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A. RIGID LIMIT 2D-ELDOR S,

For a given spin orientation (6,¢) about the dc magnetic field g@, the electron spin

Hamiltonian, when including only g and A (hyperfine) tensor interactions, has the following

eigenvalues:
e eff I
2me gﬁ 0 LI
where m; € {—I,—I+1,....,1 — 1,1}, e and m are the electron charge and mass,
Left = \/(gxx sin 6 cos ¢)2 + (gyy sin fsin )2 + (g, cos )2,
and

Ag = \/(AXx sin @ cos ¢)? + (Ayy sin @ sin ¢)2 + (A, cos 0)2.

i, Aji (in Gauss units) denote the principal values of the g and A tensors respectively. The
contribution of (6, ¢) to the S._(f1, Tiiz, f2) is
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where fy is the ESR frequency, 7 is the electron gyromagnetic ratio. Notice the lack of
dependence on T},;,, as we didn’t consider any mechanism other than the rotational diffusion
that causes a longitudinal decoherence (77 relaxation). The overall expression for S._, after

including contributions from all orientations (6, ¢), becomes:
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Here we assume the absence of an orienting potential?, thus making all orientations equally
sin @
4r? -

likely, leading to a uniform distribution of the form P(6, ¢)

B. FAILURE OF THE ORIGINAL METHOD
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FIG. B.1: 2D-ELDOR spectra at 95 GHz simulated with the original algorithm. In a),
Ry = 10°, Ry =5 x 10% rad®/s. In b), B = 107, R, =5 x 10° rad®/s. Here T}, = 0 ns.

Encircled regions highlight unexpected cross-peaks. See also Fig. 4.
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C. APPLICATION TO DYNAMIC EXCHANGE BETWEEN PROTEIN
CONFORMATIONS: SAME PLOTS, BUT WITH AUTO-PEAKS
SUBTRACTED, TO BETTER SHOW EXCHANGE CROSS-PEAKS

C.1. Development of dynamic exchange cross-peaks as a function of mixing

time
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FIG. C.1: Effect of dynamic exchange on slow-motional 2D-ELDOR spectra, as a function
of mixing time. Here kyy,, = 10° s7', R =10° s7', R; =5 x 10* s~'. Both conformations
have the same mole fraction, i.e., c4 = cg = 0.5. a) Ty = 0 ns, b) T, = 100 ns, ¢)
Tonie = 200 ns, d) Tz = 500 ns. The jump angle, B, is 90°. Other parameters same as
Fig. 4.
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C.2. Dependence of dynamic exchange cross-peaks on [,
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FIG. C.2: Effect of dynamic exchange on slow-motional 2D-ELDOR spectra, as a function of
Ba: a) Ba =0 b) Bg =45° ¢) Bq = 90°. Here T, = 200 ns, ksym = 10°s71 ¢4 = cp = 0.5.

Other parameters same as Fig. 6. 38



C.3. Dependence of dynamic exchange on £,
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FIG. C.3: Effect of kg, on slow-motional 2D-ELDOR spectra: a) kgym = 0s~! (no ex-
change), b) kgym = 10°s71, ¢) kgym = 108571, Here T, = 200 ns, jump angle S5 = 90°,

and cy = cg = 0.5. Other parameters same as Fig. 6.
39



C.4. Dependence of dynamic exchange on the ESR frequency
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FIG. C.4: Effect of ESR frequency on slow-motional 2D-ELDOR spectra: a) 9 GHz, b) 17
GHz, ¢) 35 GHz, d) 95 GHz. Here T,,,;, = 200 ns, c4 = cg = 0.5, kgym = 10%s71, jump angle

Bg = 90°. Other parameters same as Fig. 6.
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