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The theory of the linewidths in the electron spin resonance spectra of free radicals recently developed by 
Freed and Fraenkel predicts that, in general, composite lines arising from a set of degenerate nuclear spin 
states should not be Lorentzian in shape, and that the shapes of different lines in the same spectrum should 
be different. The earlier theory of Kivelson predicted that all the lines should be Lorentzian. To test the 
differences between the two theories, experimental studies of the line shape in the spectrum of the tetra­
cyanoethylene anion have been made in a solvent consisting of a mixture of absolute ethanol and glycerine. 
Different lines were found to have different shapes, and the shapes were well represented by a sum of 
Lorentzian-shaped components, in agreement with the newer theory. Studies of dimethylsulfoxide solutions 
of the p-benzosemiquinone ion were also made. The spectra obtained in this system show only small line­
width variations and, in agreement with the theory, the variations in line shape are negligible. It was also 
possible to demonstrate that the nitrogen hyperfine splitting aN in the tetracyanoethylene radical is positive. 

I. INTRODUCTION 

AGENERAL theory of the linewidths in electron 
spin resonance (ESR) spectra of dilute solutions 

of free radicals has been formulated recently by Freed 
and Fraenkel1 using the relaxation-matrix theory de­
veloped by several authors.2- 4 This new theory differs 
in a number of important respects from the earlier 
work of Kivelson,6 and in particular predicts that a 
composite hyperfine line arising from a set of degenerate 
nuclear spin states should in general consist of a sum 
of superimposed Lorentzian-shaped components of 
different widths.6 Kivelson's theory, in contrast, pre­
dicts that each line in the spectrum should have a 
Lorentzian shape and that the width of a composite 
line should be given by an appropriate average over 
the widths of the individual components. A single 
Lorentzian line with an averaged width is also a result 
of the newer theory, but only when the width variations 
among the different components are small compared to 
the average width. The object of the present investi­
gation is to obtain an experimental test of these diver­
gent theoretical predictions. 

Unfortunately the experimental determination of line 
shape for lines of Lorentzian or approximately Lorentz­
ian shape is extremely difficult. This can be seen by a 
simple calculation. We compute, point by point, the 
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m the wmgs. See R. Kubo and K. Tomita, J. Phys. Soc. Japan 
9, 888 (1954) and Ref. 4. 

sum of the first derivatives of two Lorentzian curves 
of equal intensity but with widths differing by a factor 
of 2. (The first derivative is used because it is the most 
common form of displaying experimental resonance 
curves.) A simple Lorentzian-shaped curve can then 
be chosen so that its derivative has maxima and minima 
of the same amplitude and at the same positions as the 
computed curve. A computation of this sort shows that 
the two-component curve and the single Lorentzian 
are practically indistinguishable except in the region 
of the wings farther out than from three to four times 
the separation of the derivative extrema. In an experi­
mental spectrum, however, the wings are usually 
obscured by noise and may be distorted in shape either 
by overlap with other lines or from the presence of 13C 
satellites. The wings can thus not be carefully studied, 
and so for most spectra each line can be fitted by 
Lorentzian-shaped curves in the experimentally access­
ible central region even if the lines depart significantly 
from a true Lorentzian shape. Such a fit by a Lorentzian 
curve would, of course, be incorrect if the true lines 
were not Lorentzian in shape, and would lead to errone­
ous values for the parameters which describe the line 
broadening. These parameters are of intrinsic interest 
because they are related to structural features of the 
radical and its environment. Some properties of the 
shape of a line can be obtained, however, by combined 
measurements of its amplitude and width, and a pro­
cedure based on these two quantities is described in 
Sec. II. 

The two linewidth theories differ in another respect. 
The relaxation-matrix theory is able to account for the 
recently observed alternating linewidth phenomenon/ •8 

7 J. H. Freed and G. K. Fraenkel, J. Chem. Phys. 37, 1156 
(1962); J. H. Freed, I. Bernal, and G. K. Fraenkel, Bull. Am. 
Phys. Soc. 7, 42 (1962); and J. H. Freed, P.H. Rieger, and G. K. 
Fraenkel, J. Chem. Phys. 37, 1881 (1962). 

8 J. R. Bolton and A. Carrington, Mo!. Phys. 5, 161 (1962). 
A. Carrington, ibid. 5, 425 (1962); J. R. Bolton, A. Carrington, 
and P. F. Todd, ibid. 6, 169 (1963). 
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but the Kivelson theory is not. Under some circum­
stances,1 the alternating linewidth effect can also be 
explained by using the modified Bloch equations.8 The 
phenomenon arises from modulation of the isotropic 
hyperfine interactions, and the superposition of lines is 
essential to its theoretical interpretation. Our present 
interest, however, is concerned with a more subtle 
aspect of the relaxation-matrix theory: the line-shape 
effects to be studied arise from the nuclear spin transi­
tions caused by the modulation through molecular 
tumbling of the intramolecular anisotropic dipolar 
interaction. These so-called pseudosecular contribu­
tions1 •5 are treated differently in the relaxation-matrix 
and Kivelson theories. In the recent work of Carrington 
and Longuet-Higgins,9 the pseudosecular terms were 
neglected, and thus their results are different from both 
the relaxation-matrix and Kivelson theories. It is clear, 
however, that the pseudosecular terms are comparable 
in magnitude to the other parts of the dipolar interac­
tion, and that it is therefore incorrect to neglect them. 

We have searched exhaustively for a suitable radical 
on which to perform line-shape studies. The radical 
should be stable and should contain a small number of 
well-resolved lines. There should also be a minimum 
of interferences from impurities and from satellites 
like those from the 13C nuclei present in natural abund­
ance. It is of course necessary that there be degenerate 
nuclear-spin states and that the spectra exhibit signifi­
cant linewidth variations. If possible the end lines of 
the spectrum should be amenable to study because 
these lines are predicted to be pure Lorentzians by the 
relaxation-matrix theory, and the comparison of their 
shapes with those of the central lines should show the 
largest effects. Since nuclei with quadrupole moments 
can cause the theoretical analysis to be quite compli­
cated, it is preferable, although not essential, to study 
radicals in which none of the nuclei have spins greater 
than one-half. We were unable to find a radical that 
meets all these specifications, and were forced to com­
promise on the tetracyanoethylene (TCNE-) anion. 10 •11 

The main source of difficulty with TCNE- is the inter­
ferences from 13C splittings. These prevent the study 
of the outside pair of lines on each side of the spectrum. 
Preliminary investigations showed that the linewidth 
variations are small in solvents of low viscosity, and 
the solvent chosen was therefore a highly viscous mix­
ture consisting of absolute ethanol and glycerine. It 
was also desired to check the experimental method by 
studying a system in which there were no significant 
variations in line shape. It was found that a dimethyl­
sulfoxide solution of the p-benzosemiquinone ion showed 
small linewidth effects, and it was therefore chosen as 
a comparison system. 

