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The method for treating the evolution of the density matrix developed in the accompanying paper
for many-spin systems is applied here for calculating magnetic resonance signals of & spin
interacting with a bath ofN identical spinsB. SpinsB are assumed to have much smaller
gyromagnetic ratios than the spi(e.g., the former are nuclear spihsnd the latter is an electron

spin, S). The experimentally observed quadratic dependence of the spin-echo envelope decay on
concentration and time is explained from considering the dipolar coupling offspinall the B

spins in the presence &-B dipolar interactions. It is shown that the spin-echo envelope decay in
the rigid limit is due to the interaction of th& spin with the coherent many-body states of the
coupled spin® via the nuclear flip-flop termk.. 1 - , which becomes a dissipative mechanism in the
thermodynamic limit. This represents a more rigorous analysis than simplified models based on an
incoherent version of “spin diffusion,” and it leads to good quantitative agreement with experiment.
Moreover, this analysis represents a unified description of both the modulation and decay of the
A-spin echoes. Spin echoes and line shapes foAthBy systems are also calculated for finite
motions which randomize th& spins. Even for very slow motionémodeled as translational
diffusion) an effective mechanism for spin-echo envelope decay is generated, which readily
overtakes the coherent mechanism in importance. The intensity distribution for the forbidden
components in thé-spin line shape resulting from multiquantum transitions ofBhspins caused

by the pseudosecular interaction ter8$.. , is calculated. In the rigid limit it is found to behave

like a Poisson distribution. @001 American Institute of Physic§DOI: 10.1063/1.138281]7

I. INTRODUCTION Electron-spin echo envelope modulatiESEEM), and(ii)
an irreversible decay of the electron spin echo amplitude.

In the present paper we investigate the relaxation of &he ESEEM theory is well developéd.A treatment of the
single spinA having a large gyromagnetic rati@.g., an  echo envelope decay was proposed nearly three decades
electron)interacting with a bath oN identical spins having ago®-81t was based on the theory of Klauder and Andefson
much lower gyromagnetic ratiof (e.g., protons). We fur-  of a random-field modulation at the electron caused by ran-
ther develop the direct-product superoperator method prodom flip-flops of the neighboring pairs of proton spins due to
posed in the previous papeior calculating magnetic reso- nuclear “spin diffusion.” However, the proton—proton inter-
nance signals in many-body systems. In our earlier Wotk, actions are coherent, so the simplification of introducing the
a system of like spins was considered. Due to the high symrandom flip—flops is only a crude approximation. A more
metry of the problem, it was sufficient to consider only theaccurate approach requires that all the protons, as well as the
secular part of the dip0|ar Hamiltonian. The final expreSSion%|ectr0n, be considered together as a Sing|e many-body qguan-
were reduced to motionally averaged exponential functiongym system. It is expected that the electron interactions with
which effectively correspond to two-body interactions takenthis coherent “bath” of protons should have a dissipative
to the Nth power, provided that the motions are stochasti-effect in the thermodynamic limit, i.e., in the limit of an
cally independent. In the case of unlike spins, additionatnﬁnite|y large bath. This should yield a decay of the
terms in the dipolar Hamiltonian usually need to be COHSideIectron-spin echo amplitude versus tithe., aT,-type de-
ered, including induced nuclear spin-flip transitions of thecay)_ However, there are subtle aspects of such a complicated
bath spins and off-resonance effects. This may make Obta"bicture requiring detailed examination. Our many-body
ing closed-form analytical solutions no longer possible.ana|ysiS is shown to compare very favorably with ESR ex-
Therefore, in order to make the problem tractable, additionaﬂ)erimemS in frozen systems.
simplifications may be necessary. _ o In the nuclear magnetic resonan®MR) case, a theory

_In much of this work we focus on the solid-state limit, for the nuclear spin-lattice relaxatioT{) in solids in the
which is still of pracucal importance. As is weII-know_n IN presence of paramagnetic impurities was developed years
ESR, in the solid-state limit the matrix protons cau&eg: agol®121t is based on modeling the transfer of magnetiza-
tion between the nuclear spins as diffusive in nature, and it is
¥Electronic mail: jAf@ccmr.cornell.edu this process that has been termed spin diffusion. Recently,
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however, the coherent nature of this phenomenon has been Y?(0,0) Y2* (0, ¢)

recognized. Brschweiler and Ern&t'* have considered lin- Fo()=—3—, F-(N=—73—,

ear chains of spins of 1/2 from first principlése., as a 2.2)
single quantum systenwith a dipolar Hamiltonian involv- Y(Z)(a ) :
ing the spin-flipping terms, i.el,(i')l(%) for nucleii andj. In F.(r)= lr—3

the solid-state limit, this leads to a nonergodic quasiequilib-

rium behavior of the longitudinal magnetization of the spinsThe equation of motion for the spin-density vectgt) (the

(i.e., when the final state of the system cannot be describegensity matrix equation in the eigenoperator representation
by a single temperaturewhereas the spin-diffusioAnsatz  cf Eq.(2.7) of Paper } now becomes

would predict ergodic behavior. In the present paper, how-
ever, we discuss the free-induction de¢BiD) and spin ech- ag(t)
oes of an electron spin embedded in a bath of interacting gt
nuclear spins, and this necessarily directs our attention to
T,-type processes. The (N+1)-body frequency offse{coherence)matrix is

In addition, we shall investigate what happens when thdiven by the representation of the Zeeman Hamiltonian su-
temperature is raised and motions are introduced. This is Beroperator in the eigenoperator space, cf.(&®) of Paper
matter of great importance for ESR experiments in viscous,* Viz.,
media for which no useful theory has existed up to the
present timé~8 In this analysis we assume random motions, AQ=AQ,{E}"+ E®A9’(BN): E®AQ(BN) ' (2.4)
corresponding to the assumption pf stochg;tic_: indepen_deng(?nCe SpinA is assumed to be on resonande) ,=0. The
of the motions that we have previously utiliz€®,so posi- N-body offset matrixA QY for spinsB is also given by an

tional correlations amongst the matrix protons are lost. Weequation of the type of Eq5.2) of Paper I. The representa-
first show rigorously that any effects of the spin diffusion of jjo of the many-body interaction Hamiltonian superoperator

the matr_|x proFor)s{Le., theB—B mteractlons)vamsh in the _in the eigenoperator basis becon{ére we can use the
fast motional limit, as expected. Then for slow to intermedi- o rsion relation, Eq(3.7) of Paper It directly]

ate translational diffusion rates, we calculate the magnetic-

resonance signals from the(electron)spin interacting with N+1 B N

B spins(protons)by solving a system of coupled stochastic ~ H*=E® >, xCUWF(rjj)+ X T xoCoFo(rim+1)
Liouville equations, as described in Appendix A. In Appen- =t m=1

= —i(AQ+HNg(1). (2.3)

dix B, an analytic expression for the distribution of intensi- + x1D+F _(Fime1) F X1D_F 4 (rims1)]
ties corresponding to the forbidden ESR transitions, which Ne1rr—1

are multiquantum in nuclear spins, is obtained in the solid- {E I,

state limit.

