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Phase relaxation in a many-body system of diffusing spins:
Slow motional limit
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The echo amplitude decay of a diffusing electron-spin-bearing molecule interacting with a diffusing
many-spin bath of proton-containing molecules has been studied theoretically in the slow motional
limit. Closed-form asymptotic expressions for the short- and long-time behavior of the echo
envelope have been obtained. In contrast to the well-studied fast-motional limit, the echo envelope
cannot be described by a simple exponential decay, and its rate exh[b#@ @ependence on the
relative translational diffusion coefficierD. For low proton concentrations and long pulse delay
times, 7, an exponential”®-decay of the echo amplitude is found, whereas for high proton
concentrations and shorks the decay exhibits an exponentidtbehavior. These limiting analytical
results are compared with the exact numerical solutions to establish their range of validia02
American Institute of Physics[DOI: 10.1063/1.1481764

I. INTRODUCTION many-body free induction decay or echo decay as a general
function of the two-body solutioRcf. below, and the latter is

In the fast motional limit, the classic theories of spin solved using the SLE.The numerical results obtained re-
relaxation used in NMR and ESR in fluid media have beernoyer the Torrey—Redfield results in the motional narrowing
available for many yearsThese theories are formulated for regime and also give the correct result, known as Anderson’s
the rotational diffusion of a single spin-bearing molecule orgiatistical theory”2in the limit of a dilute solid, as well as a
else the relative translational diffusion of a pair of spin-g, gescription of the intermediate regime between these two
bearing molecules. These approaches are perturbational its.
nature, based on the Tapid stochastic modula'tion of th.e dipo- In one of our recent contributioffswo channels for the
lar qnd other |nt.eract|on tensors. by the ”.‘0“0”- n VISCOUS 4| axation of an electron- spin in a many-spin bath of protons
media(slow motions)the conventional motional narrowing . T e . .

. : . have been studied. The first is spin diffusion, which predomi-

theories are no longer valid, and a full solution to the sto- o S N
chastic modulation of the spin dependent interactions musr%antly governs the relaxatlop in the ”g!d I.|m|.t. Th!S yields an
be employed. The usual slow motional spin relaxation analnghq amplitude decay that is que_tdratlc n tlme_ in the expo-
ses for these cases are based on the stochastic Liouville equigntial due to the presence of flip-flop terms in the homo-
tion (SLE)2 Their relevance is well established for a wide Nuclear proton part of the Ha_mﬂtqmﬁrWhen motions oc-
range of ESR(and also NMR)experimenté® However, Cur, @ dephasing arises, which is due to the translational
these one- or two-body motional modulation cases do nofliffusion of the protons relative to that of the electron spin.
adequately address the case of many spin-bearing moleculé§is latter dephasing becomes comparable with spin diffu-
simultaneously interacting by their dipolar interactions,sion even for ultraslow motional rates, i.e., when the diffu-
while they are separately diffusing. In the motional narrow-sion coefficient for relative motion is less thaD;
ing (or Redfield)regime, Torrey developed a successidl  =10"'? cn?/s. The echo envelope due to such a diffusional
hoc model? which is appropriate for dilute solutions. In this dephasing has been studied so far only numerically.
model, the many-body effects were taken into account by a  What has been lacking is an analytical closed-form result
simple multiplication of the inverse relaxation tim@gl or  appropriate for the slow motional regime to provide the in-
T, * for a pair of interacting spins by the number density.sight not readily obtainable from the numerical solutions. It
However, when the motions slow down sufficiently, then thejs the purpose of this article to report on this analytic solution
many-body interactions persist for long times and the Torrey,ppropriate for very slow motions and to demonstrate its
approach does not generalize to the slow motional regime. range of validity by comparison with the full numerical re-

