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ABSTRACT
Two-dimensional electron–electron double resonance (2D-ELDOR) provides extensive insight into molecular motions. Recent develop-
ments permitting experiments at higher frequencies (95 GHz) provide molecular orientational resolution, enabling a clearer description
of the nature of the motions. In previous work, we provided simulations for the case of domain motions within proteins that are
themselves slowly tumbling in a solution. In order to perform these simulations, it was found that the standard approach of solving the
relevant stochastic Liouville equation using the efficient Lanczos algorithm for this case breaks down, so algorithms were employed that
rely on the Arnoldi iteration. While they lead to accurate simulations, they are very time-consuming. In this work, we focus on a vari-
ant known as the rational Arnoldi algorithm. We show that this can achieve a significant reduction in computation time. The stochastic
Liouville matrix, which is of very large dimension, N, is first reduced to a much smaller dimension, m, e.g., from N ∼ O(104) to m ∼ 60,
that spans the relevant Krylov subspace from which the spectrum is predicted. This requires the selection of the m frequency shifts to be
utilized. A method of adaptive shift choice is introduced to optimize this selection. We also find that these procedures help in optimiz-
ing the pruning procedure that greatly reduces the dimension of the initial N dimensional stochastic Liouville matrix in such subsequent
computations.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0042441., s

I. INTRODUCTION

Slow motional pulsed ESR spectroscopy methods such as 2D-
ELDOR help to unravel complex motional dynamics such as in
polymers, liquid crystals, membranes, and proteins.1–7 Technologi-
cal developments in high-power pulsed ESR now enable such studies
to be performed at higher frequency (95 GHz) wherein real time
observation from nanoseconds to microseconds may be realized
with good orientational resolution.8–15 Analyzing these experimen-
tal spectra requires the use of tracking the time evolution of the ori-
entation dependent electron spin density matrix in Liouville space
via the stochastic Liouville equation (SLE). The stochastic Liou-
ville matrices corresponding to slow motions and high frequency
are highly non-normal, sparse, and large-scale, thus necessitating

the use of efficient Krylov subspace methods.16–24 These methods
have enjoyed success in the magnetic resonance community for sev-
eral decades, where the Lanczos algorithm has been successfully
employed. But we face an important challenge in making these cal-
culations fast and accurate for very slow motions, especially when
dealing with multiple spin labels, ordering potentials, and the
need to perform hundreds of independent computations during
non-linear least squares fits to experimental data. While simulat-
ing ESR spectra with multiple pulse sequences, especially at high
frequencies (∼95 GHz) and slow motions R ≲ 107 s−1, one needs
to evaluate resolvents and/or matrix exponentials at hundreds of
frequency/time points17,25 when Lanczos methods break down.
Current methods do not exploit the fact that these various resol-
vents and matrix exponentials actually come from the same Krylov
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subspace. However, to span this entire Krylov subspace efficiently,
we need specialized techniques that adaptively scan the entire Krylov
subspace with minimal matrix vector multiplications and sufficient
accuracy. Therefore, in this work, we introduce rational Krylov
methods that demonstrate a substantial increase in speed and a sim-
ilar decrease in requirements for storing resolvent vectors in the case
of 2D-ELDOR as compared to our previous work.25 We describe
the main concepts behind rational Krylov methods and analyze in
detail the time advantages for the example of 2D-ELDOR. We briefly
discuss possibilities for further improvements.

II. KRYLOV SUBSPACE TECHNIQUES IN ESR:
AN OVERVIEW
A. Stochastic Liouville equation

The analysis of ESR experiments requires us to consider both
the rotational and the spin degrees of freedom of the electron
spin probe under consideration. The Stochastic Liouville Equation
(SLE)17,26,27 is an accurate representation of this dynamics,

∂ρ(Ω, t)
∂t

= (−iH× − Γ(Ω))(ρ(Ω, t) − ρeq(Ω))

∶= −L(ρ(Ω, t) − ρeq(Ω)). (1)

Here, ρ is the time (t)- and orientation (Ω)-dependent electron
spin density matrix with an equilibrium value ρeq(Ω) and H× is the
electron spin Hamiltonian superoperator (H×ρ is defined as [H, ρ]).
Γ is the classical, orientation-dependent relaxation superoperator of
which rotational diffusion is the major component and L is known
as the Liouville superoperator. As suggested by the equation above, L
describes the combined effects of the electron spin Hamiltonian and
the relaxation superoperator Γ.

The main task in computing CW/pulsed ESR spectra is to track
the orientation-dependent density matrix under the effect of the
Liouville superoperator, L. Moreover, in the absence of a microwave
field, L is time-independent and maintains its coherence order pS.
This allows us to rewrite Eq. (1) in the following form:27

∂ρ(Ω, t)
∂t

= −L(pS)(ρ(Ω, t) − ρeq(Ω)). (2)

Equivalently,

ρ(Ω, t) − ρeq(Ω) = e−L(pS)t(ρ(Ω, 0) − ρeq(Ω)). (3)

In Liouville space, one represents ρ as a vector instead of a
matrix, thus allowing us to represent LpS as a linear transformation
on the entries of ρ stretched out in a column format. The matrix
representation of LpS , under appropriate symmetry transformations,
becomes complex symmetric.27 For CW spectra, the free induction
decay signal can be written as

I(t)∝ ⟨v0∣e−L+1t ∣v0⟩. (4)

However, we are usually interested in the Fourier transform CW
spectrum I(f ),26

I( f )∝ ⟨v0∣(L+1 − 2πιf I)−1
∣v0⟩. (5)

Here, L+1 denotes the stochastic Liouville matrix in the pS = +1
coherence order, whereas I denotes the identity matrix of the same
dimensions as L+1.

