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The effects of internal rotations of methyl groups on ESR hyperfine lines are analyzed in terms of a 
quantum-mechanical description of the motion. The classical description of :otational a~eraging is re
placed by (1) spin-rotational coupling from a hyperfine operator, a~d (2) rota~10?al relaxat10n by thermal 
collisions. In the absence of collisions, the effects of (1) lead to a static set of sphttmgs whose values depend 
upon the relative magnitudes of the hyperfine-versus-tunneling frequencies. !n the pres~nce of freq~ent 
collisions, represented by a strong-collision model, the effect~ of (1) lead_ to lme broadenmg, the det~1led 
nature of which also depends on the hyperfine-versus-tunnelmg frequencies. In ge~er~l, ~esults predicted 
from a classical treatment of the motion are obtained when the hyperfine frequency 1s s1gmficantly greater, 
while quantum effects become important for relativel~ larger tunneling fr~quencies. The r~s~lts are ill~s
trated by application to relevant experimental observat10ns. In th~ Appen~1x, the str~ng-colhs10n relaxat10n 
theory is generalized to apply to the present case where the spm-rotat10nal couplmg connects states of 
different nuclear spin symmetry. 

I. INTRODUCTION 

IN the pioneering work of Bloembergen, Purcell, and 
Pound1 on nuclear magnetic relaxation, the effect 

of rotational relaxation of magnetic spins was treated 
"semiclassically" using a classical Brownian diffusion 
model for the rotational motion, while the spins were 
treated quantum mechanically. This semiclassical ap
proach has predominated in most of the work on b~th 
NMR and ESR relaxation of molecular systems with 
considerable success. The use of a classical treatment 
of rotational diffusion implies a continuous, albeit 
weighted, spectrum of energies available to the spin 
system, so only the characteristic frequencies of the 
spin system need be considered. When, however, the 
splitting of rotational levels is no_ longer small co~
pared to these spin-system ~requenc1es, then t~e q_uant1-
zation of the rotational mot10n should have a s1gmficant 
effect on the magnetic resonance relaxation. Once the 
necessity of quantum effects is admitted, it also becomes 
necessary to consider the effects of the exclusion prin
ciple in determining allowed states and transitions. 

In this paper, a formulation is developed to analyze 
the effects that quantized internal rotations of methyl 
groups can have on magnetic resonance. There have 
been a number of studies of classical models for rota
tional relaxation in methyl groups both in NMR2- 5 and 
ESR. 6 In NMR, one must consider the coupling between 

* Supported in part by the Advanced Research Projects Agency. 
1 N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 

73,679 (1948). 
2 J. G. Powles and H. S. Gutowsky, J. Chem. Phys. 23, 1692 

(1955). 
3 P. S. Hubbard, Phys. Rev. 109, 1153 (1958); 111, 1746 (1958). 
4 R. L. Hilt and P. S. Hubbard, Phys. Rev. 134, A392 (1964). 
5 L K Runnels Phys. Rev. 134, A28 (1964). 
6 J.

0 

H.' Freed a~d G. K. Fraenkel, J. Am. Chem. Soc. 86, 3477 
(1964). 

spins and rotational motions due primarily to the 
anisotropic magnetic dipolar couplings between the 
protons.2- 5 In ESR, the dominant coupling term is the 
methyl-proton isotropic hyperfine splitting,6 with con
siderably smaller contributions from their anisotropic 
dipolar interactions with the unpaired electron. We 
concern ourselves only with the ESR hyperfine splitting 
problem, although the same general approach should be 
applicable to the other. 

Stejskal and Gutowsky,7 in a study of the NMR 
problem, recognized the necessity of quantum con
siderations for methyl protons. Their approach was 
to calculate the torsional splittings or "tunneling" 
frequencies for a particular barrier height and to 
obtain a Boltzmann average of "tunneling" frequencies. 
This average was used instead of a classical "reorienta
tion" frequency, in a calculation otherwise equivalent 
to the EPP theory1 ( as modified by Solomon8). There 
are a number of conceptual difficulties with this model 
that are pointed out by these authors. Thus ( 1) if an 
average "tunneling" frequency is to be calculated, it 
implies that transitions between torsional levels are 
taking place at a frequency greater than the "tunneling" 
frequency, so that the broadening of levels is greater 
than the torsional splittings and thus the latter are no 
longer important. Also (2) if tunneling implies transi
tions between the split states of a particular torsional 
level, then such a transition is spin forbidden. And (3) 
no consistent method of introducing collisions or ther
mal motions of the lattice is used. The point of view 
adopted in the present work, while still highly approxi
mate, represents a more consistent approach which 

7 E. 0. Stejskal and H. S. Gutowsky, J. Chem. Phys. 28, 338 
(1958). 

8 I. Solomon, Phys. Rev. 99, 559 (1955). 
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circumvents these difficulties. It also gives an entirely 
different significance to the effects of tunneling. 

