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The “Swedish slow motion theory” [Nilsson and Kowalewski, J. Magn. Reson. 146, 345 (2000)]
applied so far to Nuclear Magnetic Relaxation Dispersion (NMRD) profiles for solutions of transi-
tion metal ion complexes has been extended to ESR spectral analysis, including in addition g-tensor
anisotropy effects. The extended theory has been applied to interpret in a consistent way (within one
set of parameters) NMRD profiles and ESR spectra at 95 and 237 GHz for two Gd(III) complexes
denoted as P760 and P792 (hydrophilic derivatives of DOTA-Gd, with molecular masses of 5.6 and
6.5 kDa, respectively). The goal is to verify the applicability of the commonly used pseudorotational
model of the transient zero field splitting (ZFS). According to this model the transient ZFS is de-
scribed by a tensor of a constant amplitude, defined in its own principal axes system, which changes
its orientation with respect to the laboratory frame according to the isotropic diffusion equation with
a characteristic time constant (correlation time) reflecting the time scale of the distortional motion.
This unified interpretation of the ESR and NMRD leads to reasonable agreement with the experi-
mental data, indicating that the pseudorotational model indeed captures the essential features of the
electron spin dynamics. © 2011 American Institute of Physics. [doi:10.1063/1.3516590]

I. INTRODUCTION

Nuclear magnetic resonance (NMR) paramagnetic relax-
ation enhancement (PRE) refers to an enhancement of spin-
lattice relaxation of solvent nuclei (typically water protons)
due to the presence of paramagnetic species (transition metal
complexes) in solution. The nuclear (proton) spin relaxation
is enhanced due to a strong electron—proton dipole–dipole
coupling, modulated by the complex reorientation as well as
electron spin dynamics. Therefore, the field dependence of
the PRE (commonly referred to as Nuclear Magnetic Relax-
ation Dispersion, NMRD, profile) carries potentially a wealth
of information on structure and dynamics of the species in-
volved. In order to extract such information from the exper-
imental data, an appropriate theoretical treatment is needed.
The difficult part of such a treatment is to describe the elec-
tron spin relaxation processes. A simple approach to the elec-
tron spin relaxation and the PRE was proposed long time
ago by Bloembergen and Morgan.1 Their model was derived
for simple hydrated transition metal ions with electron spin
quantum number of unity or larger and involved an assump-
tion that the electron spin relaxation was caused by solvent-
induced fluctuations of the complex geometry. The geome-
try variation led to a rapidly oscillating (transient) zero field

a)Author to whom correspondence should be addressed. Electronic mail:
danuta.kruk@uj.edu.pl.

splitting (ZFS), averaged to zero on the time scale of molecu-
lar rotations, which resulted in the electron spin relaxation as
simple exponential processes. This approach became, in the
context of PRE, the essential part of the well-known mod-
ified Solomon–Bloembergen equations and the Solomon–
Bloembergen–Morgan (SBM) theory.2–4 Even then, the as-
sumption of a single exponential electron spin relaxation in
high-spin systems causes some problems outside of the ex-
treme narrowing regime.5 The multiexponential electron spin
relaxation and its effect on the PRE were considered by
Rubinstein et al.6 and Westlund and Strandberg.7, 8 Further
theoretical efforts developed into two directions. The first
kind of theoretical treatment of the PRE is based on the pertur-
bation theory for the electron spin system and is therefore sub-
ject to serious limitations. The underlying assumption of the
perturbation approaches is that the electron spin subsystem
fulfils the conditions of Redfield relaxation theory5, 9, 10 which
considerably narrows their validity regimes. An important ex-
ample of the perturbation treatments is the inner-sphere PRE
theory (the inner-sphere contribution comes from the solvent
molecules entering the first coordination shell of the metal
ion) for slowly rotating systems of the electron spin quan-
tum number S = 1,11 which was later generalized to an ar-
bitrary spin quantum number also including the outer-sphere
PRE (the contribution of the molecules outside of this shell).12

Another perturbation approach was presented by Sharp
et al.,13–18 accounting for low-field features of the electron
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spin relaxation. Rast et al. proposed a theoretical description
of the electron spin relaxation, still based on the Redfield re-
laxation theory, including the effects of a permanent (static)
ZFS19, 20 and allowing also for higher order terms. That model
was applied for interpretation of NMRD profiles and electron
spin resonance (ESR) lineshapes in small Gd(III) complexes.

The perturbation approaches give a valuable insight into
the electron spin relaxation and its effect on the nuclear spin
relaxation, but many systems violate the assumptions of the
perturbation theory. Amplitudes of the ZFS interactions com-
bined with motional conditions bring the electron spin beyond
validity regimes of the Redfield theory and the electron spin
relaxation times cannot explicitly be defined. Rast et al.21 pro-
posed one way to resolve the electron dynamics problem and
Borel et al.22 applied it to unified analysis of ESR and NMRD
data for some small Gd(III) complexes.

A general category of (slow motion) treatments is based
on the stochastic Liouville equation (SLE). The name “slow
motion” originates from the situation when the mean interac-
tion strength is larger than, or comparable to, the inverse of
the correlation time that corresponds to the motion modulat-
ing the interaction. The methods based on the stochastic Liou-
ville equation were introduced by Freed and co-workers23–28

to describe ESR lineshapes for systems with the electron spin
quantum number S = 1/2, including interactions with neigh-
boring nuclear spins under very general anisotropic motional
conditions. A related approach was also applied to describe
inner-sphere NMRD for transition metal complexes, starting
from the case of S = 1 (Ref. 29) and later generalized to an
arbitrary spin quantum number.30 This treatment is referred
to in the literature as “the Swedish slow motion theory”.
In this context, one should mention somewhat different im-
plementations of the slow motion theory, SLE-L, (stochastic
Liouville equation in Langevin form) presented by Åman and
Westlund.31, 32 Predictions of the slow motion theory30 were
recently compared33 with two other treatments, referred to
as the Grenoble,21, 34 and Ann Arbor approaches,35–37 respec-
tively. It was found that the “Swedish slow motion theory”
and the Grenoble approach agreed very well with each other,
while some discrepancies were observed when compared to
the Ann Arbor method, which was explained by a some-
what different description of the electron spin dynamics. Re-
cently, this approach was extended to the outer-sphere PRE38

(employing the model of translational diffusion proposed a
long time ago by Hwang and Freed39 and Ayant et al.40), re-
sulting in a complete tool for analyzing NMRD profiles for
S ≥ 1 for isotropic reorientation over a broad range of rates.
The SLE-based formalism was early applied to calculate ESR
lineshapes for S = 1 over the whole motional range.41 More
recently, it was used to study electron spin relaxation for
S = 1 at low field.42 Here, we generalize the approach to high
spin systems at arbitrary magnetic fields.

The three NMRD models compared above33 are based
on the same description of the ZFS interactions. The ZFS
coupling is split into a permanent (static) part modulated by
the molecular tumbling and a fluctuating (transient) part vary-
ing in time mostly by the distortional (vibrational) motion of
the complex. The transient ZFS is modeled as a tensor of
a constant amplitude, defined in its own principal axis sys-

