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The development, applications, and current challenges of the pulsed ESR technique of two-
dimensional Electron-Electron Double Resonance (2D ELDOR) are described. This is a three-pulse
technique akin to 2D Exchange Nuclear Magnetic Resonance, but involving electron spins, usually
in the form of spin-probes or spin-labels. As a result, it required the extension to much higher
frequencies, i.e., microwaves, and much faster time scales, with π/2 pulses in the 2-3 ns range. It has
proven very useful for studying molecular dynamics in complex fluids, and spectral results can be ex-
plained by fitting theoretical models (also described) that provide a detailed analysis of the molecular
dynamics and structure. We discuss concepts that also appear in other forms of 2D spectroscopy but
emphasize the unique advantages and difficulties that are intrinsic to ESR. Advantages include the
ability to tune the resonance frequency, in order to probe different motional ranges, while challenges
include the high ratio of the detection dead time vs. the relaxation times. We review several important
2D ELDOR studies of molecular dynamics. (1) The results from a spin probe dissolved in a liquid
crystal are followed throughout the isotropic → nematic → liquid-like smectic → solid-like smectic
→ crystalline phases as the temperature is reduced and are interpreted in terms of the slowly relaxing
local structure model. Here, the labeled molecule is undergoing overall motion in the macroscopically
aligned sample, as well as responding to local site fluctuations. (2) Several examples involving
model phospholipid membranes are provided, including the dynamic structural characterization of
the boundary lipid that coats a transmembrane peptide dimer. Additionally, subtle differences can
be elicited for the phospholipid membrane phases: liquid disordered, liquid ordered, and gel, and
the subtle effects upon the membrane, of antigen cross-linking of receptors on the surface of plasma
membrane, vesicles can be observed. These 2D ELDOR experiments are performed as a function
of mixing time, Tm, i.e., the time between the second and third π/2 pulses, which provides a third
dimension. In fact, a fourth dimension may be added by varying the ESR frequency/magnetic field
combination. Therefore, (3) it is shown how continuous-wave multifrequency ESR studies enable the
decomposition of complex dynamics of, e.g., proteins by virtue of their respective time scales. These
studies motivate our current efforts that are directed to extend 2D ELDOR to higher frequencies,
95 GHz in particular (from 9 and 17 GHz), in order to enable multi-frequency 2D ELDOR. This
required the development of quasi-optical methods for performing the mm-wave experiments, which
are summarized. We demonstrate state-of-the-art 95 GHz 2D ELDOR spectroscopy through its ability
to resolve the two signals from a spin probe dissolved in both the lipid phase and the coexisting
aqueous phase. As current 95 GHz experiments are restricted by limited spectral coverage of the
π/2 pulse, as well as the very short T2 relaxation times of the electron spins, we discuss how these
limitations are being addressed. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4917322]

I. INTRODUCTION

Spin-label ESR spectroscopy has been widely used and
demonstrated as a powerful tool to investigate the local dy-
namics and structure of complex fluids such as liquid crystals,
model and biological membranes, polymers, proteins, and pro-
tein complexes.1–7 An ESR spectrum provides a view of molec-
ular motion. Modern simulation and fitting techniques can
unlock a wealth of detailed information from these views. Two
separate strategies for further extending the capabilities of ESR
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have emerged: multi-frequency ESR and two-dimensional
electron-electron double resonance (2D ELDOR).

Multi-frequency ESR, achieved by acquiring a series of
spectra at different resonance frequencies, sensitively detects
and discriminates motions occurring on different time scales.
Continuous-wave (cw) ESR has been successfully extended
to high magnetic fields and frequencies,1,8 leading to ESR
line shapes with greatly improved orientational resolution
that also provide a better insight into faster molecular dy-
namics.1,6,9–11 Thus, one can design multi-frequency ESR
experiments that unravel the details of dynamical modes of
complex systems.1,6,9,10,12
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2D ELDOR studies on complex fluids and macromol-
ecules disentangle the homogeneous broadening, which pro-
vides insight into molecular motions, from the inhomogeneous
broadening, which relates to local structure and ordering.1,13–18

Furthermore, it supplies cross-peaks that directly report on
the relative diffusive motions of spin-bearing molecules (cf.
background section) and rotational motions of labeled biomol-
ecules that can be as slow as tens of microseconds (limited
only by the T1). Recent technological developments19–21 have
begun to lead to the capability of performing 2D ELDOR on
complex fluids at high frequency (95 GHz), thus combining
the virtues of 2D ELDOR with those of multi-frequency
ESR.6,10,19,20

In this paper, we describe the challenges required to
bring 2D ELDOR to the mm-wave regime and our current
progress towards addressing them. We begin with an overview
of the background of 2D ELDOR, including the underlying
theory and earlier motivating experiments at standard ESR
frequencies of 9 and 17 GHz. The theoretical prediction and
interpretation require a special analysis developed by Freed
and coworkers based on the stochastic Liouville equation
(SLE).22 Among other benefits, this method permits one to
simulate spectra in the slow-motional regime, where other
methods, such as Redfield theory, are no longer valid. We
outline the fundamental concepts behind this approach, which
has been effectively extended to predict 2D ELDOR spectra23

and successfully applied to a variety of experiments performed
at conventional ESR frequencies (9 and 17 GHz).1,15–18 Then,
we summarize the current state-of-the-art and the remaining
technical challenges involved in successfully implementing
multi-frequency 2D ELDOR experiments. We also note recent
progress we have made in improving the computational
algorithms to enable the simulation of high-frequency 2D-ESR
spectra over the whole motional range.

ESR provides complementary information to that avail-
able from other spectroscopic techniques.24 For instance, while
particular variants of IR and fluorescence spectroscopy allow
one to probe the fluctuations and reorganization of the sol-
vent,25–27 ESR is particularly good a probing changes in order-
ing,17,28,29 e.g., of lipid bilayers, in response to changes in the
solvent or composition and is sensitive to changes in structure
and local dynamics that occur in association with conforma-
tional rearrangement,1,5,30,31 allowing one to track motions over
longer time scales than these other methods. Like many other
modern forms of spectroscopy, multi-dimensional ESR makes
frequent use of the stimulated echo and involves the concepts
of rephasing and non-rephasing signals. However, as ESR typi-
cally involves only two spin transition levels [like Nuclear
Magnetic Resonance (NMR)] with well understood and quan-
tifiable interactions, this avoids, for example, the complexity
that hot bands introduce into IR spectroscopy or that multiple
transitions can introduce into UV-visible spectroscopy. ESR
also features a unique probe moiety or molecule, thus avoiding
the complexity, introduced by many similar spin centers, char-
acteristic of NMR. The ESR transition frequencies do depend
upon molecular orientations in a precise manner. Thus, one
can focus on accurately and rigorously simulating the ESR
spectrum to extract a wealth of detailed information about
molecular dynamics and ordering.32

