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Phase relaxation in a many-body system of diffusing spins:
Slow motional limit

Alexander A. Nevzorova) and Jack H. Freedb)
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~Received 7 March 2002; accepted 5 April 2002!

The echo amplitude decay of a diffusing electron-spin-bearing molecule interacting with a diffusing
many-spin bath of proton-containing molecules has been studied theoretically in the slow motional
limit. Closed-form asymptotic expressions for the short- and long-time behavior of the echo
envelope have been obtained. In contrast to the well-studied fast-motional limit, the echo envelope
cannot be described by a simple exponential decay, and its rate exhibits aDT

1/3 dependence on the
relative translational diffusion coefficient,DT . For low proton concentrations and long pulse delay
times, t, an exponentialt9/8-decay of the echo amplitude is found, whereas for high proton
concentrations and shortt ’s the decay exhibits an exponentialt3-behavior. These limiting analytical
results are compared with the exact numerical solutions to establish their range of validity. ©2002
American Institute of Physics.@DOI: 10.1063/1.1481764#
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I. INTRODUCTION

In the fast motional limit, the classic theories of sp
relaxation used in NMR and ESR in fluid media have be
available for many years.1 These theories are formulated fo
the rotational diffusion of a single spin-bearing molecule
else the relative translational diffusion of a pair of sp
bearing molecules. These approaches are perturbation
nature, based on the rapid stochastic modulation of the d
lar and other interaction tensors by the motion. In visco
media ~slow motions!the conventional motional narrowin
theories are no longer valid, and a full solution to the s
chastic modulation of the spin dependent interactions m
be employed. The usual slow motional spin relaxation ana
ses for these cases are based on the stochastic Liouville e
tion ~SLE!.2 Their relevance is well established for a wid
range of ESR~and also NMR!experiments.2,3 However,
these one- or two-body motional modulation cases do
adequately address the case of many spin-bearing mole
simultaneously interacting by their dipolar interaction
while they are separately diffusing. In the motional narro
ing ~or Redfield!regime, Torrey developed a successfulad
hoc model,4 which is appropriate for dilute solutions. In th
model, the many-body effects were taken into account b
simple multiplication of the inverse relaxation timesT1

21 or
T2

21 for a pair of interacting spins by the number dens
However, when the motions slow down sufficiently, then t
many-body interactions persist for long times and the Tor
approach does not generalize to the slow motional regim

Recently, we have developed a many-body theory
spin relaxation to address this general issue. We showed
under the assumption of statistical independence of the
tions, it is possible to express the time evolution of t
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many-body free induction decay or echo decay as a gen
function of the two-body solution,5 cf. below, and the latter is
solved using the SLE.6 The numerical results obtained re
cover the Torrey–Redfield results in the motional narrow
regime and also give the correct result, known as Anderso
statistical theory1,7,8 in the limit of a dilute solid, as well as a
full description of the intermediate regime between these
limits.

In one of our recent contributions,9 two channels for the
relaxation of an electron- spin in a many-spin bath of proto
have been studied. The first is spin diffusion, which predo
nantly governs the relaxation in the rigid limit. This yields a
echo amplitude decay that is quadratic in time in the ex
nential due to the presence of flip-flop terms in the hom
nuclear proton part of the Hamiltonian.9 When motions oc-
cur, a dephasing arises, which is due to the translatio
diffusion of the protons relative to that of the electron sp
This latter dephasing becomes comparable with spin di
sion even for ultraslow motional rates, i.e., when the dif
sion coefficient for relative motion is less thanDT

510212 cm2/s. The echo envelope due to such a diffusion
dephasing has been studied so far only numerically.5,9,10

What has been lacking is an analytical closed-form res
appropriate for the slow motional regime to provide the
sight not readily obtainable from the numerical solutions
is the purpose of this article to report on this analytic solut
appropriate for very slow motions and to demonstrate
range of validity by comparison with the full numerical re
sults. We describe the new insights provided with respec
the nonexponential decay of the phase memory in spin e
experiments. These results are especially relevant to E
experiments in viscous media such as liquid crystals
glass forming fluids,5,9,11,12as well as NMR in polymers and
solids.13,14

The case that we explicitly consider is relaxation of
single spin with a large magnetic moment~e.g., an electron
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283J. Chem. Phys., Vol. 117, No. 1, 1 July 2002 Phase relaxation in a system of diffusing spins
spin! in the field of many diffusing spins with weak magnet
moments~e.g., protons!. For this case we are able to s
with the fundamental general result previously derived@cf.
Eq. ~2.3!#.5,9 This general result also applies to another ca
that of many identical spins, each diffusing independen
Thus the present approach also applies to this second
but it is complicated by other factors~viz. the generation of
multi-quantum coherences,11 which can in principle be sup
pressed by using magic echo techniques!. Thus our results
are presented in the context of the first case.