Recently, we have developed a many-body theory forg,is \we describe the new insights provided with respect to

spin relaxation to address this general issue. We showed thﬁ{e nonexponential decay of the phase memory in spin echo

gnder '_[he_ assumption of statistical md_ependence_ of the mOéxperiments. These results are especially relevant to ESR
tions, it is possible to express the time evolution of the

experiments in viscous media such as liquid crystals and
glass forming fluids;>**2as well as NMR in polymers and
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spin)in the field of many diffusing spins with weak magnetic X[t

moments(e.g., protons). For this case we are able to star@(t)zz_(N+1)Q<eXF{—l ff dtls(tl)F(r(tl))}
with the fundamental general result previously deriyefi 0

Eq. (2.3)]>° This general result also applies to another case, X[t N

that of many identical spins, each diffusing independently. +ex+ Efodtls(tl)lz(r(tl))b ,

Thus the present approach also applies to this second case,

but it is complicated by other factorsiz. the generation of Wwhereq=7%w/kT, x= xo=(167/5)yaysf is the coupling
multi-quantum coherencéSwhich can in principle be sup- constant, and the-dependent functiongcontaining the im-
pressed by using magic echo techniquaus our results plicit time dependenceare given in terms of the spherical

(2.3)

are presented in the context of the first case. harmonic of rank two,F(r) =Fq(r) =Y2)(6,¢)/r%. The
s-function is given bys(t)=+1, t>7, and s(t)=—-1, t
<T.

In the thermodynamic limit of a very large number of
spins,N, and a large voluma/, the Markov metho can be
applied to Eq.(2.3), which yield3®
We start by employing the expression for the echo sig- t gty
nal, G(t) of an electron spifS)interacting with a dynamical G(t)= G(O)exr{CJ dt;
bath of N identical protong 1], which is obtained from 0 !
solving the von Neumann equation for the many-spin densityvhereC=N/V is the concentration of the matrix protons in
matrix in Liouville or superoperator form?® the present case. Alsg(t)=[g. (t)+g_(t)]/2 and the two-
body spin-echo signal from th& spin interacting with a
singlel spin is given by

Il. ENSEMBLE-AVERAGED SOLUTION TO THE ECHO
SIGNAL IN THE PRESENCE OF MOTIONS

, (2.4)

G(t) —ifdtyHX —ifgdtyH
> :gT(O) eolfT t (tZ)Xﬂ'XeOIIO ty (tl)>g(0)

_ X[t '
=gT(O)(egiItfdtsz(tz)egijgdtlm(tl)}xﬂxg(O), o) g-(t1) <exl{+| ZJo dtys(ty)F(r(ty)) > : (2.5)
[In Eq. (2.5), the prime means that the volume has already
which is Eq.(5.5)in Ref. 9. Alsd® AX(t) =X . HX()X_ 2. In been factored o} The motionally path-averaged compo-
" X nentsg- (t) are found from the solution of the SEEor the

Eqg. (2.1) the vectorg(0) describes the many-spin density auxiliary functiong.. (1, t):

state immediately after the initial#{(/2), pulse. It corre-
sponds to a representation of the density matrix in Liouville — dg.(r,t) ) X
space, which is defined by the Frobenius trace mgtficEq. —r PrVioL(ny=Fi5F(s()g.(rb),
(2.8)in Ref. 5].H* andX are the rotating frame Hamiltonian (2.6)
and pulse superoperators, respectivélys a normalization
constant, and the angular brackets imply ensemble avera
ing.

The spin Hamiltonian that is appropriate for this slow-
motional case of a singla (electron)spin interacting witiN
spins of typeB (protons)is®

where we havg. (t)=[d® g..(r,t). HereD7 is the relative
$anslational diffusion coefficient for a pair of interacting
spin-bearing molecules(i.e., a proton-bearing and an
electron-spin-bearing molecyjewhich is given by the sum
of their respective diffusion coefficients. The initial condition
is given byg . (r, 0) = pe((r), the equilibrium probability dis-
tribution. For the two-body echo signd,. (t), one can for-
mally write the solution of Eqs(2.5) and(2.6) as

