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A general theory of the linewidths in the electron spin resonance spectra of dilute solutions of free radicals 
has been developed in terms of the relaxation-matrix theory of Bloch, Redfield, and Ayant. In contrast to 
previous theories, it is shown that a composite line arising from a set of degenerate nuclear-spin states 
should, in general, consist of a sum of superimposed lines of Lorentzian shape with different widths rather 
than a single line with an over-all Lorentzian shape. A single Lorentzian line is still obtained, however, as a 
limiting case when the variation of the widths of the different components of a composite line is small com­
pared to the average width. Although the non-Lorentzian shape of a composite line is often difficult to ob­
serve experimentally, a number of other observable properties are predicted by the present development 
that are outside the scope of the previous theories. For example, linewidth effects resulting from differences 
in the widths of the separate components of a composite line are predicted that explain the alternation in 
the linewidths from one hyperfine line to another recently observed in the ESR spectra in certain free radi­
cals. The detailed form of the relaxation matrix is presented for intramolecular anisotropic and isotropic 
electron-nuclear dipolar interactions, quadrupole interactions, and g-tensor relaxations. Modulations of 
the spin density and hyperfine splittings are included, as are internal motions, and a number of cross terms 
between the different relaxation mechanisms arise. In general the relaxation matrix of a composite line 
contains significant off-diagonal elements, and the determination of the linewidths requires the evaluation of 
the eigenvalues of the matrix. Problems involving rapid chemical exchange, or modulation by jumps to a 
small number of sites, can be treated by the relaxation-matrix theory and, under special restrictions, by 
either the modified Bloch equations or the Anderson theory of motional narrowing. When applicable, these 
latter procedures can be used over the entire range of exchange rates, while the relaxation-matrix theory is 
limited to fast rates only. 

I. INTRODUCTION 

THE first theoretical analysis of magnetic-resonance 
linewidths was presented by Bloembergen, Purcell, 

and Pound (BPP) ,1 but early studies2 of the electron­
spin resonance spectra of free radicals in solution indi­
cated that this theory was not sufficiently general to 
account for the experimental observations. Subse­
quently a general theory was developed by Kubo and 
Tomita8 which was then used by Kivelson4 to obtain a 
theory for the linewidths in ESR spectra. Kivelson's 
results were in general agreement with the experimental 
observations.5- 7 The saturation behavior of free radicals 
was also investigated,5 •6•8- 10 and the theoretical account 
was in adequate agreement with most of the experi­
mental findings. 

Recently a number of ESR spectra have been re­
ported which exhibited a new type of phenomenon: 
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the linewidth was found to alternate in magnitude from 
one hyperfine component to another. This alternating 
linewidth was observed in the spectrum of the dihy­
droxydurene (1,4 - dihydroxy - 2,3,5,6 - tetramethyl­
benzene) cation,11 •12 the dinitrodurene (1,4-dinitro-
2,3,5,6-tetramethylbenzene) anion,13- 16 the dinitro­
mesitylene (2,4 - dinitro - 1,3,S - trimethylbenzene) 
anion,14-rn and the m-dinitrobenzene anion,17 as well as 
several other radicals.18 These linewidth variations 
could not be explained by the Kivelson-Kubo-Tomita 
theory, and we were therefore led to a re-examination 
of the theory of linewidths in ESR spectra. 

It is well known that the BPP theory of linewidths 
is not generally satisfactory3•19- 21 ; but there are two 
particular problems which make it unsuitable for appli­
cation to the ESR spectra of free radicals in solution. 
The first problem arises even if there is only a single 
nucleus interacting with the unpaired electron. Here 
the BPP theory breaks down because it does not pro­
vide a means of taking into account the nuclear-spin 
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relaxations which cause transitions between different 
hyperfine components. The Kivelson-Kubo-Tomita 
theory handles this situation without difficulty. The 
second problem arises in the presence of several equiva­
lent nuclei because of the degeneracy of the nuclear-spin 
states. The degeneracy causes special complications, 
and as will be shown in the following, it is this part of 
the theory that requires modification. 

Several authors19-23 have presented an alternative to 
the general theory of magnetic resonance relaxation 
developed by Kubo and Tomita. These treatments 
utilize an approximate form of the equation of motion 
for the density matrix of the spin system in terms of 
what may be called a relaxation matrix. Since this 
theory can be applied to the ESR spectra of free radicals 
in a straightforward way which eliminates any ambi­
guity in handling the degeneracies of the hyperfine 
components, it has been employed throughout in the 
following. 

In Sec. II, the general formulation of the relaxation­
matrix theory is outlined, and in Sec. III it is shown 
that a degenerate ESR line may consist in general of a 
superposition of several Lorentzian lines of different 
widths. Section IV is devoted to a detailed specification 
of the form of the relaxation matrix for the most im­
portant types of relaxation processes, and much of the 
development in this section, as well as in Sec. II, is 
presented in general form for use in subsequent work.24 

Simple applications are then made to problems in­
volving modulation of the isotropic hyperfine interac­
tion (Secs. V and VI) and a theory is developed to 
account for the alternating linewidth phenomenon. In 
Sec. VII, the problems encountered with nondiagonal 
relaxation matrices are discussed, and in Sec. VIII a 
comparison is made between the relaxation-matrix 
theory and the application of either the modified 
Bloch25- 28 equations or the Anderson theory of motional 
narrowing29 to problems involving chemical exchange 
and jump-type modulations. 

II. GENERAL THEORY 

In this section we briefly outline that part of the 
theory of magnetic resonance line shapes and widths 
which is required to treat the ESR spectra of free 
radicals in solution. The general theory is due to 
Bloch,19 Redfield,22 and Ayant,20 and for the most part 
we use the development of Abragam.21 For brevity, no 
derivations are given in the following, and only those 
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results needed for defining the notation or for subse­
quent applications are presented. The system is de­
scribed by a Hamiltonian hX, is of volume V, and at 
temperature T. When an rf field of frequency w/21r is 
applied to the system, the magnetic absorption is 
determined by the imaginary part of the magnetic 
susceptibility which can be shown to be given by3•21 

x"(w) = :~-Tr~E]~"" coswt Tr[Mx(t)Mx]dt, (2.1) 

where Mx is the operator for the x component of the 
macroscopic magnetization of the sample, 

Mx(t) = exp(iXt)Mx exp(-iXt), (2.2) 

and 8 is the unit operator in the vector space spanned 
by :JC. Equation (2.1) is valid to first order in the 
amplitude of the rf field (no saturation), and at high 
temperatures [(hX/kT)«l]. 

For most of our purposes, we can use a semiclassical 
formulation in which the total Hamiltonian of the spin 
system is divided into two parts,3,4,21 ,22 

(2.3) 

The zero-order Hamiltonian hX0 is time independent 
and gives rise to a sharp-line spectrum, while h:JC1 (t) is 
a fluctuating time-dependent perturbation which causes 
relaxation and line broadening. The operator X1(t) is a 
stationary random function with a time-average value 
of zero. It includes the effects of the random molecular 
tumbling motions of the radical resulting from colli­
sions with the solvent, internal rotation and vibration, 
and the disturbances introduced by fluctuating com­
plexes between the radical and solvent. By "solvent" 
we mean the major constituent of the solution and also 
all solutes other than the radicals themselves. Some of 
the solutes, such as, for example, alkali-metal cations 
and oxidized or reduced forms of the radicals, may have 
specific interactions with the radicals. The molecular 
tumbling modulates the anisotropic intramolecular 
dipolar interaction, the effects of the anisotropic 
spectroscopic-splitting-factor tensor (g tensor), and 
the quadrupole interaction. The internal rotation and 
vibration, and the fluctuating solvent complexes, may 
change both the geometry of the molecule and the 
distribution of pi-electron spin density, and thus modu­
late the isotropic hyperfine interactions, the anisotropic 
intramolecular dipolar interactions, the principal values 
(and perhaps direction) of the g tensor, and the quad­
rupole interactions. Dipolar interactions between the 
solvent and the radical, and chemical exchange be­
tween the radical and other species, can also be in­
cluded in the theory, but we specifically restrict our 
considerations to solutions with sufficiently dilute con­
centrations of the radicals to permit the neglect of 
radical-radical perturbations such as intermolecular 
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dipolar interactions and quantum mechanical exchange 
effects.4•30 

The time variation of JC1(t) is assumed to be de­
scribed by a stationary Markoff process31 so that the 
random motions are described by only two probability 
distributions. For any random process y(t), these dis­
tributions are the probability W(y)dy of finding y in 
the range (y, y+dy), and the joint probability 
W2(y1; y2r)dy1dy2 of finding yin the range (y1, Y1+dy1) 
at any time t1 and in the range (y2, Y2+dy2) at a time 
t2, where, because of the stationary nature of the process, 
W 2 depends on the time interval r= t2-t1, not on ti or 
t2 separately. The joint probability W~y1dy2 can be 
expressed in terms of the conditional probability 
P(y1 j y2, r)dy2 that given y1 at an initial time, one 
finds yin the range (y2, Y2+dy2) at a time T later by the 
relation 

W2(y1;y2r)=W(y1)P(y1JY2,r). (2.4) 

The average of a functionf (y) = j[y(t) ]= f (t) is thus 

(f(t) )= f W(y)f (y)dy. (2.5) 

The only other average required is the correlation 
function g12(r) of two functionsfi(t) andh(t), defined 
by 

gl2(r) = (Ji(t)h*(t+r)) 

= f dy1W(y1)fi(y1) f dy2P(y1 I Y2, r)h*(y2), (2.6) 

It follows from the usual assumptions of the theory of 
random functions that21 ,31 

A sufficient condition for the general formulation of 
the theory is that the motions be rapid in the sense 
that a,21,22 

(2.8) 

where Tc is a correlation time characteristic of the 
motion. Thus the present theory is applicable to the 
jumping of an electron from one molecule to another, 
as in the naphthalene-naphthalenide exchange reac­
tions studied by Weissman,32 only in the limit of rapid 
jump rates. Similarly, changes in geometrical conforma­
tion or spin-density distribution must be rapid in the 
sense of Eq. (2.8). 

The zero-order spin Hamiltonian is given by 

liXo=g.{3.S·Bo-li L ')';I;- Bo-li'YeLa;I;• s, (2.9) 
i 

30 G. E. Pake and T. R. Tuttle, Phys. Rev. Letters 3, 423 
(1959). 

31 M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323 
(1945). 

32 R. L. Ward and S. I. Weissman, J. Am. Chem. Soc. 76, 3612 
(1954); 79, 2086 (1957). 

where (3. is the Bohr magneton; B0 is the external applied 
magnetic field; -y.= - j -y. j and 'Yi are the magneto­
gyric ratios of the electron and the ith nucleus, respec­
tively; and the summations are over all magnetic 
nuclei in the radical. The a;= (a;(t) ) are the values of 
the isotropic hyperfine interactions (in gauss) averaged 
over internal motions and fluctuating solvent interac­
tions. The quantity g. is the average value of the g 
tensor and is given by 

(2.10) 

where the ij;= (g;(t) ), i= 1, 2, 3, are the principal 
values of the g tensor of the radical averaged over 
internal motions and fluctuating solvel).t interactions. 
We restrict our considerations to radicals with a single 
unpaired electron ( S= 1/2). The high-field approxi­
mation is assumed, and thus certain second-order 
shifts are neglected.33•34 A line in the spectrum may be 
degenerate, with degeneracy Dk, but each line is as­
sumed to be well separated from adjacent lines. 

It is convenient to introduce the correlation function 
of the electron-spin angular momentum, 

G(t) = Tr[S.(t) Sx], (2.11) 

where S, is the x component of the electron-spin 
angular momentum of a single radical and Sx(t), which 
is an ensemble average, is given in terms of Sx by an 
equation analogous to Eq. (2.2). The trace is taken 
over the spin states of the electron and nuclei of a 
single radical. This correlation function is a real and 
even function21 of t. The imaginary part of the sus­
ceptibility can then be rewritten as 

x"(w) = (1rXoW/2LDk)I(w), 

where xo is the static susceptibility and 

4/co I(w) =- G(t) coswtdt 
71' 0 

(2.12) 

(2.13) 

is the spectrum normalized so that for a line of angular 
frequency wk and degeneracy Dk (see Sec. III), 

f00

h(w)dw=Dk. 
0 

(2.14) 

The correlation function G(t) is evaluated by solving 
the differential equation21 

~dt(a I S}(t) J a')= LRaa'/l.B'(/3 J S,ht) j /3') (2.15) 
.BfJI 

for the ensemble average of the matrix elements of the 
x component of the electron-spin angular momentum 
in the interaction representation, 

s,i(t)= exp(-iXot)Sx(t) exp(iJCot). (2.16) 

33 G. Breit and I. I. Rabi, Phys. Rev. 38, 2082 (1931). 
34 R. W. Fessenden, J. Chem. Phys. 37, 747 (1962). 
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In Eq. (2.15), Raa'fi/3', the relaxation matrix, is given by 

Raa'/j/J' = 2Ja/jc,'{J'(Wc,f3)-oa'/J' I:la')'{J')'(w,,{J) 

where 

')' 

-Oc,fJI:;J,,a'yf3'(W{J'r), (2.17) 
'Y 

la/ja'fJ'(w) =½ L: {JC1(l)apJC1*(t+r)c,'/J') 

X exp( -iwt)dr (2.18) 

and JC1 (t) af3 is a short-hand notation for the a, (3 matrix 
element of JC1(l), i.e., JC1(t)a11= (a I JC1(t) I (3). The 
angular brackets in Eq. (2.18) signify an average over 
the random motion. Equation (2.17) is subject to a 
restriction among the energies, 

(2.19) 

Each index a, (3, • • • refers to a particular state, and 
in general several states may have the same energy, 
i.e., the energy levels may be degenerate. The angular 
frequencies are defined by ftwa/3 = -fiw/Ja = Ea - E/J, and 
it follows from Eqs. (2.7) and the Hermitian character 
of JC1(t) that the spectral densities J(w) satisfy the 
relations 

la/3a'/J'(w) = l{J'a'/3a(w) = la/3a'/3'( -w) = lt3a/3'a'*(w), 

(2.20) 

Imaginary terms in the relaxation matrix which give 
rise to small second-order shifts of the line positions21 •22 

have been omitted from Eq. (2.17). 
There are thus several steps in calculating the spec­

trum J(w). These include, first, the computation of the 
spectral densities J aa'/3/3' ( w). The relaxation matrix 
Raa'/3fJ' is then evaluated from the spectral densities. 
The differential equation for Si(t) must be solved in 
order to calculate the correlation function G(t), and 
:finally I(w) can then be obtained from the Fourier 
transform of G(t). Before proceeding to these detailed 
calculations, some general conclusions about the line 
shape are first discussed (Sec. III). 