II. ENSEMBLE-AVERAGED SOLUTION TO THE ECHO
SIGNAL IN THE PRESENCE OF MOTIONS

We start by employing the expression for the echo s
nal,G(t) of an electron spin~S! interacting with a dynamica
bath of N identical protons@ I ( i )#, which is obtained from
solving the von Neumann equation for the many-spin den
matrix in Liouville or superoperator form:5,9

G~ t !

Z
5gT~0! Ke

O
2 i *t

t dt2Hx(t2)
Xpx

e
O
2 i *0

tdt1Hx(t1)Lg~0!

5gT~0!^eO
2 i *t

t dt2Hx(t2)
e

O
2 i *0

tdt1H̃x(t1)
&Xpx

g~0!, ~2.1!

which is Eq.~5.5! in Ref. 9. Also15 H̃x(t)[Xpx
Hx(t)Xpx

21. In

Eq. ~2.1! the vectorg(0) describes the many-spin dens
state immediately after the initial (p/2)x pulse. It corre-
sponds to a representation of the density matrix in Liouv
space, which is defined by the Frobenius trace metric@cf. Eq.
~2.8! in Ref. 5#.Hx andX are the rotating frame Hamiltonia
and pulse superoperators, respectively,Z is a normalization
constant, and the angular brackets imply ensemble ave
ing.

The spin Hamiltonian that is appropriate for this slo
motional case of a singleA ~electron!spin interacting withN
spins of typeB ~protons!is9

H5 (
i 52

N11

x0F0~r1i !SzI z
( i )1x1@F2~r1i !SzI 1

( i )

1F1~r1i !SzI 2
( i )#. ~2.2!

As usual, the nonsecular electron spin-flip terms ha
been neglected in Eq.~2.2!, since they are not importan
except for very fast motions.2 Whereas the pseudo-secul
SzI 6 terms are, in general, significant, they were found in
numerical solutions to be unimportant for the very slow m
tional range over which the asymptotic solutions to be
tained in Sec. III are valid~except for very weak echo
envelope modulation!.9 Thus we shall neglect them below
We shall also neglect the additional relaxation by spin dif
sion, or assume that it is suppressed by other means~e.g., the
motional averaging9 or by proton spin-locking at the magi
angle!. Now if the motions of the spins are assumed to
stochastically independent, the echo signal is given by5,9 @cf.
the closely related case given by Eqs.~6.15!of Ref. 5#
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G~ t !522(N11)qK expF2 i
x

2E0

t

dt1s~ t1!F~r ~ t1!!G
1expF i

x

2E0

t

dt1s~ t1!F~r ~ t1!!G L N

, ~2.3!

whereq5\v/kT, x[x05A(16p/5)gAgB\ is the coupling
constant, and ther-dependent functions~containing the im-
plicit time dependence!are given in terms of the spherica
harmonic of rank two,F(r) [F0(r) 5Y0

(2)(u,f)/r 3. The
s-function is given bys(t)511, t.t, and s(t)521, t
,t.

In the thermodynamic limit of a very large number
spins,N, and a large volume,V, the Markov method16 can be
applied to Eq.~2.3!, which yields5,9

G~ t !5G~0!expFCE
0

t

dt1
]g~ t1!

]t1
G , ~2.4!

whereC5N/V is the concentration of the matrix protons
the present case. Also,g(t)[@g1(t)1g2(t)#/2 and the two-
body spin-echo signal from theS spin interacting with a
single I spin is given by

g6~ t1![K expF7 i
x

2E0

t1
dt2s~ t2!F~r ~ t2!!G L 8

. ~2.5!