II. 2D FOURIER TRANSFORM (FT) ESR
AND DYNAMICS IN COMPLEX FLUIDS:
BACKGROUND AND THEORY

A. Background

2D NMR was first developed by Ernst and coworkers in
1976.33 In 2D NMR, one uses nonselective radiofrequency
(rf) pulses to successfully irradiate the entire spectrum and
to collect the data shortly after pulse application. This
process introduces coherences simultaneously to all spectral
components and enables the observation of coherence transfer
between these components. Ernst and Jeener subsequently
showed how magnetization transfer could also be studied in
this manner,34 while a cw electron-electron double resonance
experiment had previously been introduced by Hyde, Chien,
and Freed.35 Nonetheless, as compared to 2D NMR, it took
another ten years for 2D-ESR to incorporate these ideas,36

for the simple reason that the ESR experiment is more
difficult to carry out. In the case of ESR, microwaves are
used rather than the rf waves used in NMR. Also, the ESR
relaxation times are orders of magnitudes faster, ESR pulse
widths are orders of magnitude shorter, and the spectral
bandwidths that must be covered are orders of magnitude
wider. Consequently, it proved necessary to first develop
FT techniques in ESR. Modern FT-ESR appeared in several
laboratories, including ours, in the 1984-1988 period.36–38

The 2D-FT-ESR experiments conducted at Cornell consisted
of a 2D-ESR experiment, appropriately called spin-echo-
correlated spectroscopy (SECSY) which utilizes two π/2
pulses, and a 2D-exchange experiment which utilizes three
π/2 pulses, now referred to as 2D ELDOR.36,39 In 2D ELDOR,
very short pulses are used which simultaneously excite all
the frequencies in the ESR spectrum in a coherent fashion.
This leads to auto-peaks which provide the normal ESR
spectral lines and cross-peaks between all pump and observing
frequencies. The sequence of π/2-pulses and respective time
delays for 2D ELDOR is shown in Fig. 1(a). The 2D spectrum
is obtained by Fourier transforming with respect to the times t1

FIG. 1. The pulse sequences for (a) the standard 2D ELDOR experiment and
(b) SECSY format of 2D ELDOR experiments. The two coherence pathways
for this experiment are also shown.
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and t2. The “real-time” evolution of the 2D ELDOR spectrum
is obtained by stepping out the mixing-time Tm. Another mode
of performing this experiment is shown in Fig. 1(b), and we
refer to it as 2D ELDOR in the SECSY mode.

With SECSY, it was possible to obtain homogeneous
T2 values from the whole spectrum simultaneously from
an (inhomogeneously broadened) ESR signal. The first FT-
based 2D ELDOR experiment goes beyond this and exhibits
cross-peak development that results from Heisenberg spin-
exchange. To make the technique of 2D ELDOR generally
applicable, sophisticated phase-cycling was introduced on the
technical side, whilst on the theoretical side, a full analysis was
developed for the fast-motional 2D spectra, taking into account
the generation of cross-peaks by the Heisenberg exchange
(HE) and electron-nuclear dipolar (END) terms. Additional
studies explored how to distinguish between the respective
contributions to enable quantitative measurements of HE and
of END terms in a liquid crystal.40 The measurement of END
terms led to sophisticated insights into molecular motions in
ordered fluids that could not be obtained with cw-ESR. The
measurement of rates of chemical exchange in a semi-quinone
system was also demonstrated by using 2D ELDOR.38

Subsequently, 2D ELDOR was further developed to
address the slow-motion regime (i.e., the regime where
Redfield theory is no longer valid). This was accomplished by
increasing the spectral coverage to 250 MHz, enhancing the
data-acquisition rates, significantly reducing the spectrometer
dead times,41,42 and developing the general theory for the
quantitative analysis of 2D spectra.23 Complex fluids could
then be studied in detail, including phospholipid membrane
vesicles,14,43 liquid crystals,16,32 and liquid-crystalline poly-
mers.15 Simultaneous fits of 2D ELDOR data at several
mixing times, Tm, provide a third dimension in that one
monitors how the cross-peaks grow in relation to the auto-
peaks with increasing mixing time, as shown in Fig. 2
for a liquid-crystalline phase of lipid vesicles compared to
the liquid-ordered (LO) phase. This information provides
quantitative information on the nuclear spin-flip-inducing
processes of both HE, which is related (via intermolecular
collisions) to translational diffusion, and the intramolecular
END interaction, which is related to tumbling motions. We
now turn to the underlying theory of 2D ELDOR.

B. SLE to describe ESR spectra

The application of the stochastic Liouville equation to
the calculation of ESR line shapes was introduced in 1971,44

and since then has been extensively developed.22,23,45–50 In
additional to standard quantum-mechanical spin operators, the
SLE includes a classical diffusion operator ΓΩ that operates
on the continuous space spanned by the Euler angles (Ω)
that describe the relative orientations between the fluctuating
molecular frame (MF) and the laboratory frame (LF). This
allows one to define ρ̂ (Ω, t), which is a density operator
describing the sub-ensemble of spin-bearing molecules with
orientation Ω and which implicitly contains the probability
distribution, P (Ω, t), for this orientation. A quantitative
treatment of slow-motional ESR is then accomplished by
solving the SLE,

FIG. 2. 2D ELDOR signals at 17.3 GHz versus mixing time, Tm, of 16-PC
in liquid-crystalline phase from pure lipid vesicles (left column) compared
with 16 PC in liquid-ordered phase (right column) from 1:1 ratio lipid to
cholesterol17 at 51 ◦C. Modified with permission from J. H. Freed, Annu. Rev.
Phys. Chem. 51, 655 (2000). Copyright 2000 by Annual Reviews.

∂ ρ̂ (Ω, t)
∂t

= −i
�
Ĥ , ρ̂ (Ω, t)� − ΓΩ ρ̂ (Ω, t) . (1)

Note that (i) the standard spin density operator is ob-
tained by averaging ρ̂(Ω, t) over all Ω : ρ̂(t) = 

ρ̂ (Ω, t) dΩ
= ⟨ ρ̂ (Ω, t)⟩Ω and (ii) tracing over the electron and nuclear spin
states reduces the ρ̂ (Ω, t) to Tr[ ρ̂ (Ω, t)] = P(Ω, t) (a scalar
function).

The spin Hamiltonian in Eq. (1), which consists of
hyperfine (hf) and Zeeman terms that exhibit orientational
anisotropy, can be expressed as

Ĥ =


l,m,m′, µ

Â(l,m)
µ,LFD(l)

m,m′ (ΩLM) F(l,m′)∗
µ,MF , (2)

where the Â(l,m)
µ,LF are the irreducible components of the spin

tensor with spin operators defined in the LF, in which the
z-axis is along the external magnetic field, B0; the subscript
µ refers to the type of magnetic interaction (g-tensor or hf-
tensor), whose irreducible tensor coefficients are given by
F(l,m′)
µ,MF and are fixed in the MF; the D(l)

m,m′ (ΩLM) are the Wigner
rotation matrix elements (with |m|, |m′| ≤ l integers) which
affect transformations of the matrix elements between the LF
and MF; and in most cases, the Hamiltonian is limited to rank
l = 2 interactions for convenience.
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C. Matrix representation of the SLE operator L̂

Using superoperator notation, the SLE (Eq. (1)) can be
expressed as

∂ ρ̂ (Ω, t)
∂t

= −i
�
Ĥ , ρ̂(Ω, t)� − ΓΩ ρ̂ (Ω, t)

=
(
iĤ × − ΓΩ

)
ρ̂ (Ω, t)

= L̂ ρ̂ (Ω, t) , (3)

where the second equality defines the superoperator for the
spin Hamiltonian, Ĥ ×, and the third equality defines the
stochastic Liouville superoperator, L̂.