In a two-dimensional ESR experiment such as 2D-ELDOR, we
employ high-power microwave pulses in order to excite the widest
possible bandwidth and yet these pulses are typically much shorter
than the relaxation time scales of the electron spins. In these experi-
ments, it is true that the electron spin coherence order, pS, does not
change between successive microwave pulses.27 This simplifies the
computation of the 2D-ELDOR spectrum and allows us to treat only
the microwave pulse as leading to changes in the coherence order so
that between successive pulses when the microwave field is absent,
we just need to consider the effects of L within the same coherence
order. In other words, L is block-diagonal with respect to pS in its
matrix representation.

Many coherence pathways, characterized by the values pS, can
occur between successive pulses. The unwanted pathways are fil-
tered out by means of phase cycling, leaving the net signal measured
in a 2D-ELDOR experiment. The motional dynamics is adequately
captured by the remaining two coherence pathways, namely, Sc+
and Sc−.1,13,27,28 Taken together, they form the hypercomplex 2D-
ELDOR signal. However, the Sc− pathway is echo-like, whereas the
Sc+ is FID-like (cf. Fig. 1). As a result, the Sc+ signal decays faster
under the effects of the inhomogeneous broadening canceled out
in the Sc− signal. For very slow-motions considered in this work,
the Sc+ signal emerging after the spectrometer dead-time is greatly
reduced compared to the Sc− signal. Therefore, in this paper, we
focus on the Sc− coherence pathway.

The 2D-ELDOR Sc− coherence pathway proceeds as fol-
lows: initially, the electron spins are in the longitudinal coherence
(pS = 0). The first π

2 pulse takes them to the coherence order pS = +1.
For a time t1, they remain in pS = +1, then a π

2 pulse transforms them
to pS = 0 where they are “stored” along the negative z-axis. They
remain for time Tmix in pS = 0 after which they are transformed to
pS = −1 by the final π

2 pulse. Signal collection can be performed after
the final π

2 pulse.
Hence, the Sc− signal is a function of t1, Tmix, and t2. However,

2D-ELDOR signals are generally represented by the frequency vari-
ables f 1 and f 2, where f 1 and f 2 are Fourier conjugates to the time
variables t1 and t2, respectively. Mathematically,

Sc−( f1,Tmix, f2) =∬ Sc−(t1,Tmix, t2)e2πif1t1e−2πif2t2dt1dt2. (6)

FIG. 1. A schematic of the 2D-ELDOR experiment with 3 π
2 -rotation microwave

pulses. The coherence pathways Sc+ and Sc− are also shown.
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Tmix is fixed for a given 2D-ELDOR experiment. Note the receiver
(or spectrometer) dead time td shown in the schematic. The 2D-
ELDOR signal in the time interval td just after the final pulse is
experimentally inaccessible.13 Current state-of-the-art 2D-ELDOR
experiments at 95 GHz ESR frequency have td ∼ 20 ns.13,14

After Fourier transforming the times t1 and t2 into frequencies
f 1 and f 2, one may write as follows:25

Sc−( f1,Tmix, f2)∝ ⟨v0∣(L−1 + 2πιf2I)−1

× P−1←0e−L0TmixP0←+1(L+1 − 2πιf1)−1
∣v0⟩. (7)

Here, ∣v0⟩ ∶= (ρ(Ω, t = 0+
) − ρeq(Ω)) denotes the initial den-

sity matrix in the pS = +1 coherence right after the first π
2 microwave

pulse, Pa←b is the constant linear transformation matrix from pS

= b to pS = a denoting the effect of the π
2 pulse, and |⟩, ⟨| denote

the usual bra–ket notation for a vector and its conjugate transpose.

B. Current Krylov subspace techniques
Notice the presence of resolvents of the form (A − 2πιf I)−1

and matrix exponentials of the form e−At in Eqs. (5) and (7). Any
pulsed/CW ESR calculation has both or either of these matrix func-
tions. As the N ×N SLE matrices for slow motions and high frequen-
cies might reach sizes as large as 100 000 × 100 000, with only ∼0.5%
of the elements being non-zero, direct methods such as LU factoriza-
ton29 become expensive in terms of time and memory. Also, matrix
functions such as e−At usually do not preserve sparsity. Therefore,
for the past decades,16,21,23,30 the approach has been used to calcu-
late expressions of SLE matrices such as (A − 2πιf I)−1v and e−Atv
by building up an iterative Krylov subspace of the matrix A and
the vector v. The complex symmetric Lanczos algorithm,16 its com-
plex symmetric conjugate gradient counterpart,17,31 and Arnoldi
algorithms such as GMRES25 have had significant success in terms
of predicting cw and pulsed 2D-ELDOR ESR spectra. A typical
algorithm computes resolvents or matrix exponentials for each fre-
quency value f or a time point t with Algorithm 1 in the following
way:

The function Solve is the iterative solver, viz., GMRES and
BICGSTAB.

To calculate the 2D-ELDOR spectrum, we evaluate25 Sc−(fi, fj)
∝ ⟨z(fj)∣e−L0Tmix ∣z(fi)⟩, where f i, f j ∈ {f 1, f 2, . . ., f n}, by evaluating
the action of the matrix exponential e−L0Tmix on each of z(f i) = z(f 1),
z(f 2), . . ., z(f n) followed by an inner product with z(f j) according to
Algorithm 2. Here, L0 denotes the stochastic Liouville operator in
the pS = 0 coherence order.