@In Eq. ~2.5!, the prime means that the volume has alrea
been factored out.5# The motionally path-averaged compo
nentsg6(t) are found from the solution of the SLE2 for the
auxiliary functiong6(r, t):

]g6~r, t !

]t
2DT¹2g6~r, t !57 i

x

2
F~r !s~ t !g6~r, t !,

~2.6!

where we haveg6(t)5*d3r g6(r, t). HereDT is the relative
translational diffusion coefficient for a pair of interactin
spin-bearing molecules~i.e., a proton-bearing and a
electron-spin-bearing molecule!, which is given by the sum
of their respective diffusion coefficients. The initial conditio
is given byg6(r, 0)5peq(r), the equilibrium probability dis-
tribution. For the two-body echo signal,g6(t), one can for-
mally write the solution of Eqs.~2.5! and ~2.6! as

g6~ t !5E d3r e[ 7 i (x/2)F(r) 1DT¹2](t 2t)

3e[ 6 i (x/2)F(r) 1DT¹2] tpeq~r !. ~2.7!

In summary, we have, under the assumption of stocha
independence of the diffusion of the spin-bearing molecu
that the echo decay in the many-body case is an ana
function of that for the two-body problem.

III. ASYMPTOTIC EXPANSIONS OF THE ECHO
BEHAVIOR

We now seek asymptotic expressions that are valid in
limit of very slow motions. The other limit of motional nar
rowing can readily be obtained from Eq.~2.3! as discussed
previously5,9 by utilizing generalized cumulant expansion
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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and truncations after the second order. This approach d
not yield a satisfactory method for the slow motional lim
so we must proceed in a different manner.

For t52t we first use the following exact property o
noncommuting symmetric operatorsA andB ~cf. the Appen-
dix!:

e(A1 B)te(2A1 B)t

5e
O2

*0
tdt exp(At )B exp(2At )

e
O1

*0
tdt exp(At )B exp(2At )

, ~3.1!

where the symbol O1 (O2) stands for the positive~negative!
Dyson time ordering. This enables one to transform Eq.~2.7!
to

g6~2t!5E d3r g6~r,2t!

5E d3r e
O2

DTE
0

t

dt exp[7 i (x/2)F(r) t]¹2exp[6 i (x/2)F(r) t]

3e
O1

DTE
0

t

dt exp[7 i (x/2)F(r) t]¹2exp[6 i (x/2)F(r) t]

peq~r !.

~3.2!

For the magnetic dipolar potential, one has from Ma
well’s equations: ¹2F(r) 50. Using the well-known
Campbell–Hausdorff expansion,17 one can expand the opera
tor in the ordered exponentials of Eq.~3.2! in a series of
commutators. Fortunately, the third and higher commuta
vanish, and one obtains exactly that

e
O6

DTE
0

t

dt$¹21(7 ixt/2)[F(r),¹ 2] 1(1/2)(7ixt/2)2[F(r),[F (r),¹ 2]] %

5e
O6

DTE
0

t

dt[¹26 ixt¹F(r) •¹2(x2t2/4)u¹F(r) u2]

. ~3.3!

The squared modulus of the dipolar field gradient is read
found to be

u¹F~r !u25
5

16p U¹ 3 cos2 u21

r 3 U2

5
5

16p

9

r 8
~5 cos4 u22cos2u11!. ~3.4!

The decay of the electron spin echo due to interactions w
the solvent protons that are modulated by the diffusion
then given, from Eq.~2.4!, by

G~2t!5G~0!expF2CE d3r H 12
g1~r,2t!1g2~r,2t!

2 J
3peq8 ~r !G , ~3.5!

@where the prime has the same meaning as in Eq.~2.5!#.
Equation ~3.5! is the exact formal solution to Eqs.~2.4!–
~2.6!. In the general case it remains a daunting task to so
Downloaded 09 Sep 2002 to 128.253.229.132. Redistribution subject to 
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and the methods of Refs. 5, 6, 9, and 11, yielding accu
numerical solutions, are more useful. Equation~3.5!, how-
ever, provides the basis for studying the slow motional lim
~i.e., the limit asDT→0!, especially given its linear depen
dence uponDT in the ordered exponent. Useful forms ca
indeed be obtained from Eq.~3.5! in certain cases. First we
note that in the absence of any potential of mean force,18 one
haspeq8 (r) 51. Then one finds that the term involvingt2 in
the exponential operator ofg(r,2t), Eq. ~3.2! as given by
Eq. ~3.3!, governs both the short- and long-time behavior
Eq. ~3.5!. That is, at short timest, one expands the time
ordered exponential in Eq.~3.3! to first order inDT and only
the term in t2 survives after postmultiplication bypeq8 (r)
51, so one obtains