In order to represent Eq. (3) in Liouville space as

∂

∂t
|ρ(Ω, t)⟩⟩ = L̂ |ρ(Ω, t)⟩⟩, (4)

we seek a finite basis |σi(Ω)⟩⟩ to represent |ρ(Ω, t)⟩⟩ as a vector,
ρ⃗, with elements ρi = ⟨⟨σi(Ω)|ρ(Ω, t)⟩⟩ and L̂ as a matrix, L,
with elements (Li, j = ⟨⟨σi |L̂ |σ j⟩⟩).

We first consider the basis for the Liouville spin states.
Following standard notation, we map operators, Â, onto states,
Â → |A⟩⟩, in Liouville space, where the inner product is
defined by the adjoint and trace: ⟨⟨A|B⟩⟩ = Tr[Â†B̂]. We denote
Liouville spin states corresponding to transition operators,
|m⟩⟨m′|, as follows:

|m⟩ ⟨m′| → |m,m′⟩⟩
= |p,q⟩⟩, (5)

where m can be the quantum numbers of either the electron
spin (typically, S = 1/2, ms = −1/2,1/2) or nuclear spin (for
example, I = 1, mI = −1,0,1) states and, for the case of
a multiple-spin system, one can form direct products of
the form of Eq. (5). On the second line of Eq. (5), we
have defined ps = ms − m′s, pI = mI − m′I , qs = ms + m′s, and
qI = mI + m′I . Note that ps defines the coherence order for
the electron spins: ps = 0 corresponds to the diagonal type
elements of the density matrix, whereas ps = ±1 corresponds
to off-diagonal matrix elements—for example, those between
which microwave irradiation induces transitions.

To account for the orientational degrees of freedom, we
provide an orthonormal basis set for the diffusion operator,
ΓΩ, to operate on:

Φ
(L)
M,K (Ω) = D(L)

M,K (Ω)


2L + 1
8π2 , (6)

where the D(L)
M,K are again the Wigner rotation coefficients, and

the second factor after the equality is a normalization factor.
While there are infinitely many choices for L, we can choose
a finite basis by truncating to appropriate maximum values of
L, M , and K . We can then define a convenient orthonormal
basis set composed of the Liouville states,

|σi(Ω)⟩⟩ = |ps,qs; pI ,qI⟩⟩Φ(L)
M,K (Ω) , (7)

where the semicolon indicates a direct product between the
electronic and nuclear spin states and the index i ranges over
all possible combinations of ps, qs, pI , qI , L, M , and K .
Note the simple relationship between the basis states and the

Hamiltonian of Eq. (2),

|A(l,m)
µ,LF⟩⟩ ∝


qs,q I

|ps,qs; qI ,pI⟩⟩, (8)

which simplifies calculation of the Hamiltonian superoperator.
Schneider and Freed22,46 describe the details of calculating
slow-motional ESR line shapes for a nitroxide radical in
solution.

D. Solving the SLE

1. Coherence sub-matrices

The basis set required to represent the stochastic Liouville
(SL) superoperator is usually very large, which can require
rather exorbitant times to diagonalize the SL matrix, L. In the
usual case of high magnetic fields and when no microwave
pulse is present, the SL matrix is block-diagonal with respect
to the coherence order of the electron spin, i.e., ps. For
S = 1/2, we distinguish between the submatrices L±1 (spanned
by the off-diagonal subspaces ps = ±1) and L0 (spanned
by the diagonal subspace ps = 0). The three matrices can
be diagonalized separately by different complex orthogonal
transformations,

Otr
psLpsOps = Λps, (9)

where ps = 0,±1, Ops is the complex orthogonal matrix
formed from the eigenvectors, andΛps is the eigenvalue matrix
for coherence order ps. (Note that SL operator of Eq. (3) is not
Hermitian, but complex symmetric, or may be rendered so by
an appropriate similarity transformation: S = HU, where H is
Hermitian and U is unitary22—see also Eq. (13) and below
Eq. (16).)

2. Lanczos algorithm (LA)

The diagonalization of each Lps submatrix is performed
by using the Lanczos algorithm.22,23,46,48 Given that the SL
matrix is sparse, one can achieve order-of-magnitude (and even
greater) reduction in computation time by employing the LA.
One exploits the starting vector, ν⃗ (νi = ⟨⟨σi |ν⟩⟩), to select out
the small sub-set of vectors, known as Lanczos vectors, which
span the sub-space required to calculate the ESR spectrum.
The current method uses an objective criterion to determine
when a sufficient sub-space, of much smaller dimensionality,
has been generated. This subspace is simultaneously projected
out, and the reduced SL matrix is converted to tri-diagonal
form, which is then easily diagonalized.22 In this manner, a
greatly reduced number of multiplications are required. In
modified form, the LA can also be used to provide an objective
method to prune the original set of basis vectors down to the
minimum set needed to represent the relevant eigenvectors.

To simulate pulsed 2D experiments, we require the pulse
propagator, P̂. For a particular coherence pathway, we may
write P̂(ps

1← ps
2 ) as the corresponding pulse propagator, where

ps
1 and ps

2 are the coherence orders after and before the
pulse, respectively. In the case of a 90◦ pulse, the matrix
representation of each such pulse propagator is proportional
to the unit matrix in the sub-block that connects the associated
sub-space(s) of the SLE and is zero elsewhere (see Ref. 23).
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The 2D-ESR signal is given by

SELDOR
c±1 ∝




ν−1|Ô−1 exp(−Λ̂−1t2)Ô tr

−1P̂(−1←0)
× Ô0 exp(−Λ̂0Tm)Ô tr

0 P̂(0←∓1)
× Ô∓ exp(−Λ̂∓t1)Ô tr

∓ |ν∓1
��
, (10)

where |ν∓1⟩⟩ = P̂(∓1←0)| ρ̂0⟩⟩ is the density operator after the
first π/2 pulse, and t1, t2, and Tm are illustrated in Fig. 1. It can
be calculated once (i) the matrix representations, L0, L±1, in
the diagonal (ps = 0) and off-diagonal (ps = ±1) subspaces of
the operator are obtained; (ii) the matrix representations of the
pulse propagators that switch between the sets of subspaces are
obtained (from Eq. (11) of Ref. 23); and (iii) the eigenvalues
and eigenvectors of the SL matrix are found.

There are two coherence pathways shown in Fig. 1 and
given by Eq. (10): Sc+ and Sc−. The former does not result in
any echo-type refocusing and we refer to it as free induction
decay (FID)-like. The latter does have refocusing and yields a
“stimulated echo.” Thus, Sc− is the “rephasing” signal, while
Sc+ is the “non-rephasing” signal.

