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The Lanczos algorithm (LA) is a useful iterative method for the reduction of a large matrix to tridi-
agonal form. It is a storage efficient procedure requiring only the preceding two Lanczos vectors to
compute the next. The quasi-minimal residual (QMR) method is a powerful method for the solu-
tion of linear equation systems, Ax = b. In this report we provide another application of the QMR
method: we incorporate QMR into the LA to monitor the convergence of the Lanczos projections
in the reduction of large sparse matrices. We demonstrate that the combined approach of the LA
and QMR can be utilized efficiently for the orthogonal transformation of large, but sparse, complex,
symmetric matrices, such as are encountered in the simulation of slow-motional 1D- and 2D-electron
spin resonance (ESR) spectra. Especially in the 2D-ESR simulations, it is essential that we store all
of the Lanczos vectors obtained in the course of the LA recursions and maintain their orthogonality.
In the LA-QMR application, the QMR weight matrix mitigates the problem that the Lanczos vectors
lose orthogonality after many LA projections. This enables substantially more Lanczos projections,
as required to achieve convergence for the more challenging ESR simulations. It, therefore, provides
better accuracy for the eigenvectors and the eigenvalues of the large sparse matrices originating in
2D-ESR simulations than does the previously employed method, which is a combined approach
of the LA and the conjugate-gradient (CG) methods, as evidenced by the quality and convergence
of the 2D-ESR simulations. Our results show that very slow-motional 2D-ESR spectra at W-band
(95 GHz) can be reliably simulated using the LA-QMR method, whereas the LA-CG consistently
fails. The improvements due to the LA-QMR are of critical importance in enabling the simulation of
high-frequency 2D-ESR spectra, which are characterized by their very high resolution to molecular
orientation. © 2011 American Institute of Physics. [doi:10.1063/1.3523576]

I. INTRODUCTION

Spin-label electron spin resonance (ESR) spectroscopy
has, in recent years, been widely used and demonstrated
as a powerful tool to investigate the local dynamics and
structure of complex fluids such as liquid crystals and
model and biological membranes, polymers, proteins, and
protein complexes.1–4 Among the various ESR techniques,
continuous-wave (cw) ESR has been successfully extended
to high magnetic fields.2–6 The greatly improved orientational
resolution that is provided by the ESR lineshapes in high
frequencies/fields provides a better insight to the molecular
dynamics.2–5 By means of multi-frequency ESR experiments,
one can unravel the details of dynamical modes of the com-
plex systems since the different frequencies provide different
time windows.2–5,7

In recent years, it has been shown that 2D-ESR meth-
ods, in particular 2D-ELDOR (electron-electron double reso-
nance) studies on complex fluids and macromolecules pro-
vide even greater spectral resolution to molecular dynam-
ics and ordering.2,3, 8 2D-ELDOR provides this, because
it enables one to distinguish the homogeneous broadening
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(which provides insight into molecular motions) from the in-
homogeneous broadening (which relates to local structure).
Furthermore, it supplies cross-peaks that directly report on
translational and rotational motions of labeled biomolecules.
Recent technological developments have led to the capabil-
ity of performing 2D-ELDOR on complex fluids at high fre-
quency (95 GHz), which can then combine their respective
virtues.5, 9

The theoretical prediction and interpretation of these
ESR spectra requires a special analysis developed by Freed
and coworkers based on the stochastic Liouville equation
(SLE).10 This approach has been effectively extended to
2D-ELDOR,11 and it has been successfully applied to such
experiments performed at conventional ESR frequencies
(9 and 17 GHz).3,8 However, we found that the existing meth-
ods are not versatile enough to permit the successful compu-
tation of high-frequency 2D-ESR spectra in the (very) slow
motional regime because of serious convergence issues that
are significantly more demanding than at conventional fre-
quencies. In the present paper, we report on recent progress
we have made in improving the computational algorithms to
enable the simulation of high-frequency 2D-ESR spectra over
the whole motional range.

The primary challenge is to reliably diagonalize the
very large matrix representation of the SLE operator, which
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becomes extremely large for high-frequency spectra. It was
shown some time ago that the Lanczos algorithm (LA) as ap-
plied to large and sparse but complex symmetric matrices,
is a most effective algorithm for reducing the SLE and re-
lated correlation function matrix representations to tridiag-
onal form.10–15 It was also shown that the resultant eigen-
values (and eigenvectors) are approximations to the exact
ones, but nevertheless yield accurate spectra.10,13 The LA16

is now a well-known and very effective method for reduc-
ing a large matrix to tridiagonal form. It has also been ex-
tensively used in other applications in chemical physics.17 It
is an iterative subspace method that operates by generating
a set of basis vectors, induced by the SLE operator, A, pro-
ducing what is known as the Krylov subspace wherein A is
tridiagonal, and can readily be diagonalized. The dimension
(n × n) of the original matrix A is much larger than the di-
mension (m × m) of the reduced tridiagonal matrix (i.e., the
Krylov subspace) that is needed to represent the physical ob-
servable (e.g., the ESR spectrum). However, the Lanczos pro-
jections must be carefully monitored to determine when a
convergent Krylov subspace has been achieved. A special ap-
proach, combining the LA method of tri-diagonalization with
the method of conjugate gradients was developed specifically
for this purpose.10,15 This overall procedure for tridiagonal-
ization is called the LA-CG algorithm in the present report;
this is to be distinguished from CG-type algorithms, which
are used as linear equation solvers.

