E^ e2 iDVBt!5~E^ e2 iDVBt!DÁe6 iVBt, ~4.5!

i.e., they commute to within a scalar multiplier, which can
checked directly by multiplying the matrices given by E
~5.3! of Paper I and Eq.~2.7! of the present paper.

Next, by using Eqs.~2.5!and~4.5!we write the solution,
Eq. ~4.2!, as
depen-

uperop-
ĝ~ t !5K expOH E^ 2 ix (
2< i , j

N11

C~ i j !E
0

t

dt8F~r ~ t8!!1 (
m51

N

PmF2 ix0C0E
0

t

dt8F0~r ~ t8!!

2 ix1D1E
0

t

dt8F2~r ~ t8!!eiVBt82 ix1D2E
0

t

dt8F1~r ~ t8!!e2 iVBt8^ $E%N21GPm
21J L g~0!. ~4.6!

Equation~4.6! can be further rewritten in terms of generalized cumulant averages by taking into account stochastic in
dence of the motions of theA–B spin pairs,

ĝ~ t !5expOH O(
n51

`

E^ K (
2< i , j

N11

2 ixC~ i j !E
0

t

dt8F~r i j ~ t8!!L
c

n

1 (
m51

N

PmK 2 ix0C0E
0

t

dt8F0~r ~ t8!!

2 ix1D1E
0

t

dt8F2~r ~ t8!!eiVBt82 ix1D2E
0

t

dt8F1~r ~ t8!!e2 iVBt8L
c

n

^ $E%N21Pm
21J g~0!. ~4.7!

Here we have introduced the following shorthand notation for cumulant time-ordered averages:

OK E
0

t

dt8 f ~r; t8!L
c

n

[E
0

t

dt1E
0

t1
dt2¯E

0

tn21
dtn^ f ~r; t1! f ~r; t2!¯ f ~r; tn!&c , ~4.8!

where the time dependence in the functionf (r; t) may be both explicit and implicit.
For sufficiently fast motions, we can truncate the cumulant expansion of the motionally averaged exponential s

erator at the second order in a manner analogous to Refs. 3 and 20, which yields

G~ t !

Z
5$ ia

T1 ib
T%N expO2E

0

t

dt1E
0

t1
dt2x2 (

2< i , j

N11

@C~ i j !#2^F0~r ~ t1!!F0~r ~ t2!!&c1 (
m51

N

$E%m21
^ H x0

2

4
S2^F0~r ~ t1!!F0~r ~ t2!!&c

1
x1

2

4
@DDT^F2~r ~ t1!!F1~r ~ t2!!&ce

iVB~ t12t2!1DTD^F1~r ~ t1!!F2~r ~ t2!!&ce
2 iVB~ t12t2!#J ^ $E%N2m$ ia1 ib%N. ~4.9!
e-
@We have assumed that^F0,61(r) &50.] It can be shown by
direct calculation thatia1 ib is an eigenvector of the matrice
S2, DDT, andDTD, with eigenvalues of 1, 2, and 2, respe
tively. Thus, there will be no effect of the bath term@HB–B

x of
Eq. ~2.1b!#sinceC( i j )$ ia1 ib%N50. This yields the Redfield-
limit FID corresponding to the Hamiltonian given by Eq
~2.1a!and ~2.1b!,
G~ t !5G~0!expH 2N
2p

5
gA

2gB
2\2FJ0~0!1

3

2
J1~VB!G tJ ,

~4.10!

where Jm(v) are the spectral densities of motion d
fined as
IP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Jm~v![2E
0

`

dt cos~vt!^Fm* ~r ~t!!Fm~r ~0!!&c . ~4.11!

Equation~4.10! means that even if theSzI 6 pseudosecula
terms are included, the FID decay rate is still linear w
respect to the number ofB-spins,N and there is no effect o
the B–B interactions.
at

re
O
ID
s
a
e
e
a

ig
e

tr

f

t,
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V. ELECTRON SPIN FID’S AND ECHO ENVELOPE
MODULATION IN THE PRESENCE OF
TRANSLATIONAL DIFFUSION

By using Eq.~4.7!, we can rewrite the motionally ave
aged expression for the FID signal in terms of generaliz
cumulants as
G~ t !

