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ABSTRACT
Two-dimensional electron–electron double resonance (2D-ELDOR) provides extensive insight into molecular motions. Recent developments
permitting experiments at higher frequencies (95 GHz) provide molecular orientational resolution, enabling a clearer description of the nature
of the motions. In this work, simulations are provided for the example of domain motions within proteins that are themselves slowly tumbling
in solution. These show the nature of the exchange cross-peaks that are predicted to develop in real time from such domain motions. However,
we find that the existing theoretical methods for computing 2D-ELDOR experiments over a wide motional range begin to fail seriously when
applied to very slow motions characteristic of proteins in solution. One reason is the failure to obtain accurate eigenvectors and eigenvalues of
the complex symmetric stochastic Liouville matrices describing the experiment when computed by the efficient Lanczos algorithm in the range
of very slow motion. Another, perhaps more serious, issue is that these matrices are “non-normal,” such that for the very slow motional range
even rigorous diagonalization algorithms do not yield the correct eigenvalues and eigenvectors. We have employed algorithms that overcome
both these issues and lead to valid 2D-ELDOR predictions even for motions approaching the rigid limit. They are utilized to describe the
development of cross-peaks in 2D-ELDOR at 95 GHz for a particular case of domain motion.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0008094., s

I. INTRODUCTION

Spin-label ESR spectroscopy has been widely demonstrated to
be a powerful tool in investigating the local dynamics and struc-
ture of complex fluids, model and biological membranes, poly-
mers, proteins, and protein complexes.1–8 Two separate strategies
for further extending the capabilities of ESR in studying molecular
dynamics have emerged: multi-frequency ESR and two-dimensional
electron–electron double resonance (2D-ELDOR). Multi-frequency
cw ESR can cover a large range of ESR frequencies—for exam-
ple, a 9–240 GHz study on the motional dynamics in the protein
T4 lysozyme.9 This approach sensitively detects and discriminates
motions occurring on different time scales. Such studies have been
greatly enhanced by developments extending ESR to high magnetic
fields and frequencies, which provide greatly improved orientational
resolution as well as better insight into faster motional dynam-
ics.1,4,10–13 Thus, multi-frequency ESR experiments can unravel the
details of dynamical modes of complex systems.1,4,9,11,12 2D-ELDOR
studies disentangle the homogeneous broadening, which provides

insight into molecular motions, from the inhomogeneous broad-
ening, which relates to local structure and ordering.1,14–19 Further-
more, they supply cross-peaks that directly report on the dynam-
ics of labeled molecules (e.g., biomolecules), which can range
from tens of nanoseconds to tens of microseconds. This range
is limited, respectively, by spectrometer resolution and by the
sample T1.

Technological developments10,14,19–22 have begun to enable per-
forming 2D-ELDOR on complex fluids at high frequency (95 GHz),
thus combining the virtues of 2D-ELDOR with those of multi-
frequency ESR. Given these developments, we describe in this paper
theoretical simulations which predict how 95 GHz 2D-ELDOR can
be used to detect internal dynamic modes of motion in labeled pro-
teins occurring in the microsecond range. This is challenging not
only experimentally but also theoretically. The very slow overall
tumbling motions and the large orientational resolution both place
considerable demands on the existing theoretical software.23,24 In
fact, these Lanczos-based methods for diagonalizing the appropri-
ate complex symmetric stochastic Liouville matrices are no longer
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stable due to the well-known loss of orthogonality of the Lanczos
vectors23,25,26 as well as the fact that they become severely “non-
normal.”27,28 Despite these issues, we have found over the years that
for cw (continuous wave) ESR, it was possible to use Lanczos-based
methods even for very slow motions at 95 GHz and higher fre-
quencies, in part because it was not necessary to diagonalize the
tridiagonal Lanczos matrices, as described in detail elsewhere.23,25

However, in the existing algorithm for 2D-ELDOR,29 it is neces-
sary to obtain and utilize accurate eigenvalues and eigenvectors,
which leads to poor results at very slow motions and high ESR
frequencies. So, we needed to develop another approach. Yet, we
feel it is important to obtain initial predictions of the possibilities
before engaging in such challenging experiments. Thus, we report
on our latest improvements in computational analysis compared
to past versions, since they offer greater stability in the very slow-
motional regime. Then, we are able to simulate experimental 2D-
ELDOR at ultra-slow motions, all the way to the rigid limit. We
have also generated slow-motional 2D-ELDOR spectra correspond-
ing to a prospective biophysical application, namely, conformational
exchange in biomolecules, such as that occurring in the G-protein
coupled receptor rhodopsin.30,31

It has been long appreciated that nanosecond-to-microsecond
local dynamics play an essential role in the biological functions of
proteins.32–37 Local protein dynamics determine enzymatic func-
tion,32,38 enable signal propagation,35,39 and confer the ability to bind
ligands and drugs.33,40 With the advent of routine microsecond-long
molecular dynamic simulations, enzymatic mechanisms and confor-
mational signaling processes are increasingly being proposed with
atomistic detail.35–37,41–44 However, there remains a paucity of exper-
imental approaches capable of characterizing the relevant dynam-
ics of large complex systems, such as membrane proteins.34,45–49

Nonetheless, it is clear that to approach processes such as trans-
membrane signaling by receptors, local dynamics, and their ability to
propagate must be understood.34,35,37–39,42,44,46–49 2D-ELDOR spec-
troscopy of spin-labeled proteins offers such a tool. With a firm
theoretical framework in place to interpret spin dynamics in terms
of molecular structure and motion, underlying physical principles
of protein function relevant to drug design have the potential to be
revealed.