E. Diffusion in anisotropic media

1. The SLE

In anisotropic media, such as liquid crystals or mem-
branes, or in the presence of side-chain motion in proteins, the
orientational distribution of the spin probe is not isotropic. In
that case, its equilibrium distribution, Peq(Ω), can be derived
from an orientational potential energy, U(Ω), which is the
potential of mean torque experienced by it,

Peq (Ω) =
exp

(
−U(Ω)

kBT

)


exp
(
−U(Ω)

kBT

)
dΩ

, (11)

where kB is Boltzmann’s constant and T is the temperature.
The diffusion operator becomes

ΓΩ = ∇Ω · R ·

∇Ω +

1
kBT
∇Ω ·U(Ω)


. (12)

Here, R is the rotational diffusion tensor. Equation (12) is
known as a Smoluchowski equation. It has the property
that any initial P(Ω,0) that evolves according to ∂P/∂t
= −ΓΩP(Ω, t) will converge to limt→∞ P(Ω, t) = Peq(Ω). In
other words, Peq(Ω) is an eigenfunction of ΓΩ with zero
eigenvalue. ΓΩ, as given by Eq. (12), is non-symmetric but
can be converted into the symmetric form by the following
Hermitian transformation:45

Γ̃Ω = Peq(Ω)−1/2
ΓΩ(Ω)Peq(Ω)1/2, (13)

which yields

Γ̃Ω =


∇Ω −

∇Ω
kBT


· R ·


∇Ω +

∇Ω
kBT


. (14)

The diffusion equation (Eq. (14)) may be solved for P̃(Ω, t)
= P−1/2

eq (Ω)P(Ω, t). The symmetric matrix Γ̃Ω can be diagonal-
ized after calculating its matrix elements explicitly in the basis
formed by the functions ΦL

M,K (Ω) given by Eq. (6). The new

SLE operator becomes

˜̂L = iĤ − Γ̃Ω (15)

for which the new starting vector is

|ν̃⟩⟩ = P−1/2
eq (Ω)|ν⟩⟩. (16)

Finally, the expression for the 2D ELDOR (Eq. (10)) may
be solved after the replacement: |ν⟩⟩ → |ν̃⟩⟩ and ΓΩ → Γ̃Ω.
(Another requirement to render the SL matrix to be complex
symmetric is for the basis sets to be made to obey time reversal
symmetry by the appropriate unitary transformation.22)

2. The potential function, U (Ω), and the ordering
tensor S

The potential energy operator, U(Ω), can be expanded in
terms of the Wigner rotation matrix elements D(L)

M,K (Ω) as
follows:

−U(Ω)
kBT

=


L,M,K

cL
M,KD(L)

M,K(Ω). (17)

The resulting ordering S tensor elements can be obtained by
using Peq(Ω) as follows:

S0 =

D(2)

0,0


=


Peq(Ω)D(2)

0,0(Ω) dΩ (18)

S2 =

D(2)

0,2 + D(2)
0,−2


. (19)

Since S is a traceless 2nd rank tensor, only S0 and S2 are needed
in its principal axis frame.

In actual applications, the expansion of Ĥ in Eq. (2) and
the use of Ω → ΩLG are usually too simple a diffusive model
to explain experiments. We now introduce the Microscopic
Order and Macroscopic Disorder (MOMD) model and the
Slowly Relaxing Local Structure (SRLS) model.

3. Reference frames used in the MOMD
and SRLS models

Various reference frames, which are illustrated in Fig. 3,
are required to fully model the various motions and interac-
tions involved in the SLE and are defined here: the LF is
defined with respect to the external magnetic field, B̂0, whose
direction is used as its z-axis. The local director, n̂, defines the
director frame (DF), which, in general, is tilted relative to the
magnetic field by the angleψ and is obtained by transformation
by the set of Euler anglesΨL→D from LF to DF. In membranes,
n̂ is usually taken as parallel to the local membrane normal; in a
protein, it represents the preferred orientation of the spin label
side-chain, which is a local direction in the protein that is fixed
relative to the protein backbone;12,49 and in a complex fluid,
it would be determined by the instantaneous orientation of
the solvent “cage.”16,48 In MOMD, the ΨL→D Euler angles are
“frozen,” i.e., time independent and usually randomly oriented.
In SRLS, they are time-dependent due to the slower motion of
the larger body. The principal axes of the molecular diffusion
tensor (usually taken as the principal axes of the ordering
tensor of the molecule or spin-bearing moiety—see Eqs. (18)
and (19)) define the MF, which is fixed within the molecule.
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FIG. 3. Reference frames that define the orientation of a sample to study
its structural and dynamic properties. (i) Lab frame (LF) is defined with
respect to the external magnetic field, whose direction is used as its z-axis;
(ii) director frame (DF) is defined by the local director, n̂, tilted relative to the
magnetic field by the angleψ and obtained by the transformation by the set of
Euler anglesΨL→D from LF to DF; (iii) molecular frame (MF) is fixed within
the molecule and obtained by the transformation by the set of Euler angles
ΩD→M; (iv) g-tensor frame (GF), the principal-axes frame of the g-tensor of
the unpaired electron is obtained using the transformation ΦM→G from MF
to GF; (v) A-tensor frame (AF), defined by the principal-axes of the A-tensor,
is obtained using ΩA from GF to AF.

It is obtained by the transformation of ΩD→M from DF to
MF. The g-tensor frame (GF) is the principal-axes frame
of the g-tensor and is obtained by the transformation by the
set of Euler angles ΦM→G from MF to GF. The A-tensor
frame (AF) is defined by the principal-axes of the A-tensor
(hf interaction) and is obtained by the transformation by the
set of Euler anglesΩA from GF to AF; however, the principal-
axes of the A-tensor are typically found to be almost parallel
to those of the g-tensor for nitroxide labels.

In order to define the orientation of the spin-bearing
molecule, the typical molecular magnetic tensor in irreducible
tensor notation is transformed from the GF to LF frame as
follows:

F(2,m)∗
µ,LF =


m′,m′′,m′′′

D(2)
m,m′(ΨL→D)D(2)

m′,m′′(ΩD→M)

×D(2)
m′′,m′′′(ΦM→G)F(2,m′′′)∗

µ,GF
, (20)

which generalizes Eq. (2).

4. MOMD

It is often the case that the spin-labeled molecule will
exhibit restriction of its motion because of the structure in its
local surroundings (i.e., microscopic order), e.g., a labeled
lipid molecule will orient relative to the lipid membrane
normal at its site, which would itself be orientationally
randomly distributed in a membrane vesicle. In another
example, a spin label on a protein side-chain will be restricted
in its motion to a limited range of orientations relative to
the backbone. In the limit of very slow reorientation of the
larger body (e.g., protein or lipid vesicle), one can employ
MOMD to model the distribution of orientations of the spin

labels in the ensemble relative to the main magnetic field
(i.e., macroscopic disorder).29,49 Specifically, one takes an
average of the spectra from all orientations, ψ, which define
the transformation angles ΨL→D that appear in Eq. (20), to
obtain the composite MOMD spectrum, as follows:

I(ω) =


I(ω,ψ) sin(ψ)dψ. (21)

By definition, this spectrum is inhomogeneously broadened,
but it happens in a characteristic manner, which depends on the
ordering potential Eq. (17), or equivalently upon the ordering
tensor S, for example, that given by Eqs. (18) and (19).