tem, which changes its orientation with respect to a regu-
lar molecule-fixed frame according to the isotropic diffusion
equation with a characteristic time constant (correlation time)
reflecting the time scale of the distortional motion.3, 4, 6, 30 The
modulation of the transient ZFS interaction is the princi-
pal origin of the electron spin dynamics. At the same time,
the pseudorotational model is an obvious oversimplification,
which was amply demonstrated by molecular dynamics (MD)
simulations.43–45 More complex descriptions of the distor-
tional motion and, in consequence, the fluctuating part of
the ZFS, were proposed46, 47 and incorporated into the slow
motion theory (so far for the electron spin quantum number
S = 1). These models are based on classical and quantum-
mechanical description of the distortional (vibrational) mo-
tion in terms of normal modes. Nevertheless, even though
one is willing to take a considerable computational effort to
describe more realistically the electron spin dynamics, the
number of parameters needed for that leads to serious limi-
tations of such approaches. Such an analysis has to be sup-
ported by, for example, molecular dynamics calculations in
order to provide an independent estimation of the relevant
parameters.43, 44 The pseudorotational model is commonly
used because of its relatively simple mathematical formula-
tion and because it only requires the amplitudes of the tran-
sient ZFS (in principle its axial and rhombic parts, but the
last one is usually neglected) and the characteristic correla-
tion time. In this context, the question whether the pseudoro-
tational model captures the essential features of the electron
spin dynamics becomes very important. A way to verify this
point is to attempt a unified interpretation of multifrequency
ESR spectra and NMRD profiles within one set of parameters.
Such attempts have been undertaken in the past. Rubinstein
et al.6 used their model to calculate ESR linewidths and
PRE for Cr(III), Fe(III), and Mn(II) in water solution. Powell
et al.48 were the first to apply the SBM theory to the com-
bined data sets for a number of Gd(III) complexes, with mod-
erate success. Similar approaches were also adopted for other
Gd(III) chelates by Toth et al.49 and, more recently Zitha-
Bovens et al.50 The improved perturbation theory for elec-
tron spin relaxation19, 20 turned out to be more successful
for the aqueous Gd(III) ion21, 22, 51, 52 and other small Gd(III)
complexes.53 Larger complexes, with electron spin relaxation
outside of the Redfield limit, can be expected to be more diffi-
cult. Zhou and co-workers described ESR spectra and NMRD
data for the Gd(III) complex MS-325+HAS, applying the
modified SBM approach.54, 55 This attempt did not turn out as
very successful, because (as the authors pointed out in their
conclusions54) the analyzed system was in the slow motion
regime, while the modified SBM approach is based on the
perturbation theory. Even though detailed ESR experimental
studies allow for an independent determination of the ZFS pa-
rameters, including their sign,56 the question of the applicabil-
ity of the pseudorotational model as a reliable way to describe
the electron spin dynamics still remains open. From a differ-
ent starting point, a very interesting model of the transient
ZFS affected by an Ornstein-Uhlenbeck process with a Gaus-
sian probability distribution has been proposed for ESR spec-
tral analysis57 but (at least so far) not tested against NMRD
data.
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In this work, we attempt to critically verify the applica-
bility of the pseudorotational model for a system in the slow
motion regime. First we extend the “Swedish slow motion
theory” to ESR spectral analysis contributing in this way to
the general theoretical tool for jointly interpreting ESR and
NMRD data for highly variable motional conditions. Then
we apply the extended theory to interpret multifrequency ESR
spectra and NMRD data of some derivatives of DOTA-Gd.

The outline of this paper is as follows. In Sec. II A, we re-
view some basic concepts of the PRE theory in general, while
in Secs. II B and II C we describe its extension to ESR spectral
analysis. This is followed by the attempt of a unified analysis
of ESR and NMRD data (Sec. III) and discussion (Sec. IV),
conclusions are drawn in Sec. V.

II. “SLOW MOTION THEORY” FOR NMRD AND ESR

The “Swedish slow motion theory” has been so far ap-
plied to interpret NMRD profiles for various paramagnetic
systems. Here we have adapted this approach to ESR line-
shape analysis. The principles of the slow motion theory have
been explained in great detail in several papers, for example
Refs. 3, 4, and 25, and 30. Nevertheless, we sum up here the
main steps of the slow motion treatment, before we proceed
with the ESR description.

A. Recapitulation of the slow motion approach to
NMRD

As it has already been explained in the Introduction, the
underlying assumption of the “slow motion theory” of the
paramagnetic relaxation enhancement effect is that the nu-
clear spin subsystem fulfills conditions of a perturbation ap-
proach to relaxation. In fact, this assumption is pretty obvi-
ous; otherwise one could not define the nuclear spin relaxation
times/rates. More exactly, it is assumed that the nuclear spin
fulfills the Redfield condition5, 9, 10 that implies that the Red-
field relaxation theory can be applied to the nuclear spin relax-
ation. In consequence the nuclear (proton) spin lattice relax-
ation rate, resulting from the PRE effect, RPRE

1I (ωI ) (I denotes
the nuclear spin) at the proton Larmor frequency ωI , caused
by a dipole–dipole coupling between the nuclear and elec-
tron spins, is given as: RPRE

1I (ωI ) = 2Re{K DD
1,1 (−ωI )}.3, 4, 29, 30

The lattice spectral density function K DD
1,1 (−ωI ) is defined

as:3, 4, 29, 30

K DD
1,1 (−ωI ) =

∫ ∞

0
TrL

{
T 1(DD)+

1

[
exp

(
−i ˆ̂LLτ

)
T 1(DD)

1

]
ρ

eq
L

}
× exp (−iωI τ ) dτ. (1)

This formula requires some explanation. In the high tem-
perature approximation the equilibrium density matrix op-
erator ρ

eq
L can be set to ρ

eq
L = 1/(2S + 1). The lattice Li-

ouville operator, ˆ̂LL, contains all degrees of freedom which
are relevant for the nuclear spin relaxation. In the frame-
work of the slow motion theory of the inner-sphere PRE

this operator includes the following terms:3, 4, 30 ˆ̂LL = ˆ̂LZ (S)

+ ˆ̂L
S

ZFS + ˆ̂L
T

ZFS + ˆ̂L D + ˆ̂L R . The contributing operators rep-

resent the Zeeman interaction for the electron spin (S), the
static and transient zero field splitting, distortional and ro-
tational motions of the complex. The Zeeman Hamiltonian,
HZ (S) associated with the Liouville operator, ˆ̂LZ (S), has
the obvious form: HZ (S) = ωS Sz (ωS is the electron Lar-
mor frequency). The forms of the static and transient ZFS
(in the laboratory frame) depend on the models of motion in-
corporated into the theory. The static (permanent) zero field
splitting is a part of the entire ZFS interaction, HZFS (t) =
H S

ZFS (t) + H T
ZFS (t), obtained as a result of averaging over

complex distortions (vibrations). According to the models in-
corporated into the slow motion theory, it is represented in the
laboratory frame by the Hamiltonian:

H S(L)
ZFS (t) =

2∑
m=−2

(−1)m V 2S(L)
−m (t) T 2

m (S) (2a)

with

V 2S(L)
−m (t) =

√
2

3
DS D2

0,−m

(
�PS L (t)

)+ ES
[
D2

−2,−m

(
�PS L

)
(t)

+D2
2,−m

(
�PS L

)
(t)

]
, (2b)

where DS and ES are the axial and rhombic components
of the static ZFS interaction. This part of the ZFS tensor
fluctuates with respect to the laboratory frame due to over-
all reorientation of the molecule. The reorientational motion
is modeled as isotropic rotational diffusion represented by

the Liouville operator ˆ̂L R = −i DR∇2
�PS L

acting on the an-
gle �PS L which describes the orientation of the principal axis
of the static ZFS tensor (PS) relative to the laboratory axis
(L); this angle is encoded in the corresponding Wigner rota-
tion matrices D2

k,−m(�PS L ), k = 0,−2, 2. The T 2
m (S) quanti-

ties are components of the second rank spin tensor operator
and are defined as: T 2

0 (S) = 1/
√

6[3S2
z − S (S + 1)], T 2

±1 (S)
= ∓ 1

2 [Sz S± + S±Sz] and T 2
±2 (S) = 1

2 S±S±. The slow motion
theory assumes that the transient ZFS, HT

ZFS (t), also possesses
its own principal axis system (PT ) and a constant amplitude
�2

T = 2
3 D2

T + 2E2
T , where DT and ET are the axial and rhom-

bic components of the transient ZFS, respectively. The tran-
sient ZFS defined in the (PT ) frame, which is not fixed in the
molecule (contrary to the (PS) frame), is transformed, first ac-
cording to a pseudorotational diffusion to the (PS) frame (via
the �PT PS angle), and second by the reorientational diffusion
of the entire molecule to the (L) frame (via the �PS L angle):