The first term on the right-hand side of E.5) corresponds
to the interactions oB spins within the bath, and is given by
Egs. (3.16) and (3.17) of Paper I* The second term corre-

Il. DIRECT-PRODUCT FORMULATION OF THE sponds to the interactions of spkwith the B spins of the
PROBLEM IN THE SUPEROPERATOR bath. Note that the superoperator formulation, Ef3) al-
REPRESENTATION lows H* to be time-dependent, where the time dependence

may be implicitly contained in the classical variabteIhe
two-spin C-matrix describing the secular terms of the inter-
action of spinA with spins B (corresponding to thes,l,
terms)is fully diagonal, and can be factorized as

The dipolar interaction Hamiltonian in the rotating frame
for an A—By system is chosen as

HE= XoF o(r1i)SA Y + xa[ F_(r1)S,1{

' 1 0 0 O 0O 0 0 O
+F L (r) SV, (2.1a) 1/0 0 0 0 01 0 0
C = —

) - “2l0 00 0|00 -10

H = xFo(rip[1 1D =31 D10 +1D10) ] (2.1b) 000 -1 00 0 0

As usual, we neglect in Eqg2.1a) the electron spin-flip 00 00 100 0
terms, since these transitions are of too high energy to be 4 } 61 0 O 0 00 O
important except for very fast motiod3The pseudosecular 20 0 -1 0 @ 0 0 0 O
S,l. terms are in general significalttleading to electron- 00 0 0 00 0 -1

spin echo envelope modulatiériand are therefore, retained.
Spin A is chosen here to be the first spin, and the cou- =1(3'93+3®3). (2.6)

pling constants are given byy,=(167/5)yayeh, X1 ?

=(67/5)ypygh, x=+ 1677/5)7%?1. The functions that The two-spinD-matrices(corresponding to th&,l .. terms)

depend on the distanaebetween the spins are expressed inare related by the matrix transpod®, =D’ , and can be

terms of the spherical harmonics as also factorized into two parts
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1 0 0 O 0 1 1 0 jections of the starting vector reduce the number of matrices
1lo 0 0o o 00 0 1 that nee_d tq be conS|_dered for calculating the evolution of the
D,== ® magnetization for spir.
20 0 0 O 0 0 0 1
0 0 0 -1 0 0 0 O
00 0 O 0 -1 1 Ill. SPIN-ECHO ENVELOPE DECAY DUE TO THE
MATRIX PROTONS IN A—-B) SYSTEMS
10 1 0 O 0O 0 O
T3 00 -1 0 ® 0 0 0 -1 The results presented in this paper can be regarded as a
many-body formulation of the electron spin-echo envelope
00 00 o 0 0 0 modulation (ESEEM) theory for spins of 1/2, where the
— LS @A+SeA). 2.7) Larmor frequencies of thB spins,() 5 result in a modulation

of the echo amplitude. We shall see that the interactions
The matrices of Eqs(2.6) and (2.7) can be obtained by a among theB spins yield an additional loss of the echo am-
laborious calculation of the commutation relations of &g, plitude, apart from the motional contribution which is dis-
and S, .. terms with the eigenoperatorS.l,., e=+,«, cussed in Sec. V.
B,—. Note that any mixed inner product of the two matrix To calculate the effect of the intermediatg pulse in a
terms is zero in both Eq$2.6) and (2.7). Hahn-echo experiment, we use E§.1) of Paper | in the
In the absence of motions, the formal solution of Eq.absence of motions
(2.3) can be written as
G(1)

) X 7 Ta— i (AQ+HX)(t—17) —i(AQ+HY)(7)
g(t):efl(AQ+H )tg(o) (28) i g+(0) e X(W)xe g(O)

Sinceyg<vy, the B-spins are way off resonance, so they are 3.1)
not rotated by the radio frequencyf) pulses. This allows The prefactoZ arises from the high-temperature approxima-
one to write the first-order coherence starting vector includtion of the equilibrium density operator and is given By

ing bothu=+1 andu=—1 components simply as =210, kT=2"(N*1q. The X-matrix correspond-
S S ing to ulse, acts on spin A only, viz.,
9(0)=0.(0)~g (0)=(i, i )ofi,+ig. (29 "9C™P P Y
This corresponds to having the entire initial magnetization in 1
the X-Y plane concentrated at spily, or p(0)=S,. The 1 N
reader is reminded here that the curly brackets denote a di- X(m),= 1 ®{E}". (3.2)

rect product repeatetll times. Using the propertie¥’i..

=*i, andXi. =0, Eqg.(2.8) can be simplified to 1

Thus, the role of the-matrix in this case is simply to swap
the w=+1 component with thex=—1 component. Using
_i_®e*i(ﬁ£_B+HE_B)t{ia+iB}N_ (2.10) Egs.(2.10)and(3.1) one obtains for the echo signal

g(t)=i, ®e HaeHeptfj +i N

Here the reduced Hamiltonian supermatrices are given by |G(1)]
Z
N

_ Xo
HA_g= > {E}" e AQB“‘?EFO(rlmH)

m=1

={i1+ i;}Ne—i(HZ_B+ Hp_g)(t—7)

x e 1HA-s*HB_B)7(j iV, (3.3)

In general, one needs to consider all couplings of the
B-B interactions to thé—B interactions. Since the matrices
in Eqg. (3.3) do not commute, a rigorous calculation of all

X1 X1
+ ?AF—(HmH)"‘ ?ATF+(r1m+1)

o{E}N, (2.11a)  couplings amongsti}_g andH%_g represents a formidable
N (if not impossibletask. In general, Eq3.3) can be rewritten
F'X—B: E {E}ml®[AQB— &EFO(rlm+l) as a product of the exponential fgnctions (_)f_the matrices
m=1 2 involved and a commutator expansion containing powers of

7. However, sincey<<xg,x1 (since yg<<vy,), it is expected
that 7> and higher-order commutator terms involving higher
powers ofHE_g will start having an appreciable effect only
{EIN-M (2.11b) at long enough times at which the signal has decayed z?llmost
completely due to the lower-order terms. Thus, the spin re-
- laxation of an electron interacting with protons should be
Hg_s=x ; CCUDR(ry)), (2.11c)  mainly determined by the leadingand 7 terms. It will be

2=1=) illustrated below that this leads to an expansion in powers of
where the tilde simply means changing the sign everywhereg/y,. We may, therefore, restrict ourselves to the first or-
except for the nuclear Zeeman terd()z. Thus, zero pro- der inHg_g and write that

X1 X1
- 7AF—(r1m+1)_ ?ATF+(r1m+1)

N+1
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B,

FIG. 1. A spherically symmetric radial model describing interactions of anOf Hg_g [or H

electron spin with the matrix protons separated by a distanitea rigid

Many-body analysis of ESR 2419
spins, and only nearest-neighbor interactions betweerBthe
spins, Fig. 1. We will generalize it shortly to three dimen-
sions for the case of spherical symmetry. We shall retain only
the diagonal part of the dipolar Hamiltonian describing the
A-B interactiond(i.e., containing the matriX only). As will

be seen later, the pseudosec@rg) terms of the Hamil-
tonian do not appreciably contribute to the echo amplitude in
the rigid limit, causing relatively small amplitude modulation
effects in the thermodynamic limit. Clearly, the secular part
of HY 5 corresponding to thé{’1{) terms of the dipolar
Hamiltonian commutes with the secular part ld}_g [or
HX(e%), corresponding to th&,l 1) terms, and thus has no
effect. Furthermorei§_g commutes with the offset matrices
containingAQg, cf. Eq.(5.4) of Paper I* The flip—flop part
X(FF), corresponding to thé?10) terms, is
given by, cf. Eq.(3.17) of Paper I

lattice. Only nearest-neighbor interactions between the protons are consid-

ered, whereas the electron is interacting with all the protons.

e—i(Hf\_B+Hg_B)t
- e—iH,LBteO—ifgdt’ exp(iH}_gt’ JHE_gexp(—iH; _gt')
X X X 2 X
%eilHA—Bte[HA—B’HB—B]t /Ze*IHB_Bt, (34)

where the symbol “O” stands for the Dyson time-ordering.