5. SRLS model

With the enhanced resolution offered by 2D ELDOR
and also high-field high-frequency (HF-HF) ESR, more
sophisticated models of molecular reorientation have been
proposed to fit these ESR spectra. For example, the many-
body problem of dealing with the microscopic details of fluids
is approximated by a set of collective degrees of freedom that
represent the main effects of the solvent on a rotating solute.
These collective variables are modeled as a loose solvent
“cage,” which is considered to be relaxing slowly and within
which the solute is assumed to be reorienting more rapidly.
This so-called SRLS is obtained by generalizing the MOMD
model by letting the Euler angles ΨL→D fluctuate in time due
to the slow overall process; this may also be a slow tumbling
of a vesicle or overall rotation of a protein.48,51

III. MOLECULAR DYNAMICS IN LIQUID CRYSTALS
AND MEMBRANES: 2D ELDOR AT 17 GHZ

A. 2D ELDOR of complex fluids

2D ELDOR spectra are very sensitive to the properties of
membrane vesicles, showing dramatic changes with modest
variations in the membranes’ properties. Moreover, such
changes can even be detected visually from the spectral
patterns by a simple inspection; an example is seen in Fig. 2,
which shows the 2D ELDOR contour plots as a function of
the mixing time, Tm, for the spin-labeled lipid, 1-palmitoyl-
2-(16-doxyl stearoyl) phosphatidylcholine (16-PC) in pure
lipid vesicles, in a standard liquid-crystalline phase, and also
for a 1:1 lipid-cholesterol mixture, which exhibits a “LO”
phase. The qualitative difference in the spectra indicates that
the LO phase exhibits significantly greater ordering than the
liquid crystalline phase, due to its increased microscopic
ordering—hence macroscopic broadening of the spectrum. In
addition, the LO phase exhibits a much slower development
of cross-peaks as a function of Tm, due to a restricted range of
orientational motion as a result of microscopic ordering.17

Complete averaging leads to homogeneous broadening,
while a distribution of orientations in the ensemble, i.e.,
MOMD, causes complex inhomogeneous line shapes.29,49 A
second often-encountered source of inhomogeneous broad-
ening is reorientation in the slow-motional regime, yielding
incomplete averaging. Such slow-motional spectra are very
sensitive to details of the molecular motions.
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In complex fluids, it was found that the SRLS model was
needed to simulate these slow-motional effects and analyze
the 2D ELDOR spectra. A macroscopically aligned liquid
crystal solvent, called 4O,8, exhibits many phases as a function
of temperature, including isotropic (I), nematic (N), liquid-
like smectic (SA), solid-like smectic (SB), and crystalline
(C) phases. The SRLS model, in addition to including the
macroscopic liquid-crystalline orienting potential, provides
consistently better fits than can be obtained with the simpler
MOMD model.16,32 By studying a macroscopically aligned
sample, one can obtain extensive relaxation, dynamic, and
structural information which includes virtually all of the
parameters obtainable from any ESR experiments on spin
relaxation in a complex fluid! These ten parameters are as
follows: the two-term (asymmetric) macroscopic ordering
potential in the liquid crystalline phases, the axially symmetric
diffusion tensor for the probe, its two-term orienting potential
in the local structure or cage, the relaxation rate for the cage,
the residual homogeneous T2 due to processes other than the
reorientational modulation of the 14N dipolar and g-tensors,
the residual (Gaussian) inhomogeneous broadening not due to
the specific slow-motional contributions from the 14N hf- and
g-tensors, and the overall T1 for the electron spins.

In Fig. 4, one sees some of the results from the
study of a spin-labeled cholesterol analogue, cholestane,
dissolved in 4O,8. Cholestane is highly ordered in 4O,8 and
reports on the differences between the phases at a molecular
level. In Fig. 4(a), one sees how neither of the rotational
diffusion coefficients R0

∥ and R0
⊥ (the parallel and perpendicular

components of R0) changes much as a function of temperature
throughout the phases, though they do increase slightly during
the N → SA transition, presumably due to decreased friction
in the more ordered SA phase. Most interesting is the behavior
of the motional rate of the cage, Rc. In the I, N, and SA

phases, Rc is at least an order of magnitude slower than that
of the cholesterol probe, but upon entering the SB phase, Rc

decreases an order-of-magnitude further. To appreciate the
origin of this decrease, one can examine the various potential
terms. Fig. 4(b) shows the effects of the macroscopic alignment
on the probe via the potential coefficients (which are given
as multiples of kBT) a2

0 and a2
2, while Fig. 4(c) shows the

local fluctuating potential, or cage, via c2
0 and c2

2. Note that
at the SA → SB transition, which is a liquid-like to solid-
like smectic transition, the cage potential drops sharply and
the macroscopic potential a2

0 increases substantially. This is
interpreted to mean that the spin label is no longer affected
by local 4O,8 chain fluctuations, which freeze out, leading to
macroscopic alignment.

The nature of the boundary lipid that coats a membrane
protein is another interesting issue which could be studied by
2D ELDOR, as it was in a study of the peptide gramicidin
A (GA) residing in a model membrane.52 This study required
2D ELDOR at a higher resonance frequency of 17.3 GHz,
in order to achieve increased signal-to-noise ratio (SNR),
as well as reduced dead times (∼25 − 30 ns),53 so that one
could discern the presence of two components, representing
two populations of spin-labeled lipids. These are (i) the bulk
component, which exhibited relatively fast dynamics, and (ii)
the boundary lipid, which grows in as the GA is added, and

FIG. 4. (a) Rotational diffusion coefficients for the probe: R0
∥ (open circles)

and R0
⊥ (open triangles), as well as the cage (plus signs), plotted as a function

of temperature. (b) Mean field (macroscopic) orienting potential parameters:
a2

0 (open circles) and a2
2 (open triangles) as a function of temperature. (c)

Cage potential parameters: c2
0 (open circles) and c2

2 (open triangles) as a
function of temperature (fits to SRLS model; adapted with permission from
V. S. S. Sastry et al., J. Chem. Phys. 105, 5753 (1996); copyright 1996 by
AIP Publishing LLC).

whose 2D ELDOR spectrum is undoubtedly that of a more
slowly reorienting lipid, as expected. These spectra could be
simulated with a physically meaningful model where the end-
chains of the lipids are bent as they coat the GA. Such details
of the dynamic structure of complex membrane systems can
only be obtained using 2D ELDOR.

B. Improved resolution with the full Sc− method

In the 2D ELDOR studies shown in Figs. 2 and 4,
the magnitude spectra were used, despite the fact that full
complex Sc− data were acquired. This is because imperfect
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spectral coverage from pulses of finite widths as well as
finite spectrometer dead times leads to phase shifts along both
frequency dimensions, which distort these spectra; however,
the magnitude spectra are unaffected by this. Unfortunately,
as is well known, magnitude spectra significantly reduce the
spectral resolution relative to pure absorption spectra, so a new
method was needed to recover this resolution.