H T (L)
ZFS (t) =

2∑
m=−2

(−1)m V 2T (L)
−m T 2

m (S) (3a)

with

V T (L)
−m =

2∑
n=−2

{√
2

3
DT D2

0,−n

(
�PS PT (t)

)

+ ET
[
D2

−2,−n

(
�PS PT

)
(t) + D2

2,−n

(
�PS PT

)
(t)

]}

× D2
−n,−m

(
�PS L (t)

)
. (3b)

The pseudorotational diffusion modulating the orientation
�PT PS of the principal axis system of the transient ZFS(PT )
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with respect to the molecule fixed frame (PS) is supposed
to reflect any distortional motion of the complex leading to
stochastic fluctuations of the transient ZFS tensor. The pseu-

dorotational diffusion operator (distortional operator), ˆ̂L D , is

defined as ˆ̂L D = −i DD∇2
�PT Ps

in full analogy to the isotropic

rotational diffusion operator, ˆ̂L R . This explains why this very
simple model of the transient ZFS is referred to as the “pseu-
dorotational model.”3, 4, 6, 30 The rotational and pseudorota-
tional (distortional) diffusion constants DR and DD , respec-
tively, are related to rotational and distortional correlation
times, τR and τD which refer to the corresponding second rank
Wigner rotation matrices. Having explained the components
of the lattice dynamics (the electron spin subsystem is treated
as its part) one can rewrite Eq. (1) as a matrix product:3, 4, 29, 30

K DD
1,1 (−ωI )

= 1

2S + 1

[
T 1(DD)

1

]+ [
ˆ̂MNMRD(ωI )

]−1 [
T 1(DD)

1

]
. (4)

The operator ˆ̂MNMRD(ωI ) is given as ˆ̂MNMRD(ωI )

=−i[ ˆ̂L Z (ωS) + ˆ̂L
S

ZFS + ˆ̂L
T

ZFS + ˆ̂L R + ˆ̂L D + ˆ̂1ωI ], [ ˆ̂MNMRD(ωI )]

is its matrix representation, while [ ˆ̂MNMRD(ωI )]−1 denotes

the inverted matrix. The matrix form of the ˆ̂MNMRD(ωI )
operator is set up in a basis {| Oi ) } given as an outer product
of vectors associated with the degrees of freedom of the
system: | Oi ) = | ABC) ⊗ |L K M ) ⊗ |�σ ) ,3, 4, 30 with
the distortional and rotational components | ABC) and
|L K M ) defined as: | ABC) = |ABC〉 〈ABC | = ∣∣	 A

BC

)
=

√
(2A + 1)/8π2 DA

BC

(
�PT PS

)
and | L K M) = |L K M〉

〈L K M| =∣∣	L
K M

) =
√

(2L + 1)/8π2 DL
K M

(
�PS L

)
, respec-

tively, while the spin component |�σ ) are related to the basis
vectors |S, mS〉

〈
S, m ′

S

∣∣ forming the Liouville space for the
electron spin S: |�σ ) = ∑

m(−1)S−m−σ
√

2� + 1

( S S �

m+σ −m −σ
)|S, m + σ 〉〈S, m| where � ranges from 1 to

2S. The vector [T 1(DD)
1 ] represents the electron spin ten-

sor operator contributing to the coupling between the
nuclear spin I and the lattice, in this case the nuclear-
electron dipole–dipole coupling: HI L = H (DD) (I, S)
=∑1

n=−1 (−1)n I 1
n T 1(DD)

−n .3,4 For the inner-sphere PRE

the T 1(DD)
1 operator has the form: T 1(DD)

1 = aI S
DD√

5(2S + 1)(S + 1)S/3
∑1

q=−1( 2 1 1
1−q q −1

)|1, σ) D2
0,1−q (�DDL ),

with aI S
DD = √

6 μ0

4π

γI γS¯
2

r3
IS

(rIS denotes the nuclear-electron

interspin distance, other symbols have the usual meaning).
This implies that the vector [T 1(DD)

1 ] contains three non-zero
elements corresponding to the states |000)|202)|1 − 1),
|000)|201|10), and |000)|200)|11). This means, in turn, that a

3 × 3 fragment of the inverted supermatrix [ ˆ̂MNMRD(ωI )]−1

is needed to calculate the nuclear spin relaxation rate,
RPRE

1I (ωI ), as illustrated in Fig. 1. The above expression for
the T 1(DD)

1 operator contains the angle �DDL describing the
orientation of the nuclear spin-electron spin dipole–dipole
axis with respect to the laboratory frame. In general, the
dipole–dipole axis does not coincide with the (PS) frame;
a set of time independent angles, �DDPS , is incorporated

) ) )11000000 −

) ) )10000000

) ) )11000000

) ) )11202000 −

) ) )10201000

) ) )11200000

) ) )22122000 −−

) ) )11000220 −

..........

..........

...........

...........

ESR

NMRD

FIG. 1. Structure of the supermatrix [MESR] ([MNMRD]). ESR spectra are
represented by the | 000) |000 | 1 − 1) element of the inverted superma-
trix, while NMRD are given by its 3 × 3 block associated with the states:
| 000) | 202) | 1 − 1) , | 000) |201 | 10) , and | 000) | 200) | 11) .

into the slow motion theory to account for this effect.
The measured nuclear spin relaxation of water protons,
R1I (ωI ), in solutions of paramagnetic complexes is given

as R1I (ωI ) = PMq
/[(

RPRE
1I

)−1 + τM
] + Router

1I (ωI ), where
q is the number of bound water molecules, PM is the mole
fraction of water protons in bound position, τM is the mean
residence lifetime of the bound water molecule (exchange
lifetime). The exchange lifetime also affects the RPRE

1I (ωI )
and has to be included into the diagonal terms of the

[ ˆ̂MNMRD(ωI )] matrix as τ−1
M . Calculations of the outer-sphere

contribution, Router
1I (ωI ), are considerably more demanding.

The outer-sphere slow motion theory was introduced by Kruk
and Kowalewski.38 Since the principal concept is the same,
we do not discuss here the outer-sphere version of the slow
motion theory.

The slow motion approach can in a straightforward man-
ner be adapted to describe ESR spectral lineshapes.

B. Slow motion theory in application to ESR

An ESR lineshape function L (ωS − ω) is
determined by the spectral density s−1,−1 (ω)
= ∫ ∞

0

〈
S+

−1(τ )S−1(0)
〉
exp(−iωτ )dτ (L(ωS − ω) ∝

s−1,−1(ω)) corresponding to the single-quantum transi-
tions of the electron spin.25, 42 Thus, derivations of the ESR
lineshapes follow the same procedure as that of NMRD,
described in Sec. II A. The lineshape function is given as:

L (ωS − ω) =
∫ ∞

0
TrS

{
S1+

−1

[
exp

(
−i ˆ̂LSτ

)
S1

−1

]
ρ

eq
S

}

× exp (−iωτ ) dτ ∝ [
S1

−1

]+ [
ˆ̂MESR(ω)

]−1 [
S1

−1

]
.

(5)

The superoperator ˆ̂MESR(ω) contains the same terms (origi-

nating from the spin Hamiltonian model) as ˆ̂MNMRD(ωI ):

ˆ̂MESR(ω)

= −i

[
ˆ̂L Z (S) + ˆ̂L

S

ZFS + ˆ̂L
T

ZFS + ˆ̂L R + ˆ̂L D + ˆ̂1ω

]
. (6)
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The only change is the term ˆ̂1ω which now replaces the term
ˆ̂1ωI . The nuclear spin relaxation is described by a spectral
density taken at the nuclear Larmor frequency ωI , while the
electron spin transitions determining the ESR lineshape oc-
cur at three orders of magnitude larger frequencies ω. The
vector

[
S1

−1

]
contains expansion coefficients of the tensor op-

erator S1
−1 in the basis {| Oi ) }. In fact, there is just one non-

zero coefficient, namely the one associated with the basis vec-
tor | ABC) | L K M) |�σ ) = |000) |000) |1 − 1) . Thus the
ESR lineshape is determined by one element of the inverted

matrix [ ˆ̂MESR(ω)]−1, as shown in Fig. 1.
The slow motion theory of ESR lineshape obviously

is also valid for arbitrary interaction strengths and rates of
isotropic reorientation. Moreover, the theory includes in a nat-
ural way phenomena, such as cross-correlation effects and dy-
namic frequency shifts.