On the one hand, when the LA-CG is utilized for con-
structing the Krylov subspaces, the primary issue is how well
the (relevant) eigenvalues, and eigenvectors generated from
this subspace are representative of the original matrix. On the
other hand, when the LA combined with CG is used for solv-
ing a linear equation system, Ax = b (or equivalently A|x〉
= |b〉), one does not solve for the eigenpairs, but focuses on
the convergence of the residual norm of the linear equation
to obtain a good enough approximation for the solution
vector |x〉 instead.18 The former application (i.e., our present
interest) often requires a much larger number of the Lanczos
projections than does the latter. The main reason is that as
the Lanczos steps proceed, the eigenvalues calculated from
the Krylov subspace that is generated, consist of good ones,
duplicates, and spurious ones. Identifying good eigenvalues
and determining how many Lanczos projections are enough
to obtain a reduced matrix that has sufficiently converged
to produce the required set of good eigenvalues, is itself a
difficult task. It is this computational challenge that becomes
even greater as one performs the spectral simulation of higher
frequency ESR experiments. Therefore, one often finds that
the use of the LA-CG becomes extremely troublesome,
given that physically important eigenvalues appear late in
the LA procedure, thereby demanding a large number of
LA projections. This is a key reason why the number of
LA projections increases significantly as the molecular
motional rates become slower and the original N × N matrix
representation of A becomes larger.

In the present report, we demonstrate that increasing the
number of LA projections (i.e., increasing the dimension m
of the Krylov subspace) is not necessarily a guarantee of the
success of the LA-CG in calculating the slow-motional line-

shapes. This situation (that we call the LA-CG breakdown)
becomes even worse as the ESR frequency increases. To deal
more effectively with the breakdown, we utilize the quasi-
minimal residuals (QMR) method to replace CG in the Lanc-
zos procedure.

It is important to point out that the computation of time-
domain 2D-ESR experiments poses a greater challenge than
does that for the 1D experiments (either cw or equivalently
free-induction decays). This is because the latter requires just
the projection of the reduced m × m matrix on a “starting vec-
tor” representing the nature of the physical observable in the
form of a generalized transition moment, and this effectively,
and automatically, discards unwanted eigenpairs.10, 12, 14 In
fact, only the projection of each eigenvector on the “start-
ing vector” is needed, not the full eigenvector.10, 12, 14 In the
case of 2D-ESR experiments, one requires an accurate set
of eigenvectors as well, to properly represent the (complex)
orthogonal transformations that are needed in multi-pulse
sequences.10 This requirement is discussed in considerable
detail by Lee et al.,11 who show the limitations (i.e., range of
validity) of the LA-CG method in 2D-ESR. They do employ
a method of Cullum and Willoughby16 for identifying spuri-
ous eigenvalues, which enabled them to extend this range of
validity somewhat.

The QMR algorithm was originally developed for the it-
erative solution of large non-Hermitian linear systems.19,20 It
is generally used along with the LA to solve a linear equation
system, in the same spirit as the CG-based method for the iter-
ative solution of linear systems,20,21 that we have mentioned
above. It was shown that the QMR-based method for the so-
lution of large sparse linear systems with complex coefficient
matrices outperforms the CG-based method with several ad-
vantages, such as faster convergence.18 However, the QMR
algorithm has not previously (to our knowledge) been used to
monitor the LA projection steps for the purpose of generating
the orthogonal transformation needed to tridiagonalize sparse
matrices, which is the application we address in the present
report.

In Section II we review the basic lineshape theory re-
quired to simulate 2D-ESR spectra, followed by the com-
putational formulation required to solve for the eigenmodes
of the stochastic Liouville operator. We then discuss break-
downs that may occur with the LA-CG as it is used to
simulate high-frequency 2D-ELDOR spectra in the slow-
motional regime. The new Lanczos-based algorithm, i.e., the
combined approach of the LA and the QMR algorithms, is
then presented. Some numerical experiments are presented in
Section III to illustrate these matters. A brief summary and
conclusions are given in Section IV.

II. THEORY AND COMPUTATIONAL ALGORITHMS

A. Simulation of 2D-ELDOR spectra using
the stochastic Liouville equation

The dynamics of spin-bearing molecules can be treated
quantum mechanically and characterized by the modified
density matrix χ (�, t) ≡ ρ(�, t) − ρeq (�) satisfying the
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FIG. 1. The matrix computational flowchart of solving for the diagonal transformation of the stochastic Liouville operator matrices A.

stochastic Liouville equation11,12

∂

∂t
χ (�, t) = −[i H×(�) + �(�)]χ (�, t)

≡ −L(�)χ (�, t)
(1)

where H×(�) is the commutator superoperator of the
spin Hamiltonian, which depends on the orientation of the
molecule as specified by its Euler angles �. �(�) is the time-
independent Markovian operator representing the molecular
motion. Their sum constitutes the stochastic Liouville opera-
tor L(�). Also ρ(�, t) is the density matrix evolving accord-
ing to L(�) and ρeq (�) is its form at equilibrium. The matrix
representation of L(�) is denoted by A throughout this paper.
The formal solution to Eq. (1) can be written as

χ (�, t + t0) = exp (−L(�)t)χ (�, t0). (2)

Equation (2) clearly shows that the evolution of the den-
sity matrix is fully characterized by the eigenmodes of the
stochastic Liouville operator (or, equivalently, the matrix A).
The main task of simulating ESR lineshapes can be regarded,
in terms of matrix computations, as the diagonalization of A.