A standard cw or a FID signal is composed of real
and imaginary parts, wherein, by convention, we refer to
the absorption as the real part and the dispersion as the
imaginary part. For a 2D spectrum, it is typically possible
to acquire the 2D real and imaginary components for both the
echo-like (rephasing) Sc− and the FID-like (non-rephasing)
Sc+ components, previously expressed in Eq. (10) and
illustrated in Fig. 1. Such a four-component dataset (real and
imaginary for Sc− and Sc+) is referred to as a “hypercomplex”
dataset, and it could be used to reconstruct a 2D spectrum with
pure absorption line shapes. However, 2D ELDOR suffers
from the difficulty that the full hypercomplex signal is not
usually available, but only the Sc− component. This is the result
of the presence of significant inhomogeneous broadening,
which causes the Sc+ component to decay much more rapidly
than the Sc− component, often greatly reducing its amplitude
by the end of the finite spectrometer dead time. A second
problem is that the effect of the first-order phase shifts that
arise from the finite spectrometer dead time and incomplete
spectral coverage by pulses of finite width often cannot be
directly used to correct the experimental spectra. That is, the
complex 2D spectra are made up of many “dynamic spin
packets,” which are the eigenmodes of the SLE,22 and each of
which is a mix of absorptive and dispersive components. It is
impossible to separate the various dynamic spin packets that
make up the composite spectrum, and one must rely on the
theoretical analysis.

To overcome both these difficulties, the “full Sc−” method,
which utilizes both the real and imaginary components of
the experimental Sc− signal, was developed.54,55 The standard
NLLS fitting package46 was modified to include the phase
corrections as additional fitting parameters in the nonlinear
least-squares fitting of theory to experiment. The fitting
procedure can thus take advantage of the greater resolution and
detail supplied by the full complex data to yield the dynamic
and ordering parameters. One can then use the resulting
phase corrections from the fit to produce approximate pure
absorption spectra from the original experimental data or one
can generate the theoretical prediction of the pure absorption-
mode spectrum from the fits to the model parameters.18,54

C. Two applications of the full Sc− method

In the first application, we have been able to obtain the
phase diagram of 1,2-dipalmitoyl-sn-glycero-phosphatidyl-
choline (DPPC)-cholesterol binary mixtures vs. temperature.18

This phase diagram has regions corresponding to liquid-
disordered, liquid-ordered, and gel phases. The 2D ELDOR
spectra from the 16-PC spin label are very distinctive for
these phases, especially in the absorption format. In Fig. 5,
we show the “normalized” contour plots, which are obtained
by taking Fourier-transformed data in the SECSY mode (see

FIG. 5. Contour plots of the 3 lipid phases: approximate absorption 2D
ELDOR spectra in the SECSY format (cf. Fig. 1), acquired from samples of
16-PC in DPPC-cholesterol vesicles, in the normalized contour presentation,
which displays the homogeneous linewidths in the f1 direction. The upper,
middle, and lower contours represent Ld, Lo, and gel phases, respectively.
Reprinted with permission from Fig. 5 of Y. W. Chiang et al., Appl. Magn.
Reson. 31, 375 (2007). Copyright 2007 by Springer International Publishing
AG.56

Fig. 1), then dividing by the f1 = 0 spectrum, so that the
resultant f1 = 0 contour is simply a line of unity value,
whose linewidth provides a comparison of the homogeneous
linewidth (along f1) at different locations of the ESR spectrum
(along f2). The Ld phase yields the signal with the narrowest
homogeneous linewidths, whereas those from the gel phase
are the broadest. In addition, the signal from all phases
shows distinctive linewidth variations across the spectrum.
A careful analysis of the 2D ELDOR spectra versus mixing
time Tm and temperature has allowed us to characterize the
respective single-phase regions, as well as the two-phase
regions, leading to the phase diagram shown in Fig. 6, along
with representative 2D ELDOR spectra. This phase diagram
is in reasonably good agreement with previous studies, which
however required several different physical techniques, as
opposed to our application of just 2D ELDOR.18 Here, the full
Sc− method was crucial for reliably extracting the dynamic
parameters and determining the dynamic structure over the
whole phase diagram, especially in the two-phase coexistence
regions.

In the second example, we have applied the full
Sc− method to analyze the 2D ELDOR spectra we obtained
from plasma membrane vesicles (PMV) from RBL-2H3 mast
cells in order to investigate the dynamic structural changes
upon antigen cross-linking of IgE receptors on the surface
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FIG. 6. (Top) Phase diagram of binary mixtures of DPPC-cholesterol con-
taining 16-PC determined according to 2D ELDOR analysis. Triangles and
filled circles indicate the compositions studied. (Bottom) 2D ELDOR spec-
tra, from compositions as marked, show distinctive patterns and line shape
variations for one to characterize the membrane phases. (Standard magnitude
mode shown for convenience; reprinted with permission from Fig. 6 of
Y. W. Chiang et al., Appl. Magn. Reson. 31, 375 (2007). Copyright 2007
by Springer International Publishing AG.56)

of the PMV.57 The 2D ELDOR spectra after cross-linking
show small but significant changes, whereas the cw ESR
does not. We found it difficult to obtain unambiguous fits
to the spectra in the magnitude mode. However, with the full
Sc− method, we were able to obtain good quality fits and
to distinguish the small but significant changes in the PMV
before and after cross-linking. The molecular dynamic and
ordering parameters extracted from spectral fitting also enable
us to characterize the heterogeneities in the PMV. We found
it necessary to fit the spectra with two spectral components in
order to achieve good fits to the full Sc− data. The ordering,
given by the ordering parameter S0, is found to be the best
distinguishing feature between the coexisting components and
to identify these components as corresponding to the Ld and
Lo phases, whereas the rotational diffusion rates for both
components are comparable. These two coexisting spectral
components are shown in Fig. 7 in the absorption mode, as
obtained from the best theoretical fits.

The populations of the coexisting components are found
to change upon cross-linking. As shown in Fig. 8, the popu-
lation of the Lo phase in both uncross-linked and cross-linked

FIG. 7. The two 2D ELDOR pure absorption spectral components (in the
SECSY mode) representing the coexisting Lo and Ld regions in the PMV.
They were obtained from the best theoretical fit to the experimental spectrum
for the un-cross-linked PMV at 30 ◦C for Tm = 50 ns. Reprinted with permis-
sion from Y.-W. Chiang et al., J. Phys. Chem. B 115, 10462 (2011). Copyright
2011 by American Chemical Society.

samples is found to increase modestly with increasing temper-
ature. Upon cross-linking, the PMV tends to remodel itself to
become more disordered, i.e., the population of the Ld compo-
nent increases. Our results from 2D ELDOR provide signifi-
cant further details about the membrane structural changes
before and after cross-linking.