II. GENERAL CONSIDERATIONS; 
MATRIX ELEMENTS 

We treat an isolated methyl group bonded to a 
carbon atom (fixed in some heavy molecule or lattice) 
containing an unpaired electron in a 2p-1r orbital. It is 
assumed that the wavefunction for this system is 
approximated by 

(2.1) 

where YIE, Ylv, YIR, Yls, and Ylr are, respectively, electronic, 
vibrational, rotational, electron spin, and nuclear spin 
wavefunctions. These component functions may be 
analyzed in terms of the permutation group of the 
three methyl protons, but only the subgroup, consisting 
of "feasible transformations," corresponding to cyclic 
permutations of the three protons, will be important.9 

This subgroup is isomorphous with the point group C3 

so that there is an invariant irreducible representation 
Species A and a doubly degenerate one E. According 
to the Pauli principle 'V must belong to Species A. It 
is assumed that YIE and YIV are always ground-state 
functions and of A symmetry. Thus, the product YIRYII 
must also be of this symmetry. 

An ESR spectrum results from transitions induced 
between different YI sYII and one may define that part 
of the Hamiltonian appropriate to the spin system as: 

3 

hJCsr=Ji:y.B• S+h'YP I:B• 1; 
i=l 

3 

+i 1rlihe'YP I:o(r-r;) S• 1;. (2.2) 
i=l 

The first two terms in Eq. (2.2) give the Zeeman 
interaction of the unpaired electron and of the three 
methyl-proton spins with the magnetic field B, while 
the last term is the isotropic hyperfine interaction of 
the electron spin with the nuclear spins; 'Ye and 'YP are 
the magnetogyric ratios of an electron and a proton, 
respectively. Because the first two terms in Eq. (2.2) 
are dominant in the high-field approximation, simple 
products of YI sYlr are the correct functions to first order 
in the isotropic interaction. This interaction serves as 
a probe of both the electronic and nuclear motions by 
its delta-function dependence on the locations of the 
unpaired electron r and of the protons r;. Thus, it must 
first be evaluated over YIEYIVYIR· In the Born-Oppen
heimer approximation upon which the separation Eq. 
(2.1) is based, we first evaluate YIE as a function of 
electronic and nuclear coordinates, and then determine 
YIV and YIR· Since we shall only be concerned with the 
(hindered) rotational motion of the methyl group, it 

u H. C. Longuet-Higgins, Mo!. Phys. 7, 445 (1963). 

is only necessary in a first approximation to express YIE 
as a function of orientation of the methyl group. The 
usual calculation of YIE, so as to give a finite spin 
density at the methyl protons, involves the hyper
conjugative mixing of hydrogenic ls orbitals and the 
methyl carbon orbitals with the unpaired electron in 
the carbon 2pz orbital.1° We are presently primarily 
concerned with the symmetries of these orbitals. Appro
priate linear combinations of the hydrogenic orbitals 
for arbitrary orientation of the methyl group, are 
given by Bershon10 and may be rewritten as: 

(2.3) 

(2.4) 

(2.5) 

The angle ct, is defined as the angle between the z axis, 
along which the partially filled 2p-1r carbon orbital 
lies, and the bond between the methyl carbon and H1 

nucleus. These functions are all of Species A as required 
for the ground-state wavefunction. However, only x2 is 
of the proper 1r symmetry to interact with the carbon 
2p-1r orbital. Thus the odd electron will be in a molecular 
orbital approximated by: 

YIE0~[Xa<I>2pz c,+xb<I>2pz c2+Xcx2], ( 2.6) 

where the A; are an appropriate set of coefficients, and 
the expectation value of o(r-r;) may be taken over 
this orbital. Bershon's results10 indicate that the domi
nant terms are the ones which are diagonal in the <l>HK· 

This leads to: 

hli'Ye'YP (Y1E0 I I:o(r-r;) l;• S I Yle0
) 

i 

"'2a[cos2cJ,11+ cos2(ct,+}1r)I2+ cos2(ct,+h)Ia}S, (2.7) 

where a depends on A/ and [<I>H, (0) ] 2. The usual calcu
lations introduce, at some convenient point, a "rota
tional averaging" to achieve equality of the hyperfine 
splittings of the three protons. Thus, if Eq. (2.7) is 
"averaged" isotropically over all values of</> we obtain 

(2.8) 

and ah. is the observed splitting constant which 
usually ranges from about 20-25 G. We are presently 
concerned with a quantum-mechanical treatment of 
the rotational motion. Thus, it is necessary to retain 
Eq. ( 2. 7) which is still a rotational as well as spin 
operator. It is easily seen that this operator is of 

10 R. Bersohn, J. Chern. Phys. 24, 1066 (1956), 
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TABLE I. Spin functions. 

fA 1,1= 1/v'.J[I aa/3 )+ I a/3a )+ I /3aa)] 

fA J ,-! = 1 / v'.J[ I /3/3a )+ I /3a/3 )+ I a/3/3)] 