N—1

X _
AP = — ZmE:l Fo(Fmiimi2{E}" '®[(1,®8)

B-B
o(_oe)—(evl,)®(enl )]e{EN "1

+Fo(Mmeim {E}™ 101 —®¢)
2(l,®e)—(exl_)®(exl,)]{EN"™"1 (3.7)

With Eq. (3.7) we can calculate the commutator of Eq.

The approximate equality follows from the Zassenhaud3-6):

formulal® which is used to expand the operator in the expo-

N—-1

nential in a series of commutators, keeping only the lowesfx(seo |x(FF)|— % > Fo(fmsams2){E}™ 1
m=1

order powers of.
We can then rewrite E(q3.3) as
G(t)

%{iT_i_ iE}Ne—iHXB_B(t— T)e[H;_B HE_glt=1)212
Z o

% e~ HA_p(t=Na—1HA_g7a—[H}_g .Hs_gl 72

xe Me-e7fi, +ig". (3.5)

The bath termHE_g has no effect on the starting vector
since CW{i,+igtN=0, cf. Eq. (4.4) of Paper I} and the
commutator with the tilde term coincides with that without
the tilde term except for the opposite sign, cf. E¢s11a)
and (2.11b). Att=27 we obtain the following simplified
expression for the echo envelope de¢agglecting for now
the off-resonance effects dbg that lead to the relatively
small spin-echo envelope modulatjon

G(27)

> %{ilJri;}Ne[H,ﬁ_B,Hg_B]TZ/Ze—iHf\_BTe—iHﬁ_BT

X X 2/ .
Xe[HA—B Hp_gl™ /2{|a+ Iﬁ}N

~{iT+iTNelHA-s Hoal™ (i +i g, (3.6)

Thus, the coupling between th€,_; andHg_g terms yields
an additional quadratic dependence in whereas the
exd —iH%_grlexd —iH%_g7] term yields the ESEEM ef-
fects which will be calculated in Sec. VI.

Let us consider a simple radial modeiffectively one-
dimensional)including all interactions of spif\ with the B

B

®[Fo(rim+1)2®E+Fo(rims2)
XE®XY,C,|®{EN"m"1

N-1
21 Fo(rm+im+2) [Fo(rim+1)

—Fo(rime2) {HEY™ '@ (1, ©0)
(l_ve)+(e®l )@ (exl_)

—(l_ el ®e)—(exl _)®(exl )]
@{EWN"M"L, (3.8)

Here the indexm is used to number the spins along the
radius, cf. Fig. 1, and the matri2, corresponds to two-body
interactions between thB spins. In deriving Eq(3.8) the
following commutation relations have been taken into ac-
count:

[2. (I @e]=(l.®e),
[Z.(exl)]=—(e®l,),
(3.9)
[2,(1_®e)]=—(l_e),
[2,(ex]_)]=(ex]_).

We then use the following property of the matrix exponen-
tial:
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dQ (= 2r3dr
G(Zr)ocexpf Efo 3aF

3 xxom [Y&(Q)]?
8 a2 r4

{i;';+ i;}zeXXoszFo(rm+1m+2)[Fo(r1m+1)2®E+ Fo(rim+2)E®X,Cy]

2
XXoT
TFO(rm+lm+2)

X{i,+igt?=4 cos xIn cosz[

(3.10) (3.13)

_ T 7B C ﬁ 2
X[Fo(rim+1) —Fo(rims+2)1;, _eXp_z_Oﬁ( YavsliT)%,

whereC=a"? is the number density of protons in the solid
matrix. In obtaining Eq(3.13) we have used the orthonor-

which can be quickly obtained by usiridathematica, for mality property of the spherical harmonics and the following

example. The noncommutativity of the matrices in E2)8) integraiLB
would yield orders higher thag (and, consequently, higher
orders in7?), and thus can be neglected fdr—c (infinite = In cos bx

bath), cf. the discussion before Eg.4). This makes it pos- o X2 dx=—|b|. (3.14)

sible to generalize Eq3.10)to _
Note that Eq.(3.13) contains the prefactoyg/ya<<1,

which yields a time scale separation between the faster decay
of the many-body electron FID which is determined by just
the exp(—iHi_gt) term[e.g., EqQ.(3.3) with the role of the
m-pulse ignored], and the slower decay of the electron spin-
echo envelope due to proton spin diffusion. Thus, the as-
sumption leading to Eq3.4) appears justifie@d posteriori.

At this point it is worthwhile to compare our result to
that of Milov et al.” Their theory is simply based on a ran-
dom modulation of the local field at the electron due to ran-
dom flips of pairs of the proton spins that are distant from the
electron. Rewriting their Eq(14) in the form of our Eq.
(3.13)one has

{it+ i;}Ne—[HTS? ’Hé(—':é:)]Tz{ia'f' it

N—1 2
T
- ZNHH cos Xxo Fo(re—s)
N m=1 8

X[Fo(rims1) — Fo(r1m+2)]]

N-1 2 Y(Z) 0712
~oN+1]] 0052[3)()(07' Yo ()] ] (3.11)
m=1

3 A2 7
8 a Fm+1

VB 9
the proof of which is straightforward, but is too long to be G(ZT)“eXp_l-‘lﬁ(CYAYBﬁ )™, (3.15)

reproduced here. All—o we take the natural logarithm of .
Eq. (3.11), replace the summation by integration owgf, Milov et al. show that in fact a square-law dependence of the

and then generalize the integration to three dimensions a&che decay is experimentally observed in bGtand 7, and
cording to the following scheme: they obtain the relatively close power of 7/4 given by Eg.

(3.15). In our treatment the square-law dependence follows
naturally from considering the coupling of tt&l g') terms

N-1 b drs-p [ dO (= dr dQ (= 2r3dr to the 119 nuclear flip—flop terms treated up to the
mE:1 — f? = | a7 . W(r)§=Jﬁ . 3at first-order commu.tators. Assuming the depende@c(@_r)
(3.12) «exp(—AC7), Milov etal. report a factor of A=7

x 10”3 cmP/s?> measured from fitting the experimental data.