9 A. Carrington and H. C. Longuet-Higgins, Mo!. Phys. 5, 
447 (1962). 

10 P.H. Rieger, I. Bernal, W. H. Reinmuth, and G. K. Fraenkel, 
J. Am. Chem. Soc. 85, 683 (1963). . 

11 W. D. Phillips, J. C. Rowell, and S. I. Weissman, J. Chem. 
Phys. 33, 626 (1960). 

Il. EXPERIMENTAL METHODS 

As indicated in the introduction, it is extremely diffi­
cult to detect departures from Lorentzian shape by 
comparing a computed Lorentzian curve with an ex­
perimental curve. We have therefore studied line shapes 
by using what will be called the line-shape factor S;. 
It is defined for the ith line by 

(2.1) 

and is directly measurable in terms of the peak-to-peak 
amplitude of the derivative of the line A; and the 
separation between the derivative extrema o; (the 
derivative width). In this expression, D; is the degen­
eracy of the ith line. To determine the properties of 
the shape factor, let us denote the absorption curve ?f 
the ith line by f;(B), where Bis the external magnetic 
field used in the ESR experiment to split the Zeeman 
levels. For the usual bell-shaped curve with a single 
maximum (at B0;), there is always a single parameter, 
say A;, which describes the breadth of the curve, and 
all curves of the same shape can be defined in terms 
of the shape function g;(x;), where x; is the reduced 
variable x;= (B-Bo;)/A;. The function g;(x;) will be 
taken as normalized to unity, 

j~g;(x;)dx;=l. (2.2) 

It follows that f;(X;) = (I;/ A;) g;(x;), where I; is the 
intensity of the line, since 

and 

!
00

f;(B)dB= A;1
00 

f;(x;)dx;= A, 
1'.1"' g;(x;)dx;=l;. 

0 -co A, -co 

We assume, as is customary, that B0;»A;. The ampli­
tude A; is given by (where primes denote derivatives) 

A;= f/ (B)max-f/ (B)min= A;-1[// (x;)max-J/(x;)min] 

= (I;/ A/) [g/ (x;)max-g/ (x;)min], (2.3) 

and therefore the shape factor is 

S;= (A;/D;)lo; 

= -y;( (J;/D;) [g/ (x;)max-g/ (x;)min]l ½, (2.4) 

where -y;= o;/ A; is the ratio of the derivative width 
(separation between derivative extrema) to the param­
eter A;. Now the reduced intensity I;/D; is a constant 
independent of the shape function for all the lines in a 
spectrum; and the other quantities on the ri?ht-hand 
side of Eq. (2.4) depend only on the shape, 1.e., they 
are the same for lines of the same shape. Thus the 
ratio S;/ S; of shape factors for two lines in the same 
spectrum is determined only by the shape function; 
and if all the lines in a spectrum have the same shape, 
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the ratios of shape factors are all unity. The analysis 
of the experimental data is carried out in terms of the 
relative shape factors 

(2.5) 

where Sr;= S;j So, Ar,= A;/ Ao, or,= o;/00, and the sub­
script zero refers to the central line of the spectrum. 
For a Lorentzian-shaped line, S;=O.743(/;/D;)½. It 
will be noted that the value of S; is independent of 
the particular choice of the parameter A;. 

The linewidths were measured in two different ways. 
The first, and instrumentally the simplest, was to 
measure the separations between the maximum and 
minimum of the first derivative of the spectrum on a 
field-calibrated strip-chart recording. Since the deriva­
tive curve is a slowly varying function of the field in 
the neighborhood of the extrema, the maximum and 
minimum cannot be located with a high degree of 
accuracy. In practice it was more difficult to locate 
the positions of the extrema of the broad components 
than of the narrow components, and the wide lines 
were also subject to greater systematic error. The 
second method involved the use of the second derivative 
of the spectrum. The width is given by the separation 
of the zeroes of the second derivative, and since the 
curve is a rapidly varying function of the magnetic 
field at the zeroes, it should be possible to determine 
their location with greater precision and accuracy than 
is possible for the extrema of the first-derivative curve. 

The accurate measurement of linewidths using either 
method presents no difficulty if the signal-to-noise 
ratio is sufficiently large, but for the present application 
the signal strengths were low, and noise became a 
serious limitation. Weak signals could not be avoided 
because of three factors which had to be properly 
minimized: concentration broadening, modulation dis­
tortion, and saturation broadening. 

Low concentrations are required to prevent radical­
radical line-broadening effects from masking out the 
intramolecular contributions. For the TCNE- studies, 
the initial concentrations of potassium tetracyano­
ethylenide were 5X10-4M (see below). The radical 
decayed slowly but the linewidths did not change with 
time, indicating that radical-radical interactions did 
not contribute significantly to the linewidths at this 
low concentration. 

The accurate measurement of both the amplitudes 
and widths requires that the modulation index hm of 
the field modulation be small.12 •13 The modulation index 
is given by hm= (2Hm/ !!,,.B), where 2Hm is the peak-to­
peak amplitude of the field modulation and AB is the 
half-width of the line at half-maximum intensity. 
Values of hm<:0.1 have to be used for both first- and 

12 G. K. Fraenkel in Technique of Organic Chemistry edited by 
A. Weissberger (Interscience Publishers, Inc., New York 1960) 
3rd ed. Physical Methods of Organic Chemistry, Vol. 1 P~rt IV, 
Chap. XLII. 

13 H. Wahlquist, J. Chem. Phys. 35, 1708 (1961). 

second-derivative spectra to avoid distortion. In the 
present work, we have used hm=0.1 and have experi­
mentally verified that increasing hm by a factor of 2 
doubles the amplitude of the first-derivative signal but 
does not cause a detectable change in the linewidths. 
The use of such a low modulation index reduces the 
signal strength in both the first- and second-derivative 
spectra, but the latter is more affected than the former. 
For Lorentzian-shaped lines it is readily shown that 
the peak-to-peak deflections in the second-derivative 
spectra are less than those in the first-derivative spectra 
by the factor hm/2.1, and thus for hm=0.1, the second­
derivative signal is only about 5% of the first-deriva­
tive signal. These results hold for small values of hm 
and with the same value of hm for both the first- and 
second-derivative spectra. The signal-to-noise level in 
a distortion-free second-derivative spectrum is thus 
quite poor, and consequently there is no significant 
improvement in the precision of width measurements 
on using second-derivative rather than first-derivative­
recording when the signal strength is low. 