Z
5$ ia

T1 ib
T%N expOH O(

n51

` K (
2< i , j

N11

2 ixC~ i j !E
0

t

dt8F~r i j ~ t8!!L
c

n

1 (
m51

N

$E%m21
^ K 2 i E

0

t

dt8B~VB ,t8!L
c

n

^ $E%N2mJ $ ia1 ib%N. ~5.1!
zed

Eq.
Here we have introduced a time-dependent matrix oper
B(VB ,t) which is given by

B~VB ,t ![DVB1
x0

2
SF0~r ~ t !!

1
x1

2
@DF2~r ~ t !!1DTF1~r ~ t !!#. ~5.2!

As follows from the previous section, when motions a
sufficiently fast, the effect of the matrix protons vanishes.
the other hand, if one is interested in calculating just an F
which decays to zero after several hundred nanosecond
less in a typical ESR experiment, one can neglect the b
term completely since it would yield a decay only in th
microsecond time scale.5,8 The latter circumstance can b
also revealed in our theory by substituting the numerical v
ues for the gyromagnetic ratios of the electron and proton
Eq. ~3.13!for a typical proton concentration of 1022cm23. In
the case of spin echoes, one can first calculate the echo s
without the effect of the bath, and then simply multiply th
final result in the time domain by Eq.~3.13!due to the above
time scale separation. One can easily calculate the ma
exponential operator in Eq.~5.1! containingB(VB ,t) only
@i.e., without the bath terms,C( i j )#. The latter has the form o
a dressed direct-product sum, the exponential function
which leads to a product ofN terms by virtue of Eq.~4.3!.
Assuming that allA–B pairs are stochastically equivalen
the motionally averaged FID becomes

G~ t !

Z
5^~ ia1 ib!Te

O

2 i *0
t dt8B~VB ,t8!

~ ia1 ib!&N. ~5.3!

To evaluate Eq.~5.3! in the thermodynamic limit (N,V
→`), one can use the Markov method3,21 which leads to
or

n
,
or
th

l-
in

nal

ix-

of

G~ t !5Z lim
N,V→`

^~ ia1 ib!Te
O

2 i *0
t dt8B~VB ,t8!

~ ia1 ib!&N

5Z lim
N,V→`

2NF12
C

N

3K ~ ia1 ib!T
12e

O

2 i *0
t dt8B~VB ,t8!

2
~ ia1 ib!L 8GN

5
q

2
exp2CK ~ ia1 ib!T

12e
O

2 i *0
t dt8B~VB ,t8!

2
~ ia1 ib!L 8

,

~5.4!

where the prime means averaging over the unnormali
equilibrium distribution, i.e., when the volumeV has been
factored out of the averaging, cf. Ref. 3.

In the same manner as we have calculated the FID,
~5.4!, the motionally averaged echo signal becomes

G~ t !

Z
5gT^eO

2 i *t
t dt8Hx~ t8!X~p!x

e
O

2 i *0
tdt8Hx~ t8!

&g~0!

5^~ ia1 ib!Te
O

2 i *t
t dt8B~VB ,t8!

3e
O

i *0
tdt8B~2VB ,t8!

~ ia1 ib!&N. ~5.5!

In the thermodynamic limit,N, V→` but C5N/V5const,
the Markov averaging leads to

G~ t !5
q

2
exp2CK ~ ia1 ib!T

3
12e

O

2 i *t
t dt8B~VB ,t8!

e
O

i *0
tdt8B~2VB ,t8!

2
~ ia1 ib!L 8

,

~5.6!
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where the prime means taking the average over an unnor
ized equilibrium distribution as before.

Evaluation of the quadratic matrix forms in Eqs.~5.4!
and ~5.6! can be performed by solving a system of coup
stochastic Liouville equations as described in Appendix
The rigid-limit case is considered in Appendix B.

VI. RESULTS

All numerical calculations in this paper have been p
formed by usingMATLAB ~Math Works, Inc.!in combination
with the expv-routine.22 The latter is ideally suited for han
dling exponential functions of large sparse matrices in
time domain, especially in the rigid limit. The proton co

FIG. 2. A comparison between the electron spin-echo envelope decay d
~a! ‘‘spin diffusion,’’ and ~b! translational diffusion at ultraslow motions
DT51026 ~in units of gAgB\/d!. If the distance of closest approach
chosen to bed53 Å, this value corresponds toDT51.7310214 cm2/s for
electron–proton interactions. The proton concentration is set to beC58.8
31021 cm23 in all subsequent calculations;~106 protons in a sphere having
a radius of 100d!. The proton modulation frequency is chosen to beVB