III. LINE SHAPE 

The spectrum, and therefore the line shape, can be 
specified in general terms by obtaining a formal solu­
tion of Eq. (2.15) for Sxt(t). Only the Dk2-dimensional 
subspace of the relaxation matrix Raa'f3f3' which con­
tains all the states I a) and I a') for which 

(3.1) 

are needed to determine the correlation function 
Gk(t) for the line with angular frequency Wk, and the 
formal solution of Eq. (2.15) is obtained by diago­
nalizing this part of the R matrix.21 In the appropriate 
subspace, the matrix elements (a I S,, I a') are taken 

as the components X/kl of a Di-dimensional vector 
X<kl, Let U<kl be the unitary transformation which 
diagonalizes the relaxation matrix R Ck) in the subspace, 

( ) 

n.2 

[U(k)J-lR(k)U(k) ,j= m~l[ij(k)J;m-lRmn(k)Un/k) 

(3.2) 

where the A/kl are the eigenvalues of Rmn (kl; and let 
Y/kl be the components of a vector Y<kl obtained from 
X<kl by the inverse of the transformation U<kJ: 

Dk
2 

Y;<k>= I:;[u<k>J;rixp>. 
j=l 

Then it can be shown that21 

Dk
2 

Gk(t) = 2 coswkt I:; I Y/kl 12 exp(A/klt) 
i=l 

(3.3) 

(3.4) 

and, since on physical grounds the A/kl must be nega­
tive, one obtains 

Dkz T2 .(k) 

h(w) = (4/1r) I:; l Y/kl I l+[T .(k;j2 ( _ ) 2, (3.5) 
i=l 2,, W Wk 

where we have set [ -A/k>J-1= T2Jk>, the transverse 
relaxation time for the ith component of the line with 
angular frequency wk. 

The spectrum given by Eq. (3.5) is the sum of lines 
of Lorentzian shape and different widths,21 •35 and thus 
in general the shape of a composite line is not Lorent­
zian. On the other hand, the Kubo and Tomita theory,3 
as applied to the linewidths of free radicals by Kivel­
son,4 predicts that a composite line should have an 
over-all Lorentzian shape. Some examples of this 
discrepancy between the two theories are discussed in 
Sec. V. If all the T2)k> are equal, Eq. (3.5) gives a 
single Lorentzian line. To obtain the spectrum we note 
that the matrix elements X/k>= (a IS,, I a') have the 
value X /kl=½ for Dk of the matrix elements and zero 
for the remaining Dk(Dk-1). This follows because in 
the high-field approximation each state can be repre­
sented by a wavefunction which is a product of an 
electron-spin wavefunction and one function from a 
set of Dk orthonormal nuclear-spin wavefunctions. 
From Eq. (3.3), 

I: I Y/k) 12= I: I X/k) 12. 
i ' 

and thus 

A single Lorentzian line is also obtained if the 
different eigenvalues A/kl of the part of the relaxation 

36 The lines are, of course, not Lorentzian in the wings, See 
Ref. 3 and 21. 
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matrix R(k) related to the line of angular frequency wk 
do not differ appreciably from one another. Thus, 
we write 

(3.7) 

with 
o;<<A, 

(where the superscript k has been omitted for brevity). 
Now the only important contribution of Gk(t) to the 
spectrum h(w) is in the time interval 0<t,..._, I A; 1-1, 
and since I o; I « I A \ , I 8i I «1 in this time interval. 
Equation (3.4) can thus be written 

Gk(t)"'2 coswkt exp(At) LI Y; \2 (1+o;t) 
i 

'.::::2 coswkt exp(At) L l Y; \2(1 +5t) 
i 

""2 coswkt exp[(A+5)t]L I Y; l2, (3.8) 
i 

where 
5= [LI Y; l20;]/L I Y; 12• (3.9) 

i i 

This Gk(t) leads to the spectrum Ik(w) of Eq. (3.6), 
i.e., a single Lorentzian, with a transverse relaxation 
time given by 

Dk
2 

l/T2(k)"'-'_ (A(k)+J(k)) = -(4/Dk) LX/kl* R;/klX/k) 
i,J=l 

= -(1/Dk) L'R;/k), (3.10) 
i,j 

where the prime is used to indicate that the last sum­
mation contains only terms in the Dk-dimensional sub­
space for which neither X/kl nor X/kl vanish. As is 
shown in Sec. IV, it is always possible (in the absence 
of appreciable quadrupole interactions) to choose a 
representation by inspection for which off-diagonal 
elements of R<kl in this subspace vanish [see discussions 
following Eqs. ( 4.45) and ( 4.50) in Sec. IV] and thus 

l/T2(kl"-'-(l/Dk)L'R,/kl. (3.11) 
i 

Equation (3.11) is equivalent to Kivelson's result,4 

but it is clear that a single Lorentzian will not be ob­
tained in general. Equations (3.7) are, of course, only 
a sufficient condition for obtaining a line with over-all 
Lorentzian shape. 

Although the foregoing theory shows that in general 
a composite line will not have a Lorentzian shape, 
shape-dependent parameters such as the linewidth and 
the relative amplitude of a hyperfine component are 
much more readily studied experimentally than the 
shape itself. Line-shape investigations are notoriously 
difficult because the wings must be carefully examined, 
and in the typical ESR spectra of interest the wings 
are obscured by too small a signal-to-noise ratio and 
too great a degree of overlapping of adjacent compo­
nents. One of the problems in detecting that a line is a 

superposition of Lorentzians rather than a single 
Lorentzian may be illustrated by plotting the curve 
resulting from two superimposed Lorentzian lines of 
the same statistical weights (intensities) with line­
widths differing by a factor of 2. Inspection of the 
computed curve for the first derivative (and com­
parable conclusions are obtained from the absorption 
curve) shows that a single Lorentzian-shaped curve 
can be fitted to the maximum deflection and the width 
so as to reproduce this curve for the superimposed line 
extremely well in the central portion. The single 
Lorentzian line has too small an integrated intensity, 
but differences in the amplitudes of the multiple and 
single Lorentzians are only evident in regions greater 
than several linewidths from the center of the spec­
trum.36 As a second example with quite different prop­
erties, let us consider two superimposed lines of the 
same statistical weight which differ in widths by a 
larger factor. For definiteness, we take one line to 
have a width of 0.1 G and the other a width of 0.5 G. 
Then the amplitudes of the derivative maxima, which 
are inversely proportional to the square of the widths, 
would be 100 and 4, respectively, in arbitrary units. 
Thus the broader of the two lines would be barely 
detectable, and the line actually observed would have 
a Lorentzian shape. In contrast, a single Lorentzian 
line with the average width of 0.3 G and of the same 
total integrated intensity, corresponding to the spec­
trum predicted by the Kivelson theory, would have an 
amplitude of 11X2=22 in the same units. Thus even 
though in many instances the experimental limitations 
involved in line-shape studies may prevent the ob­
servation of non-Lorentzian shapes, the present treat­
ment predicts striking variations in the linewidths and 
amplitudes which are outside the scope of the previous 
theories. 

IV. RELAXATION MATRIX 

In this section we obtain the explicit form of the 
relaxation matrix for dilute solutions of free radicals. 
Radical-radical and radical-solvent dipolar interac­
tions are neglected. The small intramolecular nuclear­
nuclear dipolar perturbations are also not included. 
We first summarize the procedure for averaging over 
the molecular tumbling, and then give the form of the 
perturbations and the correlation functions for the 
interactions of interest. The different types of "equiva­
lent" nuclei and the appropriate basis functions are 
discussed next. Finally, before presenting the detailed 
expressions for the R matrix, the different types of 
transition frequencies, and the importance of their con­
tributions, are summarized. Some of the expressions 
obtained in this section are not needed for the problems 
treated in the present work, but are included for com­
pleteness and for use in subsequent applications.23 ,24 

36 J. Gendel! (private communication). 
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A. Perturbing Hamiltonian and the Correlation 
Functions 

The perturbing Hamiltonian iiJC1(t) which we con­
sider contains contributions from the isotropic (JC<IJ) 
and anisotropic (JCCDl) intramolecular dipolar inter­
actions, the g tensor (JC<GJ), and the quadrupolar 
interaction 

/iJC1 (t) =/iJCUl (t) +liJC<Dl (t) +liJC(G) (t) +/iJC(Ql (t). 

(4.la) 

It is convenient to write JC1(t) in the form 

JC1(t) = L F,.j(L,ml(t)A,.J(L,-m), (4.lb) 
L,m,µ.,i 

where F ,.J<L,mJ ( t) is a function of all the spatial 
variables, and is thus a randomly varying function of 
the time, and A,.J<L,-ml contains only the spin opera­
tors. In this second equation, the different types of 
perturbations which contribute to JC1 (t) are distin­
guished by the subscript µ, and the subscript i refers 
to the different nuclei in the radical. The interactions 
are expressed as irreducible (spherical) tensors with 
L denoting the rank and m the component. The only 
perturbations of interest here have L=O or 2. The 
prime signifies that the interactions are written in 
molecule-fixed axes, and in particular it is convenient 
to use the axes of the (average) principal values of the 
g tensor. The transformation from molecule-fixed to 
space-fixed axes is readily carried out with the Wigner 
rotation matrices37- 39 Dmm'(L) (a/3-y), where a, {3, and 'Y 
are the Euler angles relating the two systems of axes, 
giving 

We have assumed in writing Eq. ( 4.4) that the molecu­
lar tumbling is independent of the internal motions 
and fluctuating solvent interactions, and vice versa; 
and the quantity (F'(t)F'(t+T)*) is an average over 
these latter motions only. The tensors with L=O are 
independent of the Euler angles, and we assume that 
for L= 2 the molecular tumbling is described by a 
single correlation time TR, We can thus write1•21 (with 
dU' as the normalized volume element in a'f3''Y' space) 

f dD'D-m' ,q'<2l*(a'{3''Y') P(a{j-y \ a'f3''Y'; T) 

=D-m',q'<2l*(a{j-y) exp(-\ TI/TR), (4.5) 

Applying Eqs. ( 4.3) and ( 4.5) to Eq. ( 4.4) gives 

(JC1(/)a/lJC1*(t+T)a'/l' )=LL Lg;/µv;L)(T) 
L µ,v i,J 

X L[A,.}L,q)]a,{A,jL,q)]a'/l'*, ( 4.6) 
q 

where 

g,/µ•; 2l(T)=½exp(- \Tl/TR) 

xI:(F,.,.'<2•m)(t)F,,/<2,ml*(t+T) > (4.7) 
m 

with a similar expression for g;/,.,;oJ ( T) except that the 
factor preceding the summation sign is equal to unity. 
Finally, we write for J(w) in Eq. (2.18) 

la/la'/l'(w) =LL Lj;/µv;L)(w) 
L µ,v i,J 

X L[A,.}L,q)]a!l[A,jL,q)]a'll'*, ( 4.8) 
q 

A,.,/<L,-m)= LD-m,m'(Ll(a{3")')A,.)L,m'l, (4.2) where 
ml 

where the A's without a prime refer to space-fixed 
axes. When averaged over the Euler angles, the Wigner 
rotation matrices obey the orthogonality conditions38 

(Dm1,q1 (Lil* (af3'Y) Dm2,q2(L2) (a{:l-y) )a/h 

= (2L1+1)-10L1L,Om1m20qiqi, (4.3) 

The correlation function which appears in the spectral 
density J(w) of Eq. (2.18) can thus be written 

(JC1(/)a/lJC1*(t+T)a'll') 

= L L tL L(F,.j<L,m)(t)F,j(Lf,ml)*(t+T)) 
L,LI m,m' µ,v i,i 

XL (D-m,q(Ll(t) 1Lm',q'(L'l*(t+T) )a/ly 
q,ql 

37 E. Wigner, Group Theory and Its Application to the Quantum 
Mechanics of Atomic Spectra (Academic Press Inc., New York, 
1959). 