II. 2D-ELDOR: AN OVERVIEW
The analysis of ESR experiments requires us to consider both

the rotational and the spin degrees of freedom of the electron
spin probe under consideration. The following Stochastic Liouville
Equation (SLE)23,29,50 is an accurate representation of this dynamics:

∂ρ(Ω, t)
∂t

= (−iH× − Γ(Ω))(ρ(Ω, t) − ρeq(Ω))

∶= −L(ρ(Ω, t) − ρeq(Ω)). (1)

Here ρ is the time (t)- and orientation (Ω)-dependent electron
spin density matrix with an equilibrium value ρeq(Ω), and H× is the
electron spin Hamiltonian superoperator (H×ρ is defined as [H, ρ]).
Γ is the classical, orientation-dependent relaxation superoperator, of
which rotational diffusion is the major component. Also, L is known
as the Liouville superoperator. As suggested by the equation above,

L describes the combined effects of the electron spin Hamiltonian
superoperator and the relaxation superoperator Γ.

In a two-dimensional ESR experiment such as 2D-ELDOR, we
employ high-power microwave pulses in order to excite the widest
possible bandwidth, and yet these pulses are typically much shorter
than the relaxation time scales of the electron spins. In these experi-
ments, it is true that the electron spin coherence order, pS, does not
change between successive microwave pulses.29 This simplifies the
computation of the 2D-ELDOR spectrum, and allows us to treat the
microwave pulses as just leading to changes in the coherence order,
so that between successive pulses when the microwave field is absent,
we just need to consider the effects of L within the same coherence
order. In other words, L is block-diagonal with respect to pS in its
matrix representation.

Many coherence pathways, characterized by the values pS, can
occur between successive pulses and then contribute to the net signal
measured in a 2D-ELDOR experiment. However, information about
the motional dynamics is adequately captured by just two of these
coherence pathways, namely, Sc+ and Sc−.4,14,15,29 Taken together,
they form the hypercomplex 2D-ELDOR signal. However, the Sc−
pathway is echo-like, whereas the Sc+ is free-induction decay (FID)-
like (cf. Fig. 1). As a result, the Sc+ signal decays faster under the
effects of the inhomogeneous broadening canceled out in the Sc−
signal. For very slow motions considered in this work, the Sc+ signal
emerging after the spectrometer dead time is greatly reduced com-
pared to the Sc− signal. Therefore, in this paper, we focus on the Sc−
coherence pathway.

The 2D-ELDOR Sc− coherence pathway proceeds as follows:
initially, the electron spins are in the longitudinal coherence (pS = 0).
The first π

2 pulse takes them to the coherence order pS = + 1. For a
time t1, they remain in pS = + 1, and then a π

2 pulse transforms them
to pS = 0, where they are “stored” along the negative z-axis. They
remain for time Tmix in pS = 0, after which they are transformed to
pS = −1 by the final π

2 pulse. Signal collection can be performed after
the final π

2 pulse.
Hence, the Sc− signal is a function of t1, Tmix, and t2. However,

2D-ELDOR signals are generally represented by the frequency vari-
ables f 1 and f 2, where f 1 and f 2 are the Fourier conjugate to the time

FIG. 1. A schematic of the 2D-ELDOR experiment, with three π
2 -rotation

microwave pulses. The coherence pathways Sc+ and Sc− are also shown.
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variables t1 and t2, respectively. Mathematically,

Sc−( f1,Tmix, f2) =∬ Sc−(t1,Tmix, t2)e2πif1t1e−2πif2t2dt1dt2. (2)

Tmix is fixed for a given 2D-ELDOR experiment. Note the receiver
(or spectrometer) dead time td shown in the schematic. The 2D-
ELDOR signal in the time interval td just after the final pulse is
experimentally inaccessible.14 Current state-of-the-art 2D-ELDOR
experiments at 95 GHz ESR frequency have td ∼ 20 ns.14,51

One of the great merits of the SLE is its applicability across a
wide range of motional time scales, starting from the “rigid” limit,
where the motion of the biomolecular structure carrying the elec-
tron spin label is too slow to be detected in an ESR experiment, to
the motional narrowing regime, where anisotropic features of the
spectrum are averaged out, leaving a collection of narrow, promi-
nent hyperfine peaks, described by averaged g and A (hyperfine)
values. 2D-ELDOR allows real-time detection of motions at time
scales ranging from tens of nanoseconds to tens of microseconds.
Changes in conformations of spin-labeled proteins, for example, do
happen at such time scales.30 However, such experiments usually
require that the overall rotational diffusion of the protein be slower
than conformational changes, so that effects from fluctuations in
the structure of the protein can be clearly visible in the 2D-ELDOR
spectrum. In the motional narrowing regime, these effects are not
visible due to fast averaging over all orientations. Large proteins
in the aqueous solvent typically have rotational diffusion constants
∼105–106 s−1, which corresponds to the very slow motional regime
in ESR. Moreover, since higher ESR frequencies such as 95 GHz pro-
vide orientational resolution,14 it is also important to perform these
experiments at higher ESR frequencies, where the motions appear
even slower on the ESR time scale.

There is thus a need to extend the computation of 2D-ELDOR
spectra to higher frequencies and slower rotational diffusion rates,
given the challenges noted in Sec. I. In Sec. III, we describe the orig-
inal algorithm to compute 2D-ELDOR spectra and describe its limi-
tations at high ESR frequencies, e.g., 95 GHz, and very slow motions.
We then describe our new algorithm and show how it is more accu-
rate for such slow rotational diffusion. In Sec. IV, we show how
the new algorithm matches the rigid-limit 2D-ELDOR spectrum for
extremely slow motions. In Sec. V, we consider a case of dynamic
exchange of a protein domain between two conformations relative
to the main protein structure and how the orientational resolution
of the spectrum at 95 GHz enables one to infer details of the motion.
Section VI provides the conclusions of our work.