The details for the evolution of the density matrix, in-
cluding the effect of several pulses, can be found in Lee
et al.11 The expressions for the 2-pulse 2D-COSY and the
3-pulse 2D-ELDOR experiments11 are given in bra-ket nota-
tion in Eqs. (3)

SCOSY
c± = 〈

υ−1

∣∣O−1e−�−1t2Otr
−1

×P(−1←∓1)O∓1e−�∓1t1 Otr
∓1

∣∣υ∓1
〉

(3a)

SELDOR
c± = 〈

υ−1

∣∣O−1e−�−1t2Otr
−1 P(−1←0)O0e−�0Tm Otr

0

×P(0←∓1)O∓1e−�∓1t1 Otr
∓1

∣∣υ∓1
〉

(3b)

where P(b←a) represent the pulse propagators that transform
the density matrix elements from a subspace to b subspace,
as a result of nonselective π /2 pulses (where subscripts a and
b give the electron-spin coherence order). |υ〉 represents the
starting column vector, which is constructed from the spin

transition moment averaged over the equilibrium distribu-
tion in �; Oa is the orthogonal transformation matrix, whose
columns represent the eigenvectors of A, and �a is the diago-
nal matrix of the corresponding eigenvalues, with subscript a
again referring to the coherence order for the sub-space. The
sub-matrices of A (i.e., Aa) corresponding to the different co-
herences are diagonalized via the respective orthogonal trans-
formation. The values of a = 0 correspond to the diagonal and
a = ±1 the off-diagonal subspaces, respectively.

A complete analysis of the solution of Eqs. (3) was
presented in Lee et al.11 We provide a brief summary be-
low, focusing on the key computational aspects of the SLE-
based spectral simulations that are directly relevant to the is-
sues addressed in this paper. The main computational chal-
lenge involves first the reduction to the relevant ma × ma sub-
spaces and then the diagonalization of the SLE submatrices
Aa, for each coherence order which can be extremely large,
but are sparse, complex symmetric (and thus non-Hermitian).
The approach that has been effectively utilized involves a
three-step procedure, which is summarized in the diagram of
Fig. 1. First of all, we perform ma steps of Lanczos pro-
jection on the Na × Na matrix Aa to obtain the tridiagonal
matrix, Ta of dimension ma × ma. One requires that ma is de-
termined by the convergence criteria in the Lanczos-based al-
gorithm and is (much) smaller than Na. The transformation
matrix, Va is also needed, since it is used to determine the
eigenvectors (or eigenmodes) which are needed according to
Eqs. (3) to provide the 2D-ESR spectra. That is, Va repre-
sents the set of Lanczos column vectors that tridiagonalize
the original sparse matrix Aa. The QL algorithm23 is usually
used to calculate the ma eigenvalues of the tridiagonal ma-
trix Ta, by a series of orthogonal transformations to obtain
the diagonal matrix �a. It is common for the eigenvalues ob-
tained in the Lanczos process that the ma eigenvalues consist
of “good,” “duplicate,” and “spurious ones,” where the latter
are less accurate or “ghost” eigenvalues. The sorting of spuri-
ous eigenvalues from the good eigenvalues is nontrivial, since
the number of these extra eigenvalues and their location in
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the spectrum varies with ma, i.e., with the number of Lanczos
projections. An identification test may be performed using the
Cullum–Willoughby method16–23 which we have employed in
this work.

In the above we have a = 0 or ±. However, there is an
important distinction between the particular starting vectors
used for the off-diagonal subspaces (a = ±1) and the diagonal
subspace (a = 0). We consider the former first and the latter
below. The starting vector for a = ±1 is the ket |υ∓〉 shown
in Eqs. (3) and the tridiagonal matrices T∓ are generated by
successive applications of A∓ using |υ∓〉. These projections
are essentially those used to generate the cw spectrum.

This observation has led us in the present work to add a
further filtering procedure to discard the eigenvalues of large
magnitude that are considered of less significance in the 2D
spectra. The contribution of the eigenvectors contained in the
cw-ESR lineshapes is estimated according to the weight fac-
tors, calculated in the QL23 procedure, in the analysis of the
continued fraction expansion.22 The underlying idea behind
this is that the cw calculation generates continued fractions
that tend to optimize the overall shape of the spectrum rather
than sets of eigenvalues. After the identification procedure,
a size of m ′

∓ of the diagonal eigenvalue matrix, where m′

< m, is obtained and ready to be used for simulating 2D-ESR
time-domain signals using Eqs. (3). The set of the eigenvec-
tors Q′

∓, which correspond to the m ′
∓ selective eigenvalues,

is calculated using the Inverse Iteration method.16 The or-
thogonal transformation matrix O∓, which diagonalizes the
original sparse matrix A∓, is then obtained in this so-called
back-transformation procedure, i.e., O∓ = V∓Q′

∓, using the
iterated Lanczos vectors V∓ and the eigenvectors (Q′

∓) of
T∓. It, therefore, is essential to store all of the eigenvectors
(both V∓ and Q′

∓) in simulating the 2D ESR spectrum. The
overall procedure in Fig. 1 summarizes the orthogonal trans-
formation of a large, sparse, symmetric, and non-Hermitian
matrix by a Lanczos-based algorithm. It has been proved to
lead to a significant reduction in computation time, which is
the key aspect that makes the nonlinear least-squares fitting
of the SLE-based lineshape theory to experimental data prac-
tically applicable and efficiently executable.