55gAgB\/d3514.6 MHz. With the above values, the total time scale c
responds to about 20ms. At this very low value of the translational diffusio
coefficientDT the time scales of the two relaxation processes are com
rable to each other.
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centration has been set toC58.831021cm23 in all calcula-
tions, which corresponds toN5106 protons contained in a
sphere having a radius of 100d, whered is the distance of
closest approach between the spin-bearing molecules set
at 3 Å. A sphere of this size effectively corresponds to t
thermodynamic limit, the convergence to which can
checked in the same manner as has been done in Ref. 3.
that in order to have the same concentration in Eq.~3.13!as
in Eqs. ~5.4! and ~5.6!, one has to setC5a23

5N/@4p/3(100d)3#, from which a'1.6d. The motionally
averaged exponential quadratic forms that appear in E
~5.4! and ~5.6! have been evaluated by solving th
system of coupled stochastic Liouville equations~SLE!, Eqs.
~A2a!–~A2d!.

Figure 2 shows a comparison between the two relaxa
mechanisms for the echo amplitude. The first is due t
magnetization loss due to the matrix protons, Fig. 2~a!, and
the second arises from ultraslow translational diffusion, F
2~b!. The effect of the matrix protons~spin diffusion! has
been calculated by multiplying Eq.~3.13! and Eq.~5.6! in
the rigid limit (DT50), which was justified above due t
their time-scale separation@cf. discussion after Eq.~5.2!#.
The effects of motional averaging have been calculated fr
Eq. ~5.6! by solving the system of SLE withDT51026 ~in
units of gAgB\/d!. At this very low translational diffusion
rate~DT'1.7310214cm2/s if d53 Å!, the timescales of the
two relaxation processes are comparable to each other
substituting the numerical values for the gyromagnetic ra
of the electron and proton, it can be seen that this ra
corresponds to times longer than 10ms for the given proton
concentration,C.

Spin-echo envelope modulation curves obtained fr
solving Eq.~5.6! at different values of the translational di
fusion coefficient for the relative motion of spinsA and B
~cf. Appendix A!. DT are shown in Fig. 3. Increasing th
translational diffusion coefficient decreases the modulat
amplitude and results in a much faster decay than wo

to

a-
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t

-
nd
m
f
e

cf.
FIG. 3. Spin echo envelope modulation and decay
different values of the translational diffusion coefficien
DT in units of gAgB\/d as indicated on the plots. In
creasingDT decreases the modulation amplitude a
results in a much faster decay than would result fro
the ‘‘spin diffusion’’ mechanism. Note that the effect o
spin diffusion only decreases when motions becom
faster, and vanishes completely in the Redfield limit,
the text.
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arise from the spin diffusion of the matrix protons. Note th
the latter mechanism can only decrease in importance
motions, since the motions remove positional correlatio
among the protons. Furthermore, in Sec. IV we have sho
that in the fast motional regime the proton coupling ter
have no effect on theA-spin signal. Therefore, at faster m
tions the decay of the echo amplitude is due predomina
to translational diffusion.

Spin echoes for anABN system under the conditions o
selective excitation of spinA are shown in Fig. 4 for differen
motional ratesDT . Modulation due to the Larmor frequenc
VB of the B spins can be seen. Here an appreciable refoc
ing is achieved even in the intermediate motional regim
This has to be compared to a system of like spins, where
generation of higher-order coherences after the intermed

FIG. 4. Spin echoes for anABN system calculated at various rates of tran
lational diffusion,DT . Increasing the motional rate decreases the echo
plitude and shifts the echo maximum towards shorter times. Note tha
appreciable refocusing is achieved in the slow to intermediate moti
regime as opposed to a system of like spins, cf. Ref. 1.

FIG. 5. Phase-memory times,TM
(1/2) vs the translational diffusion rate,DT

obtained from Figs. 3 and 4. ATM
(1/2)—minimum can be seen nearDT

50.1gAgB\/d. Dashed line shows the limiting behavior ofTM
(1/2) as a func-

tion of DT for the intermediate to slow motional regime.
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pulse suppresses the echo formation.1 As can also be seen
from Fig. 4, increasing the motional rateDT further de-
creases the echo amplitude and shifts it towards sho
times. The onset of fast motions, i.e., where there is little
no refocusing, corresponds toDT5gAgB\/d. Note that this
value of DT corresponds to the range of the translation
diffusion rates in lipid membranes, (DT'1028 cm2/s) which
implies that in this case no effect of spin diffusion on ES
spectra is expected.