Typically, high frequency slow motional spectra are broad and
span several hundred MHz, which means we need ∼200 grid points
to accurately simulate cw spectra and 250 grid points for 2D-ELDOR
in each frequency variable, viz., f 1, f 2, etc. (See the supplementary
material section for a detailed explanation.) This means that we may

ALGORITHM 1. Pseudocode for calculating the CW spectrum.

ALGORITHM 2. Pseudocode for calculating the 2D-ELDOR spectrum.

need to evaluate the action of e−L0Tmix on around 250 different vec-
tors z(f i). The non-normality of L0, combined with its extremely
large dimension, makes this computation a significant bottleneck in
the computation of 2D-ELDOR spectra at slow motions and high
frequencies. In addition, a Krylov subspace technique might need to
split Tmix into as many as 50 time steps in order to achieve sufficient
accuracy.

This motivates us to ask the following question: is there a way to
save on the number of calls to resolvent routines so that we save on
the time required to compute several hundred resolvents and hence
also save time further downstream when time-consuming matrix
exponentials such as e−L0Tmix have to act on multiple vectors |z(f )⟩?
While there are ∼250 vectors in the set {z(f 1), z(f 2), . . ., z(f n)}, i.e., n
∼ 250, we shall show that we need many fewer to compute accurate
pulsed ESR spectra. Before we discuss the new algorithm, we show
this in a simple manner.

C. Number of effective dimensions in the Krylov
subspace K(L+1,v0)

What we are claiming is that the Krylov subspace generated by
L+1 and the starting vector |v0⟩ has a dimension much less than the
number of vectors in the set {z(f 1), z(f 2), . . ., z(f n)}. To demonstrate
this, we perform a singular value decomposition (SVD) of the N+1
× n matrix Z+1 formed by concatenating {z(f 1), z(f 2), . . ., z(f n)},
where ∣z(fi)⟩ = (L+1 − 2πιfiI)−1

∣v0⟩ and N+1 is the dimension of
L+1. The singular values of Z+1 for a nitroxide spin label (I = 1) with

FIG. 2. Singular values of Z+1 for a nitroxide spin label. The singular values have
units 1/G because L+1 has units Gauss. The dimensions of L+1, i.e., N+1, for R||

= 108 s−1, 107 s−1, 106 s−1, 105 s−1 are, respectively, 2582, 4700, 8951, and
17 249.

J. Chem. Phys. 154, 084115 (2021); doi: 10.1063/5.0042441 154, 084115-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0042441
https://www.scitation.org/doi/suppl/10.1063/5.0042441


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

principal g tensor values gxx = 2.0087, gyy = 2.0057, gzz = 2.0021 and
principal A (hyperfine) tensor values Axx = 6 G, Ayy = 6 G, Azz = 36
G for various motional rates R|| are shown in Fig. 2. The diffusion tilt
angle βd = 90○. For simplicity, R� is set to 0.5R||. The ESR frequency
is 95 GHz.

We see from Fig. 2 that only a relatively small number of sin-
gular values compared to N+1 are significant, and as the motions
become faster, this number becomes smaller as expected. Thus, one
might expect that a small subset of {z(f i)} would be sufficient to span
the relevant Krylov subspace, i.e., Z+1 is expected to have a lower
rank than N+1 consistent with the number of significant singular
values.

III. IMPROVEMENT BY RATIONAL KRYLOV SUBSPACE
METHODS
A. Motivation and overview of rational
Krylov methods

We now seek a method that enables us to compute only the
required basis vectors that span {z(f 1), z(f 2), . . ., z(f n)}. The goal is
to choose an adaptive set32 of m frequencies that can result in an
accurate computation of z(f ) = (A − 2πιf I)−1

∣v0⟩ for all of these n
frequencies such that m≪ n.

Usual polynomial Krylov methods used in ESR, when run up
to n iterations, typically span the space of all polynomial func-
tions of the matrix A − 2πιfjI acting on the starting vector |v0⟩,
i.e., {p(A)|v0⟩|deg(p) ≤ n}. Each time, we calculate z(fj) = (A
− 2πιfjI)−1

∣v0⟩ for a given f j, these n iterations build a fresh Krylov
subspace to compute z(f j). However, all these individual Krylov sub-
spaces for the different j are the same because for any value of f, we
have

(A − 2πιf I)−1
∣v0⟩ = (a0( f ) + a1( f )A + a2( f )A2 +⋯)∣v0⟩ (8)

for some sequence of coefficients a0(f ), a1(f ), . . ., that depends on
f. In general, any function g(A)|v0⟩, irrespective of what g is, comes
from the same Krylov subspace K(A, v0).

While seeding the solution z(f j−1) from a previous Krylov sub-
space iteration is a viable option,17 we have observed that it does
not lead to substantial improvement in the overall time taken to
compute z(f j) for the many values of f j. That is, as noted earlier,
one needs ∼200 values of f j for high frequency cw ESR spectra and
∼250 for 2D-ELDOR in order to recover the detailed features regard-
ing the motional dynamics that could be missed because of poorer
frequency resolution.

We now wish to point out that rational Krylov methods will in a
few iterations span a general33 space of rational functions p(A)/q(A)
up to a certain order in A. The paradigm shift in rational Krylov
methods comes from the fact that we gain significantly by replacing
the standard matrix multiplications A|v0⟩, A2|v0⟩, . . ., in our usual,
polynomial Krylov subspace methods with (A − ξ1I)−1A∣v0⟩, (A −
ξ2I)−1A∣v0⟩, . . .. The matrix inverses at each step help us span a more
general Krylov subspace with much fewer basis vectors.33 Having
much fewer basis vectors helps us greatly, for example, in comput-
ing later stages of the pulse ESR sequences, where we have matrix
exponentials such as e−L0Tmix . Having to act only on a few, adaptively

chosen Krylov basis vectors rather than many vectors z(f i) will result
in much faster computations.