III. IMPROVED ALGORITHM FOR COMPUTING
2D-ELDOR SPECTRA
A. Original algorithm for computing 2D-ELDOR
spectra

The main task in computing the 2D-ELDOR spectrum is to
track the orientation-dependent density matrix under the effect
of the Liouville superoperator, L. Moreover, in the absence of a
microwave field, within a given coherence order pS, L is time inde-
pendent. This allows us to rewrite Eq. (1) in the following form:29

∂ρ(Ω, t)
∂t

= −L(pS)(ρ(Ω, t) − ρeq(Ω)), (3)

where pS ∈ {0, +1, −1}. Equivalently,

ρ(Ω, t) − ρeq(Ω) = e−L(pS)t(ρ(Ω, 0) − ρeq(Ω)). (4)

In the Liouville space, one represents ρ as a vector instead of a
matrix, thus allowing us to represent LpS as a linear transformation
on the entries of ρ stretched out in a column format. The matrix
representation of LpS , under appropriate symmetry transformations,
becomes complex symmetric.29 Synthesizing the expressions above,
we can write the 2D-ELDOR signal (receiver dead time td assumed
to be 0 for simplicity) as follows:

Sc−(t1,Tmix, t2)∝ ⟨v0∣e−L−1t2P−1←0e−L0TmixP0←+1e−L+1t1 ∣v0⟩. (5)

Here v0 ∶= (ρ(Ω, t = 0+) − ρeq(Ω)) denotes the initial density
matrix in the pS = +1 coherence right after the first π

2 microwave
pulse, Pa←b is the linear transformation from pS = b to pS = a denot-
ing the effect of the π

2 pulse, and |⟩, ⟨| denote the usual bra–ket
notation for a vector and its conjugate transpose.

Now, according to the description above, we must compute the
effect of matrix exponentials e−L(pS)t on vectors. By first calculating
eigenvalues and eigenvectors, we can do this efficiently for any value
of t. This forms the basis of the original algorithm.29 The result of this
algorithm is Sc−(t1, Tmix, t2), and a double Fourier transform results
in Sc−( f 1, Tmix, f 2). Further details of the computational algorithm
have been covered in earlier work.14,23,24,29

B. Limitations of the original algorithm
The above algorithm for 2D-ELDOR has been success-

fully applied for spectra involving faster rotational diffusion, i.e.,
R ≳ 107 s−1 (where R is the rotational tumbling rate), at ESR frequen-
cies such as 9 GHz and 17 GHz.29 For slower motions, especially
for cases close to the rigid limit, this approach loses its accuracy in
predicting reliable 2D-ELDOR spectra. The problem becomes more
severe at higher ESR frequencies, e.g., 95 GHz. In Fig. B.1 of the
supplementary material, we simulate a sample 2D-ELDOR spectrum
at 95 GHz with Tmix = 0 ns and nuclear spin I = 1 (or equivalently,
three hyperfine lines) and slow the rate of rotational diffusion, to
see its effect on the computed 2D-ELDOR spectrum. We know that
off-diagonal features such as cross-peaks should develop in a 2D-
ELDOR spectrum only for non-zero mixing times Tmix, whereas
these spectra show unexpected cross-peaks for Tmix = 0, indicating
that we need higher computational accuracy for very slow rotational
diffusion.

Moreover, as we slow down the motion further, we begin to see
computed spectra that are significantly different from the expected
ultra-slow-motional, rigid limit-like spectrum, as shown in Sec. IV.
We now discuss the well-known causes behind such deviations from
expected behavior.23–28

A crucial part of the original algorithm is to find eigenval-
ues and eigenvectors of the L(pS) matrices using the complex sym-
metric Lanczos tridiagonalization algorithm.25,29 Round-off errors
of the order of the machine precision can accumulate over Lanc-
zos iterations, leading to a loss of orthogonality among successive
Lanczos vectors.24–26,52 This can result in unreliable eigenvalues and
eigenvectors, rendering the computation of e−L(pS)t ∣v⟩ inaccurate.
It is important to observe here that the complex symmetric Lanc-
zos algorithm is a variant of the Hermitian/real symmetric Lanczos
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algorithm.25,26,53 The complex symmetric version of Lanczos main-
tains orthogonality in a rectanormal sense, that is, vTi vj = 0 for
distinct Lanczos vectors vi, vj, whereas v†

i vj ≠ 0. Here the superscript
T represents a vector’s transpose, whereas † denotes its complex
conjugate transpose. Figure 2 illustrates the loss of orthogonality in
successive complex symmetric Lanczos iterations for nitroxide ESR
spectra at 95 GHz. As the motion slows down, the non-normality
of the SLE matrices increases, causing further Lanczos vectors to
become even less orthogonal.

Past authors23–26,29 have suggested several solutions to this
problem, the major ones being reorthogonalization of Lanczos vec-
tors and the use of quasi-minimum residual (QMR) to improve the
convergence of Lanczos iterations, while maintaining the original
goal of evaluating eigenvalues and eigenvectors. However, now we
point out that there is a fundamental problem with these calculations
for the complex symmetric SLE matrices as the motion becomes
slower and the ESR frequency is greater. For such cases, the com-
putation of eigenvalues and eigenvectors of L(pS) for slow rotational
diffusion has an intrinsic numerical instability.27,28

Let us first revisit Eq. (1). The Liouville superoperator of Eq. (1)
is non-normal, meaning that LL† ≠ L†L. This crucial property
renders the computation of 2D-ELDOR spectra to be challenging
and markedly different from problems that enjoy Hermitian or real-
symmetric structures. Another important consequence of L being
non-self-adjoint, which has gained appreciation only in the past cou-
ple of decades,27,28 is the ill-conditioning of the eigenvectors. Plainly
put, it is possible for such non-normal matrices to find a scalar λ

and a vector x such that ||Ax − λx|| < ϵ, where ϵ is less than modern
machine tolerances, and yet λ/x are far from being an actual eigen-
value/eigenvector. These effects grow in at much slower motions,
making the use of eigenvectors/eigenvalues of L(pS) matrices at such
motional rates susceptible to serious inaccuracies.28 This issue can-
not be resolved by the use of a different eigenvalue/eigenvector
algorithm to compute slow-motional 2D-ELDOR spectra.