Even though one cannot explicitly define the electron
spin relaxation operator (and, in consequence, electron spin
relaxation times), the spectral density function s−1,−1 (ω) de-
scribing the lineshape has a well-defined meaning.

C. Slow motion theory for ESR in high spin systems
and g-tensor anisotropy

In discussions of electron spin relaxation and ESR
lineshapes for S = 1/2 systems, one usually considers
the effects of the anisotropy of the g-tensor and of the
hyperfine interaction.22, 26 Sometimes, one also invokes the
spin-rotation interaction.23, 48 In high-spin systems, these in-
teractions are also present. In small gadolinium (III) com-
plexes, the spin-rotation mechanism was included at an early
stage,48, 58 but discarded in more recent work.19–22 The hy-
perfine interaction with magnetic gadolinium isotopes (155Gd,
157Gd) appears to be of little importance,59 but the g-tensor
anisotropy may play a role, in particular at high magnetic
fields. It is possible to include the g-anisotropy effects into
the slow motion formulation of this work by modifying
the form of the Zeeman Hamiltonian and the correspond-
ing Liouvillian. The details of this modification are de-
scribed in the appendix. The price to pay for this extension
(which amounts to lowering the symmetry of the problem)

is that the superoperator ˆ̂MESR in Eq. (6) will have a sig-
nificantly larger number of non-vanishing elements in the
|ABC)|KLM)|�σ ) basis. In order not to let this problem be-
come unwieldy, we choose here to limit ourselves to the case
of cylindrically symmetric g-tensor, i.e., to the case gxx = gyy

�= gzz , where gxx , gyy, gzz are principal cartesian components
of the g-tensor. Moreover, we set geff = 1

3

(
gxx + gyy + gzz

)
= 2. The g-tensor anisotropy is thus represented by a sin-
gle parameter: �g = geff − gzz . In addition, it is assumed that
the principal axis system of the g-tensor coincides with the
(PS) frame (if �DDPS = 0, it means that the dipole–dipole
axis, the (PS) frame and the g-tensor principal z-axis coin-
cide). The expressions for the matrix elements of the Zee-
man Liouvillian for this form of the g-tensor are given in the
Appendix.

In the next section we apply the ESR and NMRD slow
motion approach to experimental data collected for deriva-

tives of DOTA-Gd complexes of the electron spin quantum
number S = 7/2.

III. UNIFIED ANALYSIS OF NMRD AND ESR DATA

In order to verify and discuss the concept of the elec-
tron spin dynamic modeled by means of the transient ZFS
modulated by a distortional motion according to the isotropic
(pseudo)rotational model, we attempt in this section a consis-
tent interpretation of NMRD profiles and ESR lineshapes for
two Gd3+ complexes denoted as P760 and P792. The com-
plexes were a gift of Guerbet. The complexes are hydrophilic
derivatives of DOTA-Gd, with molecular masses of 5.6 and
6.5 kDa, respectively. The NMRD data have been taken from
Vander Elst et al.60, 61 for P760 and P792, respectively. In both
cases the relaxation data were collected at 310 K. The concen-
tration of P760 was 0.19 mMol, while for P792 two concen-
trations were used, 0.285 and 1 mMol. ESR lineshapes for
corresponding concentrations of both complexes were mea-
sured at two frequencies, 95 and 237 GHz (additionally, ESR
measurements at 9 GHz were attempted. However, the sig-
nal was very broad and difficult to extract from the base-line,
so it was not used) and two temperatures: 310 and 290 K.
The ESR experiments were carried out at ACERT (National
Biomedical Center for Advanced ESR Technology, Cornell
University). The effects of changing the temperature on the
ESR spectra were small and we limit ourselves in most cases
to presenting the data at 310 K.

Before embarking on the combined analysis of the
NMRD and ESR data, we wish to report some experimen-
tal ESR observations for the two Gd(III) complexes, used
as model systems in this study, obtained in the solid state.
We have taken 237 GHz ESR spectra of the solid powder
(at room temperature) of the complex denoted as P760 and
of the frozen solution of the complex P792 (at 193 K). In
both these cases, molecular reorientations are suppressed and
the observed lineshapes should correspond to powder pat-
terns. The spectra, shown in Fig. 2(a) (P760) and Fig. 2(b)
(P792), are very narrow and the lines are symmetric. If one
neglects the (static) ZFS effects, then the lineshapes are con-
sistent with a slightly anisotropic g-tensor of non-axial sym-
metry, close to the limit gxx − gyy = gyy − gzz . For the P760
powder, the shape can be reproduced with gxx − gyy = gyy

− gzz = 0.0007 ± 0.0003, while for the solid solution of
P792 we obtain the upper bound of the g-anisotropy of around
0.0008–0009. However, the assumption of the negligible ZFS
effects in the solid samples of Gd(III) complexes does not
seem realistic. Indeed, Benmelouka et al.56, 62 reported low-
temperature, high-field ESR spectra for P792, in the pow-
der and frozen solution forms, which were possible to inter-
pret based only on the ZFS effects. The fact that the lines in
Figs. 2(a) and 2(b) are so narrow may perhaps indicate the
occurrence of some form of dynamic phenomena.

Turning to the main topic of this work, the interpretation
of nuclear relaxation data requires more parameters than ESR
lineshapes. This is a consequence of a “hierarchy of events” in
paramagnetic systems: electron spin dynamics is almost unaf-
fected by the presence of nuclear spins (in fact, such an effect
is completely neglected in the present theoretical description),
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FIG. 2. 237 GHz ESR spectra of (a) the solid powder (at room temperature)
of P760, (b) the frozen solution of the complex P792 (at 193 K).

while the nuclear spin relaxation is very considerably affected
by the properties of the electron spin subsystem. Thus, be-
sides the static and transient ZFS amplitudes, DS and DT ,
the rotational correlation time τR and the distortional corre-
lation time τD , which according to the applied model fully
determine the ESR spectra, the inner-sphere nuclear relax-
ation profiles are influenced by the exchange life time τM and
the electron-spin–nuclear spin distance scaling the relaxation
profile as r−6

I S . Exact interspin distances for these complexes
are not available. The nuclear spin relaxation for the aque-
ous protons can also be caused by the outer-sphere mecha-
nism, which in the simplest description depends on the mutual
translational diffusion coefficient and the distance of closest
approach of the nuclear and electron spins.

The exchange life time has been independently estimated
for both complexes by means of 17O relaxometry, and the ob-
tained values are within ranges τM = 100 − 140 ns (Ref. 60)
and τM = 80 − 100 ns (Ref. 61) for P760 and P792, respec-
tively, depending on the applied fitting strategy. In addition,
the reorientational correlation times were estimated as being
about τR = 2.2 ns (from 2H relaxation data) and τR = 1.8 ns
(from Stokes–Einstein equation using the molecular volume

from photon correlation spectroscopy) for P760,60 and τR

= 2.4 ns (from relaxation rates of 17O) for P792.61 Analyz-
ing the NMRD data for both complexes in terms of inner- and
outer-sphere contributions, the authors obtained τR = 1.8 ns
(for τM = 320 ns) for P760 (Ref. 60) and τR = 1.7 ns (for
τM = 96 ns) for P792.61 The description of the nuclear re-
laxation used in both papers60, 61 was based on the classical
Solomon–Bloembergen—Morgan2–4 formula for the inner-
sphere and on the outer-sphere model proposed by Hwang and
Freed.39

We choose to start the analysis from the NMRD profile
for P760. Even though NMRD data need more parameters, in
this case the reorientational correlation time, τR , and the ex-
change lifetime, τM , have been independently estimated. The
advantage of starting with the NMRD is not only our previous
experience (the slow motion theory has been already used to
interpret several relaxation profiles, the work by Kowalewski
et al. is a recent example63), but also possible difficulties in
interpreting in a consistent way the ESR spectra collected at
two frequencies.