38 M. E. Rose, Elementary Theory of Angular Momentum (John 
Wiley & Sons, Inc., New York, 1957). 

39 A. K. Saha and T. P. Das, Nuclear Induction (Saha Institute 
of Nuclear Physics, Calcutta, India, 1957). 

j;/µv;Ll(w) =½ L:g;/µv;L)(T) exp(-iwT)dT. (4.9) 

The perturbations of interest are listed in Table I in 
the form in which they will be used for substitution in 
Eqs. (4.6)-(4.9). The operators A,.jL,qJ are given in 
space-fixed axes and the functions of spatial variables 
F,.,l<L,ml(t) in the molecule-fixed axes of the (average) 
principal values of the g tensor, x', y', z'. Much of the 
notation is defined in the discussion of Eqs. (2.9) and 
(2.10). The expectation values in the D_<ml (t) and 
[VE(t) ]i<ml are over the electronic wavefunction YI· 
The Y2m(0/, cpl) are the surface harmonics of order 
two (Condon and Shortley definition40), and r/, 0/, 
and cp/ are spherical polar coordinates which define 
the position of the unpaired electron with respect to 
the ith nucleus in the x', y', z' axis system. In the quad­
rupole terms, Q, is the quadrupole moment of the ith 
nucleus, V ( i) is the electrostatic potential at the ith 
nucleus, and the subscripts x, y, etc., indicate the 

• 0 E. U. Condon and G. H. Shortley, The Theory of Atomic 
Spectra (Cambridge University Press, New York, 1935). 
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F µ,;'<L,m) (t) 

q=O 

q=±l 

q=±2 

q=O 

q=±l 

q=±2 

q=O 

q=±l 

q=±2 

J. H. FREED AND G. K. FRAENKEL 

TABLE I. Terms in the perturbation JC1 (t). a 

Isotropic (/) 

-1,,S 

0 

0 

-y,[a; (t) -a;]omo 

Isotropic ( Go) 

-BoS, 

0 

0 

-/3,fi-l[g,(t) -g,]omo 

Dipolar 

g Tensor 

Anisotropic (D) 

-2 (})l[I,.S.-¼(I,+S-+I,_S+l] 

± (I;±S,+I,,S±) 

-I,±S± 

( -1) m-y,-y;ftD;(m) (t) 

D;(m) (t) = (61r/S)½ (f I r/-3 Y2m (8/, </>/) If) 

Anisotropic (G2) 

-2(})1BoS, 

±BoS± 

0 

-½(-1)mi3,fi-lg(mJ(/) 

g<0J (I) = 6--½ { 2ga (I) -[g, (t) +g2 (t)]} 

g(±O(t) =0 

g<±2J (t) = ½[g, (t) - g2 (I)] 

Quadrupolar (Q)b 
Anisotropic 

- (¾)1[3I,.2-I,(I.+1)] 

± (I;±l;,+I,,h±) 

-l;i 

( -1)m{eQ,fi-1[4I;(2I;-1) J-1) [ Vt(t) ];<ml 

[vt(t)J,<0i=-(!)t(f I v.,'(i) if) 

[Vt (t) ]/±IJ = ± (f I Vx,1 (i) ±iVy,' (i) If) 

[Vt (I) J,(±2) = -½ (f I Vxz' (i) - v • .' (i) ±2iVx.' (i) If) 

• The expressions for the Aµ,/L,q) are given i~ space-fixed axes while those for the Fµ,i'(L,m) (I) are in the molecule-fixed axes coinciding with the principle 
values of the g tensor. 

b Quadrupole moments are defined in the conventional manner. See, for example, Refs. 4, 21, or 39. 

derivatives of V(i) with respect to the x', y', z' co­
ordinates. The F,,,l<L,m) (t) are functions of time through 
their dependence on the internal motions and the 
fluctuating solvent interactions, effects which can 
modify the isotropic interactions a;(t); the r/, 0/, <f,/; 
g;(t); the derivatives of V(i); and the electronic wave­
function if;. The g value of the free electron, go= 
- (li:y,/(3.), and the average isotropic g value (j,, are 
used interchangeably when they occur as multiplica­
tive factors in JC1 (t). 

The correlation functions, which we write in a some­
what more compact notation than in Eq. ( 4. 7), and 
with the angular brackets signifying an average over 
the internal motions and fluctuating solvent interac­
tions only, are as follows. 

Isotropic dipolar interaction (hyperfine interaction) 
(I): 

g;/fl(r) =-y.2([a;(t)-a;][ai(t+r)-aJ]) 

=-y.2[ (a;(t)ai(t+r) )-a,-aJ. 

Anisotropic dipolar interaction (D): 

(4.10) 

gdDl(r) = hhty/1,2 exp(- Ir 1/rR) 

XL(D;<ml(t)D/ml*(t+r) ). (4.11) 
m 

Isotropic g-tensor interaction (G0): 
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Anisotropic g-tensor interaction ( G2) : nucleus, x,", yl', zl', with Hamiltonian 

g<02l(r) =-h exp(- Ir l/rR),B.2fi,-2 fi:JC/Dl= - I 'Ye I 'YJi2[d,,iliz" S,/' 

XL(gCml(t)gCml(t+r)) +a.,2hu'' S,/'+d •. J .. " S.''], (4.20) 
m 

3 

XIL(gk(t)gk(t+r) )-3(g,(t)g.(t+r) )}. (4.13) 
/c=:1 

Quadrupolar interaction (Q): 

g;/Q>(r) =io exp(- Ir 1/rR) 

X le2Q,Qii-2[I,(2I,-l)I;(2I1-l) J-1 } 

X L([VS(t) ]/ml[V6(t+r) JJ<ml*). ( 4.14) 
m 

There are also cross terms between the different 
interactions with the same value of L: 

Isotropic dipolar-g-tensor interaction (IG0): 

Anisotropic dipolar-g-tensor interaction (DG2): 

g/DG2>(r) = --rtr'Ye/3,y; exp(- IT 1/rR) 

XL(D/ml(t)g<ml(t+r) ). (4.16) 
m 

Anisotropic dipolar-quadrupolar interaction (DQ): 

g;}DQl(r) =i-o exp( - IT l/rR)-y,-y;{eQJ[IJ(2l1-1) J-1} 

XL(D;,Cml(t)[V6(t+r)]/ml*). (4.17) 
m 

Anisotropic g-tensor-quadrupolar interaction ( G2Q) : 

g/G2Ql(r) = --:h- exp(- Ir l/rR)f3,fi,-2 

X {eQ.[I,(21.-1) J-1} 

X L(g<m> (t) [V6(t+r) ]/ml*), (4.18) 
m 

The correlation functions for the cross terms obey the 
relation 

(4.19a) 

and they contribute a term to the summation overµ, v, 
i,j, and Lin Eq. (4.6) of the form 

½g,/µv;L) (r) L { [A.,..jL,q)]a,{A,jL,q)]a'/l'* 
g 

The principal axes x', y', z' of the g tensor do not, 
in general, coincide with the principal axes of the 
dipolar interaction for a particular nucleus. In terms 
of the principal axes of this interaction for the ith 

the Dim> (Table I) are given by 

D_<m) = -½ L( - l)m' d/m')i>m,m'(2) (a;", /3/', -y/1) 1 ( 4.21) 
mf 

where 

d/±1'=O, 

d.C0l = ( !) ½d,,s, (4.22) 

and al', .B.", -y/' are the Euler angles of the x', y', z' 
axes with respect to the x/1

, y/', zl' axes. As pointed 
out by Schreurs,41--43 even for two nuclei i and j that 
are at equivalent positions (in the sense that the sym­
metry operations of the molecule transform one posi­
tion into the other), D;.<ml is not necessarily equal to 
D/ml. This difficulty arises because the x;,", yl', zl' 
and x/', y/', z/' axes may not have the same orienta­
tion. For planar radicals, /3/'=-y/'=O, and 

so that 

<t""\ (2) ( II Q Q) - ( • ") • dJmm' ai , , - exp -'l,m,ai Umm', 

D/±2>= -½d/2> exp(=-F2ia/'), 

D/±1l=O, 

D/Ol= -½d/Ol. 

(4.23) 

(4.24) 

Thus in general Di±2l¢D/±2> for nuclei i and j at 
equivalent positions, although if nucleus i can be 
transformed into j by a twofold rotation about the 
axis perpendicular to the plane of the molecule and 
passing through its center, D;.<±2>=D/±2>. Another 
especially simple and frequently occurring case arises 
when there is a twofold symmetry axis lying in the 
plane of the molecule, since then nuclei which are 
transformed into each other by this twofold rotation 
have coefficients that obey the relation D/±2l=D/"'2>. 
For computational purposes, the wavefunction t/; in 
pi-electron radicals is conveniently written as a linear 
combination of atomic pi orbitals ef,., and to a first 
approximation the contribution of each orbital can 
be calculated separately. The principal axes and prin­
cipal values of the dipolar interaction at the ith nucleus 
arising from each of the K orbitals are in general differ­
ent, and each set must be transformed from the Xik", 

41 J. W. H. Schreurs, thesis, Free University of Amsterdam, 
Amsterdam, 1962. 

42 J. W. H. Schreurs and D. Kivelson, J. Chem. Phys. 36, 
117 (1962). 

43 Similar observations have been made by A. Carrington and 
H. C. Longuet-Higgins, Mo!. Phys. 5, 447 (1962). See, however, 
Ref. 45. 



Downloaded 29 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

334 J. H. FREED AND G. K. FRAENKEL 

'V;k", Z;k" axes to the x', y', z' axes. Writing 

if;= I:c.cf,., 

D/±1l=0, 

D .(O)= _.1,_ "P "d· (0) 
1, 2L.,,Jic i,c;, 

• 

(4.25) 

( 4.26) 

where p.'·= I c. !2 is the pi-electron spin density associ­
ated with orbital cf,., and the d;,.<m) are related to the 
principal values d;,.,n, n= 1, 2, 3, by relations analogous 
to Eqs. ( 4.22). Formulas for calculating the d;,.,n have 
been given by McConnell and Strathdee.44 Similar 
considerations apply to the quadrupolar interaction. 

B. Equivalent Nuclei, Basis Functions, and 
Frequency Dependence of the R Matrix 

The proper formulation of the relaxation matrix 
requires that careful distinctions be drawn between the 
different types of environments of the nuclei in a 
radical. We shall also find that although in general the 
R matrix is not diagonal, there are certain natural 
representations for the eigenstates of Xo which lead to 
the simplest form for the matrix. In addition, the fre­
quency dependence of the perturbations is helpful in 
determining the importance of the off-diagonal ele­
ments. In this subsection the definitions of "equivalent" 
nuclei, the choice of basis functions, and the frequency 
dependence, are discussed in detail. 

1. Types of "Equivalent" Nuclei 

We say two nuclei i and j are equivalent if the zero­
order Hamiltonian liJCo in Eq. (2.9) is symmetric with 
respect to the interchange of i and j, which implies 
that 'Y,='Yh l;=I;, and a;=a;. Usually two nuclei are 
equivalent in this sense only if they are located at 
symmetrically equivalent positions in the radical, but 
this definition also includes as equivalent those nuclei 
which are not at symmetrically related positions pro­
vided that they have the same magnetic properties 
and average isotropic splitting constants. We call 
these two cases symmetrical and accidental equivalence, 
respectively. For accidental equivalence, two splitting 
constants may be considered to be the same if their 
difference is small compared to the linewidth. It is 
common practice to use the terms "equivalent" or 
"accidentally equivalent" if a;=a; even though 'Yi~'Y; 
or h~I;, but for simplicity this rather special situation 
will be excluded from the general treatment and we 
define two nuclei i and j to be nonequivalent if any of 
the equalities "f;="f;, I,=I;, or a;=a;, does not hold. 

It does not follow that two nuclei which are equiva­
lent with respect to liJCo are also equivalent with respect 
to the perturbation fiX1. For example, even if the 

14 H. M. McConnell and J. Strathdee, Mol. Phys. 2, 129 (1959). 

average values of the isotropic hyperfine interactions 
for two nuclei are the same (a;=a;), the instantaneous 
values a,(t) and a;(t) may not be equal, or the coeffi­
cients in the dipolar interaction, D/±2) and D/±2>, in 
Eq. ( 4.24), may be different. We use the term com­
pletely equivalent for two nuclei i and j if the perturbing 
Hamiltonian fiX1(t) is symmetric with respect to the 
interchange of i andj. The nuclei can thus be divided 
into sets r, s, • • • of equivalent groups, containing 
n,, n,, • • • nuclei, respectively, and within each equiva­
lent group they can be subdivided into sets ru, r., • • • 
of completely equivalent subgroups, containing nru, 
n,., • • • nuclei, respectively, with n,= Lunru. 

For any nucleus i in the completely equivalent sub­
group ru, and any nucleusj in the completely equivalent 
subgroup s., 

( 4.27a) 

Thus if the nuclei i and j are in the same completely 
equivalent subgroup r,,, 

g;/µ,v;L) ( T) = g;/µ,v;L) ( T) = g,/"•v;L) (T) = gruru(µ,,;L) (r). 

(4.27b) 

For any two completely equivalent subgroups ru and 
r. in a symmetrically equivalent group r, 

gruru(µ,v;L) ( T) = grvr.<µ,v;L) ( T) = g,,{fl,v;L) ( T), ( 4.27 c) 

but 
(4.27d) 

if ru and r. are different subgroups. It also is important 
to note that grusv<µ,v;L) ( T) is not in general independent 
of the indices u and v specifying the completely equiva­
lent subgroups of different groups r and s, i.e., 

For a completely equivalent subgroup ru, we can write 

L g;}µ,v;L) ( T) [A,..jL,q)]ai3[A,jL,q)]a'/l'* 
i,J in ru 

= g,,,r,, (µ,v;L) ( T) [Aµ,ru (L,q)]ai3[Av,ru (L,q)]a'/l'*, ( 4.28) 

where 
A (L,q) = " A .(L,q) p,ru. L.J p.,t , ( 4.29) 

i in ru 

for the contribution of the nuclei in subgroup ru to the 
µ, v, L, q term of Eq. ( 4.6). Except for the quadrupolar 
terms, the nuclear-spin operators in the Aµ,," <L,q) can 
thus be written as the appropriate component of Jru, 
the operator for the total nuclear spin in the com­
pletely equivalent subgroup ru, 

J,"= I: 1;. (4.30) 
i in ru 

If there is no accidental equivalence in the group r, 
g,uru(µ,v;L)(r)=g,,(µ,v;L)(r) in Eq. (4.28), but because 
of Eq. ( 4.27d), the different completely equivalent 
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subgroups are collected separately in Eqs. ( 4.29) and 
( 4.30). 