Therefore, a better approach is to compute 2D-ELDOR spec-
tra without the use of eigenvalues and eigenvectors. In order to do
so, we need to compute Eq. (5) in a way that avoids badly condi-
tioned eigenvectors. One such approach, outlined in earlier work,23

is to use conjugate gradients to solve the Ax = b problem for each
new value of the magnetic field, i.e., x = x(B0). This is the approach
utilized in the past to “prune” the large set of basis vectors in cw
ESR, thereby greatly reducing their size;54 as pointed out in earlier
work,23 this is useful for computing cw ESR spectra when a broad
range of B0 is swept as for transition metal EPR spectra. However,
since then, newer and more powerful algorithms have emerged to
better deal with the serious complications of the non-normal prop-
erties of the SLE matrices for very slow motions. This is the subject
of Subsection III C.

C. The improved algorithm
As we discussed earlier, we need to look at new ways to evaluate

Eq. (5). An important observation to make here is that we plot the
Fourier transform Sc−( f 1, Tmix, f 2) of Sc−(t1, Tmix, t2), which means

FIG. 2. Inner products of Lanczos vec-
tors shown as a contour plot, for L(0)
and L(+1). (a) Fast motions; (b) slow
motions. Ideally, the inner product matrix
of Lanczos vectors (⟨IP⟩ij = vTi vj)
should be equal to the identity matrix.
However, for slower motions, rather than
going to 0, the inner products of further
Lanczos vectors have values of the order
of 10−2, indicated by the yellow regions
in the contour plot. The diagonal lines in
these plots, where i = j for Lanczos vec-
tors, have been highlighted in red. The
inner products along the diagonal, i.e.,
vTi vi = 1, are due to normalization of
Lanczos vectors to unity.
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that we need to compute the double Fourier transform of

Sc−(t1,Tmix, t2).

However,

∬ Sc−(t1,Tmix, t2)e−2πif1t1e2πif2t2dt1dt2

∝∬ ⟨v0∣e−L−1t2P−1←0e−L0TmixP0←+1e−L+1t1∣v0⟩e−2πif1t1e2πif2t2dt1dt2

=∬ ⟨v0∣e−L−1t2P−1←0e−L0TmixP0←+1e−L+1t1 ∣v0⟩e−2πif1t1e2πif2t2dt1dt2

= ⟨v0∣(L−1 − 2πif2)−1P−1←0e−L0TmixP0←+1(L+1 + 2πif1)−1∣v0⟩
= ⟨z( f2)∣P−1←0e−L0TmixP0←+1∣z( f1)⟩. (6)

Here, |z( f )⟩ is defined as follows:

∣z( f1)⟩ = (L+1 + 2πif1)−1∣v0⟩. (7)

In addition, as L−1 = L†
+1,

⟨v0∣(L−1 − 2πif2)−1 = ((L+1 + 2πif2)−1∣v0⟩)
† = ⟨z( f2)∣. (8)

Therefore, in the left and right parts of the final expression
in Eq. (6), namely, ⟨v0∣(L−1 + 2πif2)−1 and (L+1 + 2πif1)−1∣v0⟩, we
need to compute only the effect of a matrix inverse on |v0⟩. This is a
simpler problem than evaluating the matrix exponentials in Eq. (5)
and can be recast as an Ax = b type linear equation problem. Fur-
thermore, it does not suffer from badly conditioned eigenvalues and
eigenvectors. Also, given that the L(pS) matrices are sparse, there
are many fast and accurate modern algorithms available to choose
from Refs. 55 and 56. In our work, we utilize the UMFPACK soft-
ware package,55 which performs a sparse LU factorization of the
off-diagonal space (pS = +1) matrix in order to calculate ∣z( f1)⟩
= (L+1 + 2πif1)−1∣v0⟩, for various values of f 1 across the bandwidth
of the ESR spectrum.57 We store these values of |z( f 1)⟩ for further
use. Note that this storage of multiple z( f 1) vectors differs from
the “aggregated diagonal space starting vector” used in the previ-
ous algorithm.29 The key differences, however, are the absence of
eigenvalue and eigenvector calculations, and the fact that the vec-
tors |z( f 1)⟩ are a function of sweep frequency rather than evolution
time t1.

We must reiterate here the existence of a similar proposal as
noted above,23 where the authors proposed to use the complex sym-
metric conjugate gradient (CSCG) algorithm to evaluate the 2D-
ELDOR spectrum. We chose to not use the CSCG algorithm in our
present work because of its slower convergence. Moreover, seeding
a previous solution |z( f )⟩ as an initial guess to evaluate |z( f )⟩ for
a new value of f did not significantly improve convergence either.
We speculate that appropriate preconditioning techniques could
improve this. However, we observe that UMFPACK results in a
high-quality convergence approaching the machine precision for the
pS = ±1 coherence subspace matrices that we consider, while taking
advantage of the sparsity of the SLE matrices.

We must point out here that, despite the need for the new
algorithm at very slow motions, the original 2D-ELDOR algorithm
should be the preferred choice for slow motional calculations where
the tumbling rate is ≳107 s−1 at 95 GHz. The original algorithm,
wherein eigenvalues and eigenvectors are calculated as needed, is

faster than the new algorithm because in the original algorithm one
does not need to sweep the calculations across frequency.

In cases where the matrix dimension is too large, one might
need to take advantage of faster, iterative solvers like GMRES57–59

to evaluate |z( f 1)⟩, while sacrificing some accuracy. While UMF-
PACK is a direct solver, GMRES is a Krylov subspace method like
CSCG, yet relies on the Arnoldi iteration53 rather than the Lanc-
zos iteration. This means we need to subtract projections from all
the previous vectors at each iteration of GMRES, rather than using
the 3-term recurrence relation as in the CSCG algorithm. GMRES
also replaces the rectanormal inner product ⟨vi, vj⟩ = vTi vj with the
Hermitian inner product ⟨vi, vj⟩ = v†

i vj. Despite this speed disad-
vantage, we notice that GMRES helps us quickly attain acceptable
values (≤10−7) of the relative residual ||b − Ax||/||b|| when solving
Ax = b, where A is L+1 and b is |v0⟩. The GMRES solver we use has a
restart provision, which restarts the GMRES algorithm after a fixed
number of iterations (Mrestart) repeatedly, resulting in faster compu-
tation as we need to subtract projections from a maximum of only
Mrestart previous Arnoldi vectors rather than all the previous Arnoldi
vectors.

