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A number of classical dynamical models are developed for describing the effects of internal rotational 
motions and solvent-complex formation on the ESR hyperfine linewidths of free radicals in solution. These 
dynamical processes can lead to linewidth effects because they cause time-dependent modulations of the iso­
tropic hyperfine interactions of the different magnetic nuclei. An alternating linewidth effect, which has been 
observed in a number of recent studies, is predicted to result when there is an out-of-phase correlation 
between the hyperfine splittings a;(t) of equivalent nuclei. By equivalent nuclei here are meant those 
for which the time-average splittings (a;(I) )Av are equal, and an out-of-phase correlation is one in which 
an increase in the instantaneous splitting from Nucleus i, a; (t), is correlated with a decrease in the splitting 
a;(t) from nucleusj. This out-of-phase correlation can result from a coupling of the mechanical motions 
of different rotating groups and also from the effects that changes in orientations of uncorrelated rotors 
may have on redistributing electron spin density in the molecule. Continuous motion cases are treated 
by Brownian-motion theory using coupled and uncoupled internal rotors and torsional oscillators. Random 
jump models between discrete states are also considered. It is shown that all these models can give rise to an 
alternating linewidth effect provided that certain definite relationships of the proper type exist for the 
coupling of the motions or the variations of the spin densities. For many of these models the correlation 
a1 (t) =a2 (t) for all t, or complete equivalence of both nuclei, may also result when different relationships 
exist. The correlation of the splittings of more than two groups of completely equivalent nuclei will, in 
general, lead to more complex linewidth effects. 

I. INTRODUCTION 

IN the last several years, a number of investigations 
of the electron spin resonance of free radicals have 

yielded spectra with anomalous linewidth variations.1-s 
Some of these linewidth effects have been attributed to 
modulations of the isotropic hyperfine splittings, a 
mechanism that had not been considered in the earlier 
theories of linewidth and saturation, 9- 11 and their com­
plete understanding required a reformulation of the 
theory of linewidths.6 •12 In the most striking examples, 
every other line in the spectrum is anomalously broad­
ened; this is called the alternating linewidth phenome-
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non. It was first observed in the highly hindered 
dihydroxydurene ( 1, 4-dihydroxy-2, 3, S, 6-tetramethyl­
benzene) cation1 and the dinitrodurene anion2•5 radicals, 
but in the former the effect was detected among the 
lines from the methyl-group proton splittings and in 
the latter among the nitrogen lines. Further studies 
showed alternating linewidths in the spectrum of 
the naphthazarin ( 1, 4, S, 8-tetrahydroxynaphthalene) 
cation,3•13 a number of other nitrobenzene anions,5•6 and 
the pyracene anion.7 The alternating linewidths in the 
spectra of the dihydroxydurene and naphthazarin 
cations arise from motions of the hydroxyl protons, 
those in the nitro compounds from rotational motions 
of the nitro groups or dynamical interactions of these 
groups with solvent molecules,14 while in the pyracene 
anion the alternations in width are caused by the 
jumping of an alkali-metal cation between two posi­
tions in the radical. Thus a number of different dynami­
cal phenomena can produce fluctuations in the hyper­
fine splittings. 

Some of the explanations of the alternating linewidth 
phenomena attributed the effect to rapid jumps or 
reorientations of substituents or solvent species be­
tween a small number of different equilibrium posi­
tions, 1•3•8•12 •13 but the revised theory of linewidths6•12 

indicates that considerably more general types of mo­
tions can produce the phenomena.2 This theory also 
shows that the type of linewidth variation resulting 
from modulations of the isotropic splittings depends 
upon the nature of the correlations in the fluctua-

13 A. Carrington, Mo!. Phys. 5, 425 (1962). 
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37, 2832 (1962). 
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tions of the hyperfine interactions of the different 
magnetic nuclei present in the free radical. Thus 
in some circumstances instead of an alternating line­
width it is possible for the modulations to cause a 
variation in the widths of the hyperfine lines that is 
symmetric about the central line of the spectrum but 
increases monotonically as the wings are approached.12 

It is thus of interest to inquire as to the various reason­
able ways in which correlations consistent with the 
observed linewidth effects in these spectra can arise 
by means of dynamical rotations or solvent interactions, 
and the present paper is devoted to this subject. 

We consider a variety of dynamical models and 
emphasize their form or symmetry to show how the 
required correlations may result rather than attempt 
to obtain quantitative parameters for the models. A 
detailed quantitative determination of the parameters 
for the different radical species would be difficult and 
at best highly approximate, while the present treatment 
should establish a framework independent of such 
approximate calculations upon which further experi­
mental and theoretical work can be built. 

The dynamical rotations or solvent interactions can 
cause two types of correlations in the fluctuations of 
the hyperfine splittings. One results from an actual 
correlation of the dynamical motions of the different 
substituents and the other from a redistribution of the 
electron spin density throughout the radical. Correla­
tions of the latter type can result from the rotation or 
solvation at even a single site in the radical, and may, 
of course, be caused directly in multisubstituted species 
by correlations of the dynamical motions as well. The 
motions are investigated in terms of classical models 
based upon Brownian rotatory diffusion and also as a 
series of random jumps16 between discrete states. 
Emphasis is placed on substituted benzene radicals. 

In Sec. II, those portions of the general theory of 
linewidths relevant to the present paper are sum­
marized, and a general discussion of the way in which 
rotations of substituents affect the hyperfine inter­
actions is given in Sec. III. The effects of the motions 
of coupled and uncoupled rotors are discussed in Sec. IV, 
where spin-density redistributions are neglected and 
only the Brownian motion models for free rotors and 
torsional oscillators are employed. In Sec. V the effects 
of spin-density redistributions throughout the radical 
are included, and in Sec. VI appropriate discrete jump 
models are analyzed. 

II. GENERAL THEORY 

According to the recently developed theory, the line­
widths in the ESR spectra of free radicals in solution12 

are given by the eigenvalues of a relaxation matrix. 
The elements of this matrix are linear combinations 

10 We use the term "jump" to distinguish motions in which 
there are only a small number of distinguishable sites from those 
with a continuous distribution of sites. The latter are referred 
to as "Brownian motion" models. 

of certain spectral densities j;/11ol(w) that are in turn 
functions of the line broadening and relaxation mecha­
nisms. In these symbols for the spectral densities, the 
frequency w/21r is the transition frequency for that 
part of the perturbation which is associated with the 
particular spectral density, the type of perturbation 
is indicated by the superscript (µ,), and the nuclei 
involved are denoted by subscripts ( i and j). For 
mechanisms which modulate the isotropic hyperfine 
interactions, 

j;p>(w) =½ L:g;/n(r) exp(-iwr)dr, (2.1) 

where the correlation function g;/n ( r) is 

g;/1l(r) =-y.2([a;(t)-a;][a1(t+r)-a1]). (2.2) 

The angular brackets indicate a time average over the 
fluctuating splittings; a;(t) is the instantaneous hyper­
fine splitting arising from the contact interaction with 
nucleus i at time t; a;= (a;(t)) is its time-average 
value; and 'Ye is the magnetogyric ratio of the electron. 
The splittings of the lines in the spectrum (in gauss) 
are determined by a;. The correlation functions fre­
quently vary exponentially with the time, or are a 
sum of exponential terms 

g;/fl(r) = LK;;,n exp(-r/rn),' (2.3) 
n 

where K;;,n is independent of time, so that 

j;pl(w) = LK;;,n[Tn/(1 +w2rn2)]. (2.4) 
n 

In general the relaxation matrix is not diagonal, 
and it must be diagonalized by explicit calculation for 
each particular problem. The off-diagonal matrix 
elements are of two types, pseudosecular and non­
secular. The former arise from nuclear-spin transitions 
(w"'O), and the latter from electron-spin transitions 
(w"'w0, where w0/21r is the Larmor frequency of the 
ESR experiment) with or without an accompanying 
nuclear-spin transition. The nonsecular contributions 
are often small: At X-band frequencies it follows from 
Eq. (2.4) that they are less than 5% of the secular 
(w=O) and pseudosecular terms if rn;?;0.75X10-10 sec. 
Note also that since for small values of the correlation 
time r,., j;/11o>(w) is proportional to Tn, a mechanism 
with a very small value of r,. often makes only an 
insignificant contribution. The nonsecular terms can 
therefore ordinarily be neglected, and they are not 
included in most of the linewidth expressions given in 
the following. The pseudosecular contributions arise 
from the anisotropic intramolecular dipolar and quad­
rupole interactions, and for the former they are com­
parable in magnitude to the secular contributions. 
There are no pseudosecular contributions from modu­
lations of the isotropic splittings. 

When the secular contributions from modulations of 
the isotropic hyperfine splittings are the predominant 
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source of line broadening, so that the off-diagonal 
pseudosecular terms are small, the relaxation matrix 
can be adequately approximated by only its diagonal 
elements. For this reason, as well as for simplicity, we 
only give formulas for the contribution of the modu­
lation of the isotropic splittings to the diagonal elements 
of the principal part12 of the relaxation matrix. More 
generally, the pseudosecular and/or nonsecular terms 
cannot be neglected, and the other elements of the 
matrix must be obtained and the diagonalization 
carried out. 

Degenerate absorption lines require special attention. 
A degenerate line consists of a number of transitions 
between different quantum states, and it is the widths 
of these individual transitions between pairs of states 
that are given by the eigenvalues of the relaxation 
matrix. For radicals tumbling rapidly in solution, these 
individual transitions are of Lorentzian shape,12,16 but 
since the widths of the individual transitions involved 
in a degenerate line may be different, the superposition 
of Lorentzian-shaped components that gives the over­
all experimentally observable absorption is not in 
general of Lorentzian shape.12•17 When the differences 
among the widths of the individual components are 
large, it is not possible to obtain an expression for the 
over-all width in closed form, and the width must be 
determined numerically by superimposing the indi­
vidual Lorentzian-shaped components.17 On the other 
hand, if the differences among the widths of the com­
ponents are small, the over-all shape reduces to a 
Lorentzian with a width determined by the average of 
the component widths,12 in agreement with the result 
given by Kivelson. 9 

With the approximations indicated above, the con­
tribution to the component widths from modulations 
of the isotropic interaction can be expressed quite 
simply: For the ith component of the kth line, Eq. 