Microwave power saturation can be particularly 
troublesome in a careful linewidth study. Even if the 
lines in a spectrum are all of the same shape lines of 
different widths saturate at different rates. 14~ 17 If the 
lines are superpositions of Lorentzian-shaped compo­
nents of different widths it is not at all clear how 
saturation affects the amplitudes and widths.1 The 
power level incident on the cavity was about 0.16 mW, 
and it was checked that no significant changes in 
widths occurred when the power was lowered by 5 dB. 
An increase in power by 15 dB, however, caused ap­
preciable effects. At power levels below 0.16 mW, the 
signal-to-noise ratio was too low to obtain sufficiently 
high precision in the width measurements. The cavity 
Q was not measured, but was probably in the range 
from 1000 to 1500 (loaded Q, QLE) .12 

The first-derivative spectra were recorded in the 
usual way15 •18 employing a modulation frequency of 
1000 cps. The second-derivative spectra were obtained 
with the same 10OO-cps narrow-band amplifier and 
reference signal for the phase sensitive detector, but a 
5OO-cps voltage was used to power the field-modulation 
coils. This 5OO-cps signal was generated by passing the 
10OO-cps signal through a factor-of-2 frequency divider. 
Considerable care must be taken to eliminate 10OO-cps 
components in the 5OO-cps modulation voltage or the 
second-derivative signal will be distorted by some first­
derivative signal. The error from this source is readily 
estimated. The second derivativef"(B) of a symmetric 

14 J. W. H. Schreurs, G. E. Blomgren, and G. K. Fraenkel, J. 
Chem. Phys. 32, 1861 (1960). 

16 J. W. H. Schreurs and G. K. Fraenkel J. Chem. Phys. 34 
756 (1961). ' ' 

16 M. J. Stephen and G. K. Fraenkel, J. Chem. Phys. 32, 1435 
(1960). 

17 M. J. Stephen, J. Chem. Phys. 34, 484 (1961). 
18 J. M. Hirshon and G. K. Fraenkel, Rev. Sci. Instr 26, 34 

(1955). • 
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TABLE I. Hyperfine splittings in TCNE-. 

Hyperfine splittings ( G) 

Solvent a'4N aUiN acN1ac• 

Tetrahydrofuran• 1.56 9.4 

N, N-Dimethy!formamided 1.574 2.203 9.541 

6.0 

6.062 

5.890 

5.89 

Absolute ethanol• 1.607 2.25 9.466 2.92h 

Water• 1.586 2.22 9.34 

• Carbon-13 splitting from nitrile carbon atom. 
b Carbon-13 splitting from ethylenic carbon atom tentatively identified by Rieger et al. 10 

° From Phillips et a/,11 
d From Rieger et at. 10,21 

• This work. 

absorption linef(B) has two maxima of equal amplitude 
and one minimum. One maximum is on the low-field 
side of the low-field zero, and the other is on the high­
field side of the high-field zero. The presence of a first­
derivative signal causes the amplitude of one of these 
maxima to increase and the other to decrease. Let us 
designate these amplitudes by a1 and a2, and let a be 
the ratio of the field-modulation amplitude at frequency 
2v to the modulation amplitude at frequency v. We 
define the degree of distortion d by the ratio of the 
difference in amplitudes divided by the mean amplitude, 
d=2(a1-a2)/(a1+a2). If the modulation index at fre­
quency v [hm] and a are both small, the distortion of 
a Lorentzian line can be shown to be 

(2.6) 

Thus with hm=O.l, a field-modulation amplitude at 
the second harmonic (2v) of as little as 0.25% of the 
modulation amplitude of the fundamental (v) causes a 
10% distortion. Although to first order small distortions 
do not change the separation of the zeroes of the second 
derivative, it nevertheless becomes very difficult to 
locate the zero near the low-amplitude peak if the 
signal-to-noise ratio is poor, and thus even small distor­
tions can reduce the precision of the width measure­
ments. We therefore employed a multisection filter to 
reduce the amplitude of the second harmonic to 0.1 % 
of the amplitude of the fundamental. 

The X-band superheterodyne spectrometer employed 
has been described elsewhere.15 •18 A Varian Model 
V4012-3B magnet with 12-in.-diam. pole caps and a 
3-in. air gap was used. It was equipped with a Varian 
Model V-3506 magnet flux stabilizer. Without the 
stabilizer, the field fluctuations were too large to permit 
accurate line-shape studies. Field scans from a fraction 
of a gauss to hundreds of gauss, and over a wide 
range of rates, were made possible by constructing a 
unit to provide a constant but adjustable voltage to 
the flux stabilizer at the same time that a saw-tooth 
voltage of appropriate magnitude was injected into 
the magnet power supply. The field scans obtained 
were extremely linear. The magnetic field was calibrated 

by placing marks on the strip-chart recording using a 
controlled-frequency proton-resonance oscillator. The 
frequency of this oscillator was determined with an 
electronic counter. The spectrometer was checked for 
amplitude linearity over the range of signal strengths 
employed. 

The TCNE- samples decayed slowly in intensity and 
although the rate of decay was not great enough to 
cause difficulty for the usual ESR investigation, pre­
cautions had to be taken in the present study to proceed 
through the sequence of measurements as rapidly as 
possible. The speed of recording was adjusted to be 
slow enough so that no distortion was introduced by 
the response time of the instrument, and thus a com­
promise was made between slow response time (and 
therefore high sensitivity) and rapid recording. Spectra 
were recorded in both directions of the magnetic-field 
scan and the results averaged. The decay was small 
enough so that its effects on the amplitudes were can­
celled out by this procedure. It was not necessary to 
correct the width measurements for radical decay. 
Systematic errors in the width measurements obtained 
from the first-derivative spectra were minimized by 
randomizing the order in which the individual lines 
were studied. 