First, we attempted to fit the NMRD profile including
only the inner-sphere contribution and keeping the ex-
change life time and the rotational correlation time fixed to
τM = 120 ns and τR = 1.8 ns. The amplitudes of the static
and transient ZFS, the distortional correlation time and the
interspin distance were treated as adjustable parameters.
Fig. 3 shows the result of the least squares fits. The first set
of obtained parameters is given in Table I, case A. Using
it, one can estimate the outer-sphere contribution setting
the translational diffusion coefficient, DDiff, to the water
diffusion coefficient at 310 K, DDiff = 3.05 × 10−9m2/s, and
the distance of closest approach to d = 3.7Å (this seems to be
a reasonable value taking into account that rI S = 3.2Å). The
outer-sphere contribution is also shown in Fig. 3. To emulate
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FIG. 3. Experimental NMRD profile for P760 at 310 K (Ref. 58) (solid
squares) and the result of least square fits: solid red line (parameters given
in Table I as case A), rel.err. = 0.62; dotted red line shows a contribution
of the outer-sphere relaxation mechanism calculated for the same parameters
and DDiff = 3.05 × 10−9m2/s, d = 3.7Å. Dashed red line shows a sum of
the outer-sphere and inner-sphere contributions rescaled by the factor 0.89
that corresponds to rI S = 3.27Å, rel. err. = 0.49. Solid blue line: case B pa-
rameters (inner-sphere only), rel.err. = 0.47.
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TABLE I. Different parameter sets used to simulate NMRD data and ESR lineshapes for P760 (cases A–F) and P792 (cases G–I). Parameters given in
parentheses were kept fixed when fitting the NMRD profiles. Parameters in bold correspond to overall best fits for the two complexes.

Parameters affecting NMRD

Not important for ESR Parameters affecting ESR lineshapes

Case τM (ns) rIS (pm) DS (10−2 cm−1) DT (10−2 cm−1) τR (ns) τD (ps)
Not important for NMRD

�g = geff – gzz

A (120) 320 5.26 2.02 (1.8) 14.9 0/0.0016/0.0018
B (120) 325 4.34 1.76 (1.8) 15.6 0/0.0015
C (120) 285 4.51 2.5 0.64 39.7 0/0.0025/0.009
D (120) 319 4.59 1.78 1.36 18.9 0/0.0015/0.007
E 137 327 4.18 1.62 (1.8) 16.9 0/0.0015
F 103 319 4.53 1.69 1.77 57.8 0/0.0015
G 75 318 2.4 1.22 (1.8) 68.9
H (96) 318 4.15 1.76 2.9 47.7
I 138 316 4.03 1.54 3.2 40.8 0/0.0005/0.0008/0.0013

a complete relaxation profile, containing the inner- and outer-
sphere parts and still being in a reasonable agreement with the
experimental data, we have “rescaled” the inner-sphere con-
tribution by setting a longer interspin distance, rI S = 3.27Å,
and compensating the effect with the outer-sphere contribu-
tion. The resulting calculated curve is also shown in Fig. 3.
Starting from somewhat different values (but still keeping τM

= 120 ns,τR = 1.8 ns) one gets another fitted curve (the final
parameters, displayed in Table I, case B, do not very signifi-
cantly differ from the previous ones), shown in Fig. 3 as well.
Since the first set of parameters (after including the outer-
sphere contribution) and the second one lead to fits of similar
quality, we shall discuss the ESR lineshapes for both cases.

The ESR lineshape, predicted for both frequencies by the
pseudorotational model for the case A parameters, without
and with g-anisotropy effects, are shown in Figs. 4(a) and
4(b) and compared with the experimental results for 310 K.
Excluding the g-anisotropy, the theoretical lineshape at 237
GHz is somewhat too narrow compared to the experimental
one, yet on the whole, we judge the agreement as acceptable.
The calculated ESR spectra have been treated as given in ar-
bitrary units, i.e., we scale them (multiply by a number which
is different for every spectrum) to get the best possible agree-
ment with the experiment. At the lower frequency (95 GHz),
panel b, the discrepancies between the theoretical predictions
and the experimental spectrum are, at the first glance, more
significant.

One should remember that the ESR spectrum is a deriva-
tive of the ESR absorption line. Thus, one should realize that
the calculated spectrum displayed in Fig. 4(b) does not exhibit
“two lines” on the right side, in contrary to the experiment.
The right part of the theoretical spectrum only reflects a dif-
ferent monotonic decay of a theoretical absorption line com-
pared to the experimental one. One can see that from the inset,
in which an example of an integrated spectrum is presented.
The ESR spectra were collected at high magnetic fields com-
pared to the NMRD profiles. The analysis performed so far
indicates that the general difficulties with a unified analysis
of the NMRD and ESR data are due to slow electron spin re-
laxation predicted by the theory. The calculated spectrum for
the higher magnetic field is too narrow, while the spectrum

for the lower magnetic field shows features resulting from the
static ZFS which would also be less pronounced for a faster
electron spin dynamics. A possible solution of this problem is
to allow for effects of increasing influence of electron g-tensor
anisotropy for high magnetic fields.

As one can see from Fig. 4(a), a relatively small g-
tensor anisotropy, �g = 0.0018, leads to a sufficient broad-
ening of the ESR spectrum at the high magnetic field. This
rather small g-tensor anisotropy considerably influences the
shape of the ESR spectrum at 95 GHz, reducing the effects
of the static ZFS. The inset actually illustrates how signifi-
cantly the g-tensor anisotropy affects the absorption ESR line.
The g-tensor anisotropy of this magnitude seems to be justi-
fied when compared to the literature values for Gd(III).64, 65

The anisotropy of the g-tensor influences also NMRD pro-
files. However, taking into account the range of NMRD mag-
netic fields, the g-tensor anisotropy can safely be neglected
for all but perhaps the highest field point of the relaxation
profiles of both complexes. An extension of NMRD slow mo-
tion theory by including g-tensor anisotropy interaction in all
its details is a very complicated task from the computational
point of view. The difficulties are caused by the fact that the
g-tensor anisotropy leads, besides affecting the electron spin
dynamics, to additional terms in the electron spin nuclear spin
dipole–dipole coupling.66, 67 In consequence, to get a com-
plete description of all the effects relevant for the nuclear spin
relaxation, one has to set up a very large matrix ˆ̂M . Its di-
mension for higher spin quantum numbers exceeds the size
allowed by the FORTRAN compiler. At this stage of develop-
ing the software we have not solved this problem yet.

A question which appears in the course of this analysis
is about possible effects of static ZFS rhombicity on the ESR
lineshape. The role of the rhombic terms in the case of NMRD
has been rather intensively discussed in the literature.18, 68, 69

One can see from Fig. 4(b) that the rhombicity of the static
ZFS does not lead to significant changes of the ESR lineshape.
Therefore, we do not discuss this issue any further. Summariz-
ing, one can say at this stage that the set of parameters denoted
as case A (with �g = 0.0018), gives an acceptable interpre-
tation of the multifrequency ESR lineshapes and the NMRD
data.
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FIG. 4. Experimental ESR lineshape for 0.19 mMol P760 at 310 K (black solid line) for (a, c) 237 GHz and (b, d) 95 GHz. (a, b) Theoretical ESR lineshapes
for the case A parameters and �g = 0 (red solid line), �g = 0.0016 (red dashed line), �g = 0.0018 (red dotted line). The purple line in (b) shows the
theoretical ESR lineshape obtained for this set of parameters (�g = 0), allowing for a rhombic static ZFS, ES/DS = 0.1. Inset – integrated theoretical spectra
corresponding to the case A parameters with �g = 0 (solid red line) and �g = 0.0018 (dotted red line). (c, d) Theoretical ESR lineshape for the case B
parameters with�g = 0 (blue solid line), �g = 0.0015 (blue dashed line).