( 4.46) of I gives 

[T2,/kl(J; sec.)J-1 

= Lj;/I)(O)m,mj= Ljr,.,s/1l(0)MruM,., (2.5) 
i,i ru,3• 

where m; is the z component of the spin angular momen­
tum of the ith nucleus. In the expression on the right, 
the nuclei have been collected into equivalent groups. 
Two nuclei are called equivalent if the zero-order 
Hamiltonian is invariant to an interchange of their 
positions, and they are called completely equivalent if 
the total Hamiltonian is invariant to this interchange. 
The total Hamiltonian is the sum of the perturbing 
Hamiltonian which causes line broadening and relaxa­
tion and of the zero-order Hamiltonian. The latter is 
the time average of the total Hamiltonian, and its 
eigenvalues determine the positions of the lines in the 
spectrum. We exclude cases of accidential rather than 
symmetrical equivalence.12 The quantum number Mru 
is the sum of the z components m; of the nuclear-spin 
angular momenta of the nuclei in the uth completely 
equivalent subgroup of the rth equivalent group, 

Mr,.= Lm;, 
iinru 

(2.6) 

and similarly M,. is the sum over nuclei in the vth 
completely equivalent subgroup of the sth equivalent 
group. The second summation in Eq. (2.5) is over all 
equivalent groups r and s, over all completely equiva­
lent subgroups u in r, and over all completely equivalent 
subgroups v in s. If nuclei i and j are in the same 
completely equivalent subgroup ru,j;/1l(0) =j;;<1l(0) = 
j;/IJ(0) =jruru(Il(0), and for a symmetrically equivalent 
group r, jruru(I)=j,.r/1l(0) =jr/1l(0), but jrur/1l(0) :¢ 
jrrCI)(O) if r., and rv are different subgroups. Equation 
(2.5) can thus be written as 

[T2,/kl(I; sec.) J-1= Llfrr(I)(0)M,2+ LUrur/1l(0)-jrr(Il(0) ]MruMr.} 
r U~tl 

where 
Mr= LMru=Lm;. (2.8) 

u inr i inr 

Let us first consider the lines arising from only one 
group of equivalent nuclei, i.e., the rth term of the 
first line of Eq. (2. 7). If the nuclei in this group are all 
completely equivalent, jr,.r.(I)(0) =jr/1l(0), and the 
linewidth varies as M,2. Each component of a degene­
rate line then has the same width, and the lines are 
Lorentzian. On the other hand, in the limit that 
jr,.r_<Il (0) = -jrr(I) (0) for u;;ev, as can often happen 
(see below), the different hyperfine lines are in general 

16 R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954). 
17 J. Gendel!, J. H. Freed, and G. K, Fraenkel, J. Chem. Phys. 

41, 949 (1964). 

+ L Ljru••(l)(O)M,,.M,., (2.7) 
r~a u,11 

the superposition of components of different widths, 
and linewidth anomalies such as the alternating line­
width phenomenon occur.1- 7•13 In intermediate cases, 
there is a mixture of the quadratic and alternating 
types of dependence of the widths on the quantum 
numbers Mr, One other simple special case which is 
sometimes important is that of an equivalent group 
of nuclei for which the different completely equivalent 
subgroups of nuclei are uncorrelated with each other, 
i.e., jr,,_r/1l(0) =0 for u-,e.v. For a single equivalent 
group r, Eq. (2.5) then becomes (whether or not r is 
a symmetrically equivalent group) 

[ T2 .(kl(/· sec )J-1= "'"'1· <n(0)M 2 
,i , • r ~ r"r" ru • (2.9) 

" 
Examples of these results are given in I for two nuclei 
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TABLE I. Secular linewidths, modulation of isotropic hfs, four, eight, and 12 equivalent protons 
in two completely equivalent subgroups. 

Degeneracies Out-of-phase 
correlated No. of 

protons 

4 

s 

12 

±2 

±1 

0 

±4 

±3 

±2 

±1 

0 

±6 

±5 

±4 

±3 

±2 

±1 

0 

±1, ±1 

(±1, 0) 

(±1, =Fl) 

o, 0 

±2,±2 

(±2, ±1) 

(±2, 0) 

±1, ±1 

(±2, =Fl) 

(±1, 0) 

(±2, =F2) 

(±1, =Fl) 

0, 0 

±3, ±3 

(±3, ±2) 

(±3, ±1) 

±2,±2 

(±3, 0) 

(±2, ±1) 

{±3, =Fl) 

(±2, 0) 

±1, ±1 

(±3, =F2) 

(±2, =Fl) 

(±1, 0) 

(±3, =F3) 

(±2, =F2) 

(±1, =Fl) 

o, 0 

1 

4 

2 

4 

1 

8 

12 

16 

8 

48 

2 

32 

36 

1 

12 

30 

36 

40 

180 

30 

240 

225 

12 

180 

600 

2 

72 

450 

400 

1 

4 

6 

1 

s 
28 

56 

1 

12 

66 

220 

495 

792 

924 

General 

4ju -2 (j11-j12) 

ju 

0+2(j11-j12} 

0 

16ju-8(ju-j12) 

9ju-4(j11-j12) 

4ju 

4ju-2(ju-j12) 

iu+4(ju-ji2) 

ju 

0+8(ju-j12) 

0+2(ju-j12) 

0 

36ju-18(j11-j12) 

25ju-12 ( ju -j,2) 

l6ji1-6(j11-j12) 

l6ju-8(ju-j12) 

9jn 

9ju -4(ju -j12) 

4}11 +6 ( in -j12) 

4ju 

4ju - 2 ( ju -j12) 

iu+12(ju-ji2) 

ju+4(ju-j12) 

ju 

0+18(j11-j12) 

o+su11-j12) 

0+2(j11-j12) 

0 

0 

in 

4ju 

0 

0 

ju 

4ju 

0 

9ju 

ju 

16ju 

4ju 

0 

0 

ju 

4ju 

0 

9ju 

ju 

16ju 

4jn 

0 

25ju 

9ju 

ju 

36ju 

16jn 

4ju 

0 

• M =M,+M, where M, refers to one completely equivalent subgroup of protons and M, to the other. 
b Parentheses indicate that the state specified by (M,, M,) and also the state obtained by permutation of 1 and 2, (M,, M,), are both included, 

of spins ½, 1, and ! (Table II), and in the case of a 
special type of modulation, for four protons and four 
methyl groups (Table IV). Three other simple situa­
tions which will be useful in later sections are given 
here in Table I. Linewidths are listed for examples 
with four, eight, and 12 equivalent protons having 
the nuclei grouped into two different completely equiv-

alent sets containing two, four, and six protons, respec­
tively. The four-proton case is applicable to the 
p-dinitrobenzene anion,18 and the eight-proton case to 
the pyracene anion.7 The 12-proton example corre­
sponds to four methyl groups in two completely 

18 J. H. Freed and G. K. Fraenkel, J. Chem. Phys. 40, 1815 
(1964). 
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equivalent subgroups, and is thus applicable to the 
dinitrodurene anion.2•6•19 This table shows that when 
the modulation is correlated to be completely out of 
phase ( j12= -ju), and when ju makes a large contri­
bution to the linewidths, alternate lines in these spectra 
are broad (width ju or greater) and the intervening 
lines are narrow (at least one component with a zero 
linewidth contribution from this mechanism). Of 
course, if j12= -j11 and ju is very large, the intensity 
distribution would be abnormal. As an example, for 
the eight equivalent protons, the sharp lines would 
correspond to M = ±4, ±2, and 0, and would have 
statistical weights 1: 16: 36: 16: 1 whereas in a spectrum 
with j12=ju, all nine lines would be observed and the 
statistical weights would be 1: 8: 28: 56: 28: 8: 1. 

When there is more than one group of equivalent 
nuclei, each of the groups has linewidths governed by 
the first line of Eq. (2. 7), but in addition there are 
cross terms arising from the second line of the equation. 
It is sometimes possible to approximate the cross terms 
by contributions of the form j,.<1> (0) MrM,, i.e., omit­
ting distinctions between different subgroups, so that 
the cross term adds a linewidth variation, which, for 
constant M,, is a linear function of Mr. Thus if M, can 
take on the value zero, there are lines in the spectrum 
for which there are no linewidth contributions from 
the cross terms.18 In certain simple cases these varia­
tions lead to interesting information such as the rela­
tive signs of the isotropic hyperfine splittings,6,1s,20 but 
more generally there is an appreciable linewidth effect 
attributable to the cross terms which causes compli­
cated linewidth variations. 

The formulation we have used12 is based on the 
relaxation matrix theory21- 24 and is limited to rapid 
modulations in the sense that the correlation time of 
modulating motion Tc and the magnitude of the per­
turbing Hamiltonian MC1(t) must satisfy the condition 
[ (I X1 l2)AvTc2]½«1. Thus if a modulating mechanism 
causes fluctuations in the isotropic hyperfine splitting 
of an amount t:.a gauss, the theory only holds if 
I 'Ye I J 11a I Tc«l. When this inequality does not hold, 
it is still possible in certain circumstances to treat the 
linewidth variations by using either the modified form 
of the Bloch equations25 or the Anderson theory of 
motional narrowing,26 two procedures that are essen­
tially equivalent in this application. They are normally 

19 J. H. Freed and G. K. Fraenkel, J. Am. Chem. Soc. 86, 3477 
(1964). 

20 B. L. Barton and G. K. Fraenkel, J. Chem. Phys. 41, 695 
(1964). 

21 A. Abragam, The Principles of Nuclear Magnetism (Oxford 
University Press, London, 1961). 

22 A. G. Redfield, IBM J. Res. Develop. 1, 19 (1957). 
23 F. Bloch, Phys. Rev. 102, 104 (1956). 
24 Y. Ayant, J. Phys. Rad. 16, 411 (1955). 
26 F. Bloch, Phys. Rev. 70, 460 (1946); J. A. Pople, W. G. 