We note the construction of the matrix Aa that represents
the stochastic Liouville operator in the following. ESR spec-
tra can be calculated to a good approximation by finite matri-
ces Aa, which have large enough leading dimension Na. How-
ever, one wishes to truncate the space so as to minimize Na to
be just enough for the accurate computation of the spectra.
This is accomplished using the minimum truncation scheme
(MTS), developed by Vasavada et al.,15 for representing |υ∓1〉
and A∓ in order to (1) avoid having to implement too many
Lanczos recursions that would possibly cause breakdowns
(see below), (2) yet guarantee that the results have converged,
and (3) minimize the computation time. Our approach is to
start with a basis set large enough to contain the MTS. The
dimension of A∓ can then be reduced after first determining
the range of values of the dynamical parameters needed to fit
the experimental spectra. Determining the MTS is time con-
suming, but worthwhile, since it saves a large amount of com-
putation time in the non-linear least-squares fitting to experi-
ment. Tables, derived from empirical rules, for selecting MTS

for different regimes of molecular rotational motions can be
found in the literature.22

For the diagonal sub-space (a = 0), it is necessary to con-
struct an appropriate starting vector. Lee et al.11 have intro-
duced the following procedure based on Eq. (3b). One first
calculates

|c(t1)〉 ≡ P(0←∓1)O∓1e−�∓1t1 Otr
∓1 |υ∓1〉 (4)

for several values of t1. A superposition of these |c0(t1)〉 is
taken as a relevant starting vector for the LA using A0. One
benefits from first using the MTS for |υ∓1〉 as well as the
O∓ = V∓Q′

∓ matrices, which have been filtered as described
above.

B. Lanczos-based methods for the orthogonal
transformation: LA-CG versus LA-QMR

From the previous section, the important issue that re-
mains to be addressed is how to determine the number of
the Lanczos projections required to obtain the dominant
eigenvalues of the SLE matrix for the given values of the
motional parameters. The orthogonal transformation for diag-
onalizing the matrix A can be performed using the Lanczos-
based algorithms, including (1) Lanczos-Conjugate-gradient
(LA-CG), which has been used extensively in ESR lineshape
simulations, and (2) the Lanczos-Quasi-minimal-residual
(LA-QMR), which is to be introduced below. Though the un-
derlying principles of the two methods for reduction trans-
formation are similar, we, in the following, first review the
LA-CG in order to clearly display the improvements that we
can make with the use of LA-QMR.

We first note that the breakdown in the LA-CG procedure
that we are about to discuss below is different from a well-
known LA breakdown. This well-known LA breakdown24

occurs in the standard nonsymmetric Lanczos process when
a quasinull space occurs, i.e., division by zero in the Lanc-
zos projections, before an invariant subspace is found. In
finite precision arithmetic, such exact breakdowns are very
unlikely; whereas, near-breakdowns may occur and lead to
numerical instabilities in subsequent Lanczos projections.
The look-ahead version25 of Lanczos algorithm is dedicated
to curing this breakdown for nonsymmetric matrices. The
symmetric Lanczos process for Hermitian matrices is a
special case of the general procedure where the occurrence
of the breakdown can be excluded.18 In all of our numerical
experiments performed in this and previous studies, such a
breakdown caused by approaching quasinull subspace has
never happened.

1. LA-CG algorithm

The standard single-vector Lanczos recursion is shown in
Eq. (5). The iteration of Eq. (5) results in a reduced symmetric
tridiagonal matrix whose diagonal and off-diagonal elements
are shown in Eqs. (6a) and (6b), respectively. In exact arith-
metic the Lanczos projections stop when βk+1 = 0; whereas,
in genuine applications such a condition never happens. The
Lanczos recursion can be written in a compact matrix form
shown in Eq. (7), where A is the matrix to be tridiagonal-
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ized, Vk (called the Lanczos vector set) is a matrix consist-
ing of k Lanczos column vectors, and Tk, explicitly shown in
Eqs. (7), (7b) and (7c), represents the tridiagonal matrix at the
kth Lanczos projection. The Lanczos procedure builds up Vk

by one column per recursion,

βk+1 |νk+1〉 = A |νk〉 − αk |νk〉 − βk |νk−1〉 . (5)

αk ≡ 〈νk |A| νk〉 (6a)

βk+1 ≡ 〈νk+1 |A| νk〉 . (6b)

AV k = Vk+1T̃k (7)

T̃k :=
[

Tk

βk+1etr
k

]
with etr

k : = [0 · · · 0 1] (7b)

Tk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1 β2 0 . . . 0

β2 α2 β3
. . . 0

0 β3 α3
. . . 0

...
. . .

. . .
. . . βk

0 . . . 0 βk αk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (7c)

Note that with A complex symmetric, the Lanczos vectors
|νk〉 are normalized with a complex orthogonal norm, with the
|νk〉 referred to as rectanormal vectors.10 In order to monitor
the recursions, the LA is incorporated into the CG procedure
to become an equation solver for a linear equation such as
A|x〉 = |b〉.14 In each step of the Lanczos recursion, the con-
vergence is monitored according to the residual norm [shown
in Eq. (8)], calculated in the CG iterations, since Eq. (8b)
represents a measure of the deviation of the column vector
|xk〉 from the true solution. Equation (8) clearly shows that
the residual values are calculated directly using the quantities
obtained in the Lanczos recursions as well as the CG itera-
tions. Note that the LA is started from k = 0 with |r1〉 = |b〉,
which implies the initial solution vector is zero (|x1〉 = 0), in
order to obtain the correspondence between the Lanczos vec-
tors and the residual vectors,

‖〈rk |rk〉‖ = ((β1|e1〉 − T̃k |yk〉)tr V
tr

k+1Vk+1(β1|e1〉
−T̃k |yk〉))1/2 ≡ ρk, (8)

|rk〉 = |b〉 − A |xk〉 = |r1〉 − Vk+1T̃kV tr
k |xk〉

= Vk+1
(
β1 |e1〉 − T̃kV tr

k |xk〉
)
.