N+1
H= |:22 XoFo(ri)SA W+ xa[F_(ri)S,1 ¢

_ (= | ¥ elFim2F +Drv2(E-7)
FEL(r)S) 0. 22 9= J

+i(x/2)F(r) +D1V4] 7
As usual, the nonsecular electron spin-flip terms have X el=EFO o Peq(r)- @.7)
been neglected in Eq2.2), since they are not important, In summary, we have, under the assumption of stochastic
except for very fast motiorsWhereas the pseudo-secular independence of the diffusion of the spin-bearing molecules,
S,| . terms are, in general, significant, they were found in thethat the echo decay in the many-body case is an analytic
numerical solutions to be unimportant for the very slow mo-function of that for the two-body problem.
tional range over which the asymptotic solutions to be ob-
tained in Sec. Il are validexcept for very weak echo-
envelope modulatio.Thus we shall neglept them pelqw. 1. ASYMPTOTIC EXPANSIONS OF THE ECHO
We shall also neglect the additional relaxation by spin diffu-geyavior
sion, or assume that it is suppressed by other m@ags the
motional averagingor by proton spin-locking at the magic We now seek asymptotic expressions that are valid in the
angle). Now if the motions of the spins are assumed to bdimit of very slow motions. The other limit of motional nar-
stochastically independent, the echo signal is givetr byf. rowing can readily be obtained from E.3) as discussed
the closely related case given by E¢5.15) of Ref. 5] previously*® by utilizing generalized cumulant expansions
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and truncations after the second order. This approach doesd the methods of Refs. 5, 6, 9, and 11, yielding accurate

not yield a satisfactory method for the slow motional limit, numerical solutions, are more useful. Equati@b), how-

so we must proceed in a different manner. ever, provides the basis for studying the slow motional limit
For t=27 we first use the following exact property of (i.e., the limit asD—0), especially given its linear depen-

noncommuting symmetric operatoksandB (cf. the Appen- dence uporD+ in the ordered exponent. Useful forms can

dix): indeed be obtained from E¢B.5) in certain cases. First we
oA+ B)rg(~A+B) 7 note that in the absence of any potential of mean f&fcme
haspéq(r) =1. Then one finds that the term involving in
Lo THtemANB exp(- A [t expA)B exp(-A) (3.1) the exponential operator af(r,27), Eg. (3.2) as given py
o o, d : Eq. (3.3), governs both the short- and long-time behavior of

Eqg. (3.5). That is, at short times, one expands the time-
ordered exponential in E¢3.3) to first order inD+ and only
the term int? survives after postmultiplication bpéq(r)
=1, so one obtains

where the symbol O (O_) stands for the positivenegative)
Dyson time ordering. This enables one to transform(E(.)
to

gi(ZT):J' d3r g+(r,27)

D.d ) ( Yaveh 7') ’

8w
G(2¢)=G(O)exr{ - ?(Cd:‘)

. Yavslt d® ,
. DTf dt exp[F i (x/2)F (1) t] V2expl=i (x/2)F (1) 1] (3.6)
:j d reo 0 whered is the distance of minimal approach between the
- electron spin and the protons.
DTdet explF 1 (2)F (1) 11 V2exp[+ i (x/2)F (0 1] For long 7, thet? term in Eq.(3.3) clearly dominates, so
Xe 0 Pedl). we drop the other two terms. The resulting integral in the
o exponent leads to an incomplete gamma function which may

(3.2) be evaluated asymptoticalfjin the limit of larger (or more

o _ rigorously D1x?73d~8—) to yield
For the magnetic dipolar potential, one has from Max-

5

(3]

well's equations: V2F(r)=0. Using the well-known
Campbell-Hausdorff expansidhpne can expand the opera-
tor in the ordered exponentials of E(B.2) in a series of