Substituting the numerical values for gyromagnetic ratios of

wherea is the distance between the spins in the rigid Iattice.elethgQ %”d proton in  Eq.(3.13) we get A=59
The weighting functionW(r)=2(r/a)® takes into account 0 *cm /s’ which is a rather good agreement with ex-
the fact that as the distancéncreases, the number of pos- periment. It should be noted that we did not arbitrarily intro-
sible pathways through which the magnetization can travelduce any random process for the frequency modulation. In-
also increase¥.As a crude estimate, one can assume that th§!€@d, we have obtained the final result, E3113) directly
number of new pathways created for a givea proportional ~ PY Solving the equation for the many-spin density operator,
to the number of spindN(r) confined within the spherical which emphasizes the coherent nature of spin diffusion.
volume elementr?drdQ with r=ma and dr=a, i.e.,

dN(r)cm?dQ. In the case of three-site flips in a cubic lat- |v. VANISHING EFFECT OF THE CORRELATIONS

tice, the proportionality factor is equal to @he existing AMONG THE MATRIX PROTONS ON THE ELECTRON
paths plus two new paths for each spin). The weighting funcFID IN THE REDFIELD LIMIT

tion W(r) in Eq. (3.12)can then be easily obtained from its A noteworthy limiting case is the well-known Redfield,

i i = + . ) L ; .
recursion reIaﬂonW(r.m)dQ W(rm,'l)dQ 2dN(rm) or fast motional limit. To solve the equation for the evolution
One can then write an expression for the spin-echo am

plitude decay due to the irreversible lossxef y magnetiza- irtlrtfﬁgﬁns'ty states, we go to the interaction-picture repre-
tion of the A-spin due to its coupling to the infinite bath of '

matrix protons g(t)=e "A0G(t), (4.1)
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for which the formal solution averaged over motions be- g 1AQt— g~ iAQptg o~ 1AQRt G o= 1AQRt g o= 1AOgL. ..
comes A0
=Ee{e 404N, (4.4)
Q(t)=<expo—i tdt’eim"Hx(t’)e‘im">g(O). (4.2) The frequency-offset matrix exponentials, expf(gt)
0 commute with theC-matriceg(since they are both diagonal

The exponential operator can be simplified greatly by using':or theD-matrices we use the following property:

the formula for the exponential function of a sum over Dx(E®e '4%8)=(Ewe '*%8")D o™, (4.5)
“dressed” direct-product structures, i.e., they commute to within a scalar multiplier, which can be
QASE® - OE+EBO  0E+ +ESE® 07 _ pAg aBg. .. g o checked directly by multiplying the matrices given by Eq.

(5.3) of Paper | and Eq(2.7) of the present paper.

(4.3) Next, by using Eqs(2.5) and(4.5) we write the solution,
which yields Eqg. (4.2), as
N+1 N
L[t t
Q(t)=<exrb E®—ix X c<'l>fdt’|:(r(t'))+2 Hm[—iXOCof dt'Fo(r(t'))
257<j 0 m=1 0

—ix:D4 f;dt'F_(r(t'))eiQBt’—ixlo_ jotdt’F+(r(t’))e’iQBt'®{E}N’l Hml]>g(0). (4.6)

Equation(4.6) can be further rewritten in terms of generalized cumulant averages by taking into account stochastic indepen-
dence of the motions of tha—B spin pairs,

n N

] N+1 B t t
g(t)=expo[on2l E®< > —ixc<'1>fodt’|:(r”(t’))> +> Hm<—iX0c0fodt'F0(r(t'))

2<i<j m=1

—iX1D+fotdt'F(r(t'))e‘“Bt’—ixlDf;dt’F+(r(t’))e““B"> ®{E}N I, g(0). (4.7)

c

Here we have introduced the following shorthand notation for cumulant time-ordered averages:

t n t tq th_1
o< jodt f(r;t )>Csfodtlfo dtszo dtn(f(r;t) f(rty) - f(r;ty))e, (4.8)

where the time dependence in the functign; t) may be both explicit and implicit.
For sufficiently fast motions, we can truncate the cumulant expansion of the motionally averaged exponential superop-
erator at the second order in a manner analogous to Refs. 3 and 20, which yields

N+1 N

t ty .
={in+igH" expo- fodtl , 4, 2 [COTAFo(r(t)Fo(r(tz)ot 2 {E}™ e

m=1

2

G(t
e TS UFor(t)Folr (1))

2
+ TP IAAT(F (F(t))F 4 (1(t)))c8 %032+ ATACF  (r(t))F _(r(ty)))ce™ %0lt 2]

R{EN " ™i, +igN.  (4.9)

[We have assumed thé, .,(r))=0.] It can be shown by B 2 , 5

direct calculation thait, + i, is an eigenvector of the matrices G(t)—G(O)exp{ N5 Yaveh| Jo(0)+ EJl(QB) t} :

32, AAT, andATA, with eigenvalues of 1, 2, and 2, respec- (4.10)
tively. Thus, there will be no effect of the bath tefm_g of

Eg. (2.1b)]sinceCl{i,+i4N=0. This yields the Redfield-

limit FID corresponding to the Hamiltonian given by Egs. where J,(w) are the spectral densities of motion de-
(2.1a)and(2.1b), fined as
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o V. ELECTRON SPIN FID'S AND ECHO ENVELOPE
Jm(w)EZJO drcodw7)(F(r(7))Fm(r(0)))c. (4.11)  MODULATION IN THE PRESENCE OF
TRANSLATIONAL DIFFUSION

Equation(4.10) means that even if th§,l . pseudosecular

terms are included, the FID decay rate is still linear with ~ BY using Eq.(4.7), we can rewrite the motionally aver-
respect to the number &-spins,N and there is no effect of aged expression for the FID signal in terms of generalized
the B—B interactions. cumulants as

o N+1 n

n=1 \2<i<j

c

N n
+ 21{E}m‘1®<—i£dt’B(QB,t’)> ®{E}N_m]{ia+iB}N. (5.1)

Here we have introduced a time-dependent matrix operator .. _ . C T RIUBQE ) s AN
B(Qg,t) which is given by é(t)_ZN“VTx«'“Hﬁ) € (iatip))
- .n. €
Xo =Z lim 2 1_N
B(Qp,1)=AQp+ ?EFO(r(t)) N,V—o0
» 1_e—if})dt'B(QB,t’) "N
+ S IAF () +ATF, ()] (52) <\ (otip ——— (iatip)

P ) ’ !
_a L pmeleEen

As follows from the previous section, when motions are —Eexp—C (atip) 2 (atig) |
sufficiently fast, the effect of the matrix protons vanishes. On (5.4)
the other hand, if one is interested in calculating just an FID, '
which decays to zero after several hundred nanoseconds or ) ) )
less in a typical ESR experiment, one can neglect the batyheré the prime means averaging over the unnormalized
term completely since it would yield a decay only in the equilibrium distribution, ie., when the volumé has been
microsecond time scaf® The latter circumstance can be factored out of the averaging, cf. Ref. 3.
also revealed in our theory by substituting the numerical val- !N the same manner as we have calculated the FID, Eq.
ues for the gyromagnetic ratios of the electron and proton irt>-4); the motionally averaged echo signal becomes

Eq. (3.13)for a typical proton concentration of 3rm™3. In

the case of spin echoes, one can first calculate the echo signal G(t) e X g T X

. N . T i[dt"H*(t )x ifqdt"H*(t") 0
without the effect of the bath, and then simply multiply the ~ — =9(€q (m,&0 )9(0)
final result in the time domain by E¢B.13)due to the above .
time scale separation. One can easily calculate the matrix- = ((i,+i )Te_i-rrdt,B(()’B’t/)