The behavior of the phase memory timesTM
(1/2) , i.e., at

which the echo amplitude decays by a half, versus the tra
lational diffusion rate,DT is illustrated in Fig. 5. TheTM

(1/2)

values have been obtained from Figs. 3 and 4.
TM

(1/2)-minimum can be seen nearDT50.1gAgB\/d. In the
intermediate to slow motional regime theTM

(1/2)-dependence

-
n

al

FIG. 6. Solid-state spectra of spinA interacting with a bath ofN spinsB
calculated from solving the system of SLE’s in the thermodynamic lim
DT51026 ~in units of gAgB\/d!. Here VB53 ~in units of gAgB\/d3!.
Weak forbidden transitions at6VB are seen. The magnified inset plotted o
a semilogarithmic scale shows the forbidden multiquantum transitions u
the fourth order. Note that at such a relatively high concentration of spinB
the spectral lines are almost Gaussian.

FIG. 7. Distribution of the intensities of the multiquantum transitions. T
intensities are distributed according to a Poisson law and show a very g
agreement with the analytical expression, Eq.~B17!.
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can be approximately described by the limiting behavi
TM

(1/2)5ADT
20.36 ~compare to theDT

20.32 behavior found pre-
viously for the homogeneous relaxation timesT2 of like
spins!. The fast-motional regime is described by Eq.~4.10!.

A near rigid-limit absorption spectrum (DT

51026gAgB\/d) calculated by using Eq.~5.4! is presented
in Fig. 6. Low-intensity forbidden multiquantum transition
corresponding to the pseudosecular terms in the Hamilto
are observed at frequencies6kVB . A semilogarithmic plot
~inset! shows the multiquantum transitions up to the fou
order, with intensities decreasing by almost 10 orders
magnitude. The weakness of these forbidden transition
due to the very weak effects of the pseudosecular term
Eq. ~2.1a! in the thermodynamic rigid limit. This in fact is
what leads to our justification of their neglect in calculati
the spin-echo amplitude decay in the rigid limit@cf. discus-
sions below Eqs.~3.6! and ~B15! in Appendix B#. Note that
the spectral lines are no longer Lorentzians at such a r
tively high concentration of spinsB. This range of concen
trations corresponds to an intermediate region between
two limiting cases given by Eqs.~B15!, and in this range the
line shapes cannot be written in terms of simple analyt
functions.

Figure 7 shows the distribution of intensities for the m
tiquantum transitions as measured from the spectrum
those calculated from the analytical expression, Eq.~B17!. A
very good agreement is obtained, which indicates that
intensities of the multiquantum transitions are distributed
cording to a Poisson law in the rigid limit.

The effect of the translational motion on averaging o
the multiquantum transitions is illustrated in Fig. 8. Wh
the motion becomes fast, the multiquantum transitions c
lapse into a single Lorentzian having a width larger th
when the pseudosecular terms are dropped. This is in ag

FIG. 8. Effect of translational motion on the spectra of spinA interacting
with a dynamical bath of spinsB. In the intermediate motional region (DT

51022) the lineshapes are between a Gaussian and a Lorentzian, bu
multiquantum transitions disappear completely. The spectrum finally
comes Lorentzian at relatively large values of the diffusion coefficient~e.g.,
DT51!. The dashed line shows the line shape when the pseudosecular
are dropped which is narrower than the line shape with the pseudose
terms, since the latter has an additional contribution from terms proporti
to J1(VB), in accordance with Redfield theory.
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ment with the fast-motional Redfield theory, which also p
dicts an additional contribution from the terms proportion
to the first-order spectral densities,J1(VB), arising from the
pseudosecular terms, cf. Eq.~4.10!.

VII. SUMMARY AND CONCLUSIONS

Two channels of magnetic-resonance relaxation for s
A interacting with an infinite bath of spinsB have been con-
sidered in the present paper. The first is the relaxation du
the interactions amongst theB-spins, usually called spin dif
fusion, and the second is the thermal motions of the sp
bearing molecules. Both mechanisms lead to modulation
the interactions of spinA with spins B, which include the
electron-spin echo envelope modulation~ESEEM! and the
echo-envelope decay. A careful consideration of the det
of the dipolar coupling of spinA to all the B spins in the
presence ofB–B dipolar interactions makes it possible
achieve a unified treatment of the above collective~or spin-
diffusion! effects due to theB spins. The direct-product de
composition of the multispin density states proposed in
per I,1 allows one to consider spinA and all the spinsB as a
single quantum system without the need to distinguish
tween the nearby and distant protons. Moreover, it allo
one to effectively disentangle the relevant part of the Ham
tonian from the remaining part that either cannot be obser
experimentally, or does not influence the signal apprecia