The potassium tetracyanoethylenide (K-TCNE) was 
obtained from R. E. Benson of E. I. Dupont de Nemours 
and Company. The solid radical is stable in the absence 
of oxygen.19 It was dissolved in a mixture 1: 1 by 
volume of absolute ethanol and glycerine, and all 
samples were approximately SX 10-4M in K-TCNE. 
The viscosity of the solvent is 44 cP at room temper­
ature.20 In our work on solutions, traces of oxygen were 
found to cause both decomposition and broadening of 
the ESR lines. The sample was prepared as follows: 
The solution was placed in a reservoir that was con­
nected to a 3-mm-o.d. Pyrex sample tube in the micro­
wave cavity. Nitrogen saturated with solvent was 

19 0. W. Webster, M. Mahler, and R. E. Benson, J. Org. Chem. 
25, 1470 (1960). 

• 0 J. Timmermans, The Physico-ChemicaJ Constants of Binary 
Systems in Concentrated Solutions (Interscience Publishers, Inc., 
New York, 1959), Vol. 2, p. 1114. 
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bubbled through the solution in the reservoir to remove 
oxygen, and then a portion of the solution was passed 
into the sample tube. Under these conditions the half­
life of the radical was about 8 h. Degassing on a 
vacuum line was not practical here because of the high 
viscosity of the solvent. 

The p-benzosemiquinone was generated by electro­
lytic reduction of a 0.001M solution of the quinone in 
dimethylsulfoxide at room temperature. The support­
ing electrolyte was tetra-n-propylammonium perchlo­
rate. The techniques employed for electrolytic gener­
ation have been described elsewhere.10 

III. RESULTS 

Tetracyanoethylene 

The spectrum of TCNE- was first reported by 
Phillips et al.U in tetrahydrofuran and was later studied 
by Rieger et al. 10 •21 in N, N-dimethylformamide. We 
have also obtained the spectrum in absolute ethanol 
and in water. The hyperfine splittings are listed in 
Table I. The four nitrogen-14 nuclei give a splitting 
into a nine-line spectrum with statistical weights 
1 :4: 10: 16: 19: 16: 10:4: 1. We will identify the lines 
by the spectral index numbers MN. The number MN 
is identical to the quantum number MN for the sum of 
the z components of the nuclear spin angular momenta 

FIG. 1. First derivative of the ESR spectrum of the tetra­
cyanoethylene radical in ethanol-glycerine. The magnetic field 
increases to the right. 

21 P. H. Rie~er, I. Bernal, and G. K. Fraenkel, J. Am. Chem. 
Soc. 83, 3918 (1961). 

FIG. 2. First derivative of the ESR spectrum of the tetra­
cyanoethylene radical in absolute ethanol. The magnetic field 
increases to the right. 

of the four nitrogen-14 nuclei if the splitting constant 
aN is negative, while MN= -MN if aN is positive.22 The 
possible values of MN for TCNE- are ±4, ±3, ±2, ±1. 
and 0. The spectrum in the ethanol-glycerine mixture 
is shown in Fig. 1, and in absolute ethanol in Fig. 2. 
The MN=±4 lines are too weak to be observed in 
Fig. 1, but they were detected on recordings made at 
higher sensitivity. The spectrum in Fig. 2 was obtained 
at high sensitivity in order to show some of the 13C 
splittings from the nitrile carbon atoms, and the cen­
tral lines are off scale. These 13C splittings arise from the 
natural abundance of the carbon-13 isotope, and pro­
duce lines both in the central region and at the ends 
of the spectrum (see Table IX in the Appendix). They 
can also be seen on the MN=±3 lines in Fig. 1. The 
MN= ±3 and ±4 lines had to be excluded from the 
linewidth study because of the distortion caused by 
the 13C satellites. The effect of these satellites on the 
remaining lines, and also the linewidth contributions 
from second-order shifts,23 were calculated to be much 
smaller than the experimental errors. These calculations 
are summarized in the Appendix. The linewidth24 of 
the central line in Fig. 1 is about 0.040 G, and in Fig. 2 
it is about 0.020 G. It will be noted from Table I that 
there are small but significant solvent effects on the 

22 The sign of aN is not determined by the positions of the lines 
in the spectrum, but it can be evaluated from the Jinewidth 
variations (see Ref. 28). 

23 R. W. Fessenden, J. Chem. Phys. 37, 747 (1962). 
24 Linewidths are given as the separation of extrema in the first 

derivative of the spectrum. 
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TABLE II. Line-shape data for TCNE-. 

Method of linewidth 
measurement MN• 

Relative amplitude Relative width Line-shape factor 
A,, Or, S,ib 

First derivative -2 0.1905±0.0013° 1. 895±0. 020° 1.140±0. 012d 
-1 0.6480±0.0065 1.210±0.008 1 . 062±0. 0088 

0 1.000 1.000±0.011 1.000±0.0105 
1 0.5125±0.0042 1.376±0.013 1.073±0.0104 
2 0.1397±0.0025 2.213±0.024 1.140±0.016 

Second derivative 

a Spectral index numbers, see text, 
b From Eq, (2.5). 

-2 
-1 

0 
1 
2 

0.1980• 
0.6557 
1.000 
0.5088 
0.1392 

1. 7795• 1.092 
1.1850 1.046 
1.0000 1.000 
1.3386 1.041 
2.1023 1.082 

c Errors are standard deviations based on four different sets of measurements. The error given for the width measurement of the central line reflects the error 
in the actual width for the four measurements. 

d Errors computed from errors in Ar\ and Ori• 

• Errors estimated to be less than 1% for MN=±l lines and less than 2% for MN=±2 lines. 

splittings,26 and that the ratio of the 13C splitting from 
the nitrile carbon atoms to the 14N splitting also changes 
with the solvent. 

The results of the line-shape study are given in 
Table II. The amplitudes Ar, and widths Or, are relative 
values with respect to the central line. The shape factors 
are defined in Eqs. (2.1) and (2.5). The linewidth 
results obtained from the first- and second-derivative 
spectra are listed separately. Four independent meas­
urements. were made for the amplitudes and widths 
using the first-derivative spectra, but ~nly two using 
the second-derivative spectra. The amplitude measure­
ments were essentially independent of the small amount 
of radical decay, and the first-derivative width measure­
ments were taken in a randomized order (see Sec. II). 
The width of the central line in the spectra used for 
the first-derivative measurements was 0.028±0.001 G, 
while in the spectra used for the second-derivative 
measurements it was 0.034±0.001 G. These differences 
in width resulted from uncontrolled factors in the 
sample preparation, and similar variations for other 
samples of TCNE- have been found in studies we 
have made that are not reported on here. The major 
error in the absolute measurement of the widths resulted 
from errors in calibration of the magnetic field. 