. . . a ') =0

exponential operator in Eq5.1) containingB(Qg,t) only

. . (”) ST R(— ’
[i.e., without the bath term&!"!’]. The latter has the form of Xegodt B(— Qg t )(ia+i5)>N- (5.5)

a dressed direct-product sum, the exponential function of
which leads to a product dfl terms by virtue of Eq(4.3).
Assuming that allA—B pairs are stochastically equivalent, In the thermodynamic limitN, V—c but C=N/V=const,
the motionally averaged FID becomes the Markov averaging leads to

(5.3) G(t)= gexp—c< (iatig)T

1_e7ift7dt’B(QB.t')eifgdt’B(—QB,t’) !
(qu+ I,B) ’

G(t) S —ifldt'B(Qg ") ,:
Z _<(|a IB)TeOIfo Bl Bt )(Ia IB)>N'
O @]

To evaluate Eq.(5.3) in the thermodynamic limit I,V 2
—o), one can use the Markov methidd which leads to (5.6)

X
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1o o ' o g centration has been set @=8.8x10?cm™ 2 in all calcula-
D=0 D= 10y, d tions, which corresponds th=10° protons contained in a
08¢ T ] sphere having a radius of 100&vhered is the distance of
closest approach between the spin-bearing molecules set here
=T T ] at 3 A. A sphere of this size effectively corresponds to the
5 thermodynamic limit, the convergence to which can be
bar T 1 checked in the same manner as has been done in Ref. 3. Note
that in order to have the same concentration in BdL3) as
ozr ST y in Egs. (5.4) and (5.6), one has to setC=a?
=N/[47/3(1009 %], from whicha~1.6d. The motionally
00, I 0 =0 0 o o 00 0 averaged exponential quadratic forms that appear in Egs.
TR (5.4) and (5.6) have been evaluated by solving the

system of coupled stochastic Liouville equatidS$ E), Egs.
FIG. 2. Acomparison between the electron spin-echo envelope decay due K‘AZa)—(AZd).
(a) “spin diffusion,” and (b) translational diffusion at ultraslow motions, Ei 2 sh . bet the t | ti
D=10"% (in units of yAygh/d). If the distance of closest approach is |gu_re shows a comparlsor_m etween _e W_O relaxation
chosen to bal=3 A, this value corresponds B;=1.7x10"*cn?/s for ~ mechanisms for the echo amplitude. The first is due to a
electron—proton interactions. The proton concentration is set ©658.8 ~ magnetization loss due to the matrix protons, Fi@)2and
10" cm~? in all subsequent calculation&0® protons in a sphere having  the second arises from ultraslow translational diffusion, Fig.
a radius of 100d The proton modulation frequency is chosen to(bg : ; : :
=5y,ygh/d®=14.6 MHz. With the above values, the total time scale cor- 2(b). The effect of the matr_lx protor(spm diffusion) h.as
responds to about 20s. At this very low value of the translational diffusion been. C_aIC.UIE.ited by multlplylng EG{3..13). f.ind Eq.(5.6) in
coefficientD+ the time scales of the two relaxation processes are compathe rigid limit (D+=0), which was justified above due to
rable to each other. their time-scale separatiojef. discussion after Eq(5.2)].
The effects of motional averaging have been calculated from
£0. (5.6) by solving the system of SLE witD= 107 (in
units of y,ygh/d). At this very low translational diffusion
rate(D1~1.7x10 *“cn?/s if d=3 A), the timescales of the
two relaxation processes are comparable to each other. By
substituting the numerical values for the gyromagnetic ratios
of the electron and proton, it can be seen that this range
corresponds to times longer than 46 for the given proton
VI. RESULTS concentrationC.
: Spin-echo envelope modulation curves obtained from

All numerical calculations in this paper have been per-solving Eq.(5.6) at different values of the translational dif-
formed by usinguaTLAB (Math Works, Inc.)in combination  fusion coefficient for the relative motion of spisand B
with the expv-routin€? The latter is ideally suited for han- (cf. Appendix A). D are shown in Fig. 3. Increasing the
dling exponential functions of large sparse matrices in thdranslational diffusion coefficient decreases the modulation
time domain, especially in the rigid limit. The proton con- amplitude and results in a much faster decay than would

where the prime means taking the average over an unnorm
ized equilibrium distribution as before.

Evaluation of the quadratic matrix forms in Eq%.4)
and (5.6) can be performed by solving a system of coupled
stochastic Liouville equations as described in Appendix A.
The rigid-limit case is considered in Appendix B.

D,=10"
—~ 06}
o
Q
O o4l
FIG. 3. Spin echo envelope modulation and decay at
02y different values of the translational diffusion coefficient
D+ in units of y,ygfh/d as indicated on the plots. In-
0.0 i creasingD decreases the modulation amplitude and
D,=10" D, =10" D,=10" results in a much faster decay than would result from
0.8} the “spin diffusion” mechanism. Note that the effect of
spin diffusion only decreases when motions become
. 06) 1 . ) faster, and vanishes completely in the Redfield limit, cf.
& \\ the text.
© 04f + \\
02} T\ 1|
\
00 4 n i T 1 I : L L
0 10 20 30 0 10 20 30 0 10 20 30 40
o/ (el
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iE-7]
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FIG. 6. Solid-state spectra of sph interacting with a bath oN spinsB
calculated from solving the system of SLE’s in the thermodynamic limit,
D+=10"% (in units of y,ygh/d). Here Qg=3 (in units of y,ygh/d3).

FIG. 4. Spin echoes for ahBy system calculated at various rates of trans- \yeak forbidden transitions at Q1 are seen. The magnified inset plotted on
lational diffusion,Dt . Increasing the motional rate decreases the echo am-

a semilogarithmic scale shows the forbidden multiquantum transitions up to

plitude and shifts the echo maximum towards shorter times. Note that afe fourth order. Note that at such a relatively high concentration of &ins
appreciable refocusing is achieved in the slow to intermediate motionaj,e spectral lines are almost Gaussian.

regime as opposed to a system of like spins, cf. Ref. 1.

T 0y wdD

pulse suppresses the echo formafioks can also be seen

arise from the spin diffusion of the matrix protons. Note that rom Fig. 4, increasing the motional ra@; further de-

the latter mechanism can only decrease in importance Witfl,oqes” the echo amplitude and shifts it towards shorter

motions, since the motions remove positional Correlatior‘%imes. The onset of fast motions, i.e., where there is little or
among the protons. Furthermore, in Sec. IV we have showR0 refocusing, corresponds By= y,ygfi/d. Note that this
that in the fast motional regime the proton coupling terms aiue of D+ corresponds to the range of the translational
have no effect on thé-spin signal. Therefore, at faster mo- diffusion rates in lipid membranesD¢~ 108 cn?/s) which
tions the decay of the echo amplitude is due predominantlymp“es that in this case no effect of spin diffusion on ESR
to translational diffusion. spectra is expected.

Spin echoes for aABy system under the conditions of The behavior of the phase memory tini ie. at

seIeptive excitation of spiA'are shown in Fig. 4 for different which the echo amplitude decays by a half, versus the trans-
motional rateD ;. Modulation due to the Larmor frequency lational diffusion rateD+ is illustrated in Fig. 5. Ther(:?

Qg of the B spins can be seen. Here an appreciable refocu§/-

B : . . . . X alues have been obtained from Figs. 3 and 4. A
ing is achieved even in the intermediate motional regime__(12) . .
. : . T “-minimum can be seen ne®+=0.1y,ygh/d. In the
This has to be compared to a system of like spins, where the . . . 1/2)
termediate to slow motional regime tﬁ'é,] -dependence

generation of higher-order coherences after the intermediat®

12)

1 F T T T T L
25 rrw F ]
01 1
001 | 4
20 - 1E3 1
< 2 B4 .
D = E 3
2 5k S 15| 1
= = E 3
= "~ [E6f 1
S s "Of 1
g w} g T 1
= [3) E ]
~ 1E8 K x
32 3k
L o b /5 (1, 1,0/ @, d°Y Cdl 3
E Ik =1(0)
1E-10 | k! 1
oL B | 3
1E-4 1E3 0.01 e b . | . : . : . ) . i
0 1 2 3 4 5

D, I'yynld

Multiquantum Transition, £
FIG. 5. Phase-memory time${;'? vs the translational diffusion rat@

obtained from Figs. 3 and 4. A{}?—minimum can be seen ned
=0.1y,ygh/d. Dashed line shows the limiting behavior 5{'? as a func-
tion of D+ for the intermediate to slow motional regime.

FIG. 7. Distribution of the intensities of the multiguantum transitions. The
intensities are distributed according to a Poisson law and show a very good
agreement with the analytical expression, EB{L7).
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ment with the fast-motional Redfield theory, which also pre-

1.0+

wp: me;}»‘seudos;cularlwrms dicts an additional contribution from the terms proportional
-------- without the pseudosecular terms - ] ol

‘ T prendoseenar s to the first-order spectral densitiek (), arising from the
0.8 ; pseudosecular terms, cf. E@.10).

0.6 VIl. SUMMARY AND CONCLUSIONS

D,=10 . . .
Two channels of magnetic-resonance relaxation for spin

047 A interacting with an infinite bath of spir8 have been con-
sidered in the present paper. The first is the relaxation due to

02 - the interactions amongst thig2spins, usually called spin dif-
D,=10 fusion, and the second is the thermal motions of the spin-
\/‘\ bearing molecules. Both mechanisms lead to modulation of

0.0 3' ' ' , the interactions of spiA with spinsB, which include the

S2myyhd -G, 2my, ¥, M electron-spin echo envelope modulati®SEEM) and the

FIG. 8. Effect of translational motion on the spectra of spimteracting eCho-enyeIOpe decay' A Care,fUI consideration .Of t_he details
with a dynamical bath of spinB. In the intermediate motional regiom¢ ~ ©f the dipolar coupling of spirA to all the B spins in the
=10"?) the lineshapes are between a Gaussian and a Lorentzian, but tferesence oB—B dipolar interactions makes it possible to
multiquantum transitions disappear completely. The spectrum finally beachieve a unified treatment of the above collectioespin-

comes Lorentzian at relatively large values of the diffusion coeffidient., : : . . : _
D1=1). The dashed line shows the line shape when the pseudosecular terr%lﬁus'on) effects due to th& spins. The direct-product de

are dropped which is narrower than the line shape with the pseudosecul&OMPOSition of the multispin density states proposed in Pa-
terms, since the latter has an additional contribution from terms proportionaper | allows one to consider spit and all the spin® as a
to J;({2g), in accordance with Redfield theory. single quantum system without the need to distinguish be-
tween the nearby and distant protons. Moreover, it allows
one to effectively disentangle the relevant part of the Hamil-
can be approximately described by the limiting behavior:itonian from the remaining part that either cannot be observed
T(M2= AD;%%® (compare to thé1 %2 behavior found pre- experimentally, or does not influence the signal appreciably.
viously for the homogeneous relaxation timé&s of like In the rigid limit, the echo envelope decay is due to the
spins). The fast-motional regime is described by @q10).  induced flip—flops of the proton spins caused by It ()

A near rigid-limit absorption spectrum DG  terms of the dipolar Hamiltonian. This mechanism is similar
=10 ®y,yghi/d) calculated by using Eq5.4) is presented to spin diffusion, albeit treated here as a coherent process.
in Fig. 6. Low-intensity forbidden multiguantum transitions, The first-order commutator expansion of the superoperator
corresponding to the pseudosecular terms in the Hamiltoniatime propagator has been evaluated, which results in a decay
are observed at frequencieskQg. A semilogarithmic plot  of the form exp(—AE&7) in the limit of an infinitely large
(inset) shows the multiquantum transitions up to the fourthbath. Higher terms inr (arising from double commutators
order, with intensities decreasing by almost 10 orders ofind so onhave been assumed to have no appreciable effect
magnitude. The weakness of these forbidden transitions igver the time scale available to experiment. It can be antici-
due to the very weak effects of the pseudosecular terms gfated that higher-order termsuch asz®) would become
Eq. (2.1a)in the thermodynamic rigid limit. This in fact is comparable with the-? term only at sufficiently long times
what leads to our justification of their neglect in calculatingwhere the signal decays almost completely. This assumption
the spin-echo amplitude decay in the rigid lifhéf. discus- is probably not valid when the gyromagnetic ratios of spins
sions below Eqgs(3.6) and (B15) in Appendix B]. Note that A and B are comparable to each other, e.g., in the case of
the spectral lines are no longer Lorentzians at such a relasnlike electrons. This case, however would also require a
tively high concentration of spinB. This range of concen- consideration of different terms in the Hamiltonian, i.e., the
trations corresponds to an intermediate region between thé&ie pseudosecular terms in E&.1a)would have to be re-
two limiting cases given by Eq$B15), and in this range the placed by the flip—flop terms.
line shapes cannot be written in terms of simple analytical The results have been compared to a mogebposed
functions. nearly three decades ago based on a random frequency-

Figure 7 shows the distribution of intensities for the mul- modulation approach. It is interesting to note that the
tiquantum transitions as measured from the spectrum anpresent approach and the model of Ref. 7 give similar final
those calculated from the analytical expression, (Bd4.7). A expressions for the echo-envelope de@part from the con-
very good agreement is obtained, which indicates that thetant prefactor in the exponential and a small difference from
intensities of the multiquantum transitions are distributed acthe observed? power law). However, the model of Ref. 7
cording to a Poisson law in the rigid limit. considers the local field modulation at the electron as an

The effect of the translational motion on averaging outentirely random process. By contrast, here we have consid-
the multiquantum transitions is illustrated in Fig. 8. Whenered proton spin flips as a coherent process, which is shown
the motion becomes fast, the multiquantum transitions colto become dissipative in the thermodynamic limit. It is note-
lapse into a single Lorentzian having a width larger thanworthy that in the case of like spins, the flip—flop terms of
when the pseudosecular terms are dropped. This is in agrethe dipolar Hamiltonian, i.e.l(ii)l(;j) are found to have no
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appreciable effect on th€,-processes;whereas in the case ag.(r,t) _
of unlike spins they yield an irreversible decay of the spin-———— (I'=iQg)g. (1, 1)
echo amplitude in the rigid limit.

In the presence of sufficiently fast motions when one can X1
restrict oneself to the second-order generalized cumulant ex- — 1 F-(D[9a(r, ) +g5(1 V)],
pansion for the motionally averaged FID, the effect of the
flip—flop terms of the matrix protons has been shown to vand9a(r,t)
ish completely. At very slow motions, there exists a time gt
scale separation between the spin-echo envelope decay due
to the matrix protons and the FID arising from tide-B __.Xo X
interactions. Therefore, one can first solve for the FID or '2 FolNga(r )= 2 [F+(Ng.(n Y
echo neglecting the effect of the bath and then multiply the
result by Eq.(3.13)in the time domain.

The effect of translational motion on the spin echoes ha$>gﬁ(r, t)
been investigated by solving a system of stochastic LiouvilleT—Frgﬁ(F, t)
equations. At a very slow translational diffusion coefficient
of D+~10 *cn?/s, the decay due to motional diffusion has X0 X1
been found comparable to that due to the spin-diffusion pro- ~ +l ?FO(r)gB(r't)_' 7[F+(r)g+(r,t)
cess. An average molecular displacement during a time of
7=10us would be (®17)Y2=(6x1.7x10 ¥cm?/s +F_(Ng-(r,v], (A2¢)
X107 %s)*2~0.1 A, which may arise from positional fluc- P

X . . g_(r,t) .
tuations in glasses, for example. Thus, in the presence 6F———(I",+iQg)g_(r,1)
ultraslow fluctuations, it may become difficult to distinguish
between the two relaxation mechanisms. At faster motional i Y1
rates, the decay of the echo envelope is found to be governed =~ —~F.(N[(dal, t) +g4(r, V)], (A2d)
predominantly by the motionée.g., translational diffusion
which readily overtake the coherent mechanism in imporwith initial conditions g,(r,0)=gg(r,0)=1 and g,(r,0)
tance. By contrast, the coherent effect of the matrix protons=g_(r,0) =0. Inspection of the system of Eqé&2a)—(A2d)
can only decrease when positional correlations amongst theads tog,(r, t)=g§(r,t) and g, (r,t)=—g*(r,t). There-
protons are removed, vanishing completely in the Redfieldore, the observed signad,(r,t) +g4(r,t), is real.
limit. For the functiong(r,t) or, alternatively their Fourier or

Fourier—Laplace transforms@.(r,w), we construct
spherical-harmonic expansions in the form

ACKNOWLEDGMENTS @ I g(')m(r,t)
gs<r,t>=|2 > = YW(6,¢). (A3)

=0 m=-1I r

(A2a)

- Frga(rv t)

+F_(r)g_(r,t)], (A2b)

This work was supported by grants from the NIH and

NSF. Expansion(A3) is then substituted into the system of Egs.
(A2a)—(A2d) to establish the coupling among various coef-
ficients of the expansion using the orthonormality property

APPENDIX A: MOTIONAL AVERAGING OF THE of the spherical harmonics. From the properties of the

EXPONENTIAL QUADRATIC FORM BY STOCHASTIC Clebsch—Gordan coefficients it becomes clear that

LIOUVILLE EQUATIONS gg?o(r, ) andgg?o(r, w) will be coupled tog(i')’;l(r, w), and

To evaluate the motionally averaged quadratic form inthat alll's will be even. Thus, the stochastic Liouville opera-

Eq. (5.4), we assume a stationary Markov process for thépr L is given in terms of the following block-matrix equa-
interspin distance and introduce an auxiliary vector func- tion

tion g(r,t), such that ag(r, t)
Gty . . —iftdtB(Qg ), at
Tz[(la+lﬁ)T<eo|fo t'B(Qpt )(Icﬂ‘lﬁ))]N
| \ —T+iQg iD iD O
_ (ia+il3)Tf d3re£)IB(QB,r)JrFr)tg(r’O)} iDT _fr+ic o) —idT
" | ot o) ~f,—ic  —iDT
= jd3r(ia+iﬁ)Tg(r,t) . (A1) 0 —iD —iD - —iQg

The four components of the vectg(r, t) can then be evalu- xg(r,)=-Lg(r,1), (A4)
ated by solving the system of coupled stochastic Liouville

equations, by analogy with the simpler secular-Hamiltonianwhere T, is the reduced diffusion operator for the relative
case, cf. Ref. 2, motion?3
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) 2 1(1+1)
I'=Drlom=—= | (A5)

and the elements of the tridiagonal matricgsand D are
given in terms of the Clebsch—Gordan coefficients,

on =23 [ sinvaodg v (0.0 ¥E 0.4 (0,6)

5 (21"+1)
47 (21+1)

- (1200172102
(A6)

dy =i—(§ f sinadad Y " (6,6)* Y2 (6,4)* YL (6,4)

X1 5 (21+1)
- \/E(lmqm 0)(12—11]121"0).

To treat translational effects in we use the finite-difference

Many-body analysis of ESR 2427
APPENDIX B: INTENSITY DISTRIBUTION OF THE
FORBIDDEN MULTIQUANTUM TRANSITIONS

FOR SOLID-STATE MANY-BODY SPECTRA

In the absence of motion$;, =0, the system of equa-
tions (A2a)—(A2d) can be solved analytically. To do this, we
rewrite it as a single equation for the real partgfr, ),
Reg,(r, o)=u(r,t)

a2u(r,t) [Xg

at ZFo(r)2+X1F+(r)F (r)|u(r,t)

:Xiﬂaa(r)l:,(r)J;dt'u(r,t’)sinQB(t—t'), (B1)

subject to the initial conditionsu(r,0)=1 and du(r,0)/at
=0. This equation can be most readily solved by the method
of Laplace transforms, which yields

(a®—Q3)cosat—(b?— Q3)cosbt

. . . . U(r,t): 2_b2 ' (BZ)
method to approximate the differential operaigr in Eq. a
(A5) as described in Refs. 2 and 23. where
2 p2 L X6 2, .2 2|1 X6 2, .2 2 ’ 2 2
a%,b?=3 | P Fo(N2+ XiF +(NF (1N +QF |25 \|| T o2+ XiF L (NF (N - Q5| +43F.(NF-(NQG.  (B3)
|
If Qg>x01Fo+(r), then
5> Xo1Fo+(1) Eo(w)zf r2dr[To(r,w) +Te(r, — )],
(B6)

2
Xo X1F +(r)F_(r)
u(r,t)%cosiFo(r)tJr Q—é
XAF L (NF_(1) t

20, (B4)

xcos{QBJr

Where the first term corresponds to the allowed transmons

and the second gives the forbidden transitions.

At constantr, the Fourier transformation of the allowed

transitions is given by the well-known Pake formula

5 X03X_
ﬁo(r,w)=2ﬂ'J dxm7é| — or? 2 —w
T
4772I’3 Xé 0
= , T <wo=< —, B5
20r3 2r3 Y3 5
\/3)(6 —,+1
Xo

where we introduced a reduced coupling constapj,
= yayeh. When integrated over’dr from d to (x4l w) 3
for >0, and fromd to (x¢/2w|) ¥ for <0, the total
solid line shape for the allowed transitions becomes

o 47’y 20d3 wd?
f redrig(r,w)= 1+ ——1——|,
V3w? Xo Xo
X0
?!

_Xo_
293¢

, it behaves asymptotically as ? nearw=0.
The line shape for the forbidden transition in the solid-

state limit can be calculated in a manner analogous to the
calculation of the Pake pattefhe., the allowed transitions),
which yields for one of the two symmetric branches near
==* QB

15 Xl
2T — — dX
87TQ -1 r

x?(1—x2)

le(r,w) 3

15 X X
WQB r

X3(1—x?)

X176 3

—w

272
_Q_B

(8Qpr%x1%) (0—Qp)

1-(8Qar®x}2) (0— Q)

12
X1

8Q0gr®’
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and zero otherwise. In the above expression we made th

substitution,x=cos#, and introduced a reduced coupling
constant,y;=3vy,ygh/2. As one can see, the forbidden tran-
sition will result in a very narrow line having a breadth of
Xi218Q4r% in units of Qg, and a singularity at
w=0p+ x12/8Qgr°®.

When integrated overr?dr from d to rpa
=[80s(w—Qs)/x;2] 6, Eq. (B7) becomes
U (w)= QQ f( )\/1 E(w)[1+E(w)l2],
(B8)
_ SQBdS ) Q Q Xl
f(w)=\/7£2—(w— B) <os B+m

The singularity is now at exactl{2z, and the lineshape has
an asymptotic behavior of(—Qg) Y2 nearo=Qg.

By substituting the two-body solutiony(r,t) in Eg.
(5.4), and using the Markov method, one can write the for
the many-body FID aN, V—x

N
G(t) Ilm 2Nq+l fdvga(r!t)+gﬂ(r’t)}

N— o0

N

fdvmno

q
= lim NI

N— o0

N

C
E' 1- NJ dV[1—u(r,t)]

= |im

N— o0

—exp{ fd\/[l u(r, t)]]

whereq=72Q,/kT.

2

—_——

I\)IQ

&

tJu(t)
Cfo ot }

(B9)

(0= )ly(w—0")G(w')do’

Xold

/143
[
—xgld®
jx

xol2d®

To(0')G(w—o0')dw’

20w'd®

Xo

Glo—o')

w/

2
_471' Xo! WEE

9v3

1+

o'd? xyf2d® Glo—w')

3
; dw’—l—f

Xo

X| 1=

!
xpld® @

w'd®

; )dw'

Xo

X\/1-

2w’d3(
— 1
Xo

(B11)

The convolution integral corresponding to the forbidden
transitions Eq.(B8), can be estimated by assuming that
G(w) varies slowly within the narrow interval frorfg to
X1218Qpd3, viz.,

Qg+ x;2/80gd®

Ju

w’Ul(w')é(w— o' )dw’

1805d°

~08(0— QB)jQBWl Ty(0')do’

(B12)

plus the corresponding counterpartat —Qg. The use of
the inverse Fourier transformation followed by the applica-
tion of the shift theorem for Fourier transforms yields

The corresponding many-body line shape is obtained

from the integral equation containing the two-body line
shape, cf. Ref. 3,

e iC [+ 1\ AYaYPN ’
—Ia)G(w)-f-ETf_w(w—w JU(w—0")G(w')dw=G(0),

(B10)

where the two-body line shap® ) contains both the al-

aG(t) it A7%x} iC
ot ( M3 2w
1143 Sinw't 2w'd wd?®
xfx(”d i 1+ (1——,)dw’
- xpl2d® ® X0 Xo
477)(12 0 )
H gt _ alQpt —
+i 4SQBd3(e e''8HG(1)=0. (B13)

This equation can be integrated which leads to a rather inter-

esting behavior for the many-body FID which can be written
in a compact form

lowed and forbidden spectra. Here the many-body spectral

function G(w) is understood as thEourier—Laplacetrans-

formation of G(t), since the latter is a decaying function
even in the solid-state limit. By contrast, the two-body FID’s,
u(t), are expressed in the rigid limit in terms of cosine func-

tions, cf. Eq.(B2), and thus have to be treated by conven-
tional Fourier transforms. One can estimate the contribution
of the forbidden transition relative to the allowed transitions

by calculating the convolution integral in E@B10). For the
allowed transitions, Eq.B6), one has

G(t)=G(0)exp[ - ﬂxgcftdt’f“dt"
93 0 0
) o
Xf—l/z S( IRE
XEXF{ZW(
5

V1+2x(1—x)d

X0
E

2
) Cd3(cosQgt— 1)}. (B14)
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The first exponential part of E¢gB14) has two limiting line  for pure water (protons, C~6x 10%cm 3, T5~10's?

Lorentzian, Cd3<1

Yaveh 2
QBd3

Cd?’(cosQBt—l)}

shape behaviors, depending on the density of pertulBers () ;=14.5 MHz) the relative intensities of the multiquantum
transitions in theigid limit spectra will be rather low if the
4ar t t’ . id=3 A .
exr{ - —Xécf dt’f dt” distance of closest approach id=3A, for which
93 o Jo yayeh!/d®=2.9MHz. By contrast, in the motional-
ron narrowing regime the pseudo-secular terms yield consider-
« fl cos( XO; x| 1+ 2x(1—x)dx able extra line broadening as given by the Redfield theory, cf.
—12 d Eq. (4.10).
From Eq.(B14) one can obtain the distribution of inten-
exl — 4_772 't sities for the multiquantum forbidden transitions. The corre-
X 9v3 Xo sponding exponential part can be expanded into a Taylor-
= "2 binomial series as
exp — 27| Xo Cd®?|, Gaussian,Cd®>1
15| d* ’ ' ' p[zw
exg —
(B15) 5
The first case corregponds to low cpncentration; of spins B, » n ( D" [ yayehi |2 ; n
which result in a simple exponential decay with the rate E E 3| Cd
. . A=0 m= n! 5 Qgd
given by the classical Anderson formdfh, 1/T3
=4m?y,yghCI9V3. At large enough concentrations of the Xexp(—imQgt). (B16)
B-spins, there may be a non-negligible effect of the oscillat-
ing (Qg-containing)part of Eq.(B14) corresponding to the Assuming for simplicity the Lorentziaflow-density) case
forbidden transitions. The conditions for this should be:and thatQgT3>1, the intensity distribution can be calcu-
Cd®>1, T§20§1 having at the same timeQg lated by applying the Fourier transform convolution theorem,
> yayeh!d3, for which Eq.(B4) has been derived. But even which yields

~ G(0) o « T3 1)n-m n
Clke) =52 2, f dw,1+(kQB—2w’)2T’2‘2( m)( n! [g(m;yc;) Cds} 2mo(w’~mile)
e [ 20\ (SO M (yarefi|® ] . E 1 2w yaveh)?
%G(O)Tz ngk (n_k) n! [g( QBds ) Cd3:| %G(O)TZ kl CX%_ ? QBd3 ) Cda},
(B17)

where we used the Stirling approximation to calculate the binomial coefficients. Thus, the fall of the intensities of the
forbidden transitions is given approximately by a Poisson-type distribution.
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