FIG. 8. The population of the Lo component, coexisting with the Ld, in the
uncross-linked versus cross-linked PMV samples with respect to temperature.
Reprinted with permission from Y.-W. Chiang et al., J. Phys. Chem. B 115,
10462 (2011). Copyright 2011 by American Chemical Society.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.253.229.92 On: Tue, 21 Apr 2015 14:50:21



212302-10 Franck et al. J. Chem. Phys. 142, 212302 (2015)

IV. MULTIFREQUENCY ESR TO UNRAVEL
MOLECULAR MOTION

Figure 9 shows the experimental cw ESR spectra of
perdeuterated tempone (PDT) spin probe dissolved in toluene
at 250 GHz in various motional regimes: motional narrowing,
slow motion, and the rigid limit as the temperature is reduced.
Figure 10 shows a series of simulated multifrequency spectra
covering the range of 15–2000 GHz for a spin-bearing
molecule with a rotational correlation time of 1.7 ns, and
it illustrates how a motional process that appears fast at lower
frequencies will seem slow or rigid at higher frequencies.
Thus, for complex systems, such as proteins or membranes,
the slow overall and collective motions will be displayed
better at lower frequencies, whereas the fast—typically more
localized—motions will be more sensitively demonstrated at
higher frequencies. Accordingly, the ESR frequency becomes
another useful “dimension” for ESR, enabling one to separate
out the modes of motion based on their respective time scales.

An example of multifrequency ESR for a spin-labeled
protein at different temperatures is exhibited by the spectra in
Fig. 11 of T4 lysozyme labeled at mutant site 131, acquired
at four frequencies, ranging from 95 GHz to 240 GHz, and
several temperatures. At 240 GHz, the overall rotation was
too slow to significantly affect the spectrum, so that it is
perceived to be in the rigid limit, and a good resolution of
the faster internal dynamics is achieved. In the low frequency
limit, the 9 GHz line shape data required the SRLS model
to successfully obtain the rates for the global dynamics. The
full multifrequency study yielded simultaneous quantitative
fits using the SRLS model. In fact, it showed the existence

FIG. 9. ESR spectra of PDT/toluene at 250 GHz in various motional regimes:
motional narrowing (−40 ◦C, −60 ◦C), slow motion (−81 ◦C, −100 ◦C), and
rigid limit (−119 ◦C, −129 ◦C). Reproduced with permission from Fig. 11.1 of
S. K. Misra and J. H. Freed, “Molecular motions,” in Multifrequency Electron
Paramagnetic Resonance (Wiley-VCH Verlag GmbH & Co. KGaA, 2011),
pp. 497–544 (cf. Ref. 58). Copyright 2011 by Wiley-VCH Verlag GmbH &
Co. KGaA.

FIG. 10. Simulated first-derivative multifrequency ESR spectra for a nitrox-
ide, reorienting with a rotational diffusion constant R = 108 s−1 (correspond-
ing to rotational correlation time τR = 1.67 ns) in the range 15–2000 GHz.
From this, it is clear that a motional process that appears fast at lower fre-
quencies will appear slow at higher frequencies.13 Modified with permission
from J. H. Freed, Annu. Rev. Phys. Chem. 51, 655 (2000). Copyright 2000 by
Annual Reviews.

FIG. 11. An example of how multifrequency ESR distinguishes motion at
different temperatures, as exhibited by the ESR spectra of T4 lysozyme
spin-labeled at mutant site 72 at 9, 95, 170, and 240 GHz at 2, 12, 22, and
32 ◦C. (Left panel of figure adapted with permission from Z. Zhang et al.,
J. Phys. Chem. B 114, 5503 (2010). Copyright 2010 by American Chemical
Society. Right panel of figure generated from PDB 1YLD, structure rendered
by PyMOL, Schrödinger, LLC.)

of several types of internal motions for the spin-labeled T4
lysozyme.12

V. TOWARDS MULTIFREQUENCY ELDOR: 95 GHZ
2D ELDOR

As we have seen, even in cw-mode, multi-frequency
ESR enables one to separate the different components of
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complex dynamics. We have also seen how the second spectral
dimension, coupled with the capability of distinguishing
homogeneous broadening, in 2D ELDOR greatly increases
sensitivity to molecular motions, especially in complex fluids.
It thus appeared advisable to combine these two technologies
to enable multifrequency 2D ELDOR studies of molecular
motions. In fact, we are currently engaged in developing
this methodology by implementing 2D ELDOR at 95 GHz.
The technology available for 95 GHz 3 mm waves is not
as well developed as that for microwaves in the 9-17 GHz
regime. However, we demonstrated feasibility by developing
a 95 GHz high-power pulse spectrometer based on quasioptical
technology (Figs. 12 and 13).19,20 This design utilizes a 1 kW
extended interaction klystron (EIK) amplifier to generate
intense and coherent nanosecond π/2 pulses, which are
directed into a Fabry-Pérot resonator, into which the sample
is placed. A block diagram of the spectrometer is shown in
Fig. 14.

Previous studies of oriented samples,20 which in general
have a more limited spectral extent than non-oriented samples,
have enabled us to demonstrate two distinct benefits. First,
enhanced resolution is available from 2D ELDOR spectros-
copy, and second, 95 GHz does yield an increased ability
to discriminate between g- and hf- anisotropies, relative to
2D spectroscopy at lower frequencies. However, these early
studies also highlighted two important challenges. First, we
expect (as can be deduced from Fig. 10) a spectral extent of

FIG. 12. Schematic diagram of a typical quasioptical bridge: A quasioptical
beam is launched from the transmitter (Tx) at the bottom right of the figure,
reflected off the wire-grid polarizer, and directed into the corrugated waveg-
uide. The reflected signal that has orthogonal polarization to the transmitted
pulse passes through the first wire-grid polarizer, where it is focused by the
mirror onto the receiver (Rx). The second wire-grid polarizer and the asso-
ciated Faraday rotator (at the top of the figure) provide additional isolation
between the signal and the transmitted pulses. Adapted with permission from
Fig. 8 of Earle et al., Magn. Reson. Chem. 43, S256 (2005). Copyright 2005
by John Wiley & Sons, Ltd.

FIG. 13. The ESR probehead: differential screw drives attached to the various
components allow simultaneous adjustment of the resonant frequency (via
the mirror adjustment) characteristic impedance (via the semitransparent
mirror/mesh adjustment) and sample positioning. Adapted with permission
from Fig. 8 of K. A. Earle et al., Magn. Reson. Chem. 43, S256 (2005).
Copyright 2005 by John Wiley & Sons, Ltd.

up to 135 G, or 380 MHz, making it a challenge to excite the
full spectral bandwidth. Second, the much shorter T2 decays
at 95 GHz (Fig. 15) require a spectrometer to transition from
a high power, pulsing mode to a low-power, signal detection
mode in significantly less time. Our research thus focused
on improvements in shortening the spectrometer dead times
after the intense pulses and increasing the effective mm-wave
pulsed magnetic field strength at the sample. The former is
important in order to be able to observe the rapidly decaying
signals, while the need for spectral coverage over the full range
of spectral frequencies drives the latter.