While the literature on rational Krylov methods is vast, we
focus on the rational Arnoldi algorithm32,34 as it suffices for our
task. The following pseudocode, Algorithm 3, describes the rational
Arnoldi algorithm,35 which is akin to GMRES:

Let us consider this algorithm in more detail. In the first step,
we calculate the non-orthogonalized rational Arnoldi vector,

ṽk+1 = (I − A/ξk)
−1Avk = −ξk(A − ξkI)

−1Avk. (9)

Notice the presence of ξk in Eq. (9). When all the ξk’s are chosen to
be∞, Eq. (9) reduces to the regular Arnoldi iteration.

By orthogonalizing ṽk+1 with respect to v1, v2, . . ., vk, we can
write the following:

ṽk+1 = Σ
k+1
i=1hi,kvi. (10)

Equation (10) holds for both rational and regular Arnoldi itera-
tions.32 By combining Eqs. (9) and (10), we get

(I − A/ξk)
−1Avk = Σ

k+1
i=1hi,kvi

Ô⇒ Avk = (I − A/ξk)Σ
k+1
i=1hi,kvi

= Σk+1
i=1hi,kvi − ξ

−1
k AΣk+1

i=1hi,kvi

Ô⇒ A(vk + ξ−1
k Σk+1

i=1hi,kvi) = Σ
k+1
i=1hi,kvi. (11)

Define the unitary matrix constructed from the orthonormal
vectors vi, i.e., Vm = [v1, v2, . . ., vm] and Hm(i, j) = hi ,j, where i, j
∈ {1, 2, . . ., m}. Note that Vm is unitary under the Hermitian inner
product ⟨x, y⟩ = x†y. Now, let em be the mth basis vector and Dm
≡ diag[ξ−1

1 , ξ−1
2 , . . . , ξ−1

m ] so that we can rewrite Eq. (11) as follows:

AVm + AVmHmDm + Avm+1hm+1,mξ−1
m eTm

= VmHm + vm+1hm+1,meTm. (12)

Equation (12) can be rewritten as

AVmKm + Avm+1hm+1,mξ−1
m eTm = VmHm + vm+1hm+1,meTm. (13)

Here, Km = Im + HmDm. Close to convergence, hm+1,m must reach
negligible values, so we can write

AVmKm ≈ VmHm. (14)

ALGORITHM 3. Compute a rational Arnoldi basis for matrix A and starting vector
|v0⟩.
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Or equivalently,

V†
mAVm ≈ HmK−1

m . (15)

Just like the regular Arnoldi method, Vm transforms the matrix
A into a much smaller matrix HmK−1

m ≈ V
†
mAVm. When ξk =∞∀ k,

Km = Im and we get the regular Arnoldi relation Hm ≈ V†
mAVm. Of

course, the greater the number of steps m, the greater is the accuracy
of this approximation. For further details, we refer the reader to a
comprehensive review article.32 As in our previous work,25 we used
the Arnoldi iteration with a Hermitian inner product instead of the
complex symmetric Lanczos iteration,16,36 which yields Hessenberg
matrices instead of complex symmetric tridiagonal matrices.

Note that we choose the shifts to be purely imaginary, i.e.,
ξ = 2πιf. We now show how this rational Arnoldi basis aids the
computation of 2D-ELDOR spectra,

Sc−(f1,Tmix, f2)∝ ⟨z(f2)∣P−1←0e−L0TmixP0←+1∣z(f1)⟩

= ⟨v0∣(L−1 + 2πιf2I)−1P−1←0e−L0TmixP0←+1

× (L+1 − 2πιf1)−1
∣v0⟩

= e†1((HmK−1
m )

† + 2πιf2I)
−1
V†
mP−1←0e−L0Tmix

× P0←+1Vm(HmK−1
m − 2πιf1I)

−1
e1. (16)

Here, e1 is the first m-dimensional vector e1 = (1, 0, . . ., 0). We can
also write Vme1 = v1, where v1 is the normalized starting vector, i.e.,
v1 =

v0
∥v0∥

, cf. Algorithm 3. In other words, v1 becomes e1 under the

rational Arnoldi basis. Note that L−1 = L†
+1.27

While evaluating 2D-ELDOR spectra using the regular Arnoldi
algorithm,25 we solve (L+1 − 2πιfjI)−1

∣v0⟩ for each value of f j.
Whereas in Eq. (16), we need to solve (L+1−ξkI)−1

∣v0⟩ for merely m
values of ξk. And given the decay in the magnitude of singular val-
ues we saw in Fig. 2, we can expect m to be much smaller than n,
the number of frequency grid points {f 1, f 2, . . ., f n}. In fact, a good
choice of m is just the number of significant singular values. Thus,
we transform the N × N matrix A into the smaller m × m matrices
Hm and Km by means of the transformation with the N ×m unitary
matrix Vm from which all the required |z(f j)⟩’s, j ∈ {1, 2, . . ., n}, may
then be readily calculated.

That is, expressions such as (HmK−1
m − 2πιfjI)−1e1 are cheap

to compute given the much smaller values of m compared to N.
And for pulsed experiments such as 2D-ELDOR, e−L0TmixP0←+1Vm
is much faster to compute when compared to our original algorithm
of evaluating e−L0TmixP0←+1∣z(fj)⟩ for all n values of f j.