The ESR spectra calculated for the second set of param-
eters, case B in Table I, are shown in Figs. 4(c) and 4(d).
Also in this case the high-field spectrum is apparently too
narrow, which again suggests an additional electron spin re-
laxation mechanism. Again, a g-tensor anisotropy contribu-
tion, �g = 0.0015, leads to an appropriate broadening of the
spectrum [Fig. 4(c)]. More significant discrepancies are ob-
served for 95 MHz [Fig. 4(d)]. It is interesting to notice that,
for �g = 0, the ESR lineshape shows features caused by the
static ZFS, and that the g-tensor anisotropy leads, by reducing
these features, to an apparent narrowing of the ESR line (the
lineshape becomes more Lorentzian-like). A further increase
of the g-tensor anisotropy gives a broader ESR line, so that
the proper linewidth at high field can be reached, but then the
ESR spectrum at the lower magnetic field becomes too broad.
In our opinion, it is rather difficult to resolve which set of pa-
rameters discussed so far (case A and case B in Table I) leads
to a better agreement with the experimental data.

As it has already been discussed, the estimation of the
reorientational correlation time, τR , is not exact. Depend-
ing on the way of estimating it, longer τR values have been

mentioned (up to even 3.4 ns).60 In addition, the overall ro-
tational motion of the complex is modeled as isotropic re-
orientation. Taking into account the non-spherical molecu-
lar shape of this complex, such a description might be too
restrictive. Therefore, in the next step we included the (ef-
fective) rotational correlation time, τR , into the set of ad-
justable parameters and performed a five-parameter fit (DS,

DT , τD, τR , and rI S) of the NMRD profile (the exchange life-
time still being kept at τM = 120 ns). Also in this case, two
considerably different sets of parameters have been obtained,
cf. cases C and D in Table I. The results are presented in
Fig. 5; note that the figure also contains results of other types
of fittings, to be discussed below. It seems that the rotational
correlation time, τR = 0.64 ns, (case C) is too short; the same
concerns the interspin distance, rI S = 2.85Å. Further, it is
worth noticing that in this case the agreement with the exper-
imental data can be significantly improved by including the
outer-sphere contribution, which is relatively larger for faster
molecular tumbling.38 Therefore, it is a large advantage if
the analysis of NMRD profiles for paramagnetic compounds
can be supported by independent estimations of as many
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FIG. 5. Experimental NMRD profile for P760 at 310 K (Ref. 58) (solid squares) and the result of least square fits. Green dashed line: case C, rel.err. = 0.54;
green solid line: case D in Table I, rel.err. = 0.32; blue solid line: case E, rel.err. = 0.35; red solid line: case F, rel.err. = 0.22.

parameters as possible. The crucial test for the parameters is
whether they lead to a reasonable agreement with not only
NMRD data but also with ESR spectra. This was tested for the
cases C and D sets of parameters. Indeed, as it could be pre-
dicted, the case C parameters do not give a proper ESR. The
ESR spectrum calculated for the higher magnetic field, with-
out allowing for g-tensor anisotropy, is definitely too narrow
[Fig. 6(a)]. The ESR line reaches the proper linewidth when
the g-tensor anisotropy of �g = 0.0025 is included. How-
ever, the g-tensor anisotropy, �g = 0.009, required for the
ESR spectrum at 95 GHz (which is also much too narrow for
�g = 0, compared to the experimental one) to get the ade-
quate broadening in Fig. 6(b) is definitely not acceptable. This
means that one cannot satisfactorily reproduce the ESR spec-
tra within this set of parameters and that the case C parameters
should be excluded.

The other set of parameters obtained from the 5-
parameter fit (DS, DT , τD,τR , and rI S) of the NMRD pro-
file is denoted case D in Table I. Before discussing the corre-
sponding ESR lineshape simulations, we turn back for a little
while to Fig. 5. Since not only the values of the rotational cor-
relation time, τR , but also of the exchange lifetime, τM , given
by Vander Elst et al.,60 should be treated as approximate, we
have attempted to fit the relaxation data by performing a dif-
ferent 5-parameter fit (DS, DT , τD,τM , and rI S) with fixed
τR and adjustable τM , and, finally, a 6-parameter fit allowing
for adjustment of all relevant parameters. The results of both
these fits are summarized in Table I, cases E and F, respec-
tively, and shown in Fig. 5. The ESR spectra calculated for the
case D and E parameter sets resulting from the 5-parameter
fits (with fixed τM or alternatively with fixed τR), shown in
Figs. 6(c) and 6(d), are rather similar.

While the calculated ESR lines at 95 GHz agree well with
the experimental spectrum, the lines for the higher magnetic

field are too narrow. This again implies the need for intro-
ducing the g-tensor anisotropy relaxation mechanism. One
can see from Fig. 6(c) that �g = 0.0015 yields a sufficient
change of the theoretical lineshape at high field. However, for
the lower magnetic field we again face the same problem as
in the case shown in Fig. 4(b): faster electron spin dynam-
ics reduces the effect of the static ZFS, i.e., the line becomes
narrower when taking a more lorentzian form; it is shown in
Fig. 6(d) for �g = 0.0015. A further increase of the g-tensor
anisotropy successively leads to a broadening of the ESR line
[the case of �g = 0.007 is shown in Fig. 6(d)], but the �g
values appropriate for the ESR spectrum at the higher mag-
netic field are too large for the spectrum at 95 GHz and def-
initely too large compared to the estimated value. Therefore,
when ending up with �g = 0.0015, the quality of the unified
fits of the ESR spectra and the NMRD data is comparable
with the case presented in Figs. 4(a) and 4(b). In other words,
extending the number of fitted parameters in the analysis of
NMRD profile from four to five does not give much overall
improvement.

The 6-parameter fit of the NMRD profile (case F in
Table I, also presented in Fig. 5) leads to a very good agree-
ment with the experimental NMR relaxation data. Compared
to the previous results, in this case the distortional correlation
time, τD = 57.8 ps, is significantly longer. In view of the sim-
plicity of the pseudorotation model, the physical significance
of this parameter (decay constant of an assumed single expo-
nential correlation function) should not be exaggerated. It is
worth to notice that the quality of this fit is significantly better
than of the fits presented by Vander Elst et al.,60 and, in addi-
tion, the obtained τM value agrees now with the one estimated
from independent measurements, while a much larger value
(360 ns) was reported in the previous study.60 The ESR spec-
tra calculated for this set of parameters (Fig. 7) and �g = 0
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FIG. 6. Experimental ESR lineshape for 0.19 mMol P760 at 310 K (black solid line) for (a, c) 237 GHz and (b, d) 95 GHz. (a, b) Theoretical ESR lineshapes for
the case C parameters with �g = 0 (green dashed line). The green dotted line in panel a corresponds to �g = 0.0025. In panel (b), the green dashed–dotted line
is for �g = 0.009, (c, d) Theoretical ESR lineshapes for parameters according to case D and �g = 0 (green line); case E with �g = 0 (blue line), �g = 0.0015
(blue dashed line), �g = 0.007 (blue dotted line).

do not fit well to the experimental spectra, but the g-tensor
anisotropy contribution for the moderate �g = 0.0015 im-
proves considerably the agreement. The ESR spectrum cal-
culated for the higher magnetic field acquires now a proper
width [Fig. 7(a)], while the static ZFS features are again
reduced [Fig. 7(b)] for the lower magnetic field. In conse-
quence, the high field ESR spectrum becomes somewhat too
narrow, but the agreement with experiment is better than in
the cases presented in Figs. 4(b) and 6(d). Therefore, the last
set of parameters, case F with �g = 0.0015, leads to the best
agreement with the experimental ESR and NMRD data. It
should be pointed out at this stage that the quality of this uni-
fied analysis presented here is very good indeed compared
to similar attempts reported in the literature54, 55 for larger
Gd(III) complexes.