Schneider, and H. J. Bernstein, High-Resolution Nuclear Mag­
netic Resonance (McGraw-Hill Book Company, Inc., New York, 
1959); H. S. Gutowsky, D. W. McCall, and C. P. Stichter, J. 
Chem. Phys. 21, 279 (1953); H. M. McConnell, ibid. 28, 430 
(1958). 

26 P. W. Anderson, J. Phys. Soc. Japan 9, 316 (1954). 

limited to mechanisms which involve discrete jumps16 

from one site to another and thus do not readily provide 
a means of formulating the linewidth variations caused 
by continuous motions. Only secular effects can be 
treated,12•27 and in practice it is not possible to handle 
problems involving more than a small number of 
jumps.13 

III. MOTIONAL MODULATIONS OF THE HYPERFINE 
SPLITTINGS 

Several different types of modulations of the isotropic 
hyperfine splittings which are of importance have been 
mentioned in the introduction. One of these involves 
rotations of substituent groups on an aromatic ring 
like a nitro group, and in this section we first consider 
in a general way how the hyperfine splittings are 
affected by such rotations. We then discuss the models 
available for describing the time dependence of this 
and other modulations of the hyperfine splittings. 

The substituents we wish to consider are nitro 
(-NO2), carboxylate (-COO-), hydroxyl (-OH), 
formyl (-CHO), acetyl (-COCH3), amino (-NH2), etc. 
Methyl groups are treated elsewhere.19 These groups 
tend to conjugate with the pi system of the radical, 
and the most stable conformations are normally ones 
in which the plane of the substituent coincides with the 
plane of the aromatic ring. If there are bulky neigh­
boring substituents, however, the equilibrium orienta­
tion may not be in the plane of the aromatic ring, and 
the instantaneous orientation may be affected both by 
intramolecular and intermolecular interactions. Some 
of the crowding effects of substituents are quite 
marked. Thus x-ray studies show that while nitro­
benzene is planar,28 the nitro group in nitromesitylene29 

(1-nitro-2,4,6-trimethylbenzene) is twisted out of the 
plane by 66.4°. The orientation of the substituent may 
alter the hyperfine splitting of nuclei in the substituent 
directly, even without affecting the spin-density dis­
tribution, but in general the spin density in the group 
and throughout the molecule depends on the orienta­
tion. Thus Geske and co-workers30•31 have found that 
the 14N splittings in methyl-substituted nitrobenzene 
anions increase with the degree of steric hindrance in 
the neighborhood of the nitro group while the splittings 
at other positions in the radicals decrease. 

The variation of the spin-density distribution and 
hyperfine splittings with the angle of orientation 0 of 
a substituent can be expressed as a Fourier series in 0. 
If there is only a single substituent attached to a planar 
pi-electron system, the Fourier series must be an even 
function of the angle 0 ( where 0 is zero when the sub­
stituent is in the plane of the aromatic system) and 

27 J. I. Kaplan, J. Chem. Phys. 28, 278 (1958); 29, 462 (1958); 
I. Solomon and N. Bloembergen, ibid. 25, 261 (1956). 

28 J. Trotter, Acta Cryst. 12, 884 (1959). 
29 J. Trotter, Acta Cryst. 12, 605 (1959). 
30 D. H. Geske and J. Ragle, J. Am. Chem. Soc. 83, 3532 (1961). 
31 D. H. Geske, J. L. Ragle, M. A. Bambenek, and A. L. Balch, 

J. Am. Chem. Soc. 86, 987 (1964). 
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we assume this to be true as well for aromatic radicals 
with more than one substituent. Although even func­
tions of O may not be sufficient for the description of all 
multisubstituted systems, as for example the o-dinitro­
benzene anion, the inclusion of the more general 
Fourier series presents no fundamental difficulty but 
does add considerable algebraic complexity. We there­
fore consider for simplicity Fourier series which contain 
only cosine terms. The instantaneous value of the pi­
electron spin density at the point i in a radical with 
several rotating substituents at orientations 01, 02, • • ·, 
can consequently be written 

p;"(t) =a,+ E/3i;n cosn01+ f 'Yi;n cosn02+ • • • 
n=l n-1 

+ f:, c5;;nm cosn01 cosm02+ • • • 
n,m-1 

+ f:, Ei;nml cosn01 cosm02 coslOa+" ·, (3.1) 
n,m,l-=1 

Higher-order correlations must be included for radicals 
with more than three rotors. For groups with a twofold 
symmetry axis such as -N02, -coo-, or -NH2, only 
even harmonics contribute to the series ( cos2n0;), but 
for -OH, -CHO, and -COCH3, both odd and even 
harmonics must be included. The spin density at any 
point along the axis of rotation of these groups without 
twofold symmetry, however, involves only even 
harmonics. 

For C-H ring protons the isotropic hyperfine split­
tings are determined by relations like that of 
McConnell, 32 

(3.2) 

while for 13C and 14N nuclei, etc., Karplus and Fraenkel33 

have shown that the splittings also depend on the spin 
density on contiguous atoms. The sigma-pi parameters 
relating splittings to pi-electron spin densities for nuclei 
not in the rotating groups are presumably constant, 
but those for nuclei rotating with respect to the rest 
of the molecule are functions of orientation. For proton 
splittings in rotating groups such as -CHO, -NH2, or 
-OH, it is readily seen that QxHX(O) (X is C, N, or O) 
is an even function of 20 in the approximation that the 
orientation of other substituents has a negligible influ­
ence on the Q's. Here, of course, 0 is the angle of orien­
tation of the group containing the proton, not some 
other rotating group in the radical. Similarly, the 
nitrogen splitting in an -N02 or -NH2 group is an even 
function of 20. The Q's can thus be expressed as Fourier 
cosine series in 20, and in combination with Eq. (3.1) 
we can write for the instantaneous splitting from 

32 H. M. McConnell, J. Chem. Phys. 24, 633, 764 (1956); 
H. M. McConnell and H. H. Dearman, ibid. 28, 51 (1958); H. M. 
McConnell and D. B. Chesnut, ibid. 28, 107 (1958); and other 
papers cited therein. 

33 M. Karplus and G. K. Fraenkel, J. Chem. Phys. 35, 1312 
(1961). 

nucleus i 

a;(t) = A;+ EBi;n cosn01+ fc.;,. cosn02+ • • • 
n-1 n-1 

+ 'f, D;;nm cosn01 cosm02+" ·, (3.3) 
n,m-1 

plus higher-order terms for more than two rotors, and 
with appropriate restrictions on the values of n, m, • • • 
for the different groups. 

Evaluation of the coefficients in Eq. (3.1) requires 
a detailed knowledge of the effect of the rotational 
motion on the spin-density distribution. A useful 
although highly approximate estimate can be obtained 
from molecular orbital calculations if appropriate as­
sumptions are made about the coupling between the 
aromatic ring and the substituent, and such calcula­
tions have been performed for nitrobenzenes34 by 
allowing the resonance integral between the ring and 
the nitro group to vary as I cosO !, To obtain the co­
efficients in Eq. (3.3) it is also necessary to estimate 
the variation of the sigma-pi parameters (Q's) with 
orientation. For our present purposes, however, it is 
sufficient to formulate the linewidth variations as 
functions of the parameters A;, B;;n, etc., in the 
Fourier series and to deduce the general nature of the 
linewidth eff~cts rather than to resort to specific and 
necessarily highly approximate models. 

In general the time dependence of the hyperfine 
splittings arising either from rotation of the substi­
tuents as expressed by Eq. ( 3.3), or from the formation 
of fluctuating solvent complexes at particular sites in 
the radical causes a nonvanishing correlation function 
g;;(r) [Eq'. (2.2)] both for a nucleus with itself (gu) 
and for different nuclei with each other (g.;, i¢j). 
In addition, a coupled motion of two rotating groups 
introduces a source of correlation of the splittings from 
nuclei in different rotors, and if solvation at two 
different sites is correlated, so are the splittings. The 
coupled motion of two rotors is likely to occur in ~i?hly 
hindered polysubstituted compounds such as dm1tro­
or dihydroxydurene. If, for example, one nitro gr?up 
in dinitrodurene were in the plane of the benzene rmg, 
the methyl groups would probably be distorted in such 
a way as to crowd the second nitro group out of the 
plane. A correlated jump would also be expected in the 
naphthazarin cation3: when the proton between two 
neighboring oxygen atoms jumps to a position. a_t one 
side of the oxygen atoms, the proton that was ongmally 
on the other side probably jumps into the central 
position vacated by the first proton. . . . 

The mechanical model for the modulatmg mot10n 1s 
difficult to specify in detail. For discrete jump motions 
of the type that are probably appropriate for the 
naphthazarin cation3 or the pyracene anion, 7 it is 
customary to assume that the time elapsed in the course 
of a jump from one site to another is short, and only 

:w P. H. Rieger and G. K, Fraenkel, J. Chem. Phys. 39, 609 
(1963). 
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the lifetimes and splittings for the different states have 
to be known to determine the correlation functions. 
A specification of the states and lifetimes implicitly 
includes any possible correlations between the motions 
at different sites. Discrete jump models15 can also be 
employed for rotating groups1•2•12 but they are rather 
restrictive. Thus, each nitro group in the dinitrodurene 
anion might be assumed to have only two conforma­
tions, one in the plane of the ring and one perpendicular 
to the plane, so that jumps would take place between 
the four states corresponding to the two different 
orientations of each nitro group. Certainly the most 
appropriate description of the rotational motions for 
the isolated molecule would be along the lines of the 
quantum-mechanical treatment of hindered internal 
rotation, and would include the possibilities of tunnel­
ing through potential barriers. In solutions, the effect 
of solvent interactions might then be included as a 
time-dependent perturbation causing random transi­
tions among the stationary-state energy levels of the 
hindered rotor, but it is difficult to perform such a 
calculation in a meaningful way. The rotational motion 
could also be described classically, and the effects of 
the solvent interactions treated by the theory of 
Brownian motion, but the validity of this approach is 
also open to question because the spacing of the energy 
levels of the internal motion in the isolated molecule 
is probably not small compared to kT. Nevertheless, 
we use the classical theory of Brownian motion for 
simplicity, and can anticipate that meaningful although 
not quantitatively significant results will be obtained. 