2. Basis Functions 

We shall see that the relaxation matrix for a single set 
of completely equivalent nuclei is diagonal if the eigen­
states of Xo are chosen to be the eigenfunctions I JM) 
of J2 and J, with eigenvalues [J(J + 1) J½ and M, re­
spectively. This we call the coupled representation. 
The total wavefunction is written as a product of the 
electron-spin wavefunction I m, ), with eigenvalues 
m,=±(1/2) of s., and the nuclear-spin function 
I JM), 

I 'Y )= Im.; JM)= Im,) l JM). ( 4.31) 

For n nuclei of spin I, J takes on the values nl, nl-1, 
• • •, 1, 0 for n even, or n odd and I an integer; or the 
values nl, nl -1, • • •, 3/2, 1/2 for n odd and I a half­
odd integer. The number of states with a particular 
value of J is given by 

W(n, I, J) =D(n, I, M= J)-D(n, I, M= J+l), 

(4.32) 

where D(n, I, M) is the degeneracy of the nuclear­
spin states with z component of angular momentum 
equal to M. The D(n, I, M) can be evaluated from the 
coefficients of the multinomial expansion. When neces­
sary, we distinguish different degenerate states with 
the same values of J by the notation J<kl. If products 
of the individual nuclear-spin wavefunctions l 1,-m,) 
are used as the basis for a completely equivalent sub­
group instead of the coupled representation, the R 
matrix is not in general diagonal. 

If there is more than one completely equivalent sub­
group of nuclei, we shall find that the most convenient 
basis consists of a product of the wavefunctions of the 
coupled representations for each completely equivalent 
subgroup, 

I 'Y I m,;IJruMru} )= \ m,)Il J fru(k)M,,,), (4.33) 

where the expression in the center is a short-hand 
notation for the product on the right over all com­
pletely equivalent subgroups r,., r., ··•,Su•, Sv•, • • • in 
all the different groups r, s, • • • of equivalent nuclei. 
The bracketed factor l Jr,,, Mr,,} in the expression for 
I 'Y) indicates that each particular choice of the possible 
assignments of the set of quantum numbers Jr,,,<kl and 
Mr,, defines a different state I 'Y ). If there is only one 
nucleus in the subgroup r,,, say nucleus i, the wave­
function 11 JruMru}) reduces to the single-nucleus 
function I 1,-m;)= l m,). The wavefunction in Eq. 
( 4.33) will be called the product of coupled representa­
tions or, if each completely equivalent set contains only 
one nucleus, merely the product representation. We 
shall find that the matrix is diagonal in this representa­
tion if there are no equivalent groups containing more 

than one completely equivalent subgroup. A representa­
tion in which the wavefunctions of different equivalent 
groups are coupled together is generally unsuitable. 

3. Types of Transition Frequencies 

The high-field eigenvalues of the zero-order Hamil­
tonian, Eq. (2.9), in the state Ii') of Eq. (4.33), are 

N N 

E-r= g,fJ.Bom,-fiBoL, i',M,-fi-y .m,L,M ,a,, ( 4.34) 
r-=-1 r=l 

where 
M,= L,Mr,,= L, m,; (4.35) 

u i in r 

-y,=i',, a,=a., for i in the set r; and N is the total 
number of different equivalent groups. The degeneracy 
of E-r is 

ITD(n,, I,, M,) = Il{J:,'ITD(n,.,,J,, M,,.) }, (4.36) 
r r u 

where the prime on the summation indicates that only 
those terms are included for which the M,,. satisfy 
Eq. ( 4.35). We specifically exclude accidental degen­
eracy in the ESR spectrum, i.e., it is assumed that only 
one set of values of the M, leads to the same eigenvalue 
E-r, or 

N N 

I:,M,a,~ I:,M/a, ( 4.37) 
r=l r=l 

f M,~Mr' for any r. 
In the usual case that the correlation functions 

g;/µ,;L)(T) depend exponentially on the time, the spec­
tral densities j./µ,;L) (w) in Eq. ( 4.9) are proportional 
to the Debye-type dispersion function Tc/ ( 1 +w2rc2), 
where Tc is the correlation time for the particular type 
of motion. Three different groups of frequencies have 
to be distinguished for the relaxation perturbations 
listed in Table I. There are first the secular terms. 
These commute with the zero-order Hamiltonian hJC0 

(in the high-field approximation), thus giving w=O, 
and arise from the spin operators S., I,,, and their 
products, and I/. The other operators do not commute 
with Xo, and we distinguish between pseudosecular4 
terms, which correspond to nuclear-spin transition 
frequencies, and nonsecular terms, which give rise to 
electron-spin transitions. Pseudosecular transitions are 
developed by perturbations which contain the operators 
I,±; or l;.±2 but not the operators S±, and they obey 
the selection rules Am.=0 and Am,=±1 or ±2. The 
angular frequencies for the nuclear-spin transitions in­
volving the ith nucleus are Wi±; and 2w.±, where 

( 4.38) 

and the upper sign applies if m.= +½, while the lower 
sign holds if m,= -½. Nonsecular transitions arise from 
terms containing the operators S±, and the different 
types of combinations are S±I,,, S±Ii±, or S±Iff, The 
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selection rules are ~m.=±1 and ~m;=0, ±1, or =i=l, 
and the possible angular frequencies are ( approxi­
mately) w0, wo+w>±, and wo-Wi±, where wo= I 'Y• I Bo is 
the Larmor frequency for a free electron. Similar 
definitions of secular, pseudosecular, and nonsecular 
are used when the total angular momentum operators 
Jru are used instead of the I,, and the nuclear transition 
frequencies w,.,±=w,± are given by Eq. (4.38) with the 
index i replaced by r. 

We shall find that in the representations chosen 
above, the secular terms contribute only diagonal ele­
ments to the R matrix. The secular part of the R matrix 
is also diagonal in a product representation I I;m;) over 
all the nuclei. The pseudosecular and nonsecular terms, 
however, contribute off-diagonal elements when there is 
more than one completely equivalent subgroup in a 
single equivalent group. 

When the high-field approximation is valid, the w,± 
can be neglected in comparison to w0, and thus we take 
all the nonsecular transitions to have the same angular 
frequency w0. For motions with very short correlation 
times Tc, (woTc) 2«1, (w,±Tc) 2«1 ( the extreme narrowing 
case), 

(4.39) 

and the contributions of pseudosecular and nonsecular 
relaxations are comparable to the secular terms. For 
intermediate correlation times, woTc'"l, (w;±Tc)2<<1, 

(4.40) 

For longer correlation times, w;±T/''1 [but with Tc 
still sufficiently short for Eq. (2.8) to hold], (woTc)2>>1, 

( 4.41) 

and the nonsecular terms make a negligible contribu­
tion. Except in this last case, the nuclear-spin transi­
tion frequencies w>± can be set equal to zero in the 
expressions for j ( w>±). 

These considerations show that a particular inter­
action may have a large effect through its secular and 
pseudosecular terms, while the nonsecular parts may 
often be neglected. In many applications, different 
correlation times Tc describe the motions associated 
with different interactions, and since the spectral 
densities are proportional to Tc for (wrc) 2«1, a per­
turbation associated with a small value of Tc may make 
a small contribution. A motion with a small value of 
Tc does not necessarily imply, however, that the associ­
ated interaction can be neglected, because the perturba­
tion may be large. If the interaction is large and Tc is 
small, Eq. ( 4.39) implies that the nonsecular, pseudo­
secular, and secular contributions are equally im­
portant. Finally, it should be noted that whenever the 
intramolecular dipolar interaction makes a significant 
contribution to the line-broadening mechanisms, the 

pseudosecular terms (as distinct from the nonsecular 
terms) cannot be neglected.46 

C. Relaxation Matrix 

We first consider the relaxation matrix without the 
quadrupole terms. It is evaluated using the eigen­
functions of Eq. ( 4.33), taking 

I a)= I½; {Jr.,Mr.,} ), 

I a')= I -½; { J,.,'M,,/} ), 

( 4.42a) 

(4.426) 

lfJ)= I½; {J,.,"M,.,"}), (4.42c) 

lfJ')=I-½; {J,.,"'M,,,,"'}). (4.42d) 

If {J,,/Mru'}={J,uM,,.}, the states la) and la') 
correspond to the ESR line I a )+-t I a'). Equations 
( 4.42) contain the only possible assignment of m. 
values for I fJ) and I fJ') for this transition that satisfies 
Eq. (2.19). Using these functions in Eq. ( 4.34), we 
find that Eq. (2.19) becomes 

BoL'Yr(M,-Mr'-Mr''+Mr''') 

+(-y./2) I:ar(M,+Mr'-Mr''-Mr'") =0. (4.43) 

We exclude (as a unique type of accidental degeneracy) 
special values of Bo which would cause this equation 
to be satisfied when the two summations are not 
separately zero. Equation ( 4.43) shows that the M's 
must satisfy the relations 

(4.44a) 
u u 

M '- '°'M '- '°'M "'=M "' r - .L..J ru - .L..J ru r , (4.446) 
u u 

and it can also be shown from Eqs. (2.15) and the 
general theory46 that the only elements of interest in 
the relaxation matrix are those for which Mr'=M,, so 
that 

M,=Mr' =M," = M,"'. ( 4.44c) 

In addition, the relaxation matrix only contains terms 
for which J,,,,<W'=J,,,(k) and Jru(i)"'=J,,.(k)'. 

Terms with M,,..'-;;6-M,,. and J,,.< 31 '-;;6-J,.,<kl, corre­
sponding to different nuclear-spin functions in the 
states I a) and I a'), are required in the relaxation 
matrix even though the correlation function G(t) in 
Eq. (2.11) depends on matrix elements (a IS, I a') 
which vanish if the nuclear-spin functions in I a) and 
I a') are different. This complication arises because 
such terms enter into the calculation of S,,(t) from 
Eqs. (2.15) and (2.16). On the other hand, if the R 

46 Carrington and Longuet-Higgins43 neglect the pseudosecular 
and nonsecular parts of the dipolar interaction. The contribution 
of the pseudosecular term, however, is comparable to that of the 
terms they retain. 

46 See Ref. 21, p. 443, Eq. (39). 
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matrix is diagonal using the representation with the 
wavefunctions in Eqs. ( 4.42), i.e., if 

so that M,,," = M,,. and M,,,111 = M,,,', only terms with 
M,,.'=M,,. and J,,.< 311 = J,,,..<kl affect the spectrum. This 
last result follows immediately on solving Eq. (2.15) 
for a diagonal R matrix and making use of the relation 
S,,l(0) = Sx: 

{a J S,,l (t) J a')= exp( Raa'aa•t) (a J Sx J a'). ( 4.45) 

Thus if R is diagonal, the matrix element 

(a J Sxt(t) J a') 

vanishes whenever I a) and I a') do not have the same 
nuclear-spin functions, and it is entirely independent 
of such states. These conclusions can also be obtained 
readily from the formulation in Sec. III. That part of 
of the R matrix for which 

we call the principal part of the R matrix. In the 
Dk-dimensional subspace corresponding to the prin­
cipal part of R, the nuclear-spin functions in \ a) 
and I a'), and also in I {3) and I /3' ), are the same ( al­
though those in I a) need not be the same as those in 
I /3)), i.e., 

and 

{ J W"'M Ill I = { J (k)"M II I ru. ru ru ru . 

Thus only the principal part is needed if the total R 
matrix is diagonal, and we shall also see that the prin­
cipal part of R is always a diagonal submatrix [see dis­
cussion following Eqs. ( 4.50) below and Sec. III]. 

Straightforward albeit somewhat tedious calculation 
shows that the secular part of the relaxation matrix is 
diagonal and can be written 

-Raa'aa'800 = L [jr,.s,(I) (0) +¾jr,,,/Dl(0)] 

X¼(M,,.+M,,.') (Ms.+Ms.') 

+ IJj,,.<IGol (0) +¾j,,.<DG2) (0) ](Bo) (M,,.+M,,/) 

+[j<Go) (0) +ij<G,) (0) ]Ba2. ( 4.46) 

The pseudosecular and nonsecular terms have off­
diagonal elements. For the diagonal elements of the 
pseudosecular part we have 

- Raa'aa'pseudosec = L½ {j,,,,,.(D) (w,+)[J,u(J,.,+ 1)-M,,..2] 

+j,,,,,,<Dl (w,_) [J,,.' (J,,,' + 1) -M,,,'2]1. ( 4.47) 

The diagonal part of the nonsecular contribution (neg-

lecting w,± compared to wo) is 

- Raa!aa'nonsec= L¼jruru(I) (wo) [Jr.,( Jr,.+ 1) 

+J,,.'(J,,.'+1)-(M,,.2+M,,,'2)-(M,,,-M,,,')J 

+ I:H,,.,.,<Dl(wo) {7[J,,.( J,,.+1) +J,,.'(J,,,'+1)] 

-(M,,,2+M,,.'2) +S(M,.,-M,.,') I 
+ Ljrus/Dl(wo)[M,,.Ms.+M,,.'Ms.'] 

Tu~Sv 

( 4.48) 

Under some circumstances, j,,.s_<µ,;Ll (w) is independent 
of the indices u and v specifying the completely equiva­
lent subgroups [see Eqs. ( 4.27) and the related dis­
cussion], so that 

( 4.49) 

Using Eq. ( 4.44c), we can then replace the terms in 
(M,,,+M,,,') in Eqs. (4.46) and (4.48) by 2M,, 
while the terms in (M,,,-M,,.') in Eq. (4.48) vanish. 