The data indicate that there are significant, though 
small, variations in the line-shape factor from line to 
line. There are also small differences in the line-shape 
factors calculated from the first- and second-derivative 
measurements of the width which arise from differences 
in the linewidths for the two sets of measurements 
(0.028 and 0.034 G, respectively, for the central line). 
The variations in the line-shape factor for the second­
derivative results are somewhat less than those for the 
first-derivative data because the relative changes within 
a spectrum caused by linewidth variations of a particular 

2o J. Gendell, J. H. Freed, and G. K. Fraenkel, J. Chem. Phys. 
37, 2832 (1962). 

magnitude are smaller the larger the over-all width 
contribution common to all lines. 

p-Benzosemiquinone 

The spectrum of the p-benzosemiquinone anion was 
studied in dimethylsulfoxide solution because prelimi­
nary investigation indicated that the linewidth varia­
tions were small, and therefore to a first approximation 
the line-shape factors Si should be constant. These 
measurements thus serve as a partial check on the 
experimental procedure. 

The results using the second-derivative method of 
measuring the widths are given in Table III. Within 
experimental error, the measured values of the widths 
and amplitudes of the MN= -1 and - 2 lines were the 
same, respectively, as the values for the MN= 1 and 2 
lines, and the results are grouped together in the table. 
The line-shape factors are essentially constant within 
the experimental errors. This data therefore supports 
the procedure used for studying the line-shape varia­
tions of TCNE- and confirms that the variations 
observed for TCNE- are significant. 

IV. DISCUSSION 

The small but significant variations in the line-shape 
factor Si found for the TCNE- radical indicate the 

TABLE III. Line-shape data for the P-benzosemiquinone ion. 

Relative Relative Line-shape 
amplitude widthb factor• 

MH• A,. Ori S,; 

±2 0.1231d 1.181 d 1.015 
±1 0.5905 1.068 1.005 

0 1.0000 1.000 1.000 

a M H is the sum of the z components of the nuclear spin angular momenta 
of the four equivalent protons. 

b Linewidths were obtained from second-derivative spectra. 
° From Eq. (2.5). 
d See Note e, Table II. 
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inadequacy of the Kivelson theory of linewidths.5 It is 
expected that much larger effects would have been 
observed if it had been possible to study the MN= ±4 
lines. 

The analysis of the width and shape variations in 
terms of the new linewidth theory1 requires the specifi­
cation of the relaxation matrix, and this in turn depends 
on the nature of the important relaxation and line­
broadening mechanisms. It is assumed that the most 
important contributions are those from the effects of 
the intramolecular anisotropic dipolar interaction and 
of the g tensor. Modulations of the isotropic hyperfine 
interaction and terms from the quadrupole interaction 
are thus neglected. There is no evidence to indicate an 
appreciable modulation of the isotropic interaction in 
TCNE- or in other nitrile anion radicals; and although 
the magnitude of the quadrupole interaction is difficult 
to estimate, it is probably considerably smaller than 
the anisotropic dipolar contribution.26 

The most important contributions to the relaxation 
matrix are the secular and pseudosecular terms1; the 
latter arise from nuclear-spin transitions alone. The 
nonsecular contributions, which are ones involving 
electron-spin transitions, can be neglected. They are 
smaller than the other contributions by the factor 
(1 +w2rR2)-1, where w/21r is (approximately) the fre­
quency of the ESR experiment and TR is the correlation 
time for molecular tumbling. For typical radicals in 
low viscosity solvents, the nonsecular terms are only a 
few percent of the others, and because of the high 
viscosity of the ethanol-glycerine solvent ( 44 cP) used 
here, they undoubtedly make a negligible contribution. 
Both the secular and pseudosecular terms contribute 
to the diagonal elements of the relaxation matrix, but 
the latter also give off-diagonal elements. The off­
diagonal elements arise because the dipolar interactions 
for the four nitrogen nuclei are not all identical, and 
in the terminology of Ref. 1 the nitrogen nuclei are 
equivalent but not completely equivalent. There are 
two completely equivalent sets, each made up of the 
two nuclei that are transformed into each other by a 
twofold rotation about the symmetry axis perpendicular 
to the molecular plane. 

The dipolar interaction can be calculated from the 
geometry of the molecule and the spin-density distri-

26 H. Negita and P. J. Bray Q. Chem. Phys. 33, 1876 (1960) J 
have determined the nitrogen-14 quadrupole-coupling constant 
for benzonitrile to be 3.89 Mc/sec, and this value is probably 
valid for an order-of-magnitude estimate of the quadrupole­
coupling constant in TCNE- since both molecules are planar, 
conjugated nitriles. The inclusion of a small unpaired electron 
density in the nitrogen 2p orbital (estimated27 to be about 0.0745) 
would be expected to alter the asymmetry parameter by a small 
amount. Negita and Bray found it to be 10.7% for benzonitrile. 
The relative contributions of quadrupolar and dipolar terms is 
roughly proportional to the square of the ratio of the respective 
interaction energies, and using the quadrupole coupling constant 
for benzonitrile and the calculated spin density,27 this is about 
0.16. 

TABLE IV. Linewidth contributions for TCNE-, 
coefficients of dipolar interaction. 

±4 

±3 

±2 

±1 

0 

1 

4 

10 

16 

19 

JN 

4 

4 
3 

4 
3 
2 

4 
3 
2 
1 

4 
3 
2 
1 
0 

JN(JN+1) 
DJb +(5/3)M~ 

140/3 

1 35 
3 27 

1 80/3 
3 56/3 
6 38/3 

1 65/3 
3 41/3 
6 23/3 
6 11/3 

1 20 
3 12 
6 6 
6 2 
3 0 

a DM is the degeneracy with respect to MN• 
b DJ is the degeneracy with respect to J N• 