= Vk+1
(
β1 |e1〉 − T̃k |yk〉

) (8b)

where |β1〉 = 〈r1|r1〉1/2 and |yk〉 ≡ V tr
k |xk〉. Freed and

co-workers10 demonstrated clearly that the elements of the
tridiagonal matrix can be equivalently obtained by directly
using the quantities at each CG step, as shown below [Eqs.
(9a) and (9b)] where |pk〉 represents a set of conjugate direc-
tions given at the kth CG iteration and ρ’s [cf. Eq. (8)] are the
residual norms of the CG iterations,

αk = ρ−2
K 〈pk |A| pk〉 + (

ρ2
k ρ

−4
k−1

) 〈pk−1 |A| pk−1〉 , (9a)

βk = − (
ρkρ

−3
k−1

) 〈pk−1 |A| pk−1〉 . (9b)

For the above LA-CG algorithm, used for the purpose of
the reduction transformation from A to T, it has been pre-
viously proven that the residual value, calculated in the CG
iterations using the quantities obtained from Eq. (8), is equiv-
alent to the residual value obtained in the pure CG iterations
provided that Vk+1 are orthogonal matrices. The methods of
the CG and LA, therefore, can be tightly coupled together
to tridiagonalize a large symmetric and complex sparse ma-
trix very efficiently. The LA-CG algorithm has been success-
fully utilized to tridiagonalize the stochastic Liouville matrix
in the slow-motional regime. Though the matrices V would
inevitably lose orthogonality over Lanczos recursions, the ef-
fect of losing orthogonality to the SLE-based lineshape cal-
culations was found to be minor in most of the previous
applications.11 We emphasize that the Lanczos vectors, by
losing orthogonality, would cause a deviation of the calcu-
lated norm [Eq. (8)] from the genuine values. As a result, the
backtransformed eigenvector set (i.e., O, composed from V
and O′) loses orthogonality as well. It is apparent that these
unwanted effects would become greater with increased LA
projections.

However, there are limitations for the reduction and di-
agonal transformations using the LA-CG procedure described
above. The generated Lanczos vectors are orthogonal in exact
arithmetic; whereas, in finite arithmetic the orthogonality of
the Lanczos vectors could be lost easily and quickly because
numerical round-off errors accumulate and then spoil the re-
cursions dramatically. We found that these unwanted effects
easily become dominant in high-frequency spectral simula-
tions, since the required number of the LA projections in-
crease with the experimental operating frequency. [Though
reorthogonalizing the whole set of the Lanczos vectors is
a potential cure to this intrinsic drawback of the Lanczos-
based methods, it is considered to be impractical because
huge amounts of computation time are required for the re-
orthogonalization task.] In simulating high-frequency and
slow-motional spectrum, we found that the LA-CG proce-
dure would typically stagnate and result in breakdown due
to the loss of orthogonality in the LA vectors as the Lanc-
zos projections become large in number. The results of the
numerical experiments showing this stagnation are illustrated
later in Results [cf. Fig. 2]. The stagnation is due to the fact
that the amplitude of the calculated residual norm [i.e., ρ in
Eq. (8)] approaches the computer’s allowed round-off error. If
we ignore the decreasing ρ’s and let the LA recursions go on,
the tridiagonal matrix [whose elements are calculated from
the values of ρ’s using Eqs. (6)] will give a distorted matrix
deviating from the genuine one. If too many Lanczos pro-
jections are implemented, the loss of orthogonality (i.e., the
elements of Vtr

i V j deviate significantly from zero for i 	= j)
would dominate the residual norms and gradually destroy the
whole LA-CG procedure.

To sum up, the loss of orthogonality participates in the
residual norm in two parts: one via the Vtr

k+1Vk+1 term, the
other via the elements of the tridiagonal matrix calculated
using Eqs. (9). As losing orthogonality becomes serious the
tridiagonal matrices generated using Eqs. (9) are no longer
close to that calculated using Eqs. (6). The elements in the
former matrices are contaminated successively and iteratively
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FIG. 2. The breakdown in the LA-CG and the cure to the procedure by the
LA-QMR.

because the quantities of the ρ’s [Eqs. (9a) and (9b)] are
spoiled by the loss of the orthogonality. The benefits of the
computational efficiency brought in by tightly coupling LA
with CG become a fatal factor to the LA-CG method as it
is used for a very large sparse matrix requiring a large num-
ber of Lanczos projections. This is particularly true when one
calculates a very slow-motional spectrum at high frequency
that requires a large number of Lanczos projections in order
to adequately obtain good eigenvalues to display the excellent
anisotropic spectral resolution.

2. LA-QMR algorithm

The QMR algorithm was originally developed to be a lin-
ear equation solver.18 It is generally used along with the LA to
solve a linear equation system. We, in the following, propose
to utilize the LA-QMR to determine the reduced size of the
sparse complex symmetric matrices, analogous to the use of
the LA-CG shown above.