In the rigid limit, the echo envelope decay is due to t
induced flip–flops of the proton spins caused by theI 6

( i )I 7
( j )

terms of the dipolar Hamiltonian. This mechanism is simi
to spin diffusion, albeit treated here as a coherent proc
The first-order commutator expansion of the superoper
time propagator has been evaluated, which results in a de
of the form exp(2AC2 t2) in the limit of an infinitely large
bath. Higher terms int ~arising from double commutator
and so on!have been assumed to have no appreciable ef
over the time scale available to experiment. It can be ant
pated that higher-order terms~such ast3! would become
comparable with thet2 term only at sufficiently long times
where the signal decays almost completely. This assump
is probably not valid when the gyromagnetic ratios of sp
A and B are comparable to each other, e.g., in the case
unlike electrons. This case, however would also requir
consideration of different terms in the Hamiltonian, i.e., t
the pseudosecular terms in Eq.~2.1a!would have to be re-
placed by the flip–flop terms.

The results have been compared to a model7 proposed
nearly three decades ago based on a random freque
modulation approach.9 It is interesting to note that the
present approach and the model of Ref. 7 give similar fi
expressions for the echo-envelope decay~apart from the con-
stant prefactor in the exponential and a small difference fr
the observedt2 power law!. However, the model of Ref.
considers the local field modulation at the electron as
entirely random process. By contrast, here we have con
ered proton spin flips as a coherent process, which is sh
to become dissipative in the thermodynamic limit. It is no
worthy that in the case of like spins, the flip–flop terms
the dipolar Hamiltonian, i.e.,I 6

( i )I 7
( j ) are found to have no
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appreciable effect on theT2-processes;1 whereas in the cas
of unlike spins they yield an irreversible decay of the sp
echo amplitude in the rigid limit.

In the presence of sufficiently fast motions when one c
restrict oneself to the second-order generalized cumulant
pansion for the motionally averaged FID, the effect of t
flip–flop terms of the matrix protons has been shown to v
ish completely. At very slow motions, there exists a tim
scale separation between the spin-echo envelope decay
to the matrix protons and the FID arising from theA–B
interactions. Therefore, one can first solve for the FID
echo neglecting the effect of the bath and then multiply
result by Eq.~3.13! in the time domain.

The effect of translational motion on the spin echoes
been investigated by solving a system of stochastic Liouv
equations. At a very slow translational diffusion coefficie
of DT;10214cm2/s, the decay due to motional diffusion ha
been found comparable to that due to the spin-diffusion p
cess. An average molecular displacement during a time
t510ms would be (6DTt)1/25(631.7310214cm2/s
31025 s!1/2'0.1 Å, which may arise from positional fluc
tuations in glasses, for example. Thus, in the presenc
ultraslow fluctuations, it may become difficult to distinguis
between the two relaxation mechanisms. At faster motio
rates, the decay of the echo envelope is found to be gove
predominantly by the motions~e.g., translational diffusion!
which readily overtake the coherent mechanism in imp
tance. By contrast, the coherent effect of the matrix prot
can only decrease when positional correlations amongst
protons are removed, vanishing completely in the Redfi
limit.
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APPENDIX A: MOTIONAL AVERAGING OF THE
EXPONENTIAL QUADRATIC FORM BY STOCHASTIC
LIOUVILLE EQUATIONS

To evaluate the motionally averaged quadratic form
Eq. ~5.4!, we assume a stationary Markov process for
interspin distancer and introduce an auxiliary vector func
tion g(r, t), such that

G~ t !

Z
5@~ ia1 ib!T^eO

2 i *0
t dt8B~VB ,t8!

~ ia1 ib!&#N

5F ~ ia1 ib!TE d3reO
~2 iB~VB ,r !1Gr !tg~r,0!GN

5F E d3r ~ ia1 ib!Tg~r, t !GN

. ~A1!

The four components of the vectorg(r, t) can then be evalu
ated by solving the system of coupled stochastic Liouv
equations, by analogy with the simpler secular-Hamilton
case, cf. Ref. 2,
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]g1~r, t !

]t
2~G r2 iVB!g1~r, t !

52 i
x1

2
F2~r !@ga~r, t !1gb~r, t !#, ~A2a!

]ga~r, t !