VNUN+1) + (5/3)M ~)Mc 

46.667 

29.000 

15.867 

8.167 

5.474 

c (J N(J N+l) )M=DM-iI,DJJ N(J N+l), where DM="l:-DJ and the summa­
tions are over all values of J N for the particular value of MN• 

bution. The spin densities are estimated to be27 : nitrogen 
atom, 0.0765; nitrile carbon atom, 0.0211; and ethylene 
carbon atom, 0.3056. Even though the spin density on 
the carbon atoms is appreciable, the main contribution 
to the dipolar interaction results from the spin density 
on the nitrogen nuclei.28 •29 Because of this, there is 
only a small departure from complete equivalence 
between the two sets of completely equivalent nitrogen 
nuclei, and in the coupled representation for the zero­
order Hamiltonian of the spin system,1 the off-diagonal 
elements of the relaxation matrix are small. In the 
coupled representation, the elements of the relaxation 
matrix are determined by the two quantum numbers 
MN and JN, These quantum numbers refer to the sum 
of the angular momenta of the four nitrogen nuclei 
and specify the z component of the sum ( eigenvalue 
MN) and the square of the total angular momenta of 
the sum [eigenvalue lN(JN+l)J. We neglect the off­
diagonal elements in order to avoid diagonalizing the 
relaxation matrix. Even writing down the matrix is a 
quite formidable task here since there is a matrix for 
each composite line and its order for a line of degeneracy 
DM is DM2[(19) 2 for the central line]. In effect we are 
assuming that the four nitrogen nuclei are completely 
equivalent, so that in the coupled representation the 
relaxation matrix is diagonal and the linewidths are 
determined by the diagonal elements of the matrix. 
For the reasons given above, the errors involved in 

27 P. H. Rieger and G. K. Fraenkel, J. Chem. Phys. 37, 2795 
(1962). 

2s J. H. Freed and G. K. Fraenkel, J. Chem. Phys. 40, 1815 
(1964). 

29 E. DeBoer and E. L. Mackor, J. Chem. Phys. 38, 1450 
(1963). 
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TABLE V. Computed Iinewidth and line-shape variations for TCNE-. 

First-derivative width measurements Second-derivative 
width measurements 

Calculated• 

MN 
Calculated• 

Exptl. Ia lb II Exptl. II 

Relative width a,; -2 1.895 1.899 2.977 1.942 1.780 1.813 
-1 1. 210 1.194 1.482 1.215 1.185 1.180 

0 1.000 1.000 1.000 1.000 1.000 1.000 
1 1.376 1.355 1.810 1.385 1.339 1.340 
2 2.213 2.220 3.580 2.265 2.102 2.119 

Relative line-shape 
factor,b S,; 

-2 1.140 1.000 1.247 1.100 1.092 1.082 
-1 1.062 1.000 1.114 1.037 1.046 1.029 

0 1.000 1.000 1.000 1.000 1.000 1.000 
1 1.073 1.000 1.151 1.055 1.041 1.043 
2 1.140 1.000 1.264 1.110 1.082 1.091 

• Column Ia is obtained by fitting the averaged linewidtb expression [Eq. (4.5)) to the width data. Columns lb and II are based on a superposition of Lorentzian­
shaped components using Eq. (4.2) and setting the computed width of the central line equal to unity. In Column lb, the parameters found in Column Ia were em­
ployed. In Columns II, the parameters were fitted (by trial and error) to the width data. 

b From Eq. (2.5). 

this assumption are probably small, and they do not 
affect the general nature of our results. 

The possible values of MN and JN are given in Table 
IV. The position of a line in the spectrum is determined 
by MN, and except for the end lines of the spectrum 
(MN=±4), each line is degenerate with respect to MN 
(degeneracy DM) and also with respect to JN (degen­
eracy DJ). For a particular line, the DJ transitions 
that all have the same value of J N are called a compo­
nent, and with the approximations we have made, the 
( diagonal) elements of the relaxation matrix determine 
the widths of these components. The component J N 

contributes a DJ-fold degenerate absorption line of 
Lorentzian shape and of width [T2(MN, JN)]-1 to the 
total absorption of the DM-fold degenerate line with 
quantum number MN. This width is given by1 

[T2(MN, J N) J-1= j<Dl[J N( J N+ 1) +¾MN2] 

+¥ j<DG2>BoMN+x. ( 4.1) 

The spectral densities j<D> and j<DG2> represent, respec­
tively, the contributions of the intramolecular anisot­
ropic dipolar interaction and of a cross term between 
this interaction and the g tensor. The quantity X 
includes all effects that do not vary from line to line, 
and B0 is the value of the external magnetic field. The 
coefficients of the pure dipolar term j<Dl are given in 
Table IV,·and since they vary appreciably from com­
ponent to component within a given line, the component 
widths will be quite different from each other if j<D> 
makes a significant contribution to the linewidth. The 
coefficients of the cross term j<DG2J do not depend on 
J N so that the width contribution from this term is the 
same for all the components of a line. For analyzing 
the experimental data, it is convenient to rewrite Eq. 
( 4.1) in terms of the relative widths of the components 
(relative to the MN=O, JN=O component), 

o,(MN, JN)= 1+BMN+C[JNCJN+1)+¾MN2], (4.2) 

where 
BX=±¥ j<DG2> Bo, 

CX=j<D>, 

( 4.3a) 

(4.3b) 

MN is a spectral index number (see Sec. III), and the 
upper (lower) sign in Eq. ( 4.3a) applies if the nitrogen 
hyperfine splitting aN is negative (positive). 

If j<Dl is small compared to the other terms in Eq. 
( 4.1), the width of the line with quantum number 
MN can be approximated by an average over the dif­
ferent values of J N, and the over-all shape is Lorentzian.1 

This limiting result of the relaxation-matrix theory thus 
coincides with the prediction of the Kivelson theory.5 

The average values of [JN(JN+1)+-§-MN2] are given 
in Table IV. The average width relative to the MN=O, 
JN=O component is thus 

o,(MN, (JN )Av) 

=1+C(JN(JN+1) )M=o+BMN+C11(MN), 
where 

11(MN) = (JN(JN+1)+¾MN2)M- (JN(JN+1) )M=O• 

( 4.4) 

It is more convenient, when averaging over the com­
ponent widths of a line, to use the average width rela­
tive to the average width of the MN=O line, 

o/(MN, UN )Av)= 1+B'MN+C'11(MN), (4.5) 

where 

01r,Av/0r,Av=B'/B= C'/C=[l+ (JN(JN+1) )M=oCJ-1• 

(4.6) 

From Table IV, since (JN(JN+l) )M=o=S.474, we 
have 17(±4) =41.193, 17(±3) =23.526, 11(±2) = 10.393, 
11(±1) =2.693, and 17(0) =0. The coefficient of C' is 
thus approximately, but not exactly, a quadratic func­
tion of MN. 
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Since the experimental line-shape factors for TCNE­
vary from line to line, the averaging procedure cannot 
be correct. It is convenient, however, to obtain a first 
approximation to the parameters B and C by using 
Eqs. ( 4.4) to ( 4.6), and it is also of interest to determine 
whether or not the width data can be fitted by Eq. 
( 4.5). The results of a least-squares fit of the first­
derivative data to this equation gives B' = 0.0802 and 
C' = 0.102. The widths calculated from these values 
and Eq. ( 4.5) are given in Column Ia of Table V, and 
they are in good agreement with the experimental 
results. The calculated shape factors, of course, are all 
unity and thus disagree with the experimental data. 
The quality of a fit of typical experimental measure­
ments to an averaged line-shape expression like Eq. 
( 4.5) can therefore not be used as a criterion of whether 
the lines are Lorentzian or a superposition of 
Lorentzians. 