Next, we turn the attention to the second complex of
Gd(III), P792. We have performed, in the first step, a 5-
parameter fit (DS, DT , τD, τM , and rI S) of the NMRD with
fixed τR and adjustable τM . The result is shown in Table I,
case G and in Fig. 8; the fit does not satisfactorily repro-

duce the maximum of the relaxation profile. The two com-
plexes, P760 and P792, are structurally similar while the pa-
rameters values obtained for the static and transient ZFS for
both of them are significantly different. This is not surpris-
ing, since the experimental NMRD profiles and ESR spec-
tra show considerable differences as well. However, being
aware that the fitting results are not unique, we have attempted
to reproduce the NMRD profile not allowing for too large
changes in the amplitudes of the static and transient ZFS
compared to P760. Such an analysis required allowing for
changes in the rotational correlation time, τR . In Fig. 8, we
present also the result of a 5-parameter fit (DS, DT , τD, τR ,
and rI S) with fixed τM , case H in Table I. Now, the static
and transient ZFS parameters, DS and DT , are comparable
with the values obtained for P760 (cases D, E, F), and the
distortional correlation time, τD = 47.7 ps, is similar to the
case F, τD = 57.8 ps. The obtained τR value (2.9 ns) is now
longer. A much better agreement with the experimental data
was obtained when allowing for adjustment of both τR and
τM . The set of parameters obtained from a 6-parameter fit
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FIG. 7. Experimental ESR lineshape for 0.19 mMol P760 at 310 K (black
solid line) for (a) 237 GHz and (b) 95 GHz. Theoretical ESR lineshapes for
the case F parameters and �g = 0 (red line); �g = 0.0015 (red dashed line).
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FIG. 8. Experimental NMRD profile for P792 at 310 K (Ref. 59) (solid
squares) and the result of least square fits. Case G, rel.err. = 0.49 (blue solid
line), case H, rel.err. = 0.84 (green solid line), case I rel.err. = 0.48 (red solid
line).

3.390 3.395 3.400 3.405 3.410 3.415 3.420

magnetic field /T/

8.478 8.481 8.484 8.487 8.490 8.493 8.496

(a)

(b)

FIG. 9. Experimental ESR lineshape for 0.285 mMol P792 at 310 K (black
solid line) at (a) 237 GHz and (b) 95 GHz. Theoretical ESR lineshapes for the
case I parameters with �g = 0 (red solid line), and �g = 0.0013 (red dashed
line). In panel (b), also �g = 0.0005 (violet solid line), �g = 0.0008(purple
dashed line).

(with DS and DT kept close to the values for P760), case
I in Table I, reproduces the experimental relaxation profile
quite well (Fig. 8). The correlation time τR gets somewhat
longer (τR = 3.2 ns), but an even larger τR = 3.4 ns was men-
tioned for P760 when the microviscosity effects were ac-
counted for.60 Next, we turn to the ESR spectra correspond-
ing to the case I, Fig. 9. The ESR spectrum calculated for
the higher magnetic field excluding the g-anisotropy is, sim-
ilarly to the cases already considered, too narrow compared
to the experimental lineshape. An appropriate contribution
of the g-tensor anisotropy (�g = 0.0013) solves the problem
relatively well, the corresponding spectrum is also shown in
Fig. 9(a). The ESR spectrum calculated for the lower mag-
netic field (�g = 0) shows features created by the static ZFS
(the longer rotational correlation time makes them more pro-
nounced) as shown in Fig. 9(b). One can eliminate these
effects by introducing the g-tensor anisotropy. Illustrative
calculations for �g = 0.0005 and �g = 0.0008 are shown in
Fig. 9(b). The g-tensor anisotropy of �g = 0.0013 removes
them almost completely [Fig. 9(b)] but the calculated ESR
line stays too narrow. The static ZFS parameters in line I,
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Table I, can be compared with the values D, E obtained by
Benmelouka et al.62 from 240 GHz ESR spectra for powder
and frozen solution of P792 (mixture of six stereoisomers,
in analogy with the material used in the present work) col-
lected at 5 and 4 K, respectively. In the present analysis we
do not consider the rhombic term, but we can convert the data
of Benmelouka et al. into an effective D value calculated as
D =

√
3
2

(
2
3 D2

0 + 2E2
0

) = 3.53 × 10−2 cm−1, where D0 and
E0 are the frozen solution parameters. This number is close
to our DS value of 4.03 × 10−2 cm−1. Benmelouka et al. re-
ported also the strain parameters σD and σE, which might be
considered related to our DT. In view of the approximations
involved in the pseudorotation model, we do not believe that
a comparison with σD is meaningful.

It is very important in this context to investigate the
influence of the concentration of the P792 complex on the
ESR lineshape (while the NMRD profiles remain almost
unaffected61). We show ESR spectra for P792 collected
for the concentration of 1 mMol, and compared with the
spectra for 0.285 mMol (the subject of the analysis above), in
Fig. 10. One can clearly see that the increased con-
centration considerably affects the ESR lines at both
frequencies, leading in general to line broadening,
and that the effect at the higher frequency is larger.

3,38 3,39 3,40 3,41 3,42 3,43

magnetic field /T/

8.475 8.480 8.485 8.490 8.495 8.500

(a)

(b)

FIG. 10. Experimental ESR lineshapes for P792 at 290 K for the concentra-
tion of 0.285 mMol (solid line) and 1 mMol (dashed line) for the frequency
of (a) 237 GHz and (b) 95 GHz.

Similar effects were observed in ESR spectra of
low-molecular weight Gd(III) complexes by Powell
et al.,48 who worked, however, at significantly higher
concentrations. Our P760 spectra were taken for a somewhat
lower concentration than P792. Nevertheless, some influence
of interactions between paramagnetic centers of neighboring
molecules on the P760 spectra cannot probably be excluded
either. It is possible that the concentration effects of this
kind can explain the need of assuming somewhat too high
g-anisotropies in order to obtain reasonable ESR linewidths
at our two fields.

IV. DISCUSSION

The analysis of ESR spectra and NMRD data presented
above has been performed to critically verify the applicability
of the pseudorotational model of the transient ZFS. The hi-
erarchy of events in paramagnetic systems (the electron spin
dynamics is, in fact, unaffected by the nuclear spins, while the
nuclear spin relaxation very significantly depends on the elec-
tron spin dynamics) suggests that one should first attempt to
analyze ESR spectra, and later use the obtained electron spin
parameters to interpret NMRD data resulting from the elec-
tron spin dynamics. In our case this approach failed already at
the first stage. We were not able to reproduce the ESR spectra
at two frequencies within one set of parameters. A contribu-
tion of the g-tensor anisotropy makes such an analysis possi-
ble. Nevertheless, even though the g-tensor anisotropy effects
are more pronounced for higher magnetic fields it is rather
difficult to unambiguously distinguish between the transient
ZFS and the g-tensor anisotropy contributions to the electron
spin dynamics. Therefore, we have chosen to analyze first the
NMRD data (especially since the estimates of the exchange
lifetime τM and the rotational correlation time τR were avail-
able) and to use the obtained electron spin parameters to in-
terpret the ESR spectra. It was found that the ESR spectra
can be treated as a test for the parameters obtained from the
NMRD analysis. In some cases the fits of the NMRD were
relatively good, while the interpretation of the ESR spectra
with these sets of parameters turned out to be unsatisfactory.
For other sets of parameters obtained from the NMRD anal-
ysis, the interpretation of the ESR spectra was much better,
especially when the g-tensor anisotropy was included. Since
NMRD profiles are determined by many parameters, their
analysis is not unambiguous. One cannot expect either that
this indirect way of determining the electron spin parameters
leads to fully reliable results. On the other hand, the ESR line-
shape is very likely influenced by g-tensor anisotropy interac-
tions which are much more important for ESR data (especially
at high magnetic fields) than for NMRD profiles. A consis-
tent analysis of multifrequency ESR data is therefore a com-
plex issue by itself. Taking into account all the aspects, we
have not found a unique strategy for performing a joint analy-
sis of ESR and NMRD data. Nevertheless, when approaching
this problem from both sides, we were able to find quite rea-
sonable sets of parameters for both complexes for which a
satisfactory agreement for ESR and NMRD was reached. We
trust that such an analysis is much more convincing than an
interpretation of only the NMRD profiles.
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One point that should be mentioned in this context is our
description of rotational motion, which modulates both the
DD interaction and the static ZFS. We neglect the internal
motions in the case of the DD interactions but allow them in
some sense, through the pseudorotational dynamics, for the
ZFS. The reason for this difference is that the electron spin
dynamics can be expected to be more sensitive to the rapid
motions of this kind, since they contribute to spectral densi-
ties at high frequencies. For systems with water molecules in
the first coordination sphere of a paramagnetic metal ion, this
effect of internal dynamics on the DD coupling will hopefully
be small and absorbed in the effective nuclear spin-electron
spin distance.70, 71