The actual solution of the Langevin equation for the 
Brownian motion36 of a particle subject to the multiple­
minimum potential energy appropriate for a description 
of hindered internal rotation is, unfortunately, also a 
difficult mathematical problem.36 As a result, we have 
approximated the motion by a variety of physically 
somewhat unrealistic models that represent limiting 
cases. The detailed models employed are described in 
the following sections. 

The correlation functions defined in Eq. (2.2) are 
determined for the Brownian-motion models by condi­
tional probability distributions which are given in 
Appendix A. For the jump models, the conditional 
probabilities are obtained from solving a set of coupled 
first-order linear differential equations. These equations 
can be written down by inspection using the usual 
arguments of chemical kinetics, but when many states 
are involved, their solution is difficult. A few cases 
have been solved in I, and another is presented in 
Appendix B. In the approximation of small and rapid 
modulations appropriate for the relaxation-matrix 
theory of I, the positions of the lines in the spectrum 

81 (a) S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943); (b) 
G. E. Uhlenbeck, and L. S. Ornstein, Phys. Rev. 36, 823 (1930); 
(c) M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323 
(1945); (d) S. 0. Rice, Bell System Tech. J. 23, 282 (1944); 
25, 46 (1945). 

36 But see M. Goldstein, J. Chem. Phys. 39, 243 (1963), where 
some preliminary results are discussed. 

are determined by the average hyperfine splittings, 
(ai(t) ), which, for rotational motions, is the average 
of Eq. ( 3.3). 

IV. BROWNIAN MOTION OF ROTORS NEGLECTING 
SPIN-DENSITY MODULATIONS 

In this section the correlation functions and spectral 
densities are calculated for specific models of rotating 
substituents using Brownian motion to treat the 
dynamics. It is assumed that the motion of a particular 
rotating group affects only those hyperfine splittings 
that are from nuclei within this same rotating group, 
and thus the influence of the rotation on the spin­
density distribution throughout the molecule is 
neglected. This unrealistic assumption is made here in 
order to focus attention on the motional aspects of the 
problem in as simple a manner as possible. The inclu­
sion of spin-density variations is undertaken in Sec. V, 
and discrete jump models15 are discussed in Sec. VI. 

According to the assumptions of this section, the 
hyperfine splitting ai for a nucleus in a rotating group 
depends only on the orientation 0i of the rotating 
group and is independent of the orientation 0;(i ~j) 
of other rotating groups. It also follows that the hyper­
fine splittings from nuclei that are not in rotating 
groups are constant and, according to the approxi­
mations of Sec. III, only even harmonics are required 
in the Fourier series. Equation (3.3) is thus greatly 
simplified: 

a;(t) =A;+ EBi;n cos2n0;. (4.1) 
n=l 

The Brownian motion of a single rotating group is 
described either as a free rotational diffusion or as a 
small torsional oscillation about an equilibrium posi­
tion. Correlation between two rotors is introduced both 
as a rigid coupling between the two groups so that they 
move as a single unit or as a small relative torsional 
oscillation about an equilibrium separation. 

A. Correlation Functions and Spectral Densities for 
Specific Models 

Case a. Uncorrelated Motion of Rotors Undergoing Free 
Rotational Dijf usion 

For free rotational diffusion, using Eqs. ( 4.1) and 
(A2), the average splitting is <'ii= A;. The average 
required to obtain the correlation function g;;<n ( T) in­
volves the sum of terms like 

(cos2n0;(t) cos2m0i(t+r)) 

!2.. 100 = d0;0W(0;o) cos2n0;o d0iP(0;o I 0,-r) cos2m0i, 
0 -00 

= /
2 

.. W(0;0) cos2n0;o cos2m0;o exp( -4m2D,-r)d0;o, 
0 

=½ exp(-4n2D,-r)B,.m, (4.2) 
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from Eqs. (A2) and (A3), where o;; is the Kroenecker 
delta. Since according to this model there is no correla­
tion for Nuclei i and j in different rotors, g;p>(r) =0 
(i,=j), and thus 

g;p>(r) = O;;(-y.2/2) "t,B;n2 exp( -4n2D,"T). ( 4.3) 
n=l 

It follows that 

j;/I)(w) = o;j{-y.2/2) EB;,.2[T;n(1 +w2r;n2)-1], ( 4.4) 
n=l 

where 
(4.5) 

Since by assumption there are only uncorrelated motions 
in this model, the nuclei in different rotating groups 
are never completely equivalent [herej;p>(w) =0, i;=j, 
while if i andj are completely equivalent nuclei,j;;= j;;]. 
The contribution to the linewidths from the motion is 
given by Eq. (2.9), and the variation in width from one 
hyperfine component to another is rather complicated 
when this contribution is appreciable (see, for example, 
the last column of Table II in I). 

Case b. Uncorrelated Motion of Rotors Undergoing 
Small Torsional Oscillations 

For small torsional oscillations, the angles 0; in Eq. 
( 4.1) must be expanded for small displacements 

y;=0;-0;. (4.6) 

from the equilibrium position 0; •. Thus 

cos2n0~ ( 1-2n2y;2) cos2n0;.- 2ny; sin2n0;. ( 4. 7) 

from which, using Eq. (AS), the average hyperfine 
splitting is 

and 

a;(O,) -ii; 

= EB;,.[2n2(y?- (y? )Av) cos2n0;.+2ny; sin2n0,,], 

(4.9) 
where [Eq. (A6) J 

(.y/-)Av= ({3;D;jw;o2) = (kT/l;w;o2) (4.10) 

is the mean-square displacement from equilibrium. The 
correlation function becomes 

g,p>(r) = 0;;}:4B;nB;mnm[nm cos2n0;. cos2m0;.g<12>(r) 
n,m 

+ sin2n0;. sin2m0;.g<8> ( r) ], ( 4.11) 

where g<8>(r) and g<12>(r) are given by Eqs. (A8) and 
(AlO), and the spectral density j;p>(w) is given by a 
similar expression with j<8>(w) and j<'2>(w) from Eqs. 
(A9) and (A13) substituted for g<8>(r) and g<12>(r), 

respectively. Retaining only the leading terms in the 
Fourier series for a;(t), the spectral density at zero 
frequency is thus, from Eqs. (AlS) and (A16), 

j;/I)(Q) = O;;( 4y,2{3/-D;B;12/w;o4) [sin220;. 

+ (D;/{3;w;0
2)(w;0

2+f3l-) cos220;.J, ( 4.12) 

while for large damping and low frequencies, Eqs. (Al 7) 
and (A18) give 

j;p> (w) = O;;( 4y.2{3;2D;B;12/w;0
4) [(1 +w2r;1

2)-1 sin220;. 

+(f3;D;/w;0
2) O+¼w2r,12)-1 cos220;,], (4.13) 

where, as in Eq. (A19), r;1 = (/3;/w;0
2). Note the angular 

dependence in these spectral densities which gives the 
same results for 0;.=0, ±1r, or ±(1r/2), but values 
that are different from these when, for example, 0;.= 
± (1r/4). The dependence of the linewidths on the 
spectral densities is the same as for Case (a). 

Case c. Locked Pair of Rotors Undergoing Free 
Rotational Dijf usion as a Unit 

We assume that the two rotors undergo free rota­
tional diffusion as a coupled group, and that their 
orientations always differ by the constant angle a12= 
01 -02. It is also assumed that there is only one magnetic 
nucleus in each rotor, and we take the coefficients in 
the Fourier series, Eq. ( 4.1), for the two nuclei to be 
the same, A1=A2=A and B1,.=B2n=Bn. Letting 

( 4.14) 

for i= 1 or 2, and since ii;=ii= A, we have 

a;(t) =a+ EBn[cosna12cos2ny+(-l)•sinna12 sin2ny]. 
n=l 

( 4.15) 

Calculation of the correlation functions and spectral 
densities proceeds as in (a) above if the probability 
functions in Eqs. (A2) and (A3) are used for the 
distribution in y, with the result that 

j,;m(w) = ('y.2/2) EBn2 cos2na,;[r,.(l +w2r,.2)-1J, (4.16) 
n=l 

where a;; is given by Eq. (A20), and 

r,.-1=4n2DT=2n2D ( 4.17) 

from Eqs. (4.5) and (A21). For a12 =0 or 1r,j12<1>(w) = 
ju<n(w), and the two nuclei are completely equivalent. 
For a12= (1r/2), the terms inj11<1>(w) andj12<1>(w) for n 
even are the same, but those for n odd have opposite 
signs. Thus if the first (n= 1) term is dominant, which 
is reasonable from both the physical situation and the 
dependence of successive terms in Eq. ( 4.16) on n-2, 

this coupled motion with a12= (1r/2) causes j 12<1> (w) = 
-j12<1>(w). Equation (2.7) for T2-1 applies, and there 
is a large alternating linewidth effect if the motional 
modulation contributes appreciably to the total line-
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width ( see, for example, Table II of I). Note that 
in general for this case I j1/n ( w) I ~du (I) ( w) . 