The determination of the widths and shape factors 
for the superposition of Lorentzian components re­
quires the numerical computation of the shape functions. 
The procedure used to do this involved adding together 
point by point the first derivatives of Lorentzian-shaped 
components of the proper width and degeneracy by 
using an IBM-7090 computer.3° Calculated amplitudes 
and widths were obtained by noting the value and 
position of the maximum of the computed shape func­
tion, and after converting to relative values (with 
respect to the central line), the relative line-shape 
factors, Eq. (2.5), were computed. Using B'=0.0802 
and C'=0.102, and solving Eqs. (4.6) for B and C 
gives B=0.181 and C=0.230. The calculated widths 
and shape factors using these parameters in the super­
position calculation are given in Column Ilb of Table V, 
and both give a very poor representation of the data. 
The calculations show, however that for a particular 
set of linewidth parameters (e.g., Band C) the shapes 
and widths of a single Lorentzian line computed with 
an averaged value of the linewidth may be very differ­
ent from the shapes and widths of a line which is a 
superposition of Lorentzians. The large deviation from 
Lorentzian shape found here results because the pure 

TABLE VI. Computed linewidth and line-shape variations, 
p-benzosemiquinone ion. 

Calculated• 
Experi-

MH mental Ia lb 

Relative width ±2 1.181 1.187 1.191 
Ori ±1 1.068 1.047 1.049 

0 1.000 1.000 1.000 

Relative line- ±2 1.015 1.000 1.003 
shape factor, ±1 1.005 1.000 1.001 
s,, 0 1.000 1.000 1.000 

• See Note a, Table V. 

• 0 We are indebted to S. Goodman of these laboratories for 
developing this program. 

TABLE VII. Second-order shifts in TCNE-. 

±4 

±3 

±2 

±1 

0 

JN 

4 

4 
3 

4 
3 
2 

4 
3 
2 
1 

4 
3 
2 
1 
0 

Shift• 
AB(MN,

1

JN) 
DJ (mG) 

1 -1.55 

1 -4.27 
3 -1.16 

1 -6.20 
3 -3.10 
6 -0.78 

1 -7.36 
3 -4.26 
6 -1.94 
6 -0.39 

1 -7.75 
3 -4.65 
6 -2.32 
6 -0.78 
3 0 

• Computed from Eq. (A.I) with aN=l.60 G, Bo=3300 G. 

dipolar interaction ( j<D>) makes an important con­
tribution to the widths. 

Since the estimate of B and C from the averaged 
linewidth expression was so unsatisfactory, a trial-and­
error procedure had to be employed. Values of B and 
C were adjusted using the superposition calculation to 
give a fit to the width data. The results, shown in the 
two columns labeled II in Table V, are in quite good 
agreement with the data for both the linewidths and 
the shape factors. The parameters obtained were 
B=0.095 and C=0.114 for the first-derivative data 
and B=0.090 and C=0.100 for the second-derivative 
data. The shape factors So for the central line were 
found to be 0.649 and 0.658, respectively, for the two 
sets of data as compared to 0.743 for a Lorentzian. 
In computing S, Lorentzians normalized to unity were 
employed for the component lines. No attempt was 
made to refine the trial-and-error calculation to give 
the best possible fit. If the line-shape factors had been 
used as the criterion of the fit, somewhat different 
parameters would have been obtained. The differences 
between the parameters B and C for the two sets of 
data arise because the spectra employed for the first­
derivative measurements were narrower (0.028 G) 
than the spectra used for the second-derivative meas­
urements (0.034 G). Thus X is smaller, and B and C 
larger, for the former spectra than for the latter but 
since the superposition calculation is not linear i~ the 
component widths, the differences are not proportional 
to the ratios of the widths (X) in the two sets of spectra. 
As indicated by Eqs. ( 4.3), the data with the narrower 
lines ( the first-derivative set) should have the larger 
parameters, in agreement with the values obtained. 
The relaxation-matrix linewidth theory thus gives an 
entirely satisfactory description of both the linewidth 
and line-shape factor variations. 
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TABLE VIII. Effects of second-order shifts and 13C splittings, TCNE-. 

Second-order shift Carbon-13•,b 

MN DM 

-2 10 
-1 16 

0 19 
1 16 
2 10 

• For method of calculation see text. 
b Using aN=t.60 G, aC=9.40 G. 

Experimental 
width 

Ll;(mG)• 

46.0 
29.4 
24.3 
33.4 
53.7 

0 Ll;= (i./5/2)0; where o; is the experimental derivative width. 
d Derivative width computed in second-order shift calculation. 
• From Eq. (2.5). 
I Derivative width computed in uc calculation. 

Computed 
width 

o,(mG)d 

53.34 
34.38 
28.60 
38.95 
62.20 

The parameters B=0.095 and C=0.114 which give 
a good fit to both the width and shape-factor data in 
the superposition calculation differ by about a factor of 
2 from those obtained above from the fit to the widths 
alone using an averaged linewid th expression ( B = 0.181, 
C=0.230). Although the parameters resulting from 
the averaged width expression give agreement with 
the linewidth data, they are actually invalid because 
the predictions for the shape factor are incorrect. Thus 
erroneous linewidth parameters are obtained from a 
fit of the linewidth data alone with an averaged width 
expression when there are large variations in line shape. 
Analogous considerations apply to widths computed 
from amplitude measurements, which is a frequently 
employed procedure.28 

A similar calculation has been carried out for the 
p-benzosemiquinone ion. Now, however, since the line­
width variations are small and the relative line-shape 
factors are close to unity, it is anticipated that a single 

Relative Computed Relative 
line-shape width line-shape 
factor,• S,, o,(mG) 1 factor,• Sr, 

0.991 52.89 0.995 
0.997 33.94 1.002 
1.000 28.00 1.000 
0.995 38.55 1.001 
0.991 61.54 0.991 