The LA-QMR differs from the LA-CG in that a least-
squares solution is obtained from the Krylov subspace by
minimizing the QMR norm ‖〈Jk |Jk〉‖ [cf. Eq. (10)] over
|yk〉 [cf. Eq. (8b)] rather than the CG functional over |x〉 [cf.
Eq. (8)]. Here

|Jk〉 = w1β1 |e1〉 − Wk+1T̃k |yk〉 . (10)

In Eq. (10) Wk+1 is a positive diagonal weight matrix with
the diagonal elements, {w1, w2, . . ., wk+1}. It clearly appears
that the QMR iterations depend on the choice of the weight-
ing factors wj. One of the common settings for W is the norm

of the Lanczos vector (‖〈νk |νk〉‖) so that all basis vectors [cf.
Eq. (11b)] are corrected to have unit length even as they would
otherwise lose normalization due to round-off error in the
Lanczos projections. This QMR minimization is the same as
in the generalized minimal residual (GMRES),18 except that
the Arnoldi algorithm is replaced with the LA. The minimiza-
tion of the QMR norm is performed by decomposing the tridi-
agonal matrix, returned from the LA recursions, with the QR
factorization to compute the vector |yk〉. Hence, the residual
norm used to monitor the LA recursions is calculated from
Eq. (11a)∥∥∥r QM R

k

∥∥∥ = (〈
Jk

∣∣Utr
k+1Uk+1

∣∣ Jk
〉)1/2

(11a)

Uk+1 ≡ Vk+1W−1
k+1. (11b)

We emphasize the significant improvement due to the intro-
duction of the weight matrix below. We found that the weight
matrix effectively reduces the effect of losing orthogonality
in Lanczos vectors as the number of the LA recursion steps
becomes large. Compared with the approach of full reorthog-
onalization on the Lanczos vectors in every iteration, the LA-
QMR provides an inexpensive cure for the LA-CG breakdown
at a very inexpensive cost. The tridiagonal matrices produced
in the LA-QMR iteration are different from that in the LA-CG
procedure. In the LA-CG procedure, the diagonal and subdi-
agonal elements of the triadiagonal matrix are, respectively,
calculated from Eqs. (9a) and (9b). In performing reduction
transformation of regular matrices, the LA-CG and LA-QMR
produce similar tridiagonalized matrices. As the size of the
matrix keeps increasing, the number of the LA projections
increases, resulting in the fact that the loss of orthogonality
occurs in the two algorithms differently, and therefore, the
differences between the tridiagonalized matrices of the two
methods increase. In our proposed LA-QMR procedure, the
tridiagonal matrices are constructed using Eqs. (6a) and (6b).
The QMR norms [Eq. (10)] are used as a substitute for the
minimal residual norm of CG to monitor the convergence con-
dition. The serious breakdown [cf. Fig. 2] that leads to an in-
finite iteration loop, which is caused by the stagnation in the
CG residual norms, in the LA-CG procedure is, therefore, re-
lieved by the LA-QMR. The numerical experiments of the
tests are provided in the following section.

III. NUMERICAL EXPERIMENTS AND DISCUSSION

A. Eigenvector orthogonality is better maintained
in the LA-QMR than the LA-CG recursions

To make comparisons of the results of the LA-CG and
LA-QMR methods, we performed some numerical experi-
ments. We generated a sparse, symmetric, complex matrix A
whose dimension is 2000 by 2000. The sparsity of the ma-
trix was 0.3, which indicates 30% of the matrix entries are
nonzeros. The matrix A was tridiagonalized, followed by the
calculations of the eigenvalues using the QL method. The cal-
culated eigenvalues were then examined with the identifica-
tion test. The whole process is detailed in Fig. 1. Figure 2
shows the results of the orthogonal transformations on the
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given matrices A obtained in the procedures, LA-CG (dot-
ted lines) and LA-QMR (solid lines), respectively. The rela-
tive norms indicate the ratio of each norm value over that of
the first LA step. Figure 2(a) shows that after ca. 280 LA re-
cursion steps the LA-CG procedure stagnated and the relative
norms did not decrease any further with the LA projections,
whereas the LA-QMR procedure went on until the 534th LA
projection reached the convergence criterion, which was ca.
10−27 in this case study. Figure 2(b) shows the results of an-
other matrix A (with full dimension of 3000 by 3000). The
LA-CG procedure broke down after about the 500th LA step;
whereas, the projections in the LA-QMR procedure went on
until reaching the convergence criterion at the 994th LA step.
The decreasing values of the relative norms as a function of
the increasing LA projection step in the LA-QMR procedure
provide the required information for us to monitor the LA
iterations. Additionally, we would like to point out that as
shown in Figs. 2(a) and 2(b) the QMR relative norms do not
necessarily converge more rapidly than do the CG norms dur-
ing the earlier stages. This observation is contrary to the pre-
vious results elsewhere.18 The convergence rate of an iterative
method varies with the nature of the target matrix in problem.
In addition to the rates of the convergence, we computed the
orthogonalities [cf. Eq. (2)] of the orthogonal transformation
eigenvectors O. The orthogonality16 (κ ) of a matrix (e.g., O)
is defined by the Frobenius norm of (I – OtrO), where I repre-
sents an Identity matrix

κ ≡ ∥∥I − OtrO
∥∥

F . (12)

Note that the matrices O’s are obtained by the backtransfor-
mation using the Lanczos vectors V and the eigenvectors (O′)
of the good eigenvalues that diagonalize the tridiagonal ma-
trices T, as illustrated in Fig. 1. The κ’s for the LA-CG and
LA-QMR procedures of Fig. 2(a) were 126 and 10−13, re-
spectively. The κ values for Fig. 2(b) were 420 and 3.7 for the
LA-CG and LA-QMR procedures, respectively. The orthog-
onalities for the O matrices obtained from the LA-QMR are
remarkably smaller than those from the LA-CG calculations.