4
G(27)=G(O)exp{ - ?(Cd3)

commutators. Fortunately, the third and higher commutators ( 3D+d )3/8 Yaveh T o8
i i 1. 3.7
vanish, and one obtains exactly that vyl e (3.7)
DTJ dt{V2+ (Fixt/2)[F(r),V 2]+ (1/2) (Fi xt/2)2[F (1), [F (), V4]} Note that in Eqs(3.6) and (3.7) all quantities in the paren-
eo 0 theses are combined to form dimensionless factors. In deriv-
+ . . . 8
ing Eq. (3.7) we have used the following integral§s’® (1
DTJ AUV2= i VE() -V — (A2/4)|VE() 2] _e;aX)X—n/st%%[amsr(%)_dg] valid for d—0 and |
—e 0 _ (3.3) =J5(5x*—2x2+1)*8dx~1.081. To obtain the first integral,
O. we have expanded the incomplete Gamma function up to the
. g . . . .
The squared modulus of the dipolar field gradient is readilyfirst ordef® to ensure proper dimensional regularization of
found to be all parameters in Eq3.7) whend—0. Note that since the
) dipolar-field gradient|VF(r)|, is just an ordinary function
, 3cog6-1 of r, the Dyson time ordering can be omitted in evaluating
[V ~ 167 (3 Eq. (3.5) for the above limiting cases.

9 IV. COMPARISON WITH NUMERICAL SOLUTIONS
—(5co$ 9—2codh+1). (3.4)  AND DISCUSSION
r

As can be seen from the superexponential character of
The decay of the electron spin echo due to interactions withEq. (3.5), when concentrations are high, i€4°>1, so the
the solvent protons that are modulated by the diffusion isscho decay is relatively rapid, then the short-time behavior
then given, from Eq(2.4), by on the two-body time scale governs many-body relaxation,
i.e., Eq.(3.6) will be appropriate. At lower concentrations the
g.(r,27)+g_(r,27) . . .
G(27)=G(O)exr{ _CJ d3r( 1— phase memory of a many-spin system is described by a more
2 complicated function, involving both Eg&3.6) and(3.7), as
we show below.
X péq(r)}, (3.5) The short-timer® behavior exhibited by Eq3.6) is to
be expected. It represents the well-known short-time result
[where the prime has the same meaning as in Bd)]. for “single-body” relaxation for such cases as spin dephas-
Equation (3.5) is the exact formal solution to Eq$2.4)~  ing due to translational diffusion in a field-gradient in the
(2.6). In the general case it remains a daunting task to solv&arr—Purcell pulse sequerifand for modulation of an an-

167
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FIG. 1. Electron spin-echo envelopes as a function of pulse delay time at different proton concentrations in the slow motiondD fegl®ie y, ygh/d.
The short-time expression, E@.6), and long-time expression, E&.7), are represented by dashed and dot-dashed lines, respectively; the solid lines are the
exact numerical results obtained from Eg.3).

isotropic  spin  Hamiltonian by molecular rotational (b) shows an increaseddecreased)role for the latter
diffusion® The fact that the two-body expression is expo- (former).

nentiated in Eq(3.5) will lead to Eq.(3.6) being valid over Figure 2 shows the echo envelopes calculated for differ-
a longer time-scale than the two-body result, as seen in thent diffusion rated , for Cd®=0.24. As inFig. 1, solid
comparison with the exact results below. lines designate the numerical solutions. Equatith6) and

The long-timer®® exponential behavior of Eq3.7) for (3.7) are seen to be useful asymptotic expressions for the
slow motion is modified from the well-known exponential echo envelopes over the slow motional range, i.e.,Ogr
behavior in7/T, in the motional-narrowing regime, as is the <10 3y,ygh/d. But the validity of Egs.(3.6) and (3.7)
power law dependence db . breaks down at sufficiently fast motions, i.e., f@t