]t
2G rga~r, t !

52 i
x0

2
F0~r !ga~r, t !2 i

x1

2
@F1~r !g1~r, t !

1F2~r !g2~r, t !#, ~A2b!

]gb~r, t !

]t
2G rgb~r, t !

51 i
x0

2
F0~r !gb~r, t !2 i

x1

2
@F1~r !g1~r, t !

1F2~r !g2~r, t !#, ~A2c!

]g2~r, t !

]t
2~G r1 iVB!g2~r, t !

52
ix1

2
F1~r !@~gar, t !1gb~r, t !#, ~A2d!

with initial conditions ga(r,0)5gb(r,0)51 and g1(r,0)
5g2(r,0)50. Inspection of the system of Eqs.~A2a!–~A2d!
leads toga(r, t)5gb* (r, t) and g1(r, t)52g2* (r, t). There-
fore, the observed signal,ga(r, t)1gb(r, t), is real.

For the functionsge(r, t) or, alternatively their Fourier or
Fourier–Laplace transforms g̃e(r, v), we construct
spherical-harmonic expansions in the form

ge~r, t !5(
l 50

`

(
m52 l

l ge,m
~ l ! ~r ,t !

r
Ym

~ l !~u,f!. ~A3!

Expansion~A3! is then substituted into the system of Eq
~A2a!–~A2d! to establish the coupling among various coe
ficients of the expansion using the orthonormality prope
of the spherical harmonics. From the properties of
Clebsch–Gordan coefficients it becomes clear t
ga,0

( l ) (r, v) andgb,0
( l ) (r, v) will be coupled tog6,71

( l ) (r, v), and
that all l’s will be even. Thus, the stochastic Liouville oper
tor L is given in terms of the following block-matrix equa
tion

]g~r, t !

]t

52S 2Ĝ r1 iVB iD iD O

iD T
2Ĝ r1 iC O 2 idT

iD T O 2Ĝ r2 iC 2 iD T

O 2 iD 2 iD 2Ĝ r2 iVB

D
3g~r, t ![2Lg~r, t !, ~A4!

where Ĝ r is the reduced diffusion operator for the relativ
motion,23
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Ĝ r5DTF ]2

]r 22
l ~ l 11!

r 2 G , ~A5!

and the elements of the tridiagonal matricesC and D are
given in terms of the Clebsch–Gordan coefficients,

cll 85
x0

r 3 E sinududfY0
~ l !~u,f!* Y0

~2!~u,f!Y0
~ l 8!~u,f!

5
x0

r 3 A 5

4p

~2l 811!

~2l 11!
^ l 8200u l 82l0&2

~A6!

dll 85
x1

r 3 E sinududfY21
~ l ! ~u,f!* Y1

~2!~u,f!* Y0
~ l 8!~u,f!

5
x1

r 3 A 5

4p

~2l 11!

~2l 811!
^ l200u l2l 80&^ l2211u l2l 80&.

To treat translational effects inr, we use the finite-difference
method to approximate the differential operatorG r in Eq.
~A5! as described in Refs. 2 and 23.
n

d
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APPENDIX B: INTENSITY DISTRIBUTION OF THE
FORBIDDEN MULTIQUANTUM TRANSITIONS
FOR SOLID-STATE MANY-BODY SPECTRA

In the absence of motions,G r50, the system of equa
tions ~A2a!–~A2d! can be solved analytically. To do this, w
rewrite it as a single equation for the real part ofga(r, v),
Rega(r, v)[u(r, t)

]2u~r, t !

dt2
1Fx0

2

4
F0~r !21x1

2F1~r !F2~r !Gu~r, t !

5x1
2VBF1~r !F2~r !E

0

t

dt8u~r, t8!sinVB~ t2t8!, ~B1!

subject to the initial conditions:u(r,0)51 and ]u(r,0)/]t
50. This equation can be most readily solved by the meth
of Laplace transforms, which yields

u~r, t !5
~a22VB

2 !cosat2~b22VB
2 !cosbt

a22b2 , ~B2!

where
a2,b25
1

2 Fx0
2

4
F0~r !21x1

2F1~r !F2~r !1VB
2 G6

1

2
AFx0

2

4
F0~r !21x1

2F1~r !F2~r !2VB
2 G2

14x1
2F1~r !F2~r !VB

2. ~B3!
id-
the

,

If VB@x0,1F0,6(r), then

u~r, t !'cos
x0

2
F0~r !t1

x1
2F1~r !F2~r !