Case d. Locked Pair of Rotors Undergoing Small 
Torsional Oscillations as a Unit 

In this model two locked rotors execute small vibra­
tions as a unit about an equilibrium position. It differs 
from Part ( c) because the over-all motion of the unit 
is a vibration, rather than a free rotational diffusion. 
The two rotors are assumed to be equivalent, and 
therefore their equilibrium orientations must also be 
equivalent. This requirement implies that 82.= ±81• or 
82,=1r±81.. The rotors are completely equivalent 
(equivalent at all instants of time) if 820 =810 or 82.= 
1r+01, since we also require that 81-82 be constant at 
every instant. These last conditions do not conform to 
our model of coupled rotations in a molecule like 
dinitrodurene, since they do not correspond to a motion 
in which the rotation of one group into the plane forces 
the other group out of the plane, but the conditions 
82,= -81, or 82.=1r-81• do conform to this picture. 
Proceeding as in Parts (b) and ( c) above for the con­
ditions 82.= -81, or 82.=1r-81, results in Eq. ( 4.8) for 
the average hyperfine splitting, and gives for the 
spectral density 

j;p>(w) =4-y/LB,.Bmnm[( -1) i+i sin22n8;,,j<6>(w) 
n,m 

+nm cos22n8;,,j<•2>(w) ], ( 4.18) 

where i= 1, 2 andj= 1, 2. The spectral densitiesj<8>(w) 
andj<•2>(w) are given by Eqs. (A9) and (A13) but with 
DT=½D replacing the diffusion constant D. For the 
conditions 82.=81. or 82.=1r+01., Eq. (4.18) still holds 
if the coefficient ( -1) •+i is replaced by + 1, and thus 
as expected j 12<1>(w) =j11<1>(w). For the conditions 
82,= -81. or 82,=1r-8;0 when 8i.=0, 1r/2, or 1r the 
equilibrium separations of the two rotors are a12 =O 
or 1r, and the nuclei are completely equivalent 
[j12CI>(w) =j11(1>(w)]. If 81.= (1r/4), corresponding to 
a12= ± (1r/2), the dominant terms (n=m= 1) again 
lead to j12<n(w) = -j11<1>(w), and a large alternating 
linewidth effect can result. 

Case e. Small Relative Oscillations of Two Rotors 

If the two rotors have the same equilibrium positions, 
82.=81., but move in opposite directions, (82-82,) = 
-(81-81,), Eq. (4.18) is again obtained. 

Case f. Pair of Rotors Coupled Together by Harmonic 
Restoring Force and Undergoing Over-All Free 

Rotational Di.ff usion as a Unit 

In this model the two rotors undergo free rotational 
diffusion as a unit, as in Part (c) above, but they also 
execute small torsional oscillations with frequency 
w1i21r about an equilibrium separation a •. For sim­
plicity we retain only the leading terms in the Fourier 
expansion (n= 1). Using the variables u1 and u2 of Eqs. 

(A23), with u1 corresponding to the rotational diffusion 
of the whole group (r= 1) and u2 to the torsional 
oscillations, we can write for small displacements u2, 

a;( t) ,..._,, a+ Br { [ cos2u1 cosa. 

- ( -1) • sin2u1 sina,](1-2ul) 

-[cos2u1 sina.-(-1)' sin2u1 cosa.](2u2)}, (4.19) 

where i= 1 or 2. Note that the rotors are assumed to 
be identical and the average of the coefficient of B1 is 
zero. The integral for the correlation function is 

g;/1) ( T) 

=-y.2~
2
.-du10{:du20W(u10) W(u20) [a,(u10, u20) -a,] 

X {" du1{:du2P(u10 I u1r) P(u20 I u2r) [a;(u1, ll2) -a;], 

(4.20) 

where W(u10) and P(u10 I u1r) are given by Eqs. (A2) 
and (A3) (free rotational diffusion) and W(u20) and 
P(u20 I u2r) by Eqs. (AS) and (A7) (damped torsional 
oscillation). In both sets of distribution functions, D 
must be replaced by DT= ½D, and in the second set 
the resonant frequency wo must be replaced by v'lw12 
[see Eqs. (A25) to (A27) ]. We do not consider the 
case of arbitrary damping of the torsional motion. The 
results for the spectral densities for large damping are 

i;p>(w) = (-y.2/2)B12 cos2a;; 

X { (1-2q2+q4)[ro(1+w2ro2)-1] 

+ ( -1) i+i2q2[r1(1 +w2r12)-1J 

+2cz4[r2(1+w2r22)-1]}, (4.21) 
where 

with 

ro-1=2D, 

T1-1= 2D[1 +½q-2], 

T2-1= 2D[1 +q-2], ( 4.22) 

(4.23) 

and a12=a., a11=a22 =O. This result holds only for 
13»4w12 and w«v'lw12. For q2«1, corresponding to 
2Iw122»kT or very strong coupling of the two rotors, 
Eq. ( 4.21) reduces to the leading term of Eq. ( 4.16) 
for Case (c), as expected. Except when q is vanishingly 
small, the term in r1 causes [j12<1>(w) I <j11<1>(w) for all 
equilibrium separations a,, and the two nuclei are never 
completely equivalent. Unlike the previous models for 
correlated motion, the present case does not give com­
plete "in-phase correlation" [j12<1>(w) =j11CI>(w)] or 
complete "out-of-phase correlation" [j12<1> ( w) = 
-j11m(w)]. An alternation in linewidth occurs, the 
greatest effect taking place when a.= (1r/2), corre­
sponding to the minimum value of j 12<1>(w), but since 
lj12<1>(w) I <ju<1>(w), the magnitude of the linewidth 
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alternation is less than for models which give j 12(I)(w) = 
-jum(w). 

B. Comparison of Different Models 

All of the Brownian-motion diffusion models in which 
the motions of the two rotors are correlated can give 
rise to an alternation in linewidth. If the two rotors are 
locked together and as a unit undergo either free 
rotational diffusion or small torsional oscillations about 
an equilibrium position [Models (c) and (d) ], the 
maximum alternating linewidth effect occurs when the 
two rotors are perpendicular to each other. In the 
oscillating case, they must also make an angle of 45° 
to the plane of the pi system for the maximum alter­
nating effect. The spectral densities then satisfy the 
relation j12<1l(w) = -j11<1l(w) if only leading terms are 
retained in the Fourier series expansion for the hyper­
fine splitting as a function of the angle of orientation. 
This condition is also satisfied if the two rotors have 
the same equilibrium conformation but are oscillating 
relative to each other provided the equilibrium con­
formation is 45° out of the plane of the pi system 
[Model (e)]. The condition is only approximately 
satisfied [U12<1l(w) I <j11(I)(w)] if the two rotors are 
oscillating relative to each other with a low enough 
frequency (w12) to affect the spectral densities and also 
at the same time undergoing free rotational diffusion 
as a unit [Model (f) ]. The equilibrium angle of separa­
tion of 90°, corresponding to the minimum value of 
j12(I)(w), still gives the largest linewidth alternation 
attainable from this model. The characteristic feature 
of all these coupled motions is that the alternating 
linewidth effect is a maximum when the variation of 
the hyperfine splittings from the nuclei in the two rotors 
is out of phase, while no alternation in linewidth is pro­
duced if their motions are in phase. In general, the 
inclusion of higher terms in the Fourier series expan­
sion reduces the magnitude of the alternating linewidth 
effect. 

V. BROWNIAN MOTION OF ROTORS INCLUDING 
SPIN-DENSITY MODULATIONS 

In this section we extend the treatment of Sec. IV 
by including the effects of modulations of the pi­
electron spin-density distribution by the rotational 
motion. The general Fourier series for a;(t), Eq. (3.3), 
must now be employed, and the presence of terms like 
cosnfh cosm02 causes considerable algebraic complexity. 
We therefore use only restricted forms of the series, 
and only two of the models considered in Sec. IV. These 
are Cases (a) and (c), i.e., the free rotational diffusion 
of uncorrelated rotors, and a pair of interlock,ed rotors 
undergoing free rotational diffusion as a unit. The 
coefficients in the Fourier series for the different nuclei 
are interrelated by symmetry in typical cases, and it 
is convenient to treat the linewidth variations for 
nuclei in the rotating groups separately from those at 
other positions in the radicals. The general expressions 

for the correlation functions are developed first, then 
examples are given for the splittings of nuclei in the 
rotating groups, and finally we consider examples of 
splittings from ring and methyl-group protons. In the 
cases worked out, the correlation functions have the 
form of Eq. (2.3), and since the spectral densities can 
therefore be obtained from Eq. (2.4), only the correla­
tion functions are given. 

i. Correlation Functions 

Case a. Uncorrelated Motion of Rotors Undergoing 
Free Rotational Diffusion 

For simplicity we give the results for only two rotors, 
and they are assumed to have the same average hyper­
fine splitting a;= A and the same rotational diffusion 
constants D. From Eqs. (3.3), (A2), and (A3), with 
the methods of Sec. IV, and with i= 1 or 2, we have 

g;/fl(r) = (-y.2/2)[I:(Bi;nBf;n+C;nCf;n) exp(-r/rn) 
n=l 

+½ f Di;nmD,';nm exp( -r/Tnm) ], (5.1) 
n,m=I 

where 

Tnm-1=rn-1+rm-1= (n2+m2)D. (5.2) 

Thus g;/Il(r) for ir6j is now nonvanishing even though 
the motions of the two rotors are uncorrelated, a result 
which follows because the splittings are correlated 
through the spin-density fluctuations. Specific examples 
of the linewidth variations resulting from this model 
are discussed in Parts (ii) and (iii) below. 

Case c. Locked Pair of Rotors Undergoing Free 
Rotational Diffusion as a Unit 

Only the leading terms of the Fourier series, Eq. 
( 3.3), are retained in order to minimize the complexity, 
and we write 

a;(t) = A,+ B;;n cosn01+Ci;n cosn02 

+Di;nn cosn01 cosn02, (5.3) 

where n= 1 if only odd harmonics are important [see 
parts (ii) and (iii) below J or n= 2 if only even har­
monics are important. The average splitting is 

(5.4) 

where a12=81-82 is the fixed angle between the two 
rotors. Evaluation of the integrals for the correlation 
functions gives 

g;/IJ(r) = (-y,2/2) {[(Bi;nB;;n+Ci;nC;;n) 

+(Bi;nC;;n+C;nB;;n) cosna12] exp[ -r/(2rn)] 

+¼Di;nnD;;nn exp(-2r/rn)), (5.5) 
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where Tn is given by Eq. (5.2) and the factor of½ enters 
the first exponential because the diffusing unit here 
consists of two rotors [DT=½D, see Eq. (A21)]. If 
any additional terms appropriate for two rotors are 
included in the Fourier series than just those retained 
in Eq. (5.3), cross terms such as B;;nDf;nm enter into 
the correlation functions. 

ii. Splittings within the Rotating Groups 

We consider radicals with two identical substituents 
such as the p-dinitrodurene anion or p-dihydroxyben­
zene cation. The 14N splitting in a nitro or amino group, 
or the proton splitting in a hydroxy, amino, or formyl 
group, is governed only by even harmonics in the 
Fourier series, so the leading terms in the preceding 
equations are for n= 2. By symmetry, we have B1;2= 
C2;2, B2;2= C1;2, and D1;22= D2;22, and denoting these 
three different coefficients by B, C, and D, respectively, 
the correlation functions for the uncorrelated freely 
diffusing rotors are, from Eq. (5.1), 

g11<1>(r) =1-.2[½(B2+C2) exp(-r/r2) 

+¼D2 exp( -2r/r2) ], (5.6a) 

g12<1>(r) =")'.2[BC exp(-r/r2) +¼D2 exp( -2r/n)]. 