We now consider the e−L0Tmix term in Eq. (6), which acts
on ∣z( f1)⟩ = (L+1 + 2πif1)−1∣v0⟩, via the linear transformation
P0←+1. So, for each value of f 1, we get a different vector |v( f 1)⟩
= P0←+1|z( f 1)⟩ for which e−L0Tmix ∣v( f1)⟩ should be computed. Note
that |v( f 1)⟩ is in a higher dimensional subspace (pS = 0) when
compared to |z( f 1)⟩ (pS = + 1).

In other words, we are interested in the action of e−L0Tmix on
a set of known vectors {∣v( f1)⟩} in the pS = 0 subspace, rather
than the matrix elements of e−L0Tmix themselves. The original algo-
rithm calculated the eigenvalues of L0. However, as we discussed
earlier, the non-normality of SLE matrices causes this computa-
tion to be inaccurate. To avoid the computation of eigenvalues and
eigenvectors, we now compute e−L0Tmix ∣v( f1)⟩ in a different way.
Expokit60 and expm-multiply61 are two approaches that are suit-
able for this task. We use the Expokit software, given its speed and
memory efficiency. Expokit is a Krylov subspace package for com-
puting e−Atv for vectors v and sparse matrices A. The goal is to
approximate the bigger vector space, where A and v reside, with a
smaller subspace, while not sacrificing the accuracy of e−Atv. The
first step in Expokit is to perform an Arnoldi procedure on A. How-
ever, there is a crucial difference between this Arnoldi procedure
and the complex symmetric Arnoldi procedure. This Arnoldi pro-
cedure works with the usual Hermitian inner product, ⟨vi, vj⟩ =
v†
i vj, rather than the rectanormal inner product we used earlier, i.e.,
⟨vi, vj⟩ = vTi vj. This algorithm is not prone to loss of orthogonal-
ization, unlike the complex symmetric Lanczos/CSCG algorithms.
However, the result is an upper Hessenberg matrix instead of a
tridiagonal matrix, which is much smaller yet non-sparse. Given
the smaller size, we then employ standard matrix exponential func-
tions like expm61 to evaluate the action of the exponential of this
matrix.

Combining the above two procedures, we have the scheme
illustrated in Fig. 3 for computing the 2D-ELDOR signal. It is
important to note that the new algorithm, although more accurate,
is computationally more expensive. In the original algorithm, we
diagonalized the L(pS) matrices once and used the eigenvectors and
eigenvalues for computing the 2D-ELDOR spectra. Here, for each
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FIG. 3. Schematic for the new algorithm,
which avoids computing eigenvalues and
eigenvectors.

value of f 1, we need to compute ∣v( f1)⟩ and e−L0Tmix ∣v( f1)⟩. For
the very slow motions of interest to us, however, the improvement
in accuracy is immense. In other words, as noted above, for faster
motions where the issues of non-normality are minor, the original
algorithm is to be preferred because of its speed, but once the non-
normality issues become important, it is necessary to employ the
new algorithm.

In Sec. IV, we demonstrate the improved performance of the
new algorithm when compared to the original algorithm.

IV. PERFORMANCE OF THE NEW ALGORITHM
FOR ULTRA SLOW ROTATIONAL DIFFUSION

An important benchmark for an algorithm for computing slow-
motional ESR spectra is whether it approaches the expected rigid
limit spectrum when we make the rotational diffusion constants very
small. The rigid limit spectrum [cf. Fig. 4(a)] is a powder average
over all possible spin orientations and can be easily computed for
the 2D-ELDOR case (see Sec. A of the supplementary material).
The new algorithm, when applied for sufficiently slow rotational
diffusion, yields the expected rigid limit spectrum [cf. Fig. 4(b)],
whereas the original algorithm based on eigenvalues and eigenvec-
tors predicts a spectrum much different from the expected spectrum
[cf. Fig. 4(c)], demonstrating the concerns of Sec. III.

We must bear in mind that in order to achieve a perfect match
with the rigid limit spectrum, we might have to go to even slower
motions than the ones we consider here. Since the basis size grows
sharply29 when we slow down the rotational diffusion, we need ever
larger matrices, thus making it difficult to compute 95 GHz 2D-
ELDOR spectra for rotational diffusion slower than R = 105 s−1.
Thus, there is an almost undetectable difference, likely due to resid-
ual motional effects, between the computed spectrum and the rigid
limit spectrum.

V. APPLICATION TO DYNAMIC EXCHANGE BETWEEN
PROTEIN CONFORMATIONS

2D-ELDOR at slow motions and high microwave frequencies
helps us in extending the reach of ESR from traditionally faster
time scales to microsecond scale processes that can be observed in

real time. Among these prospective applications, we focus here on
conformational exchange occurring in proteins. Dynamic exchange
between various protein conformations is crucial for protein func-
tion,62 and such studies involve slow rotational diffusion. Also, fast
rotational diffusion results in rotational averaging, making it chal-
lenging to discern effects like jumps between protein conformations.
Slow-motional, high-frequency 2D-ELDOR, on the other hand,
results in broad-bandwidth spectra due to incomplete rotational
averaging, with different regions of the spectrum corresponding to
different spin orientations.

Conformational exchange processes typically involve a dynamic
equilibrium between two exchanging species A and B, each of which
has a different conformation and a fixed mole fraction at equilib-
rium. Let cA and cB denote the fractions of molecules in conforma-
tions A and B, and we assume cA + cB = 1. The following equations
describe the co-evolution of the density matrices of A and B:

∂ρA
∂t
= −L(p

S
)

A ρA − kA→BρA + kB→AρB,

∂ρB
∂t
= −L(p

S
)

B ρB + kA→BρA − kB→AρB.
(9)

Here, L(p
S
)

A , L(p
S
)

B denote the respective Liouville superoperators for
conformations A and B, whereas kA→B and kB→A denote the for-
ward and reverse rates of dynamic exchange between A and B. In
this work, we assume that dynamic exchange otherwise preserves the
rotational and spin states, i.e., their quantum numbers are preserved.
While we acknowledge the possibility of using more refined models
of dynamic exchange, we consider this model to be appropriate for
the present work, given its simplicity, and to illustrate 2D-ELDOR
spectra involving dynamic exchange.