The numerical experiments suggest some improvements
that we can make with the LA-QMR algorithm in simulat-
ing slow-motional ESR spectrum of high frequency. The key
to the success of the SLE-based slow-motional and high-
frequency spectral simulations is that an adequate number of
the LA projections must be performed before the dominant
eigenvalues (i.e., those whose real parts are close to zero) con-
verge, provided that the loss of orthogonality of the O ma-
trix is not substantial. Inadequate steps of the Lanczos pro-
jections result in a cascade of damage to the whole calcu-
lation. First of all, some of the eigenvalues of T calculated
using the QL method would not achieve a satisfactory ac-
curacy and, therefore, would not be identified as good ones
in the Cullum–Willoughby process if the Lanczos projections
were inadequate. Inadequate Lanczos projections would also
produce some spurious eigenvalues. It is worthy to note that
the Cullum–Willoughby method does not attempt to identify
all eigenvalues that have converged; instead, it is to identify
those bad ones and keep all remaining eigenvalues, which
may or may not have converged, as good ones. It, therefore,
is essential to perform adequate steps of the LA projections

before the small but dominant eigenvalues come out. Those
eigenvalues, which have not converged or are intrinsically
spurious but have not been identified due to the insufficient
Lanczos projections, would lead to (1) very slow convergence
in calculating eigenvectors using the Inverse Iteration; and (2)
producing eigenvectors, which correspond to those less accu-
rate eigenvalues, to be a part of the simulated spectrum.

One convenient way to test whether or not the number
of the Lanczos projections is sufficient for the SLE-based
calculations of the given dynamical condition is to compare
the spectra calculated in two-pulse COSY versus three-pulse
ELDOR (with mixing time Tm set to be zero) modes. Theo-
retically, a three-pulse ELDOR spectrum, when simulated by
setting Tm = 0, is very close to a two-pulse COSY spectrum,
provided that the eigenvector set O is absolutely orthogonal
[cf. Eq. (3)]. The ELDOR spectral calculations require two
orthogonal transformations, respectively, for off-diagonal and
diagonal subspaces, while the COSY requires only the for-
mer. For the off-diagonal subspace, an inadequate number of
LA projections would result in spurious eigenvalues as well as
the inaccuracy in the outcome that is to be used for the start-
ing vector for the diagonal subspace. For the diagonal sub-
space, the same reason can cause the inaccurate eigenvalues
and the increase of the unwanted magnitude of the signal (see
the OOtr term in Eq. (3)) contributed from the effect of losing
orthogonality. Therefore, the difference between the COSY
versus ELDOR at Tm = 0 spectra provides useful information
to monitor the unwanted effect due to the loss of orthogonal-
ity on O. A large number of Lanczos projections are criti-
cally necessary for all good eigenvalues to converge to sim-
ulate the slow-motional 2D-ELDOR spectra, particularly the
high-frequency ESR spectra. The LA-QMR is developed for
such extreme conditions.

B. Near rigid-limit spectral simulations of W-band
2D-ELDOR experiments

Figure 3(a) shows the 95 GHz (W-band) 2D-COSY spec-
trum for R0 = 106 s−1 obtained in the LA-QMR procedure.
The simulated 2D-COSY spectrum from the LA-CG proce-
dure using the same given parameters is displayed in the inset,
which apparently appears as distorted lineshapes. The num-
bers of the iterated LA projections for the two COSY spectra
in Fig. 3(a) are 375 and 563, respectively, for the LA-CG and
LA-QMR procedures. For the given condition, the LA-CG
collapsed as the number of the projections is (approximately)
greater than 400. Therefore, we considered the spectrum in
the inset of Fig. 3(a) as a distorted and unconverged one. The
respective resulting κ values are 101.6 (LA-CG) and 1.3 (LA-
QMR). The distorted lineshapes (cf. inset) are the results of
the inaccurate eigenvalues, which are due to the inadequate
numbers of the LA projections in the LA-CG procedure, and,
partly, the effect of losing orthogonality on O. Figure 3(b) dis-
plays the slices along the autopeaks of the COSY and ELDOR
(at Tm = 0) spectra, obtained from the LA-QMR procedure.
The spectra of the two modes are alike though the intensities
of the autopeaks for the ELDOR are generally weaker than
the COSY. The ELDOR experiments for Tm = 0 are exper-
imentally equivalent to the COSY experiments. However, in
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FIG. 3. (a) The 2D-COSY spectrum for R0 = 106 s−1 simulated using the LA-QMR and the LA-CG (inset). (b) The slices along the autopeaks for the
spectra of 2D-COSY and 2D-ELDOR. (c) The 2D-COSY spectrum for R0 = 105 s−1 simulated using the LA-QMR. (d) The autopeak slices for 2D-COSY
and 2D-ELDOR. The lineshapes are plotted to have the same maximum intensity. (e) The plots of the autopeak slice for the R0 = 105 s−1 study as a function
of LA projections. It clearly illustrates that having a large and adequate number of the LA projections is crucial to the convergence of the fine details of the
slow-motional high-frequency 2D-ELDOR lineshape.