There are two types of off-diagonal terms, those for 
which I a')= \ /3') but J a)~ J /3), Raa'{Ja', and those 
for which J a)= I /J) but J a')~ J /3'), Raa'aP'• For the 
pseudosecular contributions to the Raa'f!a' terms, the 
possible values of I {3) are 

I /3)= I a) I Jr,,, Mr,,±1) J J,,, M,,,=1) 
I J,,,Mru) I J,,M,,) ' 

r,.~r. (4.S0a) 

while for the Raa'af!' terms, the possible values of 
I /3') are 

J ')= J '>' J,,.', M,,/±1) I J,.', M,.'=i=1) 
{3 a I J,,.'M,,.') I J,.'M,.') ' 

r,,~r.. (4.S0b) 

In these two equations, a short-hand notation is used 
in which the denominators on the right-hand sides 
cancel identical factors that are contained in I a) and 
I a'), respectively. The contributions from nonsecular 
perturbations are also given by Eqs. ( 4.50) if only the 
upper signs are used. These off-diagonal elements 
occur between all pairs of different completely equiva­
lent subgroups within the same equivalent group 
(within r,,, r,, • • ·, and withins,,,, s,,, • • •, etc.) but 
not between different equivalent groups ( e.g., none 
between r., ands,,, r~s). Equations (4.50) show that 
there are no off-diagonal elements in the principal part 
of the R matrix, i.e., in the Dk-dimensional subspace 
for which 

{J,,.<J)IM,,,.'I = { J,,,.(klM,.,} 
and 
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[see discussion following Eq. ( 4.45) above, and Sec. 
III]. 

Writing 

i(J, M) =[(J+M) (J-M+l)]½, ( 4.51) 

the off-diagonal pseudosecular contributions can be 
expressed as 

_ Raa'f3a'pseudosec 

=¼jrur/D)(w,+)J(fru, TMru)i(frv, ±Mrv), 

ru~r., (4.52a) 
and 

_ Raa'af3'pseudosec 

ru~r.. (4.52b) 

In applying these equations, contributions must be 
calculated separately for both choices of sign since 
these correspond to different values of I {3) or [ {3') as 
in Eqs. ( 4.50). The nonsecular terms are 

+-\4-jrurv(D) (wo) Ji (fru, -M,.,) i ( frv, Mr,), 

ru~r., ( 4.53a) 
and 

-R , 
13

,nonsec-.!.[;·, (l)(w) aa a - 4, urv O 

+-\4-j,.,,_<D>(wo) Ji (J,,,', -Mru')i(J,v', M,v'), 

r,,~r.. (4.53b) 

The quadrupole terms in the relaxation matrix can 
be treated without difficulty in the product repre­
sentation 

[ 'Y )= Im,; m,)= I m,)Il I I,m;), (4.54) 
i 

where the product is over all nuclei, but since the inter­
action contains the products of two operators acting 
on the same nucleus, it cannot be evaluated in the 
coupled representation I JM) without using a procedure 
equivalent to one involving the Racah coefficients38 ,47 ,48 

or the Wigner 6-j coefficients.48 •49 These procedures 
are complicated even for two nuclei, and we therefore 
write the quadrupole terms in the product representa­
tion only. A single representation must necessarily be 
employed for the entire R matrix, and thus the follow­
ing formulas for the quadrupole contributions can only 
be used in conjunction with an R matrix for the other 
contributions that is also written in the product 
representation, Eq. ( 4.54), over all the nuclei. Equa-

47 U. Fano and G. Racah, Irreducible Tensorial Sets (Academic 
Press Inc., New York, 1959). 

48 A. R. Edmonds, Angular Momentum in Quantum Mechanics 
Princeton University Press, Princeton, New Jersey 1957). ' 

49 E. Wigner, as quoted in Ref. 48, pp. 91 ff. ' 

tions ( 4.46) to ( 4.53) are still applicable if the ru, r., • • • 
are replaced by r;, ri, • • •, lru by I,, and M,,, by m;, 
etc., but now the pseudosecular and nonsecular parts 
of the R matrix for a completely equivalent subgroup 
containing more than one nucleus will never be auto­
matically diagonal. 

For the diagonal elements, we have 

- Raa'aa•••0 (xQ) = L { 6j;/Q)(0)[m;2-m/2][m/-m/2] 
i,j 

+4j;/DQ(O)[m;+m/J[m;2-m/2]} 

+ 1:SH02Ql[m;2-m/2]B0, ( 4.55) 
i 

-Raa.'aa'pseudosec(xQ) 

= L(2j;/Ql(w;+) {l;(I,+ 1) [1 +4m;2] 
i 

+2j;/Ql (2w;+) { I;(I,+ l)[I;(I,+ 1)-2-2m;2] 

+5m;2+m;4 } +2j;/DQl(w;+)m;[2I;(I,+1) -2m/-1]) 

+ terms in { w;_, ml}. ( 4.56a) 

The terms in { w;_, m/} are identical to those written 
out in detail if W;+ is replaced by w;_ and m, by m/, 
except that the term inj;/DQJ enters with a minus sign. 
If W;+Tc and W;,....Tc are small compared to unity, so that 
wi± can be replaced by zero in the spectral densities, 

-R.,.,,.,.,,pseudosec(xQ) = L(4j,/Ql(O) {J,(J,+ 1) 
i 

X[I,(I,+1)-l+ml+m/2]-![m.'+m/4]} 

+2j;/DQ) (0) [2/;(I,+ 1)-1 

-2(m;2+m,m/+m/2) ](m,-m/)). (4.56b) 

The secular contribution vanishes if the nuclear-spin 
states in I a) and I a') are the same (m;= m/), as does 
the dipolar-quadrupolar cross term in the pseudo­
secular part. Equation ( 4.56b) for m,= m/ differs by 
numerical factors in some of the terms from the expres­
sion given by Kivelson.4 There are no nonsecular 
quadrupole terms. The off-diagonal elements, which 
are only pseudosecular, involve transitions analogous 
to those considered above, and only occur for nuclei 
within equivalent groups. The possible states I /3) and 
I {3') in_ the off-diagonal elements Raa'/3a' and Raa'a/3', 

respectively, are determined by relations analogous to 
Eqs. (4.50). We designate the wavefunctions of the ith 
nucleus of the rth group by I I,, m,;) and replace the 
symbols lru, Mr,,, J,., M,. of Eqs. ( 4.50) ff. by I,, mr;, 
I,, m,;, respectively. In addition to transitions m,,-'> 
m,;±1, m,1-'>mriTl, and similar transitions for m,/, 
etc., double quantum jumps m,,-'>m,;±2, m,1-'>m,i,=.2, 
etc., are also allowed. The matrix elements for single 
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quantum jumps are (i~j) 

-Raa'/Ja'pseudosec(xQ; Am= ±1) 

= {jr;r/Q> (w,+) [4m,,m,/F2(m,;-mrJ) -1] 

+jr;r/DQ>(w,+)[2m,.JIJ(I,, =Fm,,)J(I,, ±mr1), (4.57a) 

while those for double quantum jumps are (i~j) 

-Raa'/Ja'pseudosec(xQ; Am= ±2) 

=jr_,/Q>(2w,+)f[I,, (=Fmr;-1)] 

Xf[I,, -(=Fm,,-l)]J[I,, (±m,;-1)]j[I,, 

-(±m,;-1)]. (4.57b) 

The Raa'a/J' terms are given by similar expressions with 
"'•+ and m,. replaced by w,..... and m,/, respectively, but 
with a minus sign for the D-Q cross term in Eq. 
(4.57a). 

To recapitulate, we note that in the absence of 
quadrupole interactions there is a natural way of 
choosing the nuclear-spin wavefunctions for the deter­
mination of the relaxation matrix: completely equiva­
lent subgroups are described in a coupled representa­
tion, and products of these coupled representations are 
used as the wavefunctions for the entire set of nuclei. 
This product of coupled representations is employed 
consistently except when quadrupole terms make 
significant contributions. For a single completely 
equivalent subgroup of nuclei, the coupled representa­
tion leads to a diagonal R matrix, and if every equiva­
lent group contains only one completely equivalent 
subgroup, a product of the coupled representations for 
the different equivalent groups also leads to a diagonal 
matrix. For more than one completely equivalent sub­
group in an equivalent group, the pseudosecular and 
nonsecu'ar terms make nondiagonal contributions, 
but secular terms always yield diagonal matrix elements 
if the product of coupled representations is used. 
Secular terms also give only diagonal matrix elements 
in a product representation over all the nuclei. Although 
the nonsecular terms for some of the interactions can 
often be neglected in comparison to the secular terms, 
the pseudosecular and secular parts of the anisotropic 
dipolar interaction are usually comparable in magni­
tude, and since the pseudosecular terms introduce 
off-diagonal matrix elements, the determination of the 
linewidths can become quite complicated ( see Sec. VII). 

When quadrupole terms make a significant contribu­
tion, and there is more than one nucleus in a com­
pletely equivalent subgroup, a product representation 
over all the nuclei may be employed, but the R matrix 
is necessarily nondiagonal. 

V. ILLUSTRATIVE APPLICATION TO ISOTROPIC 
MODULATION. ALTERNATING LINEWIDTHS 

IN DINITRO COMPOUNDS 

In this section we illustrate the general theory with 
an application chosen to show that treatments requiring 

a multiple line to be of an over-all Lorentzian shape 
are inadequate. For simplicity, only the secular part 
of the modulation of the isotropic hyperfine interaction 
for two nuclei is considered. Some general conclu­
sions are first drawn without using a specific model for 
the form of the modulation, and it is shown that if the 
correlation functions satisfy certain special conditions, 
the linewidths alternate in magnitude from one hyper­
fine component to another. The theory thus has appli­
cations to the experimentally observed alternating 
linewidths in certain dinitrobenzene anions.14,17 ,18 ,24 A 
special model, corresponding to a two-jump inter­
change of hyperfine splittings between the two nuclei, 
is then analyzed in detail because it can also be simply 
treated with the modified Bloch equations25-28 ( or, 
with essentially identical results, by the theory of 
Anderson29). The two-jump interchange model is 
particularly interesting and instructive because it 
allows this simple comparison of two rather different 
theories. 

We assume that the two nuclei are symmetrically 
equivalent [i11=i12=a, gu<n(r) =g22al(r)] but not com­
pletely equivalent, so that in general g12Ul ( r) ~ g1/ 1l ( r). 
For two nuclei of spin / the spectrum consists of 4[ + 1 
equally spaced lines of degeneracies D(2, I, M), 
\ M \ :'.S; 2/. Since the treatment is restricted to only the 
secular part of the isotropic dipolar interaction, the R 
matrix is diagonal, and the reciprocal of the transverse 
relaxation times [T2,k<MlJ-1 for the kth component of 
the line with M=m1+m2 is equal to the appropriate 
part of -Raa'aa'•ec in Eq. (4.46). Thus 

where j;;, which is written for j;p> (0), is given by Eq. 
(4.9) with g,p>(r) from Eq. (4.10) taking i1;=i1i=ii. 
The values of T2-1 are listed in Table II for nuc1ei with 
spin I=½, /=1, and I=!. For an arbitrary relation­
ship between j 12 and ju, the lines for I= 1 with M = 0, 
and I=! with M=0 and M=±l, consist of several 
components with different widths. If j12=j11, which we 
call the "in-phase-correlated" case, the two nuclei are 
completely equivalent, and each line consists of a 
single Lorentzian with a width which depends quad­
ratically on M: [T2<Ml (sec) J-1=juM2• On the other 
hand, if j 12= -j11 ("out-of-phase-correlated"), or 
j 12=0 ("uncorrelated"), the lines are not all of Lor­
entzian shape and the width varies in a complex manner 
from component to component. 

In the out-of-phase-correlated case, ifj11 is very large, 
some of the lines are broad and others are sharp. Thus, 
for I= 1, the component of the M = 0 line with stat­
istical weight 2 is broad while the component with 
statistical weight one is narrow. As a result, in the limit 
of j 11 so large that the broad lines would not be ob-
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TABLE II. Secular linewidths, isotropic modulation of two nuclei. 

[Tu<mJ (sec) J-1 

In-phase Out-of-phase 
I M (m1, m2)a Dk General correlated correlated Uncorrelated 

j12=j11 j12=-ju j12=0 

½ ±1 ±½, ±½ 1 ½U11+j12) ju 0 Hu 

0 [±½, =i=½] 2 ½Uu-J2) 0 ju 1 • 
2J11 

1 ±2 ±1, ±1 1 2(ju+j12) 4ju 0 2ju 

±1 [±1, OJ 2 ju ju ju ju 

0 ±1, =Fl 2 2(ju-j12) 0 4jn 2ju 

0, 0 0 0 0 0 

±3 ±!, ±! 1 lUu+it2) 9ju 0 .. 
2}11 

±2 [±!, ±½] 2 ½(5ju+3j12) 4ju ju .. 
'i)II 

±1 [±!, =F½] 2 ½(5ju-3j12) ju 4ju 5 • 
'i}II 

±½, ±½ 1 ½(ju+j12) ju 0 Hn 

0 [±!, ::i=!] 2 t(ju-j12) 0 9jn 9. 
2Jll 

[±½, =f½J 2 ½Uu-i12l 0 j11 1 • 
'i}II 

a Square brackets indicate that the state specified hy (mt, m2) and also the state obtained by permutation of I and 2, (m,, mt), are both included. 

served,50 the spectrum for two nuclei with I= 1 would 
appear to contain only three lines of equal amplitude 
corresponding to M = - 2, 0, 2 with spacing 2a instead 
of five lines with intensity ratios 1: 2: 3: 2: 1 and spacing 
a. In such a situation, one might erroneously conclude 
from the spectrum that only one of the two nuclei was 
exhibiting hyperfine structure, and that the radical 
was asymmetric. This type of phenomenon has been 
found experimentally,15 •16 and other observed anomalies 
in hyperfine-splitting-constant patterns15 •16 •51 may pos­
sibly arise from this mechanism. For j 11 large, but not 
so large as to cause the M = ± 1 lines to be unobservable, 
the spectrum would consist of five equally spaced lines. 
The M = ±2 lines would appear sharp, the M = ± 1 
lines broad, and the M = 0 line would consist of a sharp 
line of statistical weight one superimposed on a broad 
( and perhaps unobservable) background of statistical 
weight two. This corresponds to the alternating line­
width phenomena observed in dinitrobenzene anion 
radicals.14•17•18•24 One would expect, from the results for 
I=½, that N16-substituted dinitrobenzenes would show 
a reverse type of alternating linewidth: the central 
line would be broad and the outside lines sharp. An 
analogous type of behavior occurs for I= J. 