Equation (9) can be written in the following convenient form:

⎡⎢⎢⎢⎢⎢⎢⎣

∂ρA
∂t
∂ρB
∂t

⎤⎥⎥⎥⎥⎥⎥⎦

= −

⎡⎢⎢⎢⎢⎢⎢⎣

L(p
S
)

A + kA→BI −kB→AI

−kA→BI L(p
S
)

B + kB→AI

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

ρA

ρB

⎤⎥⎥⎥⎥⎥⎥⎦

. (10)

Moreover, due to equilibrium between A and B, we also have

kA→BcA = kB→AcB. (11)
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FIG. 4. Comparison of 95 GHz 2D-
ELDOR spectra from the new and
original algorithms at ultra-slow rotational
diffusion with the expected rigid limit 2D-
ELDOR spectrum, for a nitroxide spin
label with nuclear spin I = 1, principal g
tensor values (2.0087, 2.0057, 2.0021),
principal A (hyperfine) tensor values (6,
6, 36) Gauss, at Tmix = 0 ns. Here R∥, R�
denote the principal values of the rota-
tional diffusion tensor. (a) Rigid limit 2D-
ELDOR spectrum, computed as in Sec.
A of the supplementary material. (b) New
algorithm, R∥ = 105, R� = 5× 104 rad2/s.
(c) Same as (b), but with the original
algorithm.

In order to maintain the complex symmetric structure of the 2 × 2
block Liouville superoperators in Eq. (10), we perform the following
transformation, inspired by earlier work:14,63

⎡⎢⎢⎢⎢⎣

L(p
S
)

A + kA→BI −ksymI
−ksymI L(p

S
)

B + kB→AI

⎤⎥⎥⎥⎥⎦

= P
−1
2
eq

⎡⎢⎢⎢⎢⎣

L(p
S
)

A + kA→BI −kB→AI
−kA→BI L(p

S
)

B + kB→AI

⎤⎥⎥⎥⎥⎦
P

1
2
eq, (12)

where

Peq = [cA 0
0 cB
]. (13)

ksym =
√
kA→BkB→A denotes the mean exchange rate between A

and B.
As a result of this transformation, the 2D-ELDOR signal can be

rewritten as follows, in a way similar to Eq. (6):

∬ Sc−(t1,Tmix, t2)e−2πif1t1e2πif2t2dt1dt2

∝⟨v0∣(L−1 + 2πif2)−1P−1←0e−L0TmixP0←+1(L+1 + 2πif1)−1∣Peqv0⟩

=⟨v0P
1
2
eq∣P

−1
2
eq (L−1 + 2πif2)−1P

1
2
eqP−1←0P

−1
2
eq

× e−L0TmixP
1
2
eqP0←+1P

−1
2
eq (L+1 + 2πif1)−1P

1
2
eq∣P

1
2
eqv0⟩

=⟨v0P
1
2
eq∣(̃L−1 +2πif2)

−1
P−1←0e−L̃0TmixP0←+1(̃L+1 +2πif1)

−1∣P
1
2
eqv0⟩

=⟨z( f2)∣P−1←0e−L̃0TmixP0←+1∣z( f1)⟩. (14)

Here,

v0 = [ρ0,A
ρ0,B
], (15)

P0←+1 = [P0←+1,A 0
0 P0←+1,B

], (16)

P−1←0 = [P−1←0,A 0
0 P−1←0,B

], (17)

LpS =
⎡⎢⎢⎢⎢⎣

L(p
S
)

A + kA→BI −kB→AI
−kA→BI L(p

S
)

B + kB→AI

⎤⎥⎥⎥⎥⎦
, (18)

L̃pS =
⎡⎢⎢⎢⎢⎣

L(p
S
)

A + kA→BI −ksymI
−ksymI L(p

S
)

B + kB→AI

⎤⎥⎥⎥⎥⎦
, (19)

and
∣z( f )⟩ = (L̃+1 + 2πif1)

−1∣P
1
2
eqv0⟩. (20)

We apply the model described above to a spin-labeled protein with
two domains. The first and main domain determines the principal
axes of the rotational diffusion tensor, and the second much smaller
domain, with a rigid spin label attached to it, jumps between two
possible conformations with respect to the first domain. Each of the
two conformations could be visualized as at a different diffusion
tilt64 (αd, βd, γd) of the g and A tensor frames with respect to the
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frame formed by the principal axes of the rotational diffusion tensor.
We assume that the orientations of the principal axes and princi-
pal values of the rotational diffusion tensor do not change during
jumps by the second domain in going from conformation A to B.
This approximation is valid as long as the bulk of the protein main-
tains its structure and has significantly higher rotational inertia when
compared to the part of the protein that jumps. Moreover, g and A
tensor frames are assumed to be coincident. To further simplify our
treatment, we consider the conformations to have diffusion tilts of
(0, 0, 0) and (0, βd, 0), relative to the principal axes of the protein’s
diffusion tensor. Figure 5 depicts this exchange process between A
and B. Experimentally, we could realize such a system by means of
site-directed spin labeling using a rigid bidentate label.30,31

These calculations typically result in large, sparse matrices that
are roughly 30 000 × 30 000 in size. However, not all initial basis
vectors in the respective coherence subspaces (pS = 0, +1, −1) are
important. That is, some components of |z( f )⟩ have insignificant
magnitude. Without sacrificing accuracy, we can safely prune54 out
these basis vectors, thus resulting in much smaller matrices and
much faster computations. In this work, we use the aforementioned
pruning procedure and set the pruning tolerance54 to 0.01. Details
about the pruning tolerance and the pruning procedure can be found
in earlier work.23,54

To check whether our pruning is excessive or not, we chose 20
frequency points in the cw spectrum and compared the cw spec-
tra at those 20 frequency values before and after pruning. We find
the root mean square (rms) deviation between the intensities of the
cw spectra to be less than 0.2%, thus indicating our pruning is not
excessive.