Recently, various improvements have led to the reduction
in dead time from ∼50 ns to ∼20–30 ns. The most signifi-
cant of these involved reducing the jitter associated with the

FIG. 14. Reprinted with permission from W. Hofbauer et al., Rev. Sci. In-
strum. 75, 1194 (2004). Copyright 2004 by AIP Publishing LLC. Spectrome-
ter block diagram. The low-power (90 mW) transmitter-receiver is augmented
with a 1 kW mm-wave amplifier (EIK). Transmit and receive signal paths are
duplexed in a quasioptical setup, as shown in Fig. 12.
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FIG. 15. For an isotropically tumbling nitroxide, the T2 decay time will exhibit a minimum as the system transitions from the rigid limit (very slow tumbling)
to the rapidly tumbling limit. As the ESR frequency increases, this minimum T2 time shifts to faster tumbling rates and smaller absolute values. At 95 GHz, it
is 108 s−1 and 4 ns, respectively. The rectangular box shows the range of motional rates—spanning approximately 2 orders of magnitude—that are inaccessible
with the current dead times. The experimental spectra shown underneath are examples of data acquired outside this range. (Black inset simulation of T2 vs.
correlation time from Ref. 20; adapted with permission from Fig. 9 of K. A. Earle et al., Magn. Reson. Chem. 43, S256 (2005). Copyright 2005 by John Wiley
& Sons, Ltd.)

high-voltage modulator that supplies power to the EIK ampli-
fier. The resulting state-of-the-art detection system has allowed
us to access signals with T2 decay times as short as 15 ns,
as illustrated in Fig. 16. However, this is still a significant
limitation since, as shown in Fig. 15, for nitroxides, one expects
T2 times at 95 GHz to drop to values as low as 4 ns. One strategy
around the present limitation involves choosing small, unteth-
ered spin probes that migrate to various portions of a chemical
system. In a recent study, we dissolved small spin probes in a
solution of lipid vesicles. The increased resolution of 95 GHz

FIG. 16. A spin-echo experiment, acquired with 7 min of signal averaging
from a sample of 1.5 mM TEMPO dissolved in dibutyl pthalate at 17 ◦C, mea-
sures the T2 decay (along techo) of the signal amplitude across all frequency
components, f , of the spectrum. Note how the spectral component with
∼ 20 ns is close to the detection threshold. This component has approximately
half the signal to noise of the ∼34 ns component.

2D ELDOR allowed us to easily discriminate two separate
spectral components arising from the spin label dissolved in
lipid vs. free solution (Fig. 17).

In a second, contrasting strategy, we can observe samples
with relatively immobilized spin labels. Specifically, in the
very slow motional regime (the left side of Fig. 15), useful
experiments can be conducted. As previously discussed,
2D ELDOR permits us to separate the homogeneous and inho-
mogeneous broadening of the spectrum. Thus, one still expects
a detailed characterization of the molecular dynamics near the
spin probe, yielding the dynamical and ordering parameters
previously mentioned. In addition, one can probe longer time
scale molecular motions by observing the development of the
inhomogeneities on the time scale of tens of microseconds
(i.e., limited only by T1 relaxation during Tm).23,59 As in
the previous cw-ESR multi-frequency experiments, a multi-
frequency analysis (e.g., also at 17 GHz and 95 GHz) will offer
improved resolution of structure and dynamics on several time
scales.

As a crucial step towards implementing this strategy,
we have begun to optimize the mm-wave B1 field strength
at the sample, in order to achieve excitation coverage over
a significant portion of the inhomogeneously broadened
spectrum. While previously a B1 field strength of 18 G
was achieved, this has now been increased to ≥28 G, a
gain that comes principally by developing an optimized
sample holder constructed from sapphire, which has a higher
index of refraction than the previously employed quartz.
Initial simulations with the 3D electromagnetic field simulator
HFSS (high field structure simulator, Ansys, Canonsburg,
PA) identified three key design criteria for the disk-shaped
sample holder: (1) the diameter of the disk must significantly
exceed the diameter of the quasioptical mm-wave beam, (2) the
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FIG. 17. Signal from a sample of 1 mM TEMPO partitioned between water and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). In contrast to a typical
9.4 GHz cw spectrum (top left panel), the spectrum at 95 GHz (bottom left pane) demonstrates the benefits of the increased g -anisotropy, permitting a better
distinction between nitroxides in the lipid vs water phase, leading to noticeable changes in the spectra at different temperatures. The extra dimension of
2D ELDOR allows separation of the peaks arising from the nitroxide partitioning in the two different phases. Note that at 17 ◦C, we begin to see the limitations
of the current state-of-the-art—the signal with shorter T2 from the TEMPO in the lipid phase decays during the spectrometer dead time before detection of the
2D ELDOR signal begins, leaving only signal from the component that resides in the water.

thickness of the disk must be chosen to minimize reflections at
the surface of the sample holder, and (3) the sample should be
placed at the center of the disk, where the B1 field is maximal.
We then optimized criterion (2) by employing the transfer
matrix method (TMM), by which the boundary-matching
problem for the E field of a plane wave and its derivative
is solved, in order to determine the reflection and transmission
through our sample holder. We find that the optimal sample
holder consists of a disk of sapphire with a half-wavelength
thickness: 0.5c/(95 × 109 Hz√εr,sapphire) ≈ 500 µm. In order
to insert the sample into this disk, we must split the disk
and create a central void where the sample is inserted; TMM
calculations tell us that the reflections at the surface of the
sample holder are critically dependent on the relative size of
this void and the sapphire slices. Thus, we should be able
to and are currently working to further optimize the sample
holder and achieve even higher B1 amplitudes. In combination
with advances to our temperature control system that permit
us to perform 2D ELDOR at temperatures as low as −100 ◦C,
the increased coverage will be valuable for studying a wide
range of very slow-motional dynamics and structure.

We have found that the increased spectral resolution
obtained by 2D ELDOR at 95 GHz comes with a price as far
as their simulation is concerned, especially for the 2D spectra

at slower motions. Our standard method for computation
of the SLE described above, utilizing the LA, breaks down
in this regime, because of serious convergence issues due
to computer round-off errors. This is a greater problem for
95 GHz spectra than for lower frequencies. However, we have
made significant progress towards enabling the simulation of
high-frequency 2D ELDOR over the whole motional range.
In particular, an improved LA based on the quasi-minimum
residuals (LA-QMR) method replaces the LA-CG (conjugate
gradients) method we have previously been using.50

VI. CONCLUSION

A multifrequency analysis has proven very successful
with cw ESR spectroscopy, where frequencies of 95 GHz
and above report on molecular motion in the slow-motional
regime. The current state-of-the-art is on the verge of overcom-
ing technological challenges that will allow one to perform a
2D ELDOR variant of the multifrequency approach. Multi-
frequency 2D ELDOR is now effectively a four-dimensional
method, as it includes two additional, useful dimensions:
(1) the 2D ELDOR storage period Tm that allows one to
track motions over the tens of microsecond time scale and
(2) variation of the resonance frequency that allows one to
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sensitively probe molecular motion on different time scales.
The capability to separate global and local motions has been
demonstrated, as has the ability to resolve localized changes in
phase behavior in complex systems, and to perform a highly
detailed characterization of molecular motion and ordering
in aligned samples. With further key improvements to 2D
ELDOR at 95 GHz, enhanced capabilities should follow.
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