These results are very different from those predicted 
by the Kivelson-Kubo-Tomita theory. Thus, for the 
out-of-phase-correlated case of two nuclei with I= 1, 
the average widths (see Sec. III), which are the values 

60 Note that the amplitude of the first derivative of the absorp­
tion is inversely proportional to the square of the width. 

61 R. L. Ward and M. P. Klein, J. Chem. Phys. 28, 518 (1958); 
R. L. Ward, ibid. 30, 852 (1959); 32, 410 (1960); J. Am. Chem. 
Soc. 83, 1296 (1961). 

of the widths predicted by this theory, are ·hn, j 11 , and 
0, respectively, for the M=O, ±1, and ±2 lines. In 
other words, the Kivelson-Kubo-Tomita theory does 
not predict either an alternating linewidth nor, in the 
case of extreme broadening, the apparent disappearance 
from the spectrum of the splitting from one of the 
nuclei. 

A number of different models24 lead to the relation 
j 12 = -j11, but here we treat orily the two-jump inter­
change case because it can be compared with the 
Bloch-Anderson procedure. We postulate that the 
radical can exist in two different states, A and B, and 
that there is an exchange reaction between the two 
states. The lifetimes of A and B are assumed to be the 
same, TA=rB=ro, and the time of a jump from one 
state to the other is assumed to be small compared to 
r0• We postulate further that each nucleus can have 
only two different splitting constants, either ar or au: 
in state A nucleus 1 has splitting constant a1 while 
nucleus 2 has splitting constant au, and in state B 
the splitting constants are interchanged. Thus 

a1(A) =a2(B) =ar, 

(5.2) 

Since the probability of occurrence W(µ) (with µ= A 
or B) is the same for the two states, the average 
splitting constant is given by 

(5.3a) 

=½[a;(A) +a,(B) J=½(ar+an) =a, (5.3b) 

and it is the same for the two nuclei. The conditional 
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probabilities for finding the system in the states A and 
B, respectively, at time r~0 when the system was in 
state A at time r=0 are readily shown to be 

P(A I A, r) =½[1+ exp(-2r/ro)], 

P(A I B, r) =½[1- exp(-2r/ro)]. (5.4) 

There are similar expressions with A and B inter­
changed when the system is in state Bat r= 0. Straight­
forward calculation using Eqs. (2.6), (4.9), and 
(4.10) gives 

ju<Il(O) = -j12<1l(O) =ho'Ye2(ax-an)2, (5.5) 

and, from Eq. (5.1), 

[Tu<M) (sec) J-1= iro'Y .2( a1-an) 2(m1-m2) 2• (5.6) 

To treat this problem in the frame work of the modi­
fied Bloch equations25- 28 or the theory of Anderson,29 

we first consider the spectrum in the limit of very long 
lifetimes for states A and B. The angular frequencies 
in the stateµ, measured from the center of the spectrum 
wo= I 'Ye I Bo, are given by 

wk(µ) =-y.Lai(µ)m;, (5.7) 
i 

where each value of the index k corresponds to a 
particular choice of the m;. The spectrum for states A 
and B is the same, as shown in the upper part of Fig. 
1, but in general the lines wk(A) and wk(B) arising from 
a particular assignment of m1 and m2 occur at different 
positions. A line with the same position in the two 
states results from an interchange of the quantum 
numbers m1 and m2. We assume that the Bloch equa­
tions25 are applicable to any line, say the line at posi­
tion wk(A) in state A (see Sec. VIII). Bloch equations 
with the same relaxation times Tu, and T2.k will then 
also apply to the line Wk(B) which has the same assign­
ment of quantum numbers mi in state B as the mi 

for the line wk(A) in state A. When exchange is taking 
place between the two states, the modified Bloch 
equation 211-28 can be employed provided only secular 
effects are important (see Sec. VIII), and in the limit 
of rapid exchange, the lines wk(A) and wk(B) coalesce 
to a single line at the mean frequency 

wk=½[wk(A) +wk(B) J 
=heL[a;(A)+a,(B)]mi 

(5.8a) 

(5.8b) 

where the mean splitting constant a is given by Eq. 
( 5.3b). The averaged spectrum is shown in the lower 
part of Fig. 1 and is, of course, the same as that given 
by the zero-order Hamiltonian fi:fe0• The transverse 
relaxation times (for fast exchange) are given by26 

[Tu<M>(sec) J-1=iro[wk(A)-wk(B) ] 2 (5.9a) 

=¼ro-y.2(a1-an)2(m1-m2) 2 (5.9b) 

111 
M: -2 -I 0 -I O ! 0 ! 2 

STATE A m1:-1 -! -! 0 0 0 I I I 
ma! -I O I -I O I -1 0 ! 

l L---------~ I' __________ ---··:i-J l 
l r---~-~-------+-----··--------~.•~ 

,----------- 'I • r-------~- -7 I 

STATE 8 m1: -I O I 
mz: -I -I --1 

-! 0 ! 
0 0 0 

-I O I 

I I I 

AVERAGE M : - 2 -I 0 
ST~TE 

FIG. 1. Spectra for two-jump modulation of isotropic hyperfine 
interaction. The upper spectrum is for the limit of long lifetimes 
for the two states (A and B), and the lower spectrum applies 
when there is rapid exchange. In state A, nucleus 1 (quantum 
number m1) has hyperfine splitting a1 and nucleus 2 (quantum 
number m2) has splitting an, with a1>an. In state B, the hyper­
fine splittings are interchanged. Arrows show how lines combine 
on exchange, with interacting lines in states A and B that termi­
nate at the same average position being indicated by the same 
type of arrow {solid horizontal, solid vertical, or dashed hori­
zontal). 

which is identical to the expression obtained above by 
the relaxation-matrix procedure, Eq. (5.6), and leads 
to the results in the next to last column of Table II. 

The arrows shown in the figure indicate in detail 
how the lines in the individual states A and B combine 
to give the average spectrum. Using the notation 
( m 1, ffl2) to identify the lines, we see that only the 
(±1, ±1) and (0, 0) lines are not shifted by the 
exchange ( as shown by the vertical arrows) and, 
according to Eq. (5.9a), are therefore unbroadened by 
the exchange mechanism. The ( -1, O) line changes 
from the position --y.a1 in state A to --y.au in state 
B (shown by the solid arrows) and leads to the average 
line at --y.a with a width proportional to [ -a1-
( -arr) ] 2= (a1-a11) 2• The (0, -1) lines coalesce in 
the same manner {indicated by the dotted arrows), 
and similar results are obtained from the (1, 0) and 
(O, 1) lines on the right-hand side of the spectrum. 
The ( -1, 1) lines in states A and B, at positions 
--y.(a1-an) and -y.(a1-au), respectively, give one 
of the three transitions making up the central line of 
the average spectrum, and have a width proportional 
to [-(a1-au)-(a1-an)]2=4(a1-au) 2• The (1, -1) 
lines make an identical contribution, and the third 
component of the central line is the unbroadened 
(0, O) part. 

These simple arguments using the modified Bloch 
equations thus lead to results which are identical to 
those obtained from the relaxation-matrix theory, and 
differ from the conclusions of the Kivelson-Kubo-
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A 
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C 

0 
B 

0 
0 

FIG. 2. Schematic structural 
formulas for four-jump modu­
lation model. 

Tomita theory. The Anderson theory also gives identical 
predictions.29 A comparison of the usefulness and 
limitations of the Bloch, Anderson, and relaxation­
matrix theories is given in Sec. VIII. 

A detailed account of the alternating linewidths in 
dinitrobenzene anions is presented elsewhere.24 

VI. FOUR-JUMP ISOTROPIC MODULATION. 
Cis-Trans ISOMERISM 

As a second illustration, we consider the linewidth 
effects arising from modulation of the secular part of 
the isotropic hyperfine interaction for a system in 
which a nucleus, or group of completely equivalent 
nuclei, can exist in four different states. This model has 
application to the alternating linewidths observed in 
the dihydroxydurene cation.11·12 ,18 

The four states are designated by A, B, C, and D. 
States A and C are assumed to be thermodynamically 
equivalent, as are states B and D. The interconversion 
of A and Bis assumed to be governed by the equation 

(6.1a) 

and because of the assumed equivalence there are three 
similar expressions with the same rate constants, one 
with A replaced by C, one with B replaced by D, and 
one with A replaced by C and B by D. The other inter­
conversion reactions are 

and 

k3 

h::::±C 
ks 

The probabilities of occurrence of the states are 

and 

(6.1b) 

(6.1c) 

(6.2a) 

(6.2b) 

The conditional probabilities for finding the system in 
the states A, B, C, or D respectively, at time T~O if it 
was in state A at time T=O are readily found in terms 

of the three relaxation times 

to be 

Tc= [2(ki' +k4) J-1, 

TT= [2(k1+ka) J-1, 

TcT= [2(k1+ki') J-1, (6.3) 

P(A I A, T) = WA+WB exp(-T/TcT)+½ exp(-T/TT), 

P(A I B, T)=WB[l- exp(-T/TcT)], 

P(A IC, T)=WA+WBexp(-T/TcT)-½exp(-T/TT), 

P(A ID, T) = P(A I B, T). (6.4) 

The conditional probabilities when the system is 
initially in state C can be obtained from Eqs. (6.4) by 
replacing A by C and vice versa. When the system is 
initially in state B, 

P(B I A, T) =P(A I B, T) (WA/WB), 

P(B I B, T) = WB+WA exp(-T/TcT)+½ exp(-T/Tc), 

P(B IC, T) =P(B I A, T), 

P(B ID, T) =WB+WA exp(-T/TcT)-½ exp(-T/Tc), 

(6.5) 

and similarly, when the system is initially in state D, 
the probabilities are obtained by replacing B by D in 
Eqs. (6.5) and vice versa. From Eqs. (2.6) and (4.10), 
the correlation functions can be shown to be 

-y.-2gd1l (T) = WAW B exp( -T/TcT) [ai(A) +a;( C) 

-a;(B) -a,(D) J[ai(A) +ai( C) -ai(B) -ai(D) J 
+½WA exp(-T/TT)[a,(A)-a;(C)][ai(A)-ai(C)] 

+½WB exp( -T/Tc) [a,(B) -a;(D) J[ai(B) -ai(D)]. 

(6.6) 

We assume that there are four possible splitting 
constants for each of the four completely equivalent 
groups of nuclei and assign them according to the 
scheme in Fig. 2 and Table III. The figure represents 
the cis and trans forms of the terephthalaldehyde 
anion,62 the diacetylbenzene anion,63 or the dihydroxy-

TABLE III. Assignment of splittings a,(µ) for four-state 
cis-trans isomerism. 

'x_ A B C D 

1 a1T au0 auT a1° 

2 auT aua a1T a1a 

3 a1T a1° auT au0 

4 auT a1a a1T anc 

62 A.H. Maki, J. Chem. Phys. 35, 761 (1961). 
63 P. H. Rieger and G. K. Fraenkel, J. Chem. Phys. 37, 2811 

(1962). 
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durene cation, but other systems in which each nucleus 
or group of equivalent nuclei can exist in four different 
magnetic environments would also be schematically 
represented by this diagram. The table entries contain 
the values of a;(µ), with two possible splittings, I or II, 
for each conformation, cis ( C) or trans ( T). From 
Eq. (6.6) and Table III, and letting 

gc(r) =h.2WB(arc-anC) 2 exp(-r/rc) 

gr(r) =h,2WA(a1T-a11T) 2 exp(-r/rr) 

gcr(r) =-y.2WAWB(arc+auc-arT-a11T) 2 

X exp(-r/rcr), (6.7) 

one can show that g,/Il ( r) = g11<Il ( r), gi/1l ( r) = gi/ll ( r), 
and 

g1/ 1l (r) = gc(r) +gr(r) +gcr(r), 

g12<1l(r) =g3Pl(r) =gc(r)-gr(r)+gcr(r), 

g130l (r) = g2Pl (r) = -gc(r) +gr(r) +gcr(r), 

g14<Il(r) =g2/1l(r) = -gc(r)-gr(r)+gcr(r). (6.8) 

The transverse relaxation times are given, as in Eq. 
(5.1), by 

[T2.k<MJ (sec) J-1= L,j;jM;Mi 

=jc[2L,Ml+4(M1M2+M3M4)-M2] 

+jr12L,M;2+4(M1M3+M2M4)-M2] 

+jcrM2, (6.9) 

where M = L,M;, the summations are over all values 
of i= 1, 2, 3, 4, and thej's [ =jOl(0)] are obtained from 
the g's in Eqs. (6.7) and (6.8) by using Eq. (4.9). If 
j ;j= j 11 for all i and j, the nuclei are completely equiva­
lent, jc= jr= 0, ju= jcr, and the linewidth is propor­
tional to M2. 

The values of the linewidth from Eq. (6.9) are 
tabulated in Table IV for the case that (1) each com­
pletely equivalent group of nuclei consists of a single 
proton, and (2) each consists of a methyl group. The 
last two columns apply when only the trans form is 
present with appreciable probability [WA= W c.......,½, 
WB=Wv.......,0], and also apply when only the cis form 
is present if jc is substituted for jr. When only the 
trans ( or cis) form is present, the problem is more 
simply treated by a two-jump model (Sec. V). In the 
limit of large j's when only one form, either cis or trans, 
is present, the spectrum for the four-proton case 
degenerates into three lines corresponding to M = - 2, 
0, 2 with statistical weights 1 :4: 1 instead of five lines 
with statistical weights 1:4:6:4:1, while for inter­
mediate values of j, an alternating linewidth variation 
occurs. The spectrum for the four-methyl group case 
normally consists of 13 lines with relative intensities 
1: 12 :66: 220: 495: 792: 924: 792: • • •, but when only 
one form, either cis or trans, is present, and when the 

TABLE IV. Secular linewidths, four-jump isotropic modulation. 