(5.6b) 

The correlation functions, as well as the spectral 
densities, obey the relation I g12<IJ(r) I ~g11<1>(r), and 
the condition on the spectral densities for a large 
alternating linewidth effect, namely, j 12<1>(w)"' 
-j11<IJ(w), is satisfied if B"'-C, provided that Dis 
not too large. On the other hand, if B = C, j 12<1J ( w) = 
j 11 <IJ ( w), and there is only a quadratic dependence of 
the linewidth on M [see Eq. (2.7)]. 

For two locked rotors, Eq. (5.5) gives 

g;/1l(r) = ('Y.2/2) {[(B+C) 2 cos2a 12 

+ ( -1) i+i(B-C) 2 sin2a12] exp( -r/(2r2)] 

+¼D2 exp( -2r/r2)} (5.7) 

for i=l, 2 andj=l, 2. Again I g12<1>(r) I ~g11<1>(r). If 
a 12 =0 or 1r, j 12m(w) =j11<1>(w), there is a quadratic 
dependence of the linewidth on M, and the linewidth 
variation is greatest when B= C while it is smallest 
when B= -C. If a12= (1r/2), and Dis not too large, 
j 12<Il(w)'::::.-j11<1>(w), and there is an alternating line­
width effect provided B~C; the effect is largest when 
B=-C. 

The present results reduce to those of Sec. IV for 
C,;n=D,;nm=O, as they must, but now because of the 
nonvanishing values of these terms there is a coupling 
through the pi-electron spin-density distribution as well 
as through the motion, so that an alternating linewidth 
effect can result even if the motions of the two rotors 
are uncorrelated. Whether or not the motions are 
correlated, however, an alternating linewidth does not 
result unless B'::::.-C and Dis not too large, 

The only theoretical estimates of the coefficients are 
for the nitrobenzenes, and molecular-orbital calcula­
tions34 indicate that B and C should, in fact, have 
opposite signs. The predictions are thus in agreement 
with the observed alternating linewidth phenomenon 
found in the p-dinitrodurene and m-dinitrobenzene 
anions.2•4•6 Physically the result of the MO calculations 
can be understood by considering the dinitrobenzene 
anion to consist of two parts, a nitrobenzene fragment 
and a nitro-group fragment. The nitrobenzene fragment 
has a greater electron affinity than an isolated nitro 
group so that when a nitro group is rotated out of the 
plane of the ring the unpaired electron tends to be 
localized in the nitrobenzene fragment. As a result, 
when one nitro group in a dinitrobenzene anion is 
rotated out of the plane of the ring, its 14N splitting 
decreases, while if the second nitro group is also rotated 
out of the plane, the splitting of the first group in­
creases. These results are to be contrasted to the 
behavior of a mononitrobenzene where, as shown by 
the work of Geske and co-workers30•31 and also by the 
MO calculations,34 rotation of the nitro group out of 
the plane of the ring increases the 14N splitting. It 
should be noted that the alternating linewidth varia­
tion found in the dihydroxydurene cation1 arises from 
the ring protons, not the hydroxy protons ( see below). 

iii. Ring and Methyl-Group Splittings 

(a) Ring Splittings in Derivatives of 
1, 4-dinitrobenzene 

For the 1,4-dinitrobenzenes, the hyperfine splittings 
at the ring positions satisfy the relations 

a;(81, 84) =a;(81+1r, 0.) =a,(81, 0.+1r) =a;(81+1r, 84+1r), 

(5.8a) 

ll2(81, 84) = as(81, 0.); aa(81, 84) = a5(81, 84), (5.8b) 

a2(81, 84) = aa(84, 81). (5.8c) 

Equations ( 5 .8a) follow from the twofold symmetry 
of the nitro groups, and Eqs. (5.8b) from the twofold 
symmetry of the rest of the molecule ( excluding the 
nitro groups) for arbitrary orientations of the nitro 
groups. Similar nuclei at the four ring positions there­
fore form an equivalent group, and those at Positions 
2 and 6 form one completely equivalent subgroup 
while nuclei at Positions 3 and 5 form another. The 
coefficients in the Fourier series, which involve only 
even harmonics, are consequently the same for Posi­
tions 2 and 6, and for Positions 3 and 5, but those for 
Positions 2 and 3 are different. For the leading terms, 
letting A=A2, B=B2;2, C=C2;2, and D=D2;22, we find, 
on using Eqs. (5.8), that Aa=A, Ba;2=C, Ca;2=B, and 
Ds;22= D. Thus if we denote the completely equivalent 
subgroup containing nuclei at Positions 2 and 6 by 1, 
and the group containing nuclei at Positions 3 and 5 by 
2, Eqs. (5.6) and (5.7) give the required correlation 
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functions. The secular contributions to the linewidth 
for this model, as calculated from Eq. (2.7), are pre­
sented in Table I for the p-dinitrobenzene and dinitro­
durene anions, assuming for the latter compound that 
the methyl-group proton splittings are proportional to 
the pi-electron spin density on the adjacent ring carbon 
atoms. Whenj12<1>(0) = -j11<1>(O), andj11<1l(O) is large 
(so that the modulation of the isotropic interaction 
makes a significant contribution to the linewidth), 
only the narrowest component of a hyperfine line is 
observed in the spectrum, and the lines alternate in 
width from sharp [width contribution: OJ to broad 
[width contribution: j 11<1>(0) ], as discussed in Sec. II. 

( b) Ring Splittings in Derivatives of 
1 , 4-dihydroxybenzene 

The symmetry relations obeyed by the hyperfine 
splittings at the different ring positions of the 1,4-
dihydroxybenzenes are 

a2(01, 04) =a6(01+1r, 04+1r); aa(01, 04) =a5(01+1r, 0.+1r) 

(5.9) 

and also Eq. (5.8c). We note that Eqs. (5.8b) follow 
from Eqs. (5.9) if Eqs. (5.8a) hold, but that Eq. (5.8a) 
does not apply to hydroxyl groups. We shall thus 
assume that the leading terms in the Fourier series 
are functions of the first harmonic of the orientations 
of the two rotors, i.e., n= 1. Similar nuclei at the four 
positions are equivalent, but not completely equivalent. 
Letting A=A2, B=B2;1, C=C2;1, and D=D2;11, we 
find on using these symmetry relations and examining 
the leading terms in the Fourier series, that A ; = A, 
D;;n = D, Ba;1 = - B6;1 = - C6;1 = C, and Ca;1 = -C6;1 = 
-B6;1 =B. For the uncorrelated free-rotational diffu­
sion model, let 

gc(r) = (-y.2/4) (B+C) 2 exp(-r/r1), 

gT(r) = ( ,-.2/4) (B-C) 2 exp( -r/r1), 

gcT(r) = ( ,-.2/4)D2 exp( -2r/r1), (5.10) 

and for the rotational diffusion of two locked rotors, let 

gc(r) = (,-.2/2) (B+C) 2 cos2(a12/2) exp(-r/2r1) 

gT( r) = ( ,-.2/2) (B-C) 2 sin2(a12/2) exp[ -r/ (2r1) J 

gcT(r) = ( 'Y.2/8)D2 exp(-2r/r1). (5.11) 

Then, for both models, the correlation functions satisfy 
the relations 

g22(I) ( T) = gc(r) +gT( T) + gcT(T) 1 

g2P>(r) = g66<Il (r) = gc(r) -gT(r) +gcT(r), 

g25(I) ( T) = g35(I) ( T) = -gc( T) +gT( T) +gcT( r), 

g26(I) ( T) = g35(I) ( T) = -gc( T) -gT(r) +gcT( T)' (5.12) 

with g;/f> (r) = g22<1> (r) and g;p> (r) = g1P> (r), i (orj) = 
2, 3, 5, 6. 

Comparison of these models with the four-jump cis­
trans model treated in I, Sec. VI, shows that the rela­
tions between the correlation functions, Eqs. (5.12), are 
identical to Eqs. (I.6.8), and thus the secular contri­
butions to the linewidths are given by Table IV of I. 
If Dis not too large, and if jc(O) or h(O), or both, are 
appreciable in magnitude, an alternating linewidth is 
obtained. This result is independent of any relation 
between B and C or, in the locked-rotor model, of the 
angle a12 between the two rotors. In the p-dihydroxy­
benzenes, in contrast to the other examples treated, 
there is an out-of-phase correlation of the hyperfine 
splittings at the different ring positions that is deter­
mined by the symmetry of the problem so that the 
alternation in linewidth results directly from the sym- • 
metry. In the other cases considered, the out-of-phase 
correlation had to be introduced by a condition that 
was not required by symmetry. Thus the hyperfine 
splittings had to be related to the motion in some 
specific manner (such as the relation B= -C in the 
previous examples of this section), and/or the motions 
of the two rotors had to be coupled. 