B. Adaptive shift choice
The performance of the rational Arnoldi algorithm depends

crucially on the shifts ξi we choose. The choice of shifts helps us to
control the convergence of the algorithm. We shall adopt a greedy
heuristic35 to evaluate the next best shift ξk+1, given the shifts ξ1, . . .,
ξk. A greedy heuristic37 builds up a solution in small steps, choosing
a decision that is locally optimal at each step.

We describe here the intuition behind the process of evaluat-
ing the next shift. Given ξ1, ξ2, . . ., ξk, the best rational Arnoldi

approximation for a resolvent (A − sI)−1v1 [cf. Eq. (15)] is given
as35 (note that v1 =

∣v0⟩

∥v0∥
is the normalized starting vector, cf.

Algorithm 3)

(A − sI)−1v1 ≈ Vk(HkK
−1
k − sIm)

−1V†
k v1. (17)

Here, Ik is the k × k identity matrix. Equation (17) can be
rewritten as

v1 ≈ (A − sI)Vk(HkK
−1
k − sIm)

−1V†
k v1. (18)

The error in the approximation can be described as:

∥v1 − (A − sI)Vk(HkK
−1
k − sIm)

−1V†
k v1∥. (19)

The expression in Eq. (19) can be expressed as follows:35

∥v1 − (A − sI)Vk(HkK
−1
k − sIm)

−1V†
k v1∥ =

∣rk(A)v1∣

∣rk(s)∣
. (20)

Here, rk is defined as

rk(z) =
Πk

j=1(z − λj)
Πk

j=1(z − λj)
. (21)

{λj} are the eigenvalues of HkK−1
k . The term on the right-hand

side of Eq. (20) dependent on s is just 1
∣rk(s)∣

. Now, we wish to
choose an s such that (A − sI)−1 cannot be captured by the cur-
rent rational Arnoldi approximation of order k. This implies that
s should be such that 1

∥rk(s)∥
is maximized so that we choose the

next shift to be at a location where (A − sI)−1v cannot be well-
approximated by the current kth order rational Arnoldi approxima-
tion Vk(HkK−1

k − sIk)−1V†
k v1. This way, the new rational Arnoldi

basis vector vk+1 will cover unexplored regions of the rational Krylov
subspace in the best possible way.

Maximizing 1/|rk(s)| is of course equivalent to minimizing
|rk(s)|. Assume that we have calculated shifts ξ1, ξ2, . . ., ξk. The next
shift ξk+1 can be evaluated as follows:

ξk+1 = arg min
s∈S

rk(s) = arg min
s∈S

∣∏
k
j=1(s − λj)∣

∣∏
k
j=1(s − ξj)∣

. (22)

Here, λj’s are the eigenvalues of HkK−1
k . Note that HkK−1

k is a
non-normal matrix just like A. Therefore, the eigenvalues are not to
be trusted as accurate, as discussed in the previous work.16,38 Hence,
we modify the greedy heuristic35 slightly to avoid calculating λj’s by
replacing the product ∣∏k

j=1(s − λj)∣ with ∣det(sI − HkK−1
k )∣. This

simplification comes from the matrix identity

det(M) =
n

∏
p=1

λp, (23)

i.e., the determinant of a matrix M is the product of its eigen-
values. The advantage here is that we avoid the need to calculate
non-normal eigenvalues and can evaluate the determinant using
other methods, viz., LU decomposition, which is implemented in
MATLAB’s det function.39
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We now assume the set from which we choose the optimum
value of s to be defined as S ≡ [2πιfmin, 2πιfmax], where fmin and fmax
denote the bandwidth of frequencies where we expect to see an ESR
spectrum. At 95 GHz and motional rates ∼105 s−1, this range could
be as large as ∼150 G or ∼420 MHz.25 We adopt the following heuris-
tic for choosing 2πfmin and 2πfmax based on our prior estimates of
the range of frequencies that are significant to the 2D-ELDOR/CW
spectrum at a given motional rate R||: 2πfmin = −100 + 20(log10R||
− 5) and 2πfmax = 120 − 20(log10R|| − 5) (in Gauss units, about the
center of the spectrum).

Solving for s at each step of the rational Arnoldi algorithm is a
relatively inexpensive operation suitable for off-the-shelf functions
such as fminbnd in MATLAB. Sampling based optimization tech-
niques and modifications to the search space for the next shift in
the complex might lead to a further speedup in the evaluation of
successive shifts, but we chose not to pursue them. We used MAT-
LAB’s fminbnd function40,41 in this work. For rational Arnoldi itera-
tions, we used a state-of-the-art rational Krylov toolbox42 written in
MATLAB.

It is relevant to consider whether this heuristic gives an advan-
tage over a simple-minded choice of shifts, such as an array of
equally spaced shifts between 2πιfmin and 2πιfmax. Figure 3 shows
how the greedy heuristic leads to better convergence to the actual
ESR spectrum when compared to the case where equally spaced
shifts ξk are chosen.

While evaluating adaptively chosen shifts, we also have the
option of specifying a few initial shifts before evaluating the suc-
ceeding shifts. In our work, we choose ξ1 = 0, ξ2 = 2πιfmin, and ξ3
= 2πιfmax as our three initial shifts. The remaining rational Arnoldi
basis vectors and shifts ξ are calculated one by one and their corre-
sponding rational Arnoldi vectors are added to the existing rational
Arnoldi basis.