such an extremely slow-motional case the effect of losing or-
thogonality on O begins to gradually develop [via the O0Otr

0
term in Eq. (3b)] and affect the signal intensity of the calcu-
lated ELDOR spectrum. By marking the g values used for the
simulations, Fig. 3(b) clearly shows that the lineshapes are
not yet the rigid-limit. They, however, did converge. The con-
vergence of the lineshape calculations was examined by com-
paring the spectra in Fig. 3(b) with the spectra simulated with
additional 100 LA projection steps. It is considered as con-
verged when the two calculations, i.e., m versus (m + 100) LA
steps, result in the same (or very similar) spectral lineshapes.
Additionally, to completely remove the effect of losing or-
thogonality from such an extreme case, we suggest carrying
out standard Gram–Schmidt (GS) orthogonalization26 on the

diagonal subspace matrix O0. The amount of computation
time increased substantially (by 6–10 times) using GS, but
the resulting spectra for the COSY and ELDOR modes agree
very well with the results obtained by the LA-QMR procedure
for this case. Note that the dimension of O0, N × m′, is much
smaller than that of the Lanczos matrix V0, N × m, since m′


 m. After normalizing the COSY and the reorthogonalized
ELDOR spectra, the autopeak slices of the two spectra were
found to overlap completely.

Figures 3(c) and 3(d) show the simulation results for R0

= 105 s–1 in the LA-QMR procedure. The convergence was
confirmed. The iterated LA projections are 412 and 633, re-
spectively, for the spectra of the COSY and ELDOR modes.
The peak in the higher frequency [cf. Fig. 3(c)] is much bet-

Downloaded 07 Feb 2011 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



034112-9 Simulating high-frequency ESR J. Chem. Phys. 134, 034112 (2011)

ter revealed as the R0 is decreased by an order of magni-
tude, compared to Fig. 3(b). Figure 3(d) clearly shows the
rigid-limit lineshapes for R0 = 105 s−1 at 95 GHz. In the
W-band range, the anisotropic property of the g tensors is
clearly revealed and separated. The dashed lines represent the
anisotropic g values given to the simulations. The peak lo-
cations of the simulated lineshapes are in good agreement
with the given values. The COSY versus ELDOR spectra
display very similar rigid-limit lineshapes. It suggests an
adequate number of the LA projections performed in the
simulations. Again, the autopeak slices in Fig. 3(d) were ob-
tained without performing GS orthogonalization on matrix
O0. It is clearly shown in Figs. 3(b) and 3(d) that the dis-
similarity in the autopeak slices of the COSY versus ELDOR
spectra is indeed increased with a decrease in the rotational
diffusion time. The dissimilarity could be easily corrected by
performing GS orthogonalization on O0, whereas at the cost
of computation time. Figure 3(e) shows the autopeak slices
of the ELDOR spectra for R0 = 105 s−1 [i.e., the study in
Figs. 3(c) and 3(d)] as a function of LA projections. In this ex-
tremely slow-motional case, the lineshape converged slowly
requiring a large number of LA projections. The lineshape
varied with the LA projections and did not converge until the
number of the LA projections was greater than ca. 600. The
calculation of 800 LA projections confirms the convergence
of the lineshape. Overall, the result indicates that monitoring
the LA projections via the residuals is crucial to obtaining a
converged 2D-ELDOR lineshape, which requires a large and
adequate number of the LA projections for the eigenvalues
and eigenvectors to converge.

IV. SUMMARY AND CONCLUSIONS

High-field/high-frequency ESR experiments provide a
much better orientational resolution than those at conven-
tional frequency to reveal the dynamics on the spectral line-
shapes. Because of the excellent spectral resolution of the ex-
perimental spectra, high-field cw-ESR has, in recent years,
been demonstrated as a powerful tool to decompose the dy-
namics of proteins into various dynamic modes through the-
oretical lineshape analysis. In the present report, we have
made a significant further improvement on the numerical al-
gorithm required for the lineshape analysis of high-frequency
2D-ESR. The new numerical algorithm is an improved ver-
sion of the Lanczos-based methods for performing the or-
thogonal transformation of the stochastic Liouville super-
operator matrix, which is large, but sparse, symmetric, and
non-Hermitian. We have demonstrated that by replacing the
CG with the QMR in the Lanczos recursions, the orthogonal
transformation and associated tri-diagonal matrix, which are
greatly reduced in dimension from the original, are found to
better represent the original sparse matrix than does that ob-
tained from the LA-CG. The criterion upon which this state-
ment is made is largely based on the observed convergence
of the 2D-ESR spectra calculated from the respective eigen-
values and eigenvectors. The LA-QMR relieves the unwanted
effects caused by the loss of orthogonality in Lanczos recur-
sions so that it is able to allow a larger number of the Lanc-

zos projections than does the LA-CG. We, therefore, are able
to obtain the eigenpairs to better accuracy. In the very slow-
motional regime (R0 = 105 ∼ 106 s−1), reorthogonalization of
the reduced diagonal sub-space matrix might still be neces-
sary in order to completely remove the unwanted magnitude
of the 2D-ELDOR signal contributed from the effect of losing
orthogonality. The improvement provided by LA-QMR has
been demonstrated to be particularly critical for simulating
the slow-motional lineshapes at high frequency, which dis-
play high orientational resolution.
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