A. Development of dynamic exchange cross-peaks
as a function of mixing time

Effects of exchange processes in 2D-ELDOR develop with mix-
ing time Tmix. However, we must highlight here the crucial differ-
ence between 2D-ELDOR cross-peaks in the absence of exchange
and the cross-peaks due to dynamic exchange. Individual 2D-
ELDOR spectra from the two conformations look quite similar,
and ultra-slow-motional spectra are broad and continuous. Each
“dynamic spin packet”65 (infinitesimal element of the spectrum)
from conformation A exchanges with another dynamic spin packet
from conformation B, and vice versa. Therefore, the cross-peaks,

rather than being sharp, are broadened. Figure 6 shows this devel-
opment of exchange cross-peaks as a function of mixing time. Nev-
ertheless, they are clearly distinguishable from any “spectral diffu-
sion cross-peaks”29,65 due to the slow protein tumbling that simply
appears as a broadening of all the auto-peaks in a direction orthogo-
nal to the f 1 = f 2 diagonal also as a function of Tmix.66 Here βd = 90○

and involves motion of the exchanging domain between the confor-
mation where the z magnetic tensor axis of the spin label is parallel to
the z principal axis of the protein diffusion tensor and the one where
the x magnetic tensor axis of the spin label is parallel to the z prin-
cipal axis of the protein diffusion tensor. The results shown in Fig. 6
are reproduced in Fig. C.1 of the supplementary material, wherein
the dominant auto-peaks have been removed. For Tmix = 0 ns, one
just sees the residual edges of the auto-peaks that were not entirely
removed. However, for Tmix > 0 ns, one clearly sees the exchange
cross-peaks grow in.

B. Dependence of dynamic exchange on the jump
angle, βd

βd denotes the jump angle between the conformations A and
B. The smaller the value of βd, the closer the dynamic spin pack-
ets that exchange with each other. This causes cross-peaks to be less
visible, as they are closer to the auto-peaks. For larger values of βd,
however, the cross-peaks occur between dynamic spin packets with
greater spectral separation, causing them to become more visible.
That is, the cross-peaks occur between more separated orientations,
and thus they show up prominently in locations well-separated from
the f 1 = f 2 diagonal. For βd = 0○, there are no exchange cross-
peaks, as expected. Figure 7 shows the exchange spectra for βd = 0○,
βd = 45○, and βd = 90○ for motion in the x–z plane of the spin label’s
magnetic tensor relative to the protein’s principal axis of diffusion;
that is, βd = 0○ corresponds to the z axis of the label’s magnetic ten-
sor parallel to the protein’s z axis, whereas βd > 0○ corresponds to a
tilt of the label’s x–z plane relative to the protein’s z axis.

It is important to note that the individual 2D-ELDOR spec-
tra from the two conformations look quite similar. However, the
exchange term causes cross-peaks between one orientation of the
spin label in conformation A with another orientation of the spin
label in conformation B. Figure 7 is replotted in Fig. C.2 of the
supplementary material with auto-peaks subtracted to better show
the cross-peaks that develop.

FIG. 5. Schematic showing dynamic
exchange between two conformations.
The rigid spin label, shown in light yel-
low, is attached to the part of the protein
that jumps between two conformations A
and B, which in turn is shown in green.
The remaining parts of the protein repre-
sent its bulk, which is unaffected during
conformational changes.
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FIG. 6. Effect of dynamic exchange on slow-motional 2D-ELDOR spectra, as a
function of mixing time. Here ksym = 106 s−1, R∥ = 105 s−1, and R� = 5 × 104 s−1.
Both conformations have the same mole fraction, i.e., cA = cB = 0.5. (a) Tmix = 0
ns, (b) Tmix = 100 ns, (c) Tmix = 200 ns, and (d) Tmix = 500 ns. Other parameters
are the same as Fig. 4. Note that the amplitude of the signal decreases with mixing
time, Tmix , as the cross-peak development spreads the 2D signal out. However,
the integrated intensity remains constant as we have not included any T1 decay. In
Fig. C.1 of the supplementary material, we show the same spectra after removing
the dominant auto-peaks, in order to better highlight the cross-peaks.

FIG. 7. Effect of dynamic exchange on slow-motional 2D-ELDOR spectra, as a
function of βd : (a) βd = 0○, (b) βd = 45○, and (c) βd = 90○. Here Tmix = 200 ns,
ksym = 106 s−1, and cA = cB = 0.5. Other parameters are the same as Fig. 6. In
Fig. C.2 of the supplementary material, we show the same spectra after auto-peak
subtraction, in order to better highlight the cross-peaks.

What is of considerable physical significance is that, given the
orientational resolution, one can “read off” the nature of the motion
directly from the 2D spectrum. This is shown in Fig. 8, which is a
contour plot of Fig 7(c) with the intense auto-peaks removed to bet-
ter focus on the exchange cross-peaks. The 1D projections at the
left side and bottom of the contour plot show the derivative of the
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FIG. 8. 95 GHz exchange spectrum (with auto-peak subtraction to better show
exchange cross-peaks), showing cross-peaks generated for motion between gxx

and gzz regions of the cw ESR spectrum. The plots to the left and bottom of the
contour plot show the spectra obtained by taking the derivative of the sum of the
real part of the signal Sc−( f 1, f 2) over either f 1 or f 2. Notice the similarity of the two
aforementioned plots to the rigid limit cw spectrum.67 The diagonal in this figure
has been rotated 45○ in the f 1–f 2 plane from that in Fig. 7 for purposes of clarity
in presentation.

summed spectra wherein the gxx, gyy, and gzz regions are clearly dis-
cerned as is the case for cw 95 GHz nitroxide spectra near the rigid
limit.67 The red arrows point to the cross-peaks generated by the
jump motion showing clearly it is between the x and z spin magnetic
axes.