.,i,A l,-1= I /3/3/3) 

fEa 1.,= 1/v'.J[I aa/3)+• I a/3a)+•* I /3aa )] 

fEb 1,1= 1/v'.J[I aa/3)+,* I a/3a )+• I /3aa)] 

fEa 1,-! = 1/v'.J[I /3/3a )+• I /3a/3 )+•* I /3aa)] 

fEb1,-1=l/v'.J[I /3/3a)+•* I /3a/3H• I a/3/3)] 

symmetry A. However, Eq. (2.7) may be rewritten as11 

[al+½a' exp(2icp) (l1+E*l2+El3) 

+½a' exp( - 2icp) ( l1 +El2+E*l3) ], (2.9) 

where E= exp(271'i/3) and the asterisk indicates complex 
conjugate. The first term corresponds to the "observable 
splitting," while the second and third terms may be seen 
to be the two A components of the cross product of the 
E type exp(±2icp) rotational operator with the two
component nuclear spin operator of E symmetry. (For 
greater generality we have replaced a by a' in these 
terms.) It is useful to write all partner E functions as 
orthogonal pairs which are complex conjugates. These 
are distinguished as Ea and Eb (Ea*= Eb) where the 
cyclic permutation ( 123) transforms the former into E 
times itself and the latter into E* times itself. Thus, the 
second term of Eq. (2.9) is made up from an Eb rota
tional operator and an Ea spin operator ( which is 
abbreviated as JEa). The reverse is true for the third 
term. The multiplication rule, necessary for selection 
rules, etc., is EbEa=Ea*Ea=A. Thus Ea3=Eb3=A. It 
should be clear that an operator of Ea or Eb symmetry 
can only have nondiagonal matrix elements, and these 
will connect states of the different species Ea, Eb, and A. 

A. Nuclear Spin Functions 

The different nuclear spin functions are listed in 
Table I where, for example, y;Aq stands for the spin 
function of A symmetry and Mr= l 

11 On the basis of simple symmetry considerations, the more 
general expression 

00 

~ bn[cos2n¢I,+cos2n (¢+¾1r) I2+cos2n (¢+¼1r) l 3} S 
n=o 

may be obtained instead of Eq. (2. 7) (see Ref. 6). The results 
given above merely imply bo=b1 and bn for n> 1 are negligible. The 
discussion presented here could be carried out for this more gen
eral expression without significant changes. Note, however, that 
terms for n equal to multiples of 3, the spin and rotation operators 
both have A symmetry, so they may have diagonal matrix ele
ments. 

B. Internal Rotor Functions 

The Schrodinger equation for the internal rotation 
of the methyl group is given by12 

hJCR= [ - (h2/2I) (d2/d<ti) + V(cp) ]y;R(c/>) =hEy;R(cf>) 

(2.10) 

which is closely related to the Mathieu equation.12 The 
potential energy V (cf>) must have at least threefold 
symmetry in cf> due to the indistinguishability of the 
three methyl protons. We set12 

where 
V(cp)=½V3(1- cos30), 

0=cp-a 

(2.11) 

(2.lla) 

and a represents one of the three potential mm1ma. 
For the sake of simplicity, only the two limiting cases: 
(1) an unhindered rotor and (2) a highly hindered 
rotor are considered. 

1. Plane Rotor 

In Table II arc found the wavefunctions of the plane 
rotor in the absence of a hindering barrier, Vi. The 
plane rotor solution for the methyl-group rotation is a 
good approximation when¼ V3«h2/2l.12 

TABLE II. Rotational functions. 

Plane rotor functions 

l"R,m= 1/(2,r)I exp(im<J,) 

m=3n Species A 

m=3n+11 
f Species Ea 

-m=3n+2) 

m=3n+2} 
Species Eb 

-m=3n+l 

n=O, 1, 2, 3, • • • 

Torsional (harmonic)-oscillator functions 

fAr,,= 1/v'.J[II ,<O+H ,(2l+H,('l] 

,f;Ebr,,= 1/VJ[H ,(!)+,II ,<2l+•• II ,(3l] 

,f;Ear,,= 1/v'.J[H ,(l)+•*H ,<2l+,II ,(3)] 

II,, (kbIJ,(0-[k-1]¾1r) 

hEr,,=3h ( V3/2J)l (v+½) 

v=O, 1, 2, 3, • • • 

k=l,2,or3 

12 C. C. Lin and J. D. Swalen, Rev. Mod. Phys. 31, 841 (1959). 
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2. Torsional Oscillator 

In the limit of very high barriers to internal rotation, 
the potential energy ½ Va(l-cos30) may be expanded 
about each of the minima at cf,=a, a+¾1r, and a+¾1r 
to give ¾Va[0-(k-1)}1r]2 where k=l, 2, 3, respec
tively. Each wavefunction H ,(kl in Table II is an har
monic