Lorentzian with an average value of the width should 
be essentially equivalent to a superposition of Lorentz­
ians. The linewidth expressions are identical to Eqs. 
(4.1) to (4.5), with MH and JH replacing MN and JN, 
except thatnow77(MH) =¾MH2 and (JH(JH+l) )M=o= 
2. The details of this calculation, including certain 
refinements that we shall not discuss here, are given 
elsewhere.28 A least-squares fit to the averaged width 
expression [the modified form of Eq. ( 4.5)] gives 
C'=0.0175 from which, as above, we find C=0.0181. 
The results of the calculations are given in Table VI, 
where Column Ia is obtained from the modified form 
of Eq. (4.4) (C'=0.0175), and Column lb from the 
superposition calculation (C=0.0181). As anticipated, 
the differences between the two calculations are con­
siderably smaller than the experimental errors. The 
shape function for the central line was found to be 
0. 7 46 as compared to 0. 7 43 for a Lorentzian. In these 
calculations, B' has been set equal to zero because no 

TABLE IX. Carbon-13 satellites in TCNE-. 

Nitrogen-14 lines 

Position• 

4.00 

3.00 

2.00 

1.00 

0.00 

Statistical 
weightb 

1 

4 

10 

16 

19 

Carbon-13 lines 

Nitrile carbon Ethylene carbon 

Statistical Statistical 
Position• weightb Position• weightb 

6.95 0.022 
5.95 0.089 
4.95 0.224 4.91 0.011 
3.95 0.358 3.91 0.045 

0.425 
0.011 

2.95 3.09 0.112 
2.91 0.045 

1. 95 0.358 2.09 0.179 

1.91 0.112 
0.213 

1.05 0.022 1.09 0.179 
0.95 0.224 0.91 0.179 

0.05 0.089 0.09 
-0.05 0.089 -0.09 

• The splittings are based on the data in absolute ethanol, aN=l.607 G, a0=9.466 G for the nitrile carbon atoms and a0 =2.92 G for the ethylenic carbon atoms. 
Positions are given in units of the nitrogen splitting. 

b The statistical weights of the lines are calculated by taking the natural abundance of 11C to be 1.108% and neglecting molecules with more than one uc nucleus. 
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difference was found experimentally for positive and 
negative values of MH. 

V. CONCLUSIONS 

The most important conclusion from the results ob­
tained relates to the test they provide for the theoretical 
formulations. The Kivelson theory has been shown to 
be incorrect when there are large intramolecular 
anisotropic dipolar contributions to the linewidth, and 
the relaxation-matrix theory gives a completely satis­
factory account of the data. It has been shown previ­
ously1 that the Kivelson theory is also unsuitable when 
there are significant contributions from modulation of 
the isotropic hyperfine interaction. In general, it is thus 
necessary to treat degenerate lines as a superposition 
of Lorentzian components rather than as a single 
Lorentzian with an averaged width. 

It should perhaps be emphasized again that some of 
the differences between the shape of a single Lorentzian 
and of a superposition of Lorentzians may be quite 
subtle. Thus a plot of a Lorentzian fitted to the ampli­
tude and width of an experimental curve is indistin­
guishable from the latter in the experimentally accessible 
central region of the line, and the phenomenological 
expressions for the linewidth derived from the Kivelson 
theory may fit the width data just as well as those 
resulting from the relaxation-matrix theory. The param­
eters resulting from the different interpretations may 
have quite different values, however, and therefore it 
is important to use the relaxation-matrix theory if the 
details of the relaxation and line-broadening mecha­
nisms are to be correctly evaluated. As pointed out 
above, it is only necessary to use a superposition of 
Lorentzians when certain contributions to the linewidth 
variations are large; in other situations the two theories 
agree. By analyzing the linewidth variations, it is always 
possible to determine by computation whether the 
superposition of Lorentzians gives the same results as 
a single Lorentzian with the appropriately averaged 
width. Now that the relaxation-matrix theory has been 
shown to represent the data satisfactorily, linewidth 
studies provide the needed information and it should 
not normally be necessary to make line-shape studies. 
Finally, when effects like the alternating linewidth 
phenomenon are important, the distinctions between 
the two theories are no longer subtle: the Kivelson 
theory does not account for the phenomenon at all. 

We also note that the positive value of the coefficient 
B in the linewidth expression can be interpreted to 
show that the isotropic nitrogen hyperfine splitting 
aN in TCNE- is positive CMN=-MN). The method 
of analysis used to obtain this result has been described 
elsewhere.28

•29 
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APPENDIX 

In this appendix we show that the second-order 
shifts in the line positions, and the overlapping of un­
resolved 13C splittings with the main lines, do not 
cause significant effects in the analysis of the widths , 
and shapes of the lines studied. 

Straightforward calculation to second order in per­
turbation theory gives a correction to the expression 
for the line positions in the high-field approximation 
which can be written23 ,81 

6..B(MN, JN) = -[(aN) 2/2Bo][JN(JN+1)-MN2], 

(Al) 

where Bo is the external magnetic field. The values of 
the second-order shift for TCNE- are given in Table 
VII for aN = 1.60 G and Bo= 3300 G. To obtain an 
approximate idea of the effect of the second-order 
shifts on the line shape, Lorentzian components of the 
same width for each line but at the positions and with 
the degeneracies given in the table were added together 
and the resulting amplitudes, widths, and shape fac­
tors of the computed curves determined, as in Sec. IV. 
The widths used for each line were the experimentally 
determined values. Differences in the widths of the 
different components of a line were thus neglected. 
The results are shown in Table VIII, and it is clear 
that the variations are smaller than the experimental 
errors. 

The effect of 18C lines was determined in a similar 
way. Each 18C satellite of a main line was given the 
same width as the main line, and again the widths 
were taken to be the experimentally determined ones 
and differences in the widths of the different components 
were neglected. The positions and intensities of the 13C 
satellites are shown in Table IX. The results in Tables 
VIII and IX are calculated for aN = 1.60 G and ac = 
9.40 G. The contribution of the 13C satellites from the 
ethylenic carbon atoms and of the 15N satellites were 
not included. Again it is apparent that the effects are 
within the experimental error for the lines included in 
the analysis of the TCNE data. Calculations were also 
performed with other values of aC within the range of 
the experimental data, and although the results were 
somewhat different, a negligible effect of the satellite 
was again found. 

31 B. Bleaney, Phil. Mag. 42, 441 (1951). 