We compare the performance of the rational Arnoldi algo-
rithm with adaptively chosen shifts, rational Arnoldi with the same

FIG. 3. Adaptive shift choices (red) outperform equally spaced shifts (blue) for a
rational Arnoldi basis of size m = 50. The black curve corresponds to the regular
Arnoldi algorithm to calculate the CW spectrum, and the red curve overlaps per-
fectly with it. Here, R|| = 105 s−1. Other parameters are as in Fig. 2. The dots on
the x-axis indicate the adaptively chosen shifts used for the rational Arnoldi CW
spectrum calculation with adaptively chosen shifts. The times taken for rational
Arnoldi with equally spaced shifts, rational Arnoldi with adaptively chosen shifts,
and regular Arnoldi were, respectively, 38 s, 53 s, and 311 s.

number but equidistant shifts, and regular Arnoldi in Fig. 3. While
the rational Arnoldi algorithm with equally spaced shifts runs faster
than the rational Arnoldi algorithm with adaptively chosen shifts,
we must bear in mind that some of the equally spaced shifts lie
in “uninteresting” frequency regions of the spectrum where the
spectrum is negligible, causing faster convergence in the resol-
vents corresponding to such frequencies. On the other hand, adap-
tively chosen shifts are adept at locating the important frequency
regions of the ESR spectrum and as a result, yield the more accurate
results.

C. Time advantage from the rational
Arnoldi approach

While evaluating resolvents at each frequency f j takes up a sig-
nificant amount of time, the real time advantage from a rational
Arnoldi procedure occurs in subsequent parts of calculating a pulsed
ESR experiment, viz., 2D-ELDOR. The reason is that a rational
Arnoldi procedure first accurately shrinks the effective number of
frequency grid points. That is, for the off-diagonal space resolvents
occurring in CW and 2D-ELDOR spectra, L+1 is N+1-dimensional
so that for all n resolvent calculations (L+1 − 2πιfj)−1

∣v0⟩ at the cor-
responding frequency points {f 1, f 2, . . ., f n} with regular Arnoldi, we
use an N+1 dimensional matrix.

As shown in Fig. 4(a), in the regular Arnoldi algo-
rithm for computing 2D-ELDOR spectra, one calculates ∣z(f )⟩
= (L+1 − 2πιf )−1

∣v0⟩ for f ∈ {f 1, f 2, . . ., f n} and then applies the pulse
propagator P0←+1 to calculate |y(f )⟩ = P0←+1|z(f )⟩ with the y(f ) rep-
resented in an N0 dimensional basis set in pS = 0 coherence subspace
and finally calculate ∣x(f )⟩ = e−L0TmixP0←+1∣z(f )⟩ for each f i, all with
the N+1 dimensional L+1 matrix. To express this mathematically, we
rewrite Eq. (7) as follows:

Sc−(f1,Tmix, f2)∝ ⟨v0∣(L−1 + 2πιf2I)−1P−1←0e−L0Tmix

× P0←+1(L+1 − 2πιf1)−1
∣v0⟩

= ⟨z(f2)∣P−1←0e−L0TmixP0←+1∣z( f1)⟩

= ⟨y(f2)∣e−L0Tmix ∣y(f1)⟩
= ⟨y(f2)∣∣x(f1)⟩. (24)

(Here we are implicitly using L−1 = L†
+1 and P−1←0 = P†

0←+1, as
detailed in the previous work.27)

However, the rational Arnoldi algorithm, shown in Fig. 4(b),
helps us reduce the effective number of frequencies f 1 in Eqs. (7)
and (24) from n ∼ 250 to m ≲ 60. In other words, e−L0Tmix has to act
on only the m vectors, namely, the columns of P0←+1Vm, rather than
to act on n vectors |y(f i)⟩.

For computing the action of the diagonal space matrix expo-
nential e−L0Tmix , we use the Expokit package18 as in our earlier
work.25 Note that there are other approaches for speeding up Krylov
computations of the action of e−L0Tmix than the Expokit method18 we
use, such as the matrix exponential recycling method.43,44

Evaluating the action of e−L0Tmix on just the m columns of
P0←+1Vm is a sufficient and compact way to determine the effect
of the time evolution with respect to mixing time Tmix on any of
the vectors propagated from the pS = +1 coherence subspace. This
is in contrast with the regular Arnoldi algorithm, where we have to
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FIG. 4. Schematic describing how the rational Arnoldi algorithm speeds up 2D-ELDOR calculations at different motional rates. (a) The regular Arnoldi procedure and (b) the
rational Arnoldi procedure. The superscript “R” stands for “rational Arnoldi.” The notation A(: ⋅k) indicates the kth column of matrix A.

separately evaluate the time evolution, Tmix, on each of the n vec-
tors of dimension N0 getting propagated from the pS = +1 coherence
subspace corresponding to a different frequency f 1. This compres-
sion of a large (n ∼ 250) number of vectors, each of dimension N0,
getting propagated from the pS = +1 coherence subspace is the real
power of rational Arnoldi methods over regular Arnoldi methods.
Finally, ∣zR(fi)⟩ ∶= (HmK−1

m − 2πιf1I)
−1e1 for n ∼ 250 values of f 1

takes an almost negligible amount of time, as they involve m × m
matrices, where m ≲ 60 vs N+1 ∼ O(104) and N0 ∼ 2N+1 at the ultra-
slow motional rates of interest to us. To express this mathematically,
we rewrite Eq. (16) as follows:

Sc−(f1,Tmix, f2)∝ e†1((HmK−1
m )

† + 2πιf2I)
−1
V†
mP−1←0

× e−L0TmixP0←+1Vm(HmK−1
m − 2πιf1I)