Plots of the echo envelopes are shown in Fig. 1Dgr =10 2y,ygf/d. (These dimensionless inequalities become
=10 “yayph/d, corresponding to the nearly rigid limit. D;<10 ' cn?/s andDt=10 '° cn?¥/s, respectively us-
Case(a) corresponds to low concentrations, with intermedi-ing ad=3 A and the appropriate gyromagnetic ratioBhat
ate concentrationgb), and high concentration& and d). s, Eq.(3.6) is applicable only for much shorter times s
Solid lines show the results of numerical solution of Eq.increases. Equatiofi3.7) becomes inapplicable &St in-

(2.3) by using the SLE, Eq(2.6), cf. Refs. 5 and 9, and the creases, most likely as a result of the termt’iandt? in the
dashed lines correspond to the limiting behavior given byexponent of Eq(3.3) becoming more important during inter-
Egs.(3.6) and (3.7). If the distance of minimal approach is mediate time period$recall that these terms in E¢3.3)
settod=3 A, (a) corresponds to rather dilute solutions with require integration ove].

proton concentrationsC of 8.9x10?%° cm™3; (b) is for C These comparisons thus demonstrate the essential valid-
=8.9x10"' cm 3 and (c) corresponds to aC (8.9 ity of the asymptotic forms in the very slow motional regime.
x10°?2cm™3) similar to pure water(6.6x10%? cm )2l In addition, they show that the echo envelope decay cannot
Case (d) is for unphysically high concentrations of 8.9 be expressed by a simple exponential even at longer delay
X 10°® cm 2 to show the limiting cubic behavior of the times. This explains an apparent anomaly previously seen in
echo envelope decay. Cag® is dominated by the long time analyzing the numerical results for the concentration depen-
798 behavior, but withr® behavior at very early times. Case dence of the echo decay. This was performed using a simple
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FIG. 2. Electron spin-echo envelopes as a function of pulse delay time at different translational diffusidbrates shown. The proton concentration is set
to Cd®=0.24 (intermediate concentration regiin® capture both the short- and long-time limiting behavior, cf. E§s$) and(3.7). (The different lines are
as in Fig. 1).

exponential in time and results inG# with® a~0.9 whichis ~ACKNOWLEDGMENTS
close tod. This is equivalent to linear dependence@when
the properr”® power is used. Note also that the’® power
law dependence on the diffusion coefficient would becom
an e1"fectiveD%/3 power law from fitting the echo envelopes
to a simple exponential decay functi¢éinstead of7%®), and
this is in agreement with the 0.340.02 power law obtained APPENDIX: DERIVATION OF EQ. 3.1
numerically>®

The closed-form solutions derived herein break down  To derive Eq(3.1)we note that the time evolution of an
when motions become sufficiently fast, i.e., when the linearbitrary functiong(r) obeying the equation
broadening is essentially homogenedus this limit the ag(7)
well-known Torrey—Redfield theory is appropridig., the ——=(A+B)g(7) (A1)
spectral density)(0) that contributes to the transverse spin T
relaxation is given byl(0)><(4/15)(C/d D+)]. In the ultra- s given byg(7)=exf(A+ B)7]g(0). By substitutingg(r)
slow motional regime considered herein, the asymptotic- exp(Ar)g(7) into Eq. (A1) and integrating we find that
equations for the transverse spin relaxation, while more com-
plex, can still be written in terms of the coefficient for rela- e(AtBIT—gArg odt exp(—At)B exp(At) (A2)
tive diffusion, D1, the distance of closest approach,and *
the concentrationC. This result could potentially be of use Or, by taking the transpose of both sides of ER),
to aid in studying ultraslow motional relaxation in polymers, .
glasses, and semi-ordered media. One caveat, however, is e(A*Blr=g_ /ol *PEIEEPCADeAr (A3)
that in the rigid limit, relaxation due to translational diffusion -
is no longer relevant, and the phase memory decay for thsinceA andB are symmetric. If we replacg by —A in Eq.
electron-spin is dominated by effects of nuclear spin diffu-(A2) and multiply it by Eq.(A3) from the left we get Eq.
sion, which, however are readily averaged out by motion. (3.1).
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