Given the grossly simplified description of the electron
spin dynamics by means of the pseudorotational model, one
should in fact not expect an excellent agreement between cal-
culated experimental electron spin and nuclear spin data. The
characteristic frequency for the electron spin is three orders
of magnitude larger than for the nuclear spin. That means
that the nuclear spin senses the wings of the electron spin
spectral density.72, 73 To describe well the wings of a spectral
density function, one would expect to need a very accurate
model, while the pseudorotational model is highly simplified.
In this context the quality of the combined analysis of ESR
and NMRD data presented here is, in our opinion, acceptable.
The presented examples can be treated as a successful test of
the applicability of the pseudorotational model. They also in-
dicate that a further extension of the ESR slow motion theory
by including a general form of the g-tensor anisotropy may
be relevant. Discussing the effects of g-tensor anisotropy one
should be aware of cross-correlations between this interaction
and the static ZFS (both interactions are modulated by the ro-
tational motion), effects included naturally in our formulation.
One can expect that the symmetry of the g-tensor combined
with the relative orientation of the principal frames of both in-
teractions are important for the cross-correlations effects. We
consider such an extension of the presented ESR slow motion
theory as a possible next step.

We wish also to comment the possible role of spin-
rotation interaction as an electron spin relaxation mechanism.
As mentioned above, this mechanism was included in
the study by Powell et al.48 Using their simple approach,
the estimate of the spin-rotation contribution to the ESR
linewidth requires only one additional parameter, an average
squared deviation of the principal g-tensor element from
the free electron value, �g2. Taking that T −1

SR = �g2/9τR ,
and setting �g2 = 6 × 10−3( (2.00152 – 4) = 0.006), we
estimate T −1

SR
∼= 3 × 105s−1. Our experimental solution ESR

spectra have the peak-to-peak linewidth, �Hpp, of about
0.001–0.0015 T. Using the same relation as Powell et al.,48

T −1
2e = gLμBπ

√
3�Hpp/h (where gL = 2 is the Landé

g-factor and μB is the Bohr magneton), we estimate our
effective T2e

−1 at 1.5 × 108 to 2.3 × 108 s−1. Compared to
these experiment-based values, the estimated spin-rotation
contribution to the relaxation rate is indeed negligible.

Finishing this discussion, it is important to stress that the
amplitude of the static ZFS combined with the timescale of
the molecular tumbling brings the electron spin of the dis-
cussed complexes beyond the perturbation limit. Therefore,

it was necessary to apply the general slow motion theory to
interpret the NMRD as well as the ESR data. Any kind of
perturbation treatment would very likely lead to larger dis-
crepancies between the experimental data and the results of
such a treatment might be misinterpreted as a failure of the
pseudorotational model. Seen in that perspective, the present
contribution is an important step towards understanding so-
lution ESR lineshapes for high-spin transition metal ion and
lanthanide complexes.

V. CONCLUDING REMARKS

Aiming at a verification of the pseudorotational model of
the transient ZFS interaction, we have adopted the slow mo-
tion theory (applied so far to NMRD relaxation profiles) to
the analysis of ESR spectral lineshapes. In this way, we have
developed a general tool for interpreting ESR and NMRD
data for paramagnetic systems for a large variety of inter-
action strengths and motional conditions (including the slow
motion theory of the outer-sphere PRE38, 39). The theory was
used to interpret in a consistent way (within one set of param-
eters) NMRD profiles and ESR spectra at 95 and 237 GHz for
two Gd(III) complexes, denoted as P760 and P792. The anal-
ysis indicated an additional mechanism contributing to the
electron spin dynamics which was attributed to the g-tensor
anisotropy. Thus, the slow motion theory of ESR spectra has
been extended by including g-tensor anisotropy effects (un-
der the simplifying assumption that gxx = gyy and geff = 2).
The unified interpretation of the ESR and NMRD led to an
acceptable agreement with the experimental data, supporting
the concept of the pseudorotational model as capturing the
essential features of the electron spin dynamics.
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APPENDIX

Under the assumption that gxx = gyy , geff

= 1
3

(
gxx + gyy + gzz

) = 2 (gxx , gyy, gzz are cartesian
components of the g-tensor) and that the principal axis
system of the g-tensor anisotropy coincides with the (PS)
frame, the electron spin Zeeman interaction in the laboratory
frame takes the form:

HZ (S) = ωS Sz + H�g
Z (S) = ωS Sz + ωS

�g
geff

[
2D2

0,0(�PS L )Sz

−
√

3
2 D2

0,1(�PS L )S− +
√

3
2 D2

0,−1(�PS L )S+
]

(A1)
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with �g = geff − gzz . To obtain the matrix representation of

the Liouville operator ˆ̂L
�g

Z (S), associated with the Hamil-
tonian H�g

Z (S), in the basis {| Oi ) } = {|ABC) ⊗ |L K M)⊗

|�σ )} one applies the Wigner–Eckart theorem.74

This leads to the following expression for the matrix
elements:

(
Oi | ˆ̂L

�g

Z |O j

)
= (

A′B ′C ′ ∣∣( L ′K ′M ′∣∣ (
�′σ ′

∣∣∣∣ ˆ̂L
�g

Z

∣∣∣∣ ABC) | L K M) |�σ )

= δAA′δBB ′δCC ′ωS
�g

geff
(−1)σ

′+K ′−M ′
[(−1)�

′+�+1 − 1]

×
√

(2S + 1) (S + 1) S (2L ′ + 1) (2L + 1) (2�′ + 1) (2� + 1)

(
L ′ 1 L

−K ′ 0 K

) {
�′ 1 �

S′ S S

}

×
{

2

(
�′ 1 �

−σ ′ 0 σ

) (
L ′ 1 L

−K ′ 0 K

)
+ 3√

2

[(
�′ 1 �

−σ ′ 1 σ

)

×
(

L ′ 1 L
−K ′ 1 K

)
+

(
�′ 1 �

−σ ′ −1 σ

) (
L ′ 1 L

−K ′ −1 K

)]}
(A2)

where () and {} denote 3-j and 6-j symbols,74 respectively.
In the numerical implementation of the NMRD

slow motion theory, a considerable number of the
| ABC) ⊗ |L K M ) ⊗ |�σ ) states could be excluded
due to symmetry properties of the 3-j and 6-j symbols which
considerably reduces the size of the [MNMRD] matrix. For
example, the vector |000) ⊗ |000) ⊗ |1 − 1) associated with
ESR spectrum is not explicitly represented in this matrix.
Now, to calculate ESR spectra, some of the selection rules
need to be removed and that leads to an increase of the size
of the [MESR] matrix compared to [MNMRD]. The g-tensor
anisotropy causes a further enlargement of the [MESR] matrix
size, since more basis vectors have to be explicitly accounted
for.
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