The essential difference between the p-dihydroxy­
and p-dinitrobenzenes arises from the inclusion, be­
cause of the symmetry of the groups, of the odd 
harmonics in the Fourier series for the former. The 
even harmonics ( those for which B;;2n+1 = C;;2n+1 = 
D,;2n+1,m=D;;n,2m+1=O), satisfy the conditions of Eq. 
(5.8a). The remaining terms, the odd harmonics (those 
for which B;;2n=C;;2n=D;;2n,2m=D;;2n+1,2m+1=O) satisfy 
the condition 

a;(01, 04)-A;= -[a,(01+1r, 04+1r)-A;]. (5.13) 

Since the splittings satisfy Eqs. (5.8c) and (5.9), it 
follows from Eq. (5.8a) that for the even harmonics 
g22m ( r) = g26(I> ( r) = ga5<Il ( r) and g2a'Il ( r) = g26<1> ( r) = 
g36<1>(r)=g66<Il(r). Similarly, but with Eq. (5.13) in­
stead of Eq. (5.8a), the odd harmonics give g22<1>(r) = 
-g26<1>(r) = -g36<1>(r) and g2in(r) =g55m(r) = 
- g26<1> ( r) = - g36<1> ( r) . Thus all of the odd harmonics 
automatically give an alternating linewidth, but the 
even harmonics produce a linewidth alternation only 
if special relations exist among the terms in the 
Fourier series or in the relative motions of the two 
rotors, and some of the even harmonics always give a 
quadratic dependence on M rather than an alternation 
in width ( e.g., the D;;n term). 

VI. DISCRETE JUMP MODELS 

As indicated in Sec. III, internal rotations can be 
described under certain restrictive assumptions in terms 
of a discrete jump model16 rather than as a Bownian­
motion diffusion, and in this section we indicate how 
the rotations of groups with one- and twofold symmetry 
(such as hydroxyl and nitro groups) can be approxi­
mated in this way. Since the same mathematical 
treatment is also applicable to the description of 
switching motions in which an atom or group jumps 
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from one site in the radical to another, these are also 
briefly considered. 

i. Rotations of Groups with Twofold Symmetry 

Probably the most realistic way of handling the 
rotational motions of a group with twofold symmetry, 
such as a nitro group, in terms of a discrete jump model, 
is to assume that the only possible conformations are 
those in which the group is either coplanar or perpen­
dicular to the plane of the aromatic system. A molecule 
with two such groups equivalently situated could then 
exist in four different instantaneous conformations, 
A, B, C, and D. State A is defined as the conformation 
in which Group 1 is in the coplanar orientation and 
Group 2 in the perpendicular orientation, and in 
state C the orientations of the two groups are inter­
changed. These two states are thus thermodynamically 
equivalent. In State B, both groups are in the perpen­
dicular orientation and in State D, both are coplanar. 
The interconversion of the different states is assumed 
to be governed by the equations 

k1 

A+:±B, ( 6.la) 
k11 

k2 

A+:±D, (6.1b) 
k2' 

ka 

A+:±C, (6.lc) 
k3 

k4 

B+:±D, ( 6.ld) 
k 41 

and two additional equations similar to Eqs. (6.la) 
and (6.lb) with A replaced by C. Since these six rate 
equations involve seven different (and in general 
unknown) rate constants, their solution is very un­
wieldy, and we therefore treat only some special cases. 
By neglecting State D, the four-jump model can be 
reduced to a three-jump problem that is easily solved, 
and the detailed results are given in Appendix B. 
Neglecting State D is equivalent to assuming that the 
conformation in which both groups are simultaneously 
coplanar is of low probability. Since the completely 
coplanar state of dinitrodurene is highly hindered, the 
three-jump model is not too unrealistic a representation 
of this molecule. A still more restricted aspect of the 
model is obtained by also neglecting State B. In the 
resulting two-jump model, one group is in a coplanar 
conformation while the other is simultaneously per­
pendicular, and the difference between the two states 
(A and C) just involves the switching of the roles of 
the two groups. The two-jump model has also been 
treated in Sec. V of I. 

As an example of the application of the three-jump 
model, we consider a dinitrobenzene anion. The 14N 

splittings satisfy the relations 

a1(A) =a2(C) =ar, 

a2(A) =a1(C) =au, 

a1(B) =<½.(B) =am, (6.2) 

where a;(µ) is the splitting from the ith nucleus in the 
µth state. The splittings ar and au are for the in-plane 
and perpendicular nitro groups, respectively, in a mole­
cule with one coplanar and one perpendicular nitro 
group, while am is the 14N splitting in a molecule in 
which both groups are perpendicular. Equations ( 6.2) 
also apply to the ring-proton splittings in the p-dini­
trobenzene anion or the methyl-proton splittings in the 
dinitrodurene anion if the subscripts 1 and 2 refer to 
the two different completely equivalent subgroups with 
the nuclei at Positions 2 and 6 being in Group 1 and 
those at Positions 3 and 5 in Group 2, as in Sec. V.iii.a 
above. The average hyperfine splitting is 

a=a1=t'.i2= W(A)[ar+au-2am]+am, (6.3) 

where W(A) is the probability of finding the system 
in the state A, and W(A)=W(C) with W(B)=1-
2W(A). By using the conditional probabilities in 
Appendix B and the relations in Eqs. ( 6.2), it is readily 
shown that the correlation functions are 

g;p>(T) = ( -y.2/2) W(A) { (-1) i+i(ar-au) 2 exp( -T/T1) 

+W(B) (ar+au-2am) 2 exp(-T/T2)}, (6.4) 

where the correlation times T1 and T 2 are given by 

(6.5) 

If the probability W(B) of the conformation in which 
both groups are simultaneously in the perpendicular 
orientation is negligible, corresponding to the two-jump 
model treated in I, the term in T2 in Eq. (6.4) vanishes 
andj12<1>(w) = -j11<1>(w). Thus when W(B)=O, there is 
an alternation in the linewidths, but if W(B) :¢0, 
I j12<1> ( w) I 5:j11<1> ( w) so that a nonnegligible probability 
of the occurrence of State B can cause a reduction in 
the extent of the alternating linewidth effect. If the 
splitting from the 14N nucleus in Group 1 depends only 
on the orientation of Group 1, au1=a11. This corre­
sponds to the assumptions of Sec. IV in which the 
spin-density modulations were omitted. 

It is also possible to treat simply a somewhat less 
realistic model. Instead of neglecting the state in which 
both nitro groups are simultaneously coplanar, we 
assume that it has the same probability as the con­
formation in which both groups are perpendicular, i.e., 
W(B)=W(D) and k1=k2, ki'=U, ki=k4• This prob­
lem is analyzed in Sec. VI of I, and the correlation 
functions are given by Eq. (I.6.6). 

ii. Rotations of Hydroxyl and other Similar Groups 

An analogous treatment of the conformation of a 
single group like -OH that does not possess twofold 
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symmetry requires four instantaneous orientations be­
cause the two coplanar states as well as the two per­
pendicular states are different. A molecule with two 
hydroxyl groups would thus be represented by 16 
states. The spin-density distribution in radicals like 
the p-dihydroxybenzene or dihydroxydurene cations 
are identical in the four states with all the hydroxyl 
groups in the perpendicular orientation, but the spin 
densities in each of the four coplanar states can all be 
different. We have not attempted to solve the general 
16-jump problem, but the four-jump model consisting 
of only the coplanar conformations is readily solved 
and leads to linewidth variations for the lines from 
ring-position splittings ( either ring protons or methyl­
group protons). The detailed analysis of this problem 
is given in Sec. VI of I. 

The hydroxyl-proton splittings in all of the allowed 
conformations of this four-jump coplanar model are 
identical, and thus no linewidth variations are pre­
dicted for the lines from these splittings. To illustrate 
how linewidth effects can arise for the hydroxyl-proton 
lines, we treat a tractable but unrealistic model: It is 
assumed that whenever Group 1 is in one of the two 
coplanar orientations, Group 2 is always in one of the 
two perpendicular orientations, and vice versa. In this 
way the 16-jump problem is reduced to a four-jump 
problem in which there is only one thermodynamically 
distinct conformation, and again the analysis of Sec. VI 
of I is applicable. If ar is the hydroxyl-proton splitting 
for the hydroxyl group that is in the plane of the ring, 
and arr the splitting for the group that is perpendicular, 
one finds from I that the correlation function is 

(6.6) 

iii. Nonrotational Jump Models 

Jump models provide a realistic description of 
molecular rearrangements such as those observed by 
de Boer and Mackor7 in the pyracene anion and by 
Bolton and Carrington8 in the naphthazarin cation. 
The first was treated as a two-jump problem and the 
second by a four-jump mechanism.13 Fluctuations 
caused by solvent complexes can also sometimes be 
analyzed by jump models.14 Equations ( 6.1), for 
example, can represent sol:vation complexes in com­
pounds like the dinitrobenzenes or benzosemiquinones 
as well as other radicals with two equivalent functional 
groups. In the dinitrobenzenes, State A could represent 
a complex between the solvent and one nitro group 
and State C a complex with the other nitro group. 
State B could then be the uncomplexed species and 
State D the doubly complexed radical. The details of 
the analysis are identical to those of the preceding parts 
of this section. The electron transfer induced by solvent 
perturbations in dinitrobiphenyls can also be described 
by a jump process. 8 • 

VII. SUMMARY AND CONCLUSIONS 

These calculations show that the fluctuations in 
isotropic hyperfine splittings in free radicals caused by 
internal motions can produce pronounced effects in 
the appearance of the ESR spectra. The most spectacu­
lar manifestation, the alternation in widths from one 
hyperfine component to another, occurs when there is 
an out-of-phase correlation between the hyperfine 
splittings of different nuclei. More precisely, if two 
nuclei i and j are equivalent, so that their average 
hyperfine splittings are equal ( ai= ai), the maximum 
alternating linewidth effect arises when the spectral 
densities satisfy the relation j;pl (w) = -jiPl (w). This 
condition results if the instantaneous hyperfine split­
tings ai(t) and a1(t) are correlated in such a way that 
a,(t) reaches a maximum while a1(t) is at a minimum, 
and vice versa. On the other hand, if a;(t) = a;(t), 
nuclei i and j are completely equivalent, j;pl(w) = 
j ;;<n ( w) , and these linewid th anomalies do not occur. 
Intermediate cases in which there is only partial out­
of-phase correlation give spectral densities that are 
related by -j;pl (w) <.iiPl (w). An alternation in line­
widths may also result under these circumstances, but 
it is not as pronounced as when f;/fl(w) = -j;/1l(w). 
Similar effects occur for sets of nuclei that can be sub­
divided into completely equivalent subgroups. More 
complicated patterns may ensue when the hyperfine 
splittings from more than two different completely 
equivalent subgroups are correlated. Thus the rotations 
of several methyl groups are predicted to cause spectra 
in which every third line is narrow and the remaining 
lines broad.19 