−1
e1

= ⟨zR(f2)∣V†
mP−1←0e−L0TmixP0←+1Vm∣zR(f1)⟩

= ⟨zR(f2)∣(yR)†e−L0TmixyR∣zR(f1)⟩

= ⟨zR(f2)∣(yR)†xR∣zR(f1)⟩

= ⟨zR(f2)∣SRc−∣z
R
(f1)⟩. (25)

In Eq. (25), yR = P0←+1Vm, xR = e−L0TmixyR, and SRc− = (yR)†xR. yR

denotes the rational Arnoldi basis vectors transformed from pS = +1
to pS = 0 coherence subspace. xR denotes the time evolution in the
pS = 0 coherence subspace of the transformed rational Arnoldi vec-
tors that form the columns of yR. SRc− is the reduced Sc− spectrum
evaluated on the rational Arnoldi basis vectors that constitute the
columns of Vm. The rational Arnoldi algorithm reduces the space

spanned by all the resolvents |z(f )⟩ in the regular Arnoldi algo-
rithm to m orthonormal vectors, namely, the columns of Vm. The
columns of Vm form a rational Arnoldi basis for z(f ), f ∈ {f 1, f 2,
. . ., f n}. Therefore, by evaluating SRc− = (yR)†xR = (yR)†e−L0TmixyR

= V†
mP−1←0e−L0TmixP0←+1Vm, we have computed a minimalistic 2D-

ELDOR Sc− spectrum and saved computation time. The minimalis-
tic SRc− spectrum can be readily generalized to the usual Sc− spectrum
by using Sc− = ⟨zR(f2)∣SRc−∣zR(f1)⟩, as in Eq. (25).

The action of e−L0Tmix is the most time consuming part of a
2D-ELDOR calculation, given the long mixing times Tmix we typi-
cally have, requiring us to break the matrix exponential into mul-
tiple time steps for accuracy.38 The same could be said of other
multi-dimensional pulse experiments.45

We now apply the rational Arnoldi algorithm with adaptive
shifts for the following calculations: CW and 2D-ELDOR.

IV. RESULTS
A. Application to CW calculations

For motional rates R|| = 105 s−1, 106 s−1, 107 s−1, 108 s−1, we
show in Fig. 5 CW spectra calculated by regular Arnoldi and the
rational Arnoldi approach. For each plot, we indicate the dimen-
sion m of the rational Arnoldi approximation, along with N+1, and
the dimension of the SLE matrix L+1 used for calculating the CW
spectrum. These computations were performed on a Windows 10
Enterprise desktop computer with an Intel(R) Core(TM) i5-6500
CPU at 3.2 GHz processor. The respective computation times are
shown in Table I. We used the restarted Matlab GMRES solver46

with a tolerance of 10−7, which restarts after every 20 inner iterations
and a maximum of 100 outer iterations. In this work, we have not
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FIG. 5. CW calculations using the ratio-
nal Arnoldi (RA) algorithm with adap-
tively chosen shifts for different motional
rates: R|| = 108 s−1, R|| = 107 s−1, R||

= 106 s−1, and R|| = 105 s−1. Here, the
number of shifts chosen for the regular
Arnoldi algorithm (black dotted lines) is n
= 250. The CW spectra obtained using
the rational Arnoldi algorithm are shown
as red continuous lines. We observe
a perfect overlap between the rational
Arnoldi and regular Arnoldi calculations,
as expected. The respective computa-
tion times are shown in Table I. The times
taken for n = 200 shifts are ∼80% of the
times taken for n = 250 shifts.

explored the tradeoffs between various combinations of tolerance,
inner iterations, and outer iterations.

It is important to highlight that CW calculations via the rational
Arnoldi method are mainly for illustration purposes, and one should
not normally use the rational Arnoldi or regular Arnoldi method
for calculations of CW spectra for the case of nitroxide spin labels.
The complex symmetric Lanczos algorithm for CW spectra avoids
non-normal eigenvalues and is trustworthy for slow and ultra-slow
motional CW calculations17,27 and significantly faster than regular
Arnoldi and rational Arnoldi methods. The results for CW spectra
are meant to compare results for the two Arnoldi methods.

Table I presents times taken for n = 250 shifts for the reg-
ular Arnoldi calculation for the sake of consistency with the 2D-
ELDOR calculations presented in Subsection IV B, although n
= 200 provides sufficient accuracy for CW spectra for which the
times are ∼80% of those shown. For transition metal ions where
one has to cover a much wider spectrum over many Gausses, it is

necessary to calculate the CW spectrum at each field position17,24

using complex symmetric conjugate gradients17 or Arnoldi meth-
ods.25 In such cases, even for CW spectra, the rational Arnoldi algo-
rithm can lead to significant time saving over the regular Arnoldi
algorithm, as suggested by the results in Table I for the case of
nitroxide spectra.

Another important observation, which also applies to 2D-
ELDOR computations, is that the bulk of the computation time in
these rational Arnoldi calculations is taken up by computing the
m resolvents of the N+1 × N+1 SLE matrix L+1. The n computa-
tions with the rational Arnoldi algorithm are performed with much
smaller, albeit dense, SLE matrices of order m × m, which are much
faster to calculate than the much larger, albeit sparse, N+1 ×N+1 SLE
matrices. We observed the resolvents of the m ×m reduced matrices
to be on average ∼5000 times faster to calculate than the resolvents
of the N+1 × N+1 matrices across the range of motional rates we
considered in this paper.

TABLE I. Comparison of computation times for CW ESR spectra in Fig. 5.