VB
2

3cosFVB1
x1

2F1~r !F2~r !

2VB
G t. ~B4!

Where the first term corresponds to the allowed transitio
and the second gives the forbidden transitions.

At constantr, the Fourier transformation of the allowe
transitions is given by the well-known Pake formula

ũ0~r ,v!52pE
21

1

dxpdF 5

16p

x0
2

r 3

3x221

2
2vG

5
4p2r 3

)x08A2vr 3

x08
11

, 2
x08

2r 3,v<
x08

r 3 , ~B5!

where we introduced a reduced coupling constant,x08
[gAgB\. When integrated overr 2dr from d to (x08/v)21/3

for v.0, and fromd to (x08/2uvu)21/3 for v,0, the total
solid line shape for the allowed transitions becomes
s,

ũ0~v!5E r 2dr@ ũ0~r ,v!1ũ0~r ,2v!#,

~B6!

E r 2drũ0~r ,v!5
4p2x08

9)v2
A11

2vd3

x08
S 12

vd3

x08
D ,

2
x08

2d3,v<
x08

d3 ,

i.e., it behaves asymptotically asv22 nearv50.
The line shape for the forbidden transition in the sol

state limit can be calculated in a manner analogous to
calculation of the Pake pattern~i.e., the allowed transitions!
which yields for one of the two symmetric branches nearv
56VB

ũ1~r ,v!52p
15

8p

x1
2

VB
2 E

21

1

dx
x2~12x2!

r 3

3pdFVB1
15

8p

x1
2

VB

x2~12x2!

r 3 2vG
5

2p2

VB
A ~8VBr 6/x18

2! ~v2VB!

12A~8VBr 6/x18
2! ~v2VB!

,

VB<v,VB1
x18

2

8VBr 6 , ~B7!
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and zero otherwise. In the above expression we made
substitution,x5cosu, and introduced a reduced couplin
constant,x18[3gAgB\/2. As one can see, the forbidden tra
sition will result in a very narrow line having a breadth
x18

2/8VB
2r 6 in units of VB , and a singularity at

v5VB1x18
2/8VBr 6.

When integrated over r 2dr from d to r max

5@8VB(v2VB)/x18
2#21/6, Eq. ~B7! becomes

ũ1~v!5
8p2d3

9VBj~v!
A12j~v!@11j~v!/2#,

~B8!

j~v![A8VBd6

x18
2 ~v2VB!, VB,v<VB1

x18
2

8VBd6 .

The singularity is now at exactlyVB , and the lineshape ha
an asymptotic behavior of (v2VB)21/2 nearv5VB .

By substituting the two-body solution,u(r, t) in Eq.
~5.4!, and using the Markov method, one can write the
the many-body FID atN, V→`

G~ t !5 lim
N→`

q

2N11 F E dVga~r, t !1gb~r, t !GN

5 lim
N→`

q

2N11 F2E dVu~r, t !GN

5 lim
N→`

q

2 H 12
C

N E dV@12u~r, t !#J N

5
q

2
expH 2CE dV@12u~r, t !#J 5

q

2
expFCE

0

t ]u~ t !

]t G ,
~B9!

whereq5\VA /kT.
The corresponding many-body line shape is obtain

from the integral equation containing the two-body li
shape, cf. Ref. 3,

2ivG̃~v!1
iC

2p E
2`

1`

~v2v8!ũ~v2v8!G̃~v8!dv85G~0!,

~B10!

where the two-body line shapeũ(v) contains both the al-
lowed and forbidden spectra. Here the many-body spec
function G̃(v) is understood as theFourier–Laplacetrans-
formation of G(t), since the latter is a decaying functio
even in the solid-state limit. By contrast, the two-body FID
u(t), are expressed in the rigid limit in terms of cosine fun
tions, cf. Eq.~B2!, and thus have to be treated by conve
tional Fourier transforms. One can estimate the contribu
of the forbidden transition relative to the allowed transitio
by calculating the convolution integral in Eq.~B10!. For the
allowed transitions, Eq.~B6!, one has
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E ~v2v8!ũ0~v2v8!G̃~v8!dv8

5E
2x08/d3

x08/d3

v8ũ0~v8!G̃~v2v8!dv8

5
4p2x08

9)
F E

2x08/2d3

x08/d3 G̃~v2v8!

v8
A11

2v8d3

x08

3S 12
v8d3

x08
Ddv81E

2x08/d3

x08/2d3 G̃~v2v8!

v8

3A12
2v8d3

x08
S 11

v8d3

x08
Ddv8G . ~B11!