M 

Four 
protons ±2 1 

±1 4 
0 2 

2 
2 

Four 
methyl 
groups ±6 1 

±5 12 

±4 12 
18 
18 
18 

±3 4 
36 
36 

144 

±2 12 
12 
18 
18 

120 
108 
108 
99 

±1 12 
12 
36 

144 
144 
444 

0 2 
2 

36 
36 
36 
36 

216 
198 
198 
164 

General 

4jcT 
ic+fr+icr 
4jc 
4fr 
0 

36jcT 
ic+fr+25jcr 

4jc+4ir+16jcr 
4jc+l<\fcr 
4fr+16jcT 
16jcT 

9(Jc+fr+jcr) 
9jc+fr+9jcr 
ic+9fr+9icr 
ic+fr+9jcr 

16jc+4fr+4icr 
4ic+ 16fr+4icr 
16jc+4icr 
16jr+4icr 
4(jc+fr+icr) 
4(jc+jcr) 
4(h+id 
4icr 

25jc+ jc+ icr 
25h+h+icr 
9jc+9h+icr 
9jc+ir+icr 
ic+9ir+icr 
ic+fr+icr 

36jc 
36jr 
16jc+4h 
16jr+4jc 
16jc 
16jr 
4Uc+h) 
4jc 
4jr 
0 

Trans only 

[T2,k(M) 

Dk (sec)]-1 

1 0 
4 ir 
2 4fr 
4 0 

1 
12 

30 
36 

40 
180 

30 
240 
225 

12 
180 
600 

2 
72 

450 
400 

0 
fr 

4fr 
0 

9fr 
fr 

16jr 
4fr 
0 

25fr 
9jr 
fr 

36jr 
16fr 
4fr 
0 

j's are large, only the seven lines with M = ±6, ±4, 
±2, 0 and statistical weights 1: 36: 225: 400: 225: • • • 
remain. Again, for intermediate values of j, the line­
widths alternate. Similar linewidth phenomena result 
in the general case if jc and/ or jr are large while jcr is 
small. In the terephthalaldehyde anion,52 and also in 
the 1,4-diacetylbenzene anion,53 the mean splitting 
constant in the cis form, ½(a1c+a11c), is approximately 
equal to the mean splitting constant in the trans form, 
½ ( a1T +anT), so that for many applications of the 
present theory jcr is probably small. 
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The four-proton case is a model for the terephthalal­
dehyde or 1,4-diacetylbenzene anions, but experi­
mentally both of these radicals exhibit sharp-line 
spectra arising from a superposition of different spectra 
from the cis and trans forms.52•53 They thus correspond 
to the static limit in which the correlation times -r are 
long, and the zero-order Hamiltonian is best repre­
sented by two separate Hamiltonians, one for each of 
the two rotational isomers. 

Similarly, the four-methyl group case may provide a 
model for the dihydroxydurene cation. This radical 
does show an alternating linewidth, 11•12•18 and since the 
alternation appears on the methyl-proton lines rather 
than the hydroxyl-proton lines, the phenomenon must 
be somewhat different from that in the dinitrodurene 
anion (Sec. V). Bolton and Carrington11 have suggested 
that a superposition of spectra from the cis and trans 
forms of the dihydroxydurene cation, with perhaps some 
dynamical averaging, could account for the observed 
linewidth alternation, and indeed the results in Table 
IV do show an alternating linewidth if the spectral 
densities jc and/or jp are large while jcT is small. 
Recently Carrington°' has obtained results similar to 
the four-proton example treated above by solving the 
modified Bloch equations for four sites (see Secs. V 
and VIII). To make a detailed test of these four-jump 
models, the magnitude of the spectral densities must 
be estimated. The spectral densities are proportional 
to the product of a correlation time and the square of a 
splitting-constant difference, but unfortunately there 
is no good basis for estimating either quantity. A 
correlation time of the order of a microsecond and a 
splitting-constant difference of the order of 0.1 G 
would be sufficient, for example, to account for the 
magnitude of the observed alternating linewidth 
effects. Splitting-constant differences of about 1 G 
are observed within each of the cis and trans isomers in 
some of the carbonyl anions,53 and the asymmetry of 
the pi-electron spin-density distribution required to 
produce this difference has been attributed to the nega­
tive charge on the oxygen atoms of the carbonyl 
groups. It is not clear how large an asymmetry in the 
spin densities to expect from the hydrogen atom of a 
hydroxyl group, although it is undoubtedly considerably 
smaller than for a carbonyl. The theory of the line­
width variations which might arise from the hydroxyl 
protons, and among the three protons of a methyl 
group, will be presented elsewhere.24 

VII. NONDIAGONAL RELAXATION MATRICES 

In this section we consider some of the problems 
encountered when the relaxation matrix contains off­
diagonal elements. In Sec. IV it was shown that the off­
diagonal elements arise from the pseudosecular and 
nonsecular terms between different completely equiva­
lent subgroups within a single group of equivalent 

54 A. Carrington, Mol. Phys. 5, 425 (1962). 

nuclei. Although in many instances the nonsecular 
terms may be neglected, the pseudosecular terms are 
in general comparable to the secular contributions, 
and therefore the proper treatment of the nondiagonal 
relaxation matrices is of practical importance. 

We first treat in detail the simplest problem, that of 
two protons which are symmetrically equivalent but 
not completely equivalent. The M = ± 1 states, being 
nondegenerate, automatically have diagonal R matrices, 
but the R matrix for the M = 0 state is not diagonal. 
For the four states we use the basis functions 

I a)- I!_.!. _1.> - 2, 2, 2 I a')= I 
I b)- l !_. _1. !.) - 2, 2, 2 I b')= l -½; -½, ½) (7.1) 

in the notation 11' )= I m.; m1, m2 ). The states I a) in 
the relaxation-matrix element Raa'fifi' can be either 
I a) or I b), while I a') can be I a') or I b'). We assume 
that Eq. ( 4.49) holds, and set the frequencies "'i± 
equal to zero in the spectral densities. Equations ( 4.46) 
to ( 4.48) then give, for the diagonal terms, 

where 

Rao!aa' = Rww =A+ B, 

Ra1,,oo•= Rba'ba'= B, (7.2) 

A= -½[ju<n(o)-j12(I)(Q) ]-f[j11(D)(O)-j12<Dl(O) ], 

(7.3a) 

B = -ju<D> (0) -½ju<I) ( wo) -[-1tr'-j1/Dl (Wo) -j12<D) (wo)] 

-[j<Go>(o)+¾j<G2l(O) +2j<G2l(wo) ]Bo2, (7.3b) 

Equations ( 4.52) and ( 4.53) give, for the off-diagonal 
elements, either zero or 

according to the scheme 

aa' bb' ab' ba' 

aa' A+B O C C 

bb' 0 A+B C C 

ab' C C B 0 

ba' C C O B 
(7.5) 

It is easy to solve the differential equations [Eq. 
(2.15) J directly, and we do so rather than diagonalize 
the R matrix and apply Eq. (3.3). The result is 

{a I s,,t(t) I a')= (b I Szt(t) I b') 

= (1/4D)[(D+A) exp(X+t)+(D-A) 

X exp(Lt) ], (7.6) 
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where 
D=[A2+16C2]1, (7.7a) 

}..±=½[A+2B±D], (7.7b) 

and use has been made of the initial conditions 

(a I S,,t(O) I a')= (bl S,!(O) I b')=½, (7.8a) 

(a I s,,t(o) \ b')= (b I s,,t(o) ! a')=O. (7.8b) 

Because of Eq. ( 7 .8b), the ab' and ba' matrix elements 
do not contribute to the correlation function G(t), 
Eq. (2.11), or the spectrum, Eq. (2.13). Using the 
inverse of Eq. (2.16) in these last two equations to­
gether with the solution, Eq. (7.6), one obtains (cf. 
Sec. III), 

I(w) = (1/1l"D{ (D+A) 1+T2.~~~-Wo)2 

+(D-A) T2,2 ] (7 9) 
l+T2,22(w-wo) 2 ' • 

where T2,1= ->-+-1 and T2,2= -L-1• The spectrum is 
thus the superposition of two Lorentzian-shaped lines 
with different transverse relaxation times T2,1 and T2,2 
and with statistical weights (D+A)/Dand (D-A)/D, 
respectively. In the limit of uncorrelated nuclei, 
U12<i,,v;Ll(w) =OJ, C=O, D= A, and the spectrum 
reduces to a single Lorentzian line of width T2- 1= 
A+B and statistical weight two. This result also holds 
if the anisotropic dipolar and nonsecular isotropic 
tem1s can be neglected. If the nuclei are completely 
equivalent [j1iµ,,;L)(w)=j11<i,,,;Ll(w)], A=O, D=4C, 
and the line becomes a superposition of two Lorentzian 
lines, each with statistical weight one, and widths 

T2,2-1= [j(Gol(O)+}j<G,) (O) +2j<02> (wo) ]Bo2 

T2,1-1= T2,2-1+2ju<Dl(O) +ju<n (wo) +¥ju<D>(Wo), 

(7.10) 

in agreement with Eqs. ( 4.46) to ( 4.48) for one com­
pletely equivalent group with J<ll= 1, M =0, and 
J<2>=0, M=O. 

In general the order of the relaxation matrix for a 
line of degeneracy Dk is Dk2, and numerical methods 
must be employed to obtain a solution for the widths. 
The differential equations can be solved directly or the 
matrix diagonalized, the two approaches amounting 
to essentially the same procedure, or the spectrum can 
be obtained directly by inverting the matrix.21•65 For 
many applications the relaxation matrix has simplifying 
features resulting from symmetry (or otherwise) 
which cause certain sets of the time-dependent matrix 
elements (a I S,?(t) I a') to have the same value.56 A 
sufficient condition for this simplification can be ob-

55 R. A. Sack, Mo!. Phys. 1, 163 (1958). 
66 We would like to thank R. Bersohn for helpful discussions 

about the properties of the relaxation matrix. 

tained as follows. To establish a convenient notation, 
let us classify the matrix elements of s,,i(t) into sets 
so that within each set the matrix elements have the 
same value. Let there be g5. Dl sets and n, matrix 
elements in the ith set, with 15.n,5.Dk2 and 

The jth matrix element of s.,i(t) in the ith set is de­
noted by S,i(t) (where the first subscript refers to 
the set and the second to a particular element of the 
set). We now show that a set of the matrix elements 
has the same value, say S;;t(t) = sit(t), independent 
of j, if two conditions are satisfied: (1) the matrix 
elements S;i(O) = S,;(O) = S,(O) at t=O are inde­
pendent of j; and (2) the sum of the elements of the 
relaxation matrix for the jth row of the ith set over all 
the columns in the mth set is independent of j, i.e., 

(7.11) 
n 

is independent of j. It should be noted that condition 
(1) is a necessary but not sufficient condition for dis­
tinguishing between sets, and that the indices ij; mn 
used here to specify an element of the relaxation matrix 
refer to a specific grouping of the elements that have 
not been used elsewhere. To prove this result, we write 
the formal solution of Eq. (2.15) as 

S;/(t) = L[exp(Rt) ]iJ;mnSmn(O). (7.12) 
mn 

The kth term in the series for the exponential is 

(tk/k!) :E[Rk]ij;mnSmn(O) 
mn 

= (tk/k!) L Rij;pqRpq;r•• • •Rµ,;mnSmn(O), (7.13) 
pq ... mn 

and since the two conditions defining a set give 

the kth term becomes 

m 

The solution, Eq. (7.12), can thus be written 

S;1t(t) = L[exp(Rt) ];mSm(O). 
m 

(7.14) 

(7.15) 

(7.16) 

The right-hand side of Eq. (7.16) is independent of j, 
so that S;l(t) = S;t(t) for all j, as was to be proved. 

The number of simultaneous differential equations 
for the matrix elements of s.,t(t) can thus be reduced 
from Di to g, i.e., to one equation for each of the 
different sets. For example, the matrix treated above, 
Eq. (7.5), can be replaced by the 2X2 matrix obtained 
from only the first and third rows and columns. In 
general, however, the reduced relaxation matrix de-
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fined by Eq. (7.11) is no longer a symmetric matrix. 
In the representations we have employed for evaluating 
the relaxation matrix in Sec. IV, only Dk of the matrix 
elements (a J Sx(0) J a'), those with the same nuclear 
spin functions in J a) and I a'), are nonvanishing, as in 
Eq. (7.8), and the solutions for the Sxl(t) only have 
to be obtained for those sets for which S;(0) ~0. 