The out-of-phase correlation which produces the 
alternating linewidth effect can result from internal 
molecular rotations whenever the hyperfine splittings 
vary with the rotations and are correlated with the 
proper relative phases. The correlation may be caused 
by a coupling of the mechanical motions of different 
rotating groups, but even if the motions of different 
groups are independent, the correlation of splittings 
may result from the dependence of the spin-density 
distribution on orientation. In radicals such as the 
dihydroxybenzene cation a partial out-of-phase correla­
tion is brought about directly by the symmetry, while 
in radicals like the p-dinitrobenzene anion the nature 
of the correlation depends on the form of both the 
dynamical motions and the spin-density variations. 
Fluctuating solvent complexes can cause effects that 
are similar to internal rotating motions. A number of 
different models for the motions and spin-density varia­
tions can be formulated so as to yield an out-of-phase 
correlation of the hyperfine splittings. Continuous 
motion cases treated by Brownian-motion theory give 
the same general features as the restricted-motion 
discrete jump models, thus demonstrating that it is 
usually impossible to establish uniquely the details of 
the motion from the merely qualitative observation of 
an alternating linewidth effect. 
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APPENDIX A. 
BROWNIAN MOTION DISTRIBUTION FUNCTIONS 

In this Appendix, we summarize those results from 
the theory of Brownian motion that are needed to 
obtain the correlation functions and spectral densities 
which determine the relaxation matrix for free radicals 
containing rotating groups. A rotor is characterized by 
its moment of inertia I and friction constant {31. If the 
shape of the rotor approximates that of a (macroscopic) 
sphere, the quantity fJ is given by37 fJ=811"¥/a3/l, where 
a is the radius of the sphere and fl the viscosity of the 
fluid. It is assumed that the Brownian motion is de­
scribed by the Langevin equation in the angle of 
rotation 0: 

tion that the displacements are small enough so that 
the interval (0, 21r) for Yo can be replaced by the 
interval ( - oo, oo) without appreciable error. For the 
overdamped oscillator, corresponding to fJ»2wo, and 
for long times, r »13-1, the conditional probabilityffh,860 is 

[ 
wo2 (y-pyo)2] 

X exp - 2fJD (l-,r) dy. (A7) 

Here 

(Al) where by definition (for any values of fJ, w0, and r) 

where A (t) is a random rotational acceleration35 which 
describes the torques resulting from solvent collisions 
and f(0)1 is the external torque applied to the rotor. 
For a single rotor undergoing free rotational diffusion, 
f(0) =0, while for a rotor subject to a harmonic re­
storing force, /(0) -wo2(0-0.) where w0/21r is the 
frequency of the oscillation, 0. is the equilibrium posi­
tion, and the displacements, y=0-0., are assumed to 
be small. 

For free rotational diffusion, the probability of 
:finding the rotor at any angle Oo, 0S0oS21r, is inde­
pendent of 0o and is given by 

W(0o)d8o= (1/21r)d80, (A2) 

while the conditional probability [Eq. (I.2.4 ff) J that 
the rotor is at the angle Oat the time r~O if it was at 
0o at time r=O is35 

P(0o J 0, r)d0= (41rDr)-½ exp[ -(8-0o) 2/4Dr]d8. (A3) 

This equation holds for long times, i.e., r»/3-1, and the 
diffusion constant D is given in terms of the friction 
constant by the Einstein relation 

D=kT/((31), (A4) 

where k is the Boltzmann constant and T the absolute 

g<9>(r) = (y(t)y(t+r) )= ([0(t)-8.][8(t+r)-0.]) 

(A8) 

is the correlation function [Eqs. (2.6) of I and Eq. 
(2.1) above]. 

If the oscillator is not overdamped, the conditional 
probability is a quite complicated function,35 but it is 
possible to obtain the needed spectral densities directly 
without proceeding from the correlation functions. 
Defining the spectral density p>(w) as one-half the 
Fourier transform of the correlation function g<9> ( r) 
[Eq. (2.2) ], the method of Rice330•33d leads immediately 
from the Langevin equation to 

j<B>(w) =(32D[(w2-wo2)2+~2w2J-l. (A9) 

We also require the correlation function 

and its spectral density p 2>(w). Since the probability 
distribution W(Oo; Or) for the Brownian motion of a 
harmonic oscillator is still a two-dimensional Gaussian 
distribution for the general case, 350 one can readily 
show that 

(AH) 

temperature. The angle 8 in Eq. (A3) may be any- from which it follows thatas 
where in the range - oo S0-00~ oo since the rotor can 
make many complete revolutions during the timer. (A12) 

For an harmonic oscillator the distribution in the 
displacement yo=0o-O, from the equilibrium position 
is35 Evaluation of the integral gives 

W(yo)dyo= (Wo2/21rfJD)½ exp[ -(Wo''Yo'-/2{3D) ]dy0• (AS) j<(J,l(w) 

Since (wo2/2{3D) = (lwa2/2kl), Eq. (AS) is the Boltz­
mann distribution in y0. It follows immediately that 
fjo= (yo)A,=O and 

(yo'·)A,= (fJD/Wo2) = (kT/Iwo'·). (A6) 

The normalization has been carried out on the assump-

37 H. Lamb, Hydrodynamics (Cambridge University Press, 
Cambridge, 1932), p. 589, P. Debye, Polar Molecules (Dover 
Publications, Inc., New York, 1954). 

4(33D2[16s2(w0
2+fJ2) -w2(5fJ2+w2) J = __ ........;._-=._...c...._...;.._;........;._;...,;__........;.-=---

wo2(fJ2+w2) ( 4s2-w2) [16Wo4+w2(w2-8wo2+4fJ2) J ' 
(A13) 

where 
(A14) 

For oo=O, the spectral densities reduce to the simpler 

18 Reference 21, pp. 473 ff. 
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expressions 
j<il(O) ={32D/w0

4 (AlS) 

j<'2> (0) = ((3D2/wo6) (wo2+/32) 

= (D/(3)[(wo2+(32)/wa2]j<8>(0) (A16) 

while for large damping ((3»wo) and long times (r»/r1) 
in g( r), corresponding to low frequencies ( w«wo) in its 
Fourier transformj(w), 

j<8>(w) = ((3D/w0
2)r1(l+w2r12)-1, (A17) 

j<'2>(w) = (2/32D2/w0
4)r2(1+w2r22)-1, (A18) 

where 
(A19) 

For a radical containing several rotating groups, the 
cases considered in the text are those for which the 
angular displacements of the ith and jth rotors, 0; and 
61, are: (1) uncorrelated; (2) locked together at a fixed 
angle, 

(A20) 

and (3) oscillating about an equilibrium angle of 
separation. For N identical locked rotors [Case (2) ], 
the above equations hold with the diffusion constant D 
replaced by 

(A21) 

The Langevin equations for two identical rotors 
oscillating with respect to each other, and with each 
rotor oscillating about its own equilibrium position O;,, 
are, in terms of the displacements y;=0;-6;0 , 

d2y, dy, 
dt

2 
+f3dt+wo2y;±w122(y1-y2-a,) = A;(t), (A22) 

where the upper sign holds for i= 1 and the lower sign 
for i= 2, w122 is the angular frequency of the mutual 
attraction, and a. is the equilibrium separation. By 
transforming to the variables u1 and u2, 

where 

one obtains 

where 

and 

U1 = ½(y1+Y2), 

B1(t) = ½[A1(t) + A2(t) ], 

B2(t) =½[A1(t) -A2(t) ], 

(A23a) 

(A23b) 

(A24) 

(A25) 

We assume that the random forces which determine 

A 1(t) and A2(t) are uncorrelated so that350 

(A;(t)A;(t+r) )=2{32Dfi(r)fi;;, 

from which one obtains 

(A26) 

(A27) 

The probability distributions in u1 and u2 are thus 
identical to those above for a single oscillating rotor 
[Eqs. (AS) to (A19) J with Eqs. (A25) for the angular 
frequencies and with DT= ½D for the diffusion constant. 
If the coupled rotors are allowed to rotate freely as a 
group, the solutions are obtained by setting wo=O, and 
the probability distributions in u1 are given by the 
expressions in Eqs. (A2) and (A3) with D replaced 
by DT, For this case, the displacement variables y; 
become identical to O;, and r= 1. 

APPENDIX B. THREE-JUMP MODEL 

We assume that the system can exist in three states, 
A, B, and C, and that States A and C are thermo­
dynamically equivalent. The three states are inter­
related by the rate equations of Sec. VI, Eqs. ( 6.1). 
The probabilities of occurrence of the states are 

W(A) = W(C) =k1'/(k1+2ki'), 

W(B) =[1-2W(A)]=k1/(k1+2ki'). (Bl) 

The conditional probabilities P ( A I µ,, r) of finding the 
system in stateµ, at the time r~O when it was in state 
A at time r=O are readily found to be 

P(A I A, r) = W(A) +½ exp(-r/n) 

+½W(B) exp( -r/r2) 

P(A I B, r) = W(B) [1- exp(-r/r2)] 

P(A I C, r) = W(A)-½ exp(-r/r1) 

+½W(B) exp( -r/r2), (B2) 

where r1 and r2 are given by Eqs. ( 6.5). Similar expres­
sions with A and C interchanged hold when the system 
is initially in State C. When the system is initially in 
State B 

P(B I A, r) =P(B IC, r) =W(A)[l- exp(-r/n)] 

P(B I B, r) = W(B) +2W(A) exp( -r/r2). (B3) 

The average hyperfine splitting is 

ii;= W(A) [a;(A) +a;( C) ]+ W(B) a;(B), (B4) 

and the correlation functions are readily found to be 
given by 

g;pl(r) = ('Y.2/2) {W(A) exp(-r/r1) 

X[a,(A) -a.( C) J[a;(A) -a;( C)] 

+ W(A) W(B) exp( -r/r2) [a,(A) +a;( C) -2a,(B)] 

X[a;(A)+a;(C)-2a;(B)]}. (BS) 