The convolution integral corresponding to the forbidd
transitions, Eq.~B8!, can be estimated by assuming th
G̃(v) varies slowly within the narrow interval fromVB to
x18

2/8VBd3, viz.,

E
VB

VB1x18
2/8VBd6

v8ũ1~v8!G̃~v2v8!dv8

'VBG̃~v2VB!E
VB

VB1x18
2/8VBd6

ũ1~v8!dv8

5
8p2x18

2

45VBd3 G̃~v2VB!, ~B12!

plus the corresponding counterpart atv52VB . The use of
the inverse Fourier transformation followed by the applic
tion of the shift theorem for Fourier transforms yields

]G~ t !

]t
1G~ t !

4p2x08

9)

iC

2p

3E
2x08/2d3

x08/d3

22i
sinv8t

v8
A11

2v8d3

x08
S 12

vd3

x08
Ddv8

1 i
4px18

2C

45VBd3 ~e2 iVBt2eiVBt!G~ t !50. ~B13!

This equation can be integrated which leads to a rather in
esting behavior for the many-body FID which can be writt
in a compact form

G~ t !5G~0!expF2
4p

9)
x08CE

0

t

dt8E
0

t8
dt9

3E
21/2

1

cosS x08t9

d3 xDA112x~12x!dxG
3expF2p

5 S x08

VBd3D 2

Cd3~cosVBt21!G . ~B14!
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The first exponential part of Eq.~B14! has two limiting line
shape behaviors, depending on the density of perturbersB

expF2
4p

9)
x08CE

0

t

dt8E
0

t8
dt9

3E
21/2

1

cosS x08t9

d3 xDA112x~12x!dxG
55 expS 2

4p2

9)
x08CtD , Lorentzian, Cd3!1

expS 2
2p

15 S x08

d3D 2

Cd3t2D , Gaussian,Cd3@1.

~B15!

The first case corresponds to low concentrations of spin
which result in a simple exponential decay with the ra
given by the classical Anderson formula,24 1/T2*
54p2gAgB\C/9). At large enough concentrations of th
B-spins, there may be a non-negligible effect of the oscil
ing ~VB-containing!part of Eq.~B14! corresponding to the
forbidden transitions. The conditions for this should b
Cd3@1, T2* *VB

21 having at the same timeVB

@gAgB\/d3, for which Eq.~B4! has been derived. But eve
-

te

-
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B,

t-

:

for pure water ~protons, C;631022cm23, T2* ;107 s21,
VB514.5 MHz! the relative intensities of the multiquantum
transitions in therigid limit spectra will be rather low if the
distance of closest approach isd53 Å, for which
gAgB\/d352.9 MHz. By contrast, in the motional-
narrowing regime the pseudo-secular terms yield consid
able extra line broadening as given by the Redfield theory
Eq. ~4.10!.

From Eq.~B14! one can obtain the distribution of inten
sities for the multiquantum forbidden transitions. The cor
sponding exponential part can be expanded into a Tay
binomial series as

expF2p

5 S gAgB\

VBd3 D 2

Cd3~cosVBt21!G
5 (

n50

`

(
m52n

n S 2n
n2mD ~21!n2m

n! Fp5 S gAgB\

VBd3 D 2

Cd3Gn

3exp~2 imVBt !. ~B16!

Assuming for simplicity the Lorentzian~low-density! case
and thatVBT2* @1, the intensity distribution can be calcu
lated by applying the Fourier transform convolution theore
which yields
of the
G̃~kVB!5
G~0!

2p (
n50

`

(
m52n

n E dv8
T2*

11~kVB2v8!2T2*
2S 2n

n2mD ~21!n2m

n! Fp5 S gAgB\

VBd3 D 2

Cd3Gn

2pd~v82mVB!

'G~0!T2* (
n5k

` S 2n
n2kD ~21!n2k

n! Fp5 S gAgB\

VBd3 D 2

Cd3Gn

'G~0!T2*
Fp5 S gAgB\

VBd3 D 2

Cd3Gk

k!
expF2

2p

5 S gAgB\

VBd3 D 2

Cd3G ,
~B17!

where we used the Stirling approximation to calculate the binomial coefficients. Thus, the fall of the intensities
forbidden transitions is given approximately by a Poisson-type distribution.
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