Time for regular Arnoldi Time for rational Arnoldi with
R|| (s−1) with 250 shifts (s) adaptively chosen shifts (s) N+1 m

108 37 3 2 582 10
107 57 13 4 700 30
106 90 24 8 951 40
105 165 53 17 249 50
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B. Application to 2D-ELDOR calculations
We show the 2D-ELDOR spectrum with and without the ratio-

nal Arnoldi algorithm in Fig. 6. Using the rational Arnoldi algorithm
shows comparable accuracy at a much faster speed, as we expect.
These ultra slow motional 2D-ELDOR spectra show broad motional
cross-peaks25,27 as a function of mixing time as expected. We should
reiterate that this time advantage is dependent on the motional
rate. At slower motional rates, singular values decay slower, thereby
requiring more rational Arnoldi iterations. By analogy with Table I
for CW spectra, we expect greater time saving for the relatively faster
motions.

Another point to note here is that the time improvement for
the rational and regular Arnoldi algorithms scales according to

FIG. 6. Ultra-slow motional 2D-ELDOR spectra describing how the rational Arnoldi
(RA) algorithm speeds up 2D-ELDOR calculations. (a) The rational Arnoldi algo-
rithm and (b) original algorithm.25 Here, R|| = 105 s−1, R� = R||/2, dynamic
exchange rate25 ksym = 106 s−1, mixing time Tmix = 500 ns, and size of Arnoldi
basis m = 60 to ensure a sufficiently accurate 2D-ELDOR spectrum. Other param-
eters are same as in Fig. 5. The speedup is 1655

476 ≈ 3.5. In the rational Arnoldi
algorithm for computing 2D-ELDOR spectra in (a), 113 s out of the 476 s were
spent in computing the rational Arnoldi basis and the adaptively chosen shifts. The
remaining time is mostly spent in calculating the effect of the matrix exponential in
the pS = 0 coherence subspace, i.e., e−L0Tmix .

the desired level of resolution in the spectrum—just as the regular
Arnoldi algorithm requires a smaller number of frequencies n, the
rational Arnoldi algorithm requires a smaller number of shifts m for
a 2D-ELDOR or CW spectrum with lower resolution.

C. Application to basis set MTS pruning
Before performing extensive calculations or non-linear least

squares fits,47 pruning the basis set to a minimal size is crucial. The
MTS pruning algorithm31 arbitrarily selects a set of frequencies f
across the CW spectrum to evaluate ∣z(f )⟩ = (L+1 − 2πιf I)−1

∣v0⟩.
Actually, as shown in Fig. 5, one sweeps the magnetic field in CW
ESR, but for consistency with 2D-ELDOR, we speak in terms of
their frequency equivalents. The basis elements of |z(f )⟩ that do not
contribute significantly to the spectrum are then “pruned” out. How-
ever, when dealing with SLE matrices as big as 100 000× 100 000, this
choice of frequencies to use is an issue in order to be confident about
the unimportant basis vectors to eliminate. Given our observations
regarding the adaptive shift choices, we can now apply them with
the rational Arnoldi algorithm to identify unimportant basis vectors
with greater confidence.

We can use the adaptive shifts from Sec. III B to calculate the
resolvents for an optimum set of frequencies from which the rele-
vant basis vectors may be determined according to Ref. 31. Choosing
shifts adaptively helps us in reducing the number of calls to a lin-
ear solver such as GMRES. This is in contrast with the earlier MTS
pruning algorithm31 that utilizes a few, equally spaced shifts. The
adaptive shift choice guides one to systematically choose appropri-
ate frequencies for which to evaluate the resolvent. By calculating
resolvents for multiple, equally spaced frequencies, it is possible that
we do not explore all the relevant regions of the Krylov subspace,
as illustrated in Fig. 3. Once a pruned basis set is obtained, it will
significantly speed up both the regular Arnoldi method and the cal-
culation of the minimal set of rational Arnoldi vectors of size m, as
one repeats such calculations in the non-linear least squares fitting
procedure.

V. COMMENTS AND CONCLUSION
In this work, we describe how rational Krylov techniques such

as the rational Arnoldi algorithm result in order-of-magnitude sav-
ings in time. With this approach, we are now successful in comput-
ing accurate 2D-ELDOR spectra, while building a minimal rational
Krylov subspace that better approximates matrix functions such as
f (A)b than the usual polynomial Krylov methods normally used.
Our approach is general and can readily address multi-dimensional
experiments involving more complicated pulse sequences.

We hope that our work will attract the attention of the
chemical physics community toward such advanced Krylov meth-
ods that can help to quickly build up time efficient approxima-
tions to expressions such as the matrix exponential so that suc-
cessive stages involved in computing multi-dimensional spectra for
ESR and other techniques benefit from more compact represen-
tations. Further improvements to this work could include block
bidirectional Krylov methods48 to speed up the computation of
V†
mP−1←0e−L0TmixP0←+1Vm, as shown in Eq. (16), so that the dot prod-

uct between Vm and P−1←0e−L0TmixP0←+1Vm is computed directly
without explicitly constructing e−L0TmixP0←+1Vm, as the size of L0
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could turn out to be prohibitively large. We did not consider such
bidirectional Krylov methods given the additional issue of the non-
normality of SLE matrices and the lack of a well-understood error
analysis scheme.49

SUPPLEMENTARY MATERIAL

The supplementary material PDF consists of details regarding
how we determined the number of frequency grid points necessary
(n) for calculating accurate 2D-ELDOR and CW spectra to be 250
and 200, respectively.
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