G~2t!5G~0!expF2
8p

5
~Cd3!S DTd

gAgB\ D S gAgB\t

d3 D 3G ,

~3.6!

where d is the distance of minimal approach between t
electron spin and the protons.

For longt, the t2 term in Eq.~3.3! clearly dominates, so
we drop the other two terms. The resulting integral in t
exponent leads to an incomplete gamma function which m
be evaluated asymptotically19 in the limit of larget ~or more
rigorouslyDTx2t3d28→`! to yield

G~2t!5G~0!expH 2
4p

3
~Cd3!F IGS 5

8D
3S 3DTd

2gAgB\ D 3/8S gAgB\t

d3 D 9/8

21G J . ~3.7!

Note that in Eqs.~3.6! and ~3.7! all quantities in the paren
theses are combined to form dimensionless factors. In de

ing Eq. ~3.7! we have used the following integrals:*0
1/d8

(1
2e2ax)x211/8dx'8

3@a3/8G( 5
8)2d3# valid for d→0 and I

[*0
1(5x422x211)3/8dx'1.081. To obtain the first integral

we have expanded the incomplete Gamma function up to
first order19 to ensure proper dimensional regularization
all parameters in Eq.~3.7! when d→0. Note that since the
dipolar-field gradient,u¹F(r) u, is just an ordinary function
of r, the Dyson time ordering can be omitted in evaluati
Eq. ~3.5! for the above limiting cases.

IV. COMPARISON WITH NUMERICAL SOLUTIONS
AND DISCUSSION

As can be seen from the superexponential characte
Eq. ~3.5!, when concentrations are high, i.e.,Cd3@1, so the
echo decay is relatively rapid, then the short-time behav
on the two-body time scale governs many-body relaxati
i.e., Eq.~3.6!will be appropriate. At lower concentrations th
phase memory of a many-spin system is described by a m
complicated function, involving both Eqs.~3.6! and~3.7!, as
we show below.

The short-timet3 behavior exhibited by Eq.~3.6! is to
be expected. It represents the well-known short-time re
for ‘‘single-body’’ relaxation for such cases as spin deph
ing due to translational diffusion in a field-gradient in th
Carr–Purcell pulse sequence20 and for modulation of an an
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 1. Electron spin-echo envelopes as a function of pulse delay time at different proton concentrations in the slow motional regime,DT51024gAgB\/d.
The short-time expression, Eq.~3.6!, and long-time expression, Eq.~3.7!, are represented by dashed and dot-dashed lines, respectively; the solid lines
exact numerical results obtained from Eq.~2.3!.
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isotropic spin Hamiltonian by molecular rotation
diffusion.10 The fact that the two-body expression is exp
nentiated in Eq.~3.5! will lead to Eq.~3.6! being valid over
a longer time-scale than the two-body result, as seen in
comparison with the exact results below.

The long-timet9/8 exponential behavior of Eq.~3.7! for
slow motion is modified from the well-known exponenti
behavior int/T2 in the motional-narrowing regime, as is th
power law dependence onDT .

Plots of the echo envelopes are shown in Fig. 1 forDT

51024gAgB\/d, corresponding to the nearly rigid limit
Case~a! corresponds to low concentrations, with interme
ate concentrations~b!, and high concentrations~c and d!.
Solid lines show the results of numerical solution of E
~2.3! by using the SLE, Eq.~2.6!, cf. Refs. 5 and 9, and th
dashed lines correspond to the limiting behavior given
Eqs. ~3.6! and ~3.7!. If the distance of minimal approach
set tod53 Å, ~a! corresponds to rather dilute solutions wi
proton concentrations,C of 8.931020 cm23; ~b! is for C
58.931021 cm23; and ~c! corresponds to aC (8.9
31022 cm23) similar to pure water~6.631022 cm23!.21

Case ~d! is for unphysically high concentrations of 8.
31023 cm23 to show the limiting cubic behavior of th
echo envelope decay. Case~a! is dominated by the long time
t9/8 behavior, but witht3 behavior at very early times. Cas
Downloaded 09 Sep 2002 to 128.253.229.132. Redistribution subject to 
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~b! shows an increased~decreased!role for the latter
~former!.