In Fig. 9(a), we show the 2D spectrum when the jump motion
interchanges the y and z axes with βd = 90○, where exchange cross-
peaks are evident. In Fig. 9(b), this is shown in a contour plot analo-
gous to that of Fig. 8. Here the cross-peaks show the motion to be in
the y–z magnetic plane of the spin label.

C. Dependence of dynamic exchange on ksym

Figure 10 shows these dynamic exchange cross-peaks for dif-
ferent values of ksym. In the absence of dynamic exchange (ksym = 0),
of course we do not see any exchange cross-peaks, whereas in
the presence of dynamic exchange (ksym ≠ 0), we see cross-peaks
between various spin orientations. For faster dynamic exchange, the
cross-peaks at a given mixing time (Tmix) are more intense. These
results are shown with the auto-peaks removed in Fig. C.3 of the
supplementary material to emphasize the cross-peaks.

D. Dependence of dynamic exchange on the ESR
frequency

At lower ESR frequencies, the exchange cross-peaks lack the
orientational resolution available at 95 GHz. Figure 11 shows the
dependence of exchange 2D-ELDOR spectra on the ESR frequency

FIG. 9. (a) 95 GHz exchange spectrum, showing cross-peaks generated for motion
between gyy and gzz regions of the cw ESR spectrum. In (b), the line plots to the left
and bottom of the contour plot show the spectra obtained by taking the derivative
of the sum of the real part of the signal Sc−( f 1, f 2) over either f 1 or f 2, as in Fig. 8.
Here Tmix = 200 ns, cA = cB = 0.5, ksym = 106 s−1, and jump angle βd = 90○. Other
parameters are the same as Fig. 6.

for 9 GHz, 17 GHz, 35 GHz, and 95 GHz, and Fig. C.4 of the supple-
mentary material shows these results with the auto-peaks removed.
At 9 GHz, for example, the x, y, and part of the z orientation of
the spin label are bunched in the spectral center, although outer
peaks do refer to the remainder of the contribution of the z orien-
tation. The latter do show cross-peaks with the central region, but
it is not possible to determine with which of the orientations, since
they are bunched in the spectral center. Similar comments apply to
the 17 GHz case, whereas 35 GHz represents the worst case, since
the competing contributions from hyperfine and g-tensor terms are
comparable.
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FIG. 10. Effect of ksym on slow-motional 2D-ELDOR spec-
tra: (a) ksym = 0 s−1 (no exchange), (b) ksym = 105 s−1,
and (c) ksym = 106 s−1. Here Tmix = 200 ns, jump angle
βd = 90○, and cA = cB = 0.5. Other parameters are
the same as Fig. 6. In Fig. C.3 of the supplementary
material, we show the same spectra again after auto-
peak subtraction, in order to better highlight the cross-
peaks. For example, cross-peaks for ksym = 0.1 × 106 s−1

become more pronounced after this subtraction procedure.
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FIG. 11. Effect of ESR frequency on slow-motional 2D-ELDOR spectra: (a) 9 GHz, (b) 17 GHz, (c) 35 GHz, and (d) 95 GHz. Here Tmix = 200 ns, cA = cB = 0.5, ksym

= 106 s−1, and jump angle βd = 90○. Other parameters are the same as Fig. 6. In Fig. C.4 of the supplementary material, we show the same spectra after auto-peak
subtraction, in order to better highlight the cross-peaks.

VI. CONCLUSION AND OUTLOOK

In this work, we describe a significant improvement over the
original algorithm for simulating high frequency, slow-motional
2D-ELDOR spectra. Our new algorithm avoids calculating the
numerically sensitive eigenvalues and eigenvectors of the stochas-
tic Liouville equation matrices L(pS) used for computing the 2D-
ELDOR signal. With this approach, we are now successful in match-
ing our computed ultra-slow-motional 2D-ELDOR spectra with
the expected rigid limit (powder averaged) 2D-ELDOR spectrum.
The essentials of our new algorithm extend to all forms of two-
dimensional ESR spectroscopies and can readily address experi-
ments involving more complicated microwave pulse sequences. Pre-
dictions from our new algorithm can guide novel multi-dimensional
ESR studies of biomolecules such as proteins and lipids at slow
motions, giving one an opportunity to take full advantage of greater
orientational resolution at higher ESR frequencies due to incomplete

motional averaging of spectra. Moreover, given the versatility of 2D-
ELDOR in terms of the mixing time (Tmix) dimension, we can extend
the range of ESR to cover nanoseconds to microseconds in real time.
In particular, one can study dynamic exchange processes between
conformations of a spin-labeled protein occurring at the aforemen-
tioned time scales. Our work is timely, in the sense that there have
been concurrent developments in performing 2D-ELDOR experi-
ments at the high microwave frequency of 95 GHz with low receiver
dead times (∼20 ns).51 We also demonstrate in this work some exam-
ples of model 2D-ELDOR spectra involving a simple dynamical
exchange between two conformations of a spin-labeled domain in
a protein, each of which corresponds to a different set of diffusion
tilt angles between the principal axes of rotational diffusion of the
protein and that of the g and A tensors in the smaller domain. A key
prediction is the presence of well-defined exchange cross-peaks in 95
GHz 2D-ELDOR spectra where the protein is undergoing very slow
rotational diffusion.
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Further improvements to this work would include integrat-
ing an automated non-linear least squares procedure64 to fit 2D-
ELDOR spectra in terms of parameters such as rotational diffusion
and dynamic exchange rate. Depending on the spin-labeled protein
studied experimentally, one might need to fine-tune the model of
dynamic exchange appropriately and possibly modify the SLE matri-
ces. Nevertheless, we look forward to applications of this work for
extending the scope of 2D-ELDOR in order to study biophysical
processes that occur over sub-microsecond time scales.

SUPPLEMENTARY MATERIAL

The supplementary material consists of details regarding how
we calculate the rigid limit 2D-ELDOR Sc− intensity and the pres-
ence of unexpected 2D-ELDOR cross-peaks at very slow motional
rates when using the original 2D-ELDOR simulation algorithm.
Additionally, we again show figures from the main text, with the
auto-peaks removed in order to better demonstrate the exchange
cross-peaks.
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