As an example of this procedure, we consider the 
problem of three symmetrically equivalent, but not 
completely equivalent, protons. The M = ±¾ lines 
are nondegenerate, but the M = ±½ lines are threefold 
degenerate and have a 9X9 relaxation matrix. Writing 
j;; for j;/µv;L>(w), we have ju=j22=j33 because of the 
symmetrical equivalence, and we assume j12 = j23 = j31 
and j;;=j;;. After writing down the detailed 9X9 
matrix, application of this method shows that it can 
be reduced to a 2X2 unsymmetric matrix. As a second 
example, consider two symmetrically equivalent, but 
not completely equivalent, Nr4 nuclei (spin I= 1). The 
M = ±2 lines are nondegenerate, the M = ± 1 lines 
doubly degenerate, and the M = 0 line triply degenerate. 
They have 1X1, 4X4, and 9X9 relaxation matrices, 
respectively. Assuming that jr2=j21, inspection of the 
4X4 matrix shows that it can be reduced to a sym­
metric 2X2 matrix and, similarly, the 9X9 matrix can 
be reduced to an unsymmetric 4X4 matrix. Four 
equivalent protons in two different sets of pairs of com­
pletely equivalent protons can be treated in a manner 
similar to two Nr4 nuclei. We use the coupled representa­
tion for each completely equivalent pair, letting 
J 1°>=0, J/2l= 1, and similarly for the second pair. 
The M = ±2 lines are nondegenerate. The M = ±1 lines 
are fourfold degenerate and thus have 16X 16 relaxa­
tion matrices. Neither of the states I J1Mr;J2M2)= 
J 1, ± 1; 0, 0) and J 0, 0; 1, ± 1) connect with any other 
states, and the 16X16 matrix is thus automatically 
reduced to a 4X4 matrix. This latter matrix is identical 
to the matrix for M = ± 1 for two Nr4 nuclei, and can 
be further reduced to a 2 X 2 matrix. The M = 0 line 
has a 36X36 relaxation matrix. The I 1, 0; 0, 0) and 
I 0, 0; 1, 0) states do not contribute any off-diagonal 
elements, and have the same width, corresponding to 
that for a nucleus with I=l, M=0. The J 0, 0; 0, 0) 
state does not mix either, and has a width corresponding 
to that from a radical without any nuclei with magnetic 
moments. The remaining three states give a 9X9 
relaxation matrix identical to the matrix for the M = 0 
line for two equivalent Nr4 nuclei, and it can be further 
reduced to an unsymmetric 4X4 matrix. The detailed 
form of these matrices, and their solutions, will be 
presented elsewhere.24 

These examples show that pseudosecular and non­
secular contributions lead to quite complex relaxation 
matrices for even rather simple systems. The evalua­
tion of the matrix elements is in itself complicated and 
tedious, and in general the solutions for the linewidths 
can only be obtained by numerical methods. 

VIII. COMPARISON OF THE RELAXATION-MATRIX 
AND BLOCH-ANDERSON THEORIES 

In Secs. V and VI we saw that problems which can 
be treated by jump models may be analyzed by either 
the relaxation-matrix or the Bloch-Anderson theories. 
It is the purpose ot the present section to compare the 
usefulness and the range of validities of the different 
theories. 

The relaxation-matrix procedure is a completely 
general method of treating the widths of nonover­
lapping lines subject to only one serious limitation: 
The perturbing Hamiltonian Mcr(t) which causes line 
broadening must satisfy the (sufficient) condition 
that [ ( I Xr I 2)Avrc2]½«1, where Tc is a correlation time 
characteristic of the motion. This restriction means 
that the rates of exchange or jumping must be fast to 
be handled by the relaxation-matrix theory. Unlike 
the other theories, however, it can also be used for 
nonjump problems. 

The Bloch equations25 are formulated in terms of 
two parameters, the spin-lattice and transverse relaxa­
tion times, Tr and T2, and in the modified form2a-2s can 
be used to treat chemical exchange, or a situation in 
which the spectrum changes by jumps from one form 
to another, without a requirement that the rate of 
transfer be fast. Problems like those treated in Secs. 
V and VI, involving jumps between either two or four 
states, can thus be dealt with over the entire range 
from the static to the fast-exchange limits. 

Unfortunately the Bloch equations are not applicable 
under many circumstances, and it is only in treating 
slow and intermediate rates of exchange that the 
modified equations offer any advantages not contained 
in the relaxation-matrix theory. The fundamental 
difficulty in using the Bloch equations for the ESR 
spectra of free radicals arises when the significant re­
laxation processes affecting a hyperfine line cause tran­
sitions to states belonging to other lines. A line is then 
not "isolated," and "cross relaxation" as well as "ver­
tical" and secular processes determine the linewidth 
and saturation behavior. In fact, it is only under rather 
special conditions2r that Bloch-type equations, even 
those involving more than one set of relaxation times, 
can be obtained. The cross relaxations between the 
hyperfine components result from terms in the per­
turbating Hamiltonian Mer(!) which contain the oper­
ators I± that cause nuclear-spin transitions. These 
operators appear in the pseudosecular intramolecular 
anisotropic dipolar and quadrupolar perturbations, and 
the nonsecular isotropic and anisotropic dipolar con­
tributions. The isotropic and anisotropic dipolar inter­
actions also contribute to the vertical relaxation proc­
esses, as do the g-tensor interactions and intermolecular 
effects. In typical ESR experiments in solution, the 
pseudosecular dipolar contribution is comparable to 
the secular dipolar term, and the nonsecular parts are 
related to the secular parts by a factor of the form 
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(1+wiTc2)-1. It is only when the g-tensor interaction, 
the intermolecular interactions, and the secular part of 
the isotropic interaction, are large compared to the 
cross-relaxation processes that the cross relaxations can 
be neglected. Some of the problems encountered in try­
ing to use the Bloch equations are exemplified by the 
results of Sec. VII for the two-proton case. Even if the 
protons are completely equivalent, there are two differ­
ent values of T2 for the central line [Eq. (7.10) ], and 
separate Bloch equations must be used for the J = 1 
and J =0 components. If the protons are not com­
pletely equivalent but the dipolar and nonsecular 
terms can be neglected, so that the off-diagonal term 
C [Eq. (7.4) J is negligible, a single line is obtained 
and there is no difficulty in employing the Bloch 
equations. This simple result follows because only 
secular processes are included. If either the dipolar or 
any of the nonsecular terms are large, however, the 
relaxation matrix is not diagonal and the Bloch equa­
tions are inapplicable. It should be noted that even if 
there are no problems about off-diagonal elements, the 
modified Bloch equations do not properly include non­
secular effects.57•58 Essentially similar limitations con­
cerning cross relaxation and nonsecular relaxations 
apply to the Anderson29 theory of motional narrowing. 

In the limit of fast exchange, the relaxation-matrix 
theory is usually simpler to use, as well as being more 
versatile and more generally applicable, than either 
the modified Bloch equations or the Anderson theory. 
In using the relaxation-matrix theory for many sites, 
the determination of the conditional probabilities (see 
Sec. VI) can become quite a complex task, but even 
greater computational difficulties are encountered 
with the modified Bloch equations or the Anderson 
theory. In fact, although Sack56 and Pople59 have 
treated the three-state problem with the Anderson 
theory, it was not until very recently that even a 
restricted form of the four-jump Bloch equation was 
explicitly formulated.64 In addition, a much wider 
range of models, not only exchange or jump models, 
can be treated with the relaxation-matrix theory than 
with either of the other theories. 

It is rather difficult to estimate the limit of validity 
of the relaxation-matrix theory, i.e., the permissible 
magnitude of the quantity [ ( l Xi2 I )AvTc2]½. Since the 
fast-jump limit of the Bloch-Anderson theory, when 
applicable, gives the same linewidth as the relaxation­
matrix procedure, it is perhaps reasonable to assume 
that the fast-jump approximation is valid up to the 
point where the exact solutions of the equations from 
the Bloch-Anderson theories begin to depart appre­
ciably from the fast-jump approximation. Numerical 
evaluation of the exact solutions shows that the fast-

67 J. I. Kaplan, J. Chem. Phys. 28, 278 (1958); 29, 462 (1958). 
58 I. Solomon and N. Bloembergen, J. Chem. Phys. 25, 261 

(1956). 
69 J. A. Pople, Mol. Phys. 1, 168 (1958). 

jump approximation is good to a few percent if, in the 
notation of Sec. V, l wk(A) -wk(B) l Tc ;$1, or I 'Y• II a1-

an I Tc ;$1. 
Kaplan has analyzed the problem of the effect of 

exchange on a simple NMR spectrum by a more 
rigorous procedure than that employed in the conven­
tional modifications of the Bloch equations.57 This 
treatment is formulated in terms of the density matrix 
for the exchanging system, and includes the nonsecular 
contributions which become important for fast ex­
change rates. Unfortunately, however, no complete 
treatment of the equation of motion for the density 
matrix has been carried out when both exchange and a 
rapidly varying perturbation are present. 

IX. CONCLUSIONS 

A general theory of the linewidths in the electron­
spin resonance spectra of dilute solutions of free radicals 
has been formulated in terms of the relaxation matrix 
for the spin system. The results differ in a number of 
ways from those obtained earlier by Kivelson using 
the linewidth theory of Kubo and Tomita. The most 
important qualitative difference is the prediction from 
the relaxation-matrix theory that a composite line 
arising from several degenerate nuclear-spin states 
should in general consist of a sum of superimposed 
Lorentzian lines of different widths rather than a 
single line with an over-all Lorentzian shape. A single 
Lorentzian line is still obtained, however, as a limiting 
case when the variation in the widths of the different 
components of a composite line is small compared to 
the average width. The Kivelson theory is also not 
altered in a fundamental way when only one nucleus 
is present. 

Although in many instances experimental limitations 
make it impossible to detect the predicted non­
Lorentzian shape of a composite line from actual 
studies of the line shape itself, the present treatment 
indicates that an ESR spectrum may exhibit striking 
variations in linewidths and amplitudes which are 
outside the scope of the predictions from the previous 
theories. The relaxation-matrix theory thus gives an 
explanation, for example, of the alternation in line­
widths observed in the ESR spectra of the dihydroxy­
durene cation and several dinitrobenzene anions. 

The types of linewidth variations in a spectrum de­
pend critically on whether or not different nuclei in a 
radical have the same instantaneous electron-nuclear 
interactions and on the dynamical correlations between 
their motions and hyperfine splittings. Nuclei are 
classified according to the invariance, with respect to 
the interchange of their positions, of the zero-order 
Hamiltonian liX0 and the relaxation-inducing perturb­
ing Hamiltonian fi:fe1 (t). A set of nuclei is said to be 
completely equivalent if the total Hamiltonian liX= 
1ix0+fi:fe1(t) is invariant with respect to interchanges 
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within the set, while a set is said to be equivalent if JC0 

is invariant but JC1 is not. No new linewidth phenom­
ena are predicted if each equivalent group of nuclei 
contains one and only one completely equivalent sub­
group, but if there is more than one completely equiva­
lent subgroup within an equivalent group, alternating 
linewidths and similar effects may result. 

The linewidths of the different components of a 
composite line are given by the eigenvalues of the 
relaxation matrix, and in general, since this matrix is 
not diagonal, the diagonalization of the matrix ( or 
some equivalent procedure) must be carried out to 
obtain the widths. When quadrupole terms are neg­
lected and there is one and only one completely equiva­
lent subgroup in each equivalent group, a representa­
tion for the nuclear-spin states can always be chosen 
ab initio that yields a diagonal matrix. The matrix for 
any collection of nuclei is also automatically diagonal 
in a suitable representation if only secular processes 
( those which involve neither electron- nor nuclear­
spin transitions) make important contributions. It 
should be noted that even if the matrix is diagonal, 
however, a degenerate line will in general consist of a 
superposition of Lorentzians of different widths. Non­
diagonal matrix elements arise from nuclear-spin 
transitions when there is more than one completely 
equivalent subgroup in a single equivalent group. 
These transitions are caused by the pseudosecular 
interactions and some of the nonsecular interactions. 
The former induce only nuclear-spin transitions, and 
the latter (in part) also involve electron-spin transi­
tions. The pseudosecular terms from the anisotropic 
intramolecular dipolar interaction are comparable in 
magnitude to the secular terms, and thus if the dipolar 
relaxation process makes a significant contribution, 
the pseudosecular part cannot be neglected and the 
relaxation matrix contains significant off-diagonal 
elements. The most suitable representation for the 
nuclear-spin wavefunction (in the absence of large 
quadrupole effects) has been shown to be one in which 
each completely equivalent subgroup is written in a 
coupled representation and the total wavefunction as a 
product of these coupled functions over all the different 
subgroups. If the relaxation matrix is not diagonal using 
this representation, the spectrum of a composite line 
may have components with relative intensities that 
are not in the ratio of whole numbers. 

Kivelson was able to obtain expressions for the line­
widths of the hyperfine components in an ESR spec-

trum in closed form, but this is now not possible for 
the general case since there is no obvious representa­
tion which causes the relaxation matrix to be diagonal. 
Even if the matrix is diagonal, so that the widths of 
the individual components are given directly by the 
negative of the elements of the relaxation matrix, the 
determination of the apparent over-all width resulting 
from a superposition of Lorentzian lines requires nu­
merical evaluation of the total shape function. Thus it 
is only in rather simple cases that the width can be 
given by an expression in closed form. 

The relaxation-matrix theory provides a very general 
method for computing linewidths in ESR spectra that 
can be employed to analyze the effects of a variety of 
relaxation mechanisms. It has been used to describe 
modulations involving spin-density fluctuations and 
internal motions in the radicals as well as the over-all 
tumbling motion caused by solvent collisions. Only the 
over-all tumbling was included in Kivelson's treat­
ment. Some models for spin-density fluctuations and 
internal motions can be analyzed by assuming the 
radical exists in several different states which are 
undergoing exchange reactions with each other, but 
when applied to these chemical exchange or jump 
phenomena, the relaxation-matrix theory is restricted 
to the fast-exchange limit. The modified Bloch equa­
tions, or the Anderson theory of motional narrowing, 
can also be applied to jump problems, but these theories 
do not properly take into account pseudosecular and 
nonsecular interactions. As indicated above, in many 
instances such processes cannot be neglected. When 
they are applicable, these two procedures can be used 
over the entire range of jump rates, not just in the fast­
exchange limit. In the limit of fast jump rates, however, 
the relaxation-matrix theory is both more general and 
easier to employ than the other two procedures. 

A general theory simultaneously applicable to both 
rapid, random, relaxation perturbations and slow 
chemical exchange has not been developed. The present 
modifications in the linewidth theory alter the theory of 
saturation in ESR spectra, but the formulation of a 
new theory of saturation has also not yet been 
attempted. 
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