Figure 2 shows the echo envelopes calculated for dif
ent diffusion ratesDT , for Cd350.24. As inFig. 1, solid
lines designate the numerical solutions. Equations~3.6! and
~3.7! are seen to be useful asymptotic expressions for
echo envelopes over the slow motional range, i.e., forDT

<1023gAgB\/d. But the validity of Eqs.~3.6! and ~3.7!
breaks down at sufficiently fast motions, i.e., forDT

>1022gAgB\/d. ~These dimensionless inequalities becom
DT<10211 cm2/s andDT>10210 cm2/s, respectively us-
ing a d53 Å and the appropriate gyromagnetic ratios.! That
is, Eq.~3.6! is applicable only for much shorter times asDT

increases. Equation~3.7! becomes inapplicable asDT in-
creases, most likely as a result of the terms int0 andt1 in the
exponent of Eq.~3.3!becoming more important during inter
mediate time periods@recall that these terms in Eq.~3.3!
require integration overt#.

These comparisons thus demonstrate the essential v
ity of the asymptotic forms in the very slow motional regim
In addition, they show that the echo envelope decay can
be expressed by a simple exponential even at longer d
times. This explains an apparent anomaly previously see
analyzing the numerical results for the concentration dep
dence of the echo decay. This was performed using a sim
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 2. Electron spin-echo envelopes as a function of pulse delay time at different translational diffusion rates,DT , as shown. The proton concentration is s
to Cd350.24 ~intermediate concentration regime! to capture both the short- and long-time limiting behavior, cf. Eqs.~3.6! and~3.7!. ~The different lines are
as in Fig. 1!.
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exponential in time and results in aCa with5 a'0.9 which is
close to8

9. This is equivalent to linear dependence onC when
the propert9/8 power is used. Note also that theDT

3/8 power
law dependence on the diffusion coefficient would beco
an effectiveDT

1/3 power law from fitting the echo envelope
to a simple exponential decay function~instead oft9/8!, and
this is in agreement with the 0.3460.02 power law obtained
numerically.5,9

The closed-form solutions derived herein break do
when motions become sufficiently fast, i.e., when the l
broadening is essentially homogeneous.5 In this limit the
well-known Torrey–Redfield theory is appropriate@e.g., the
spectral densityJ(0) that contributes to the transverse sp
relaxation is given byJ(0)}(4/15)(C/d DT)#. In the ultra-
slow motional regime considered herein, the asympto
equations for the transverse spin relaxation, while more c
plex, can still be written in terms of the coefficient for rel
tive diffusion, DT , the distance of closest approach,d, and
the concentration,C. This result could potentially be of us
to aid in studying ultraslow motional relaxation in polymer
glasses, and semi-ordered media. One caveat, howeve
that in the rigid limit, relaxation due to translational diffusio
is no longer relevant, and the phase memory decay for
electron-spin is dominated by effects of nuclear spin dif
sion, which, however are readily averaged out by motion9
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APPENDIX: DERIVATION OF EQ. 3.1

To derive Eq.~3.1! we note that the time evolution of a
arbitrary functiong(t) obeying the equation

]g~t!

]t
5~A1 B!g~t! ~A1!

is given byg(t)5exp@(A1 B)t#g(0). By substitutingg(t)
5exp(At)ĝ(t) into Eq. ~A1! and integrating we find that

e(A1 B)t5eAteO1

*0
t dt exp(2At )B exp(At ). ~A2!

Or, by taking the transpose of both sides of Eq.~A2!,

e(A1 B)t5e
O2

*0
tdt exp(At )B exp(2At )

eAt ~A3!

sinceA andB are symmetric. If we replaceA by 2A in Eq.
~A2! and multiply it by Eq.~A3! from the left we get Eq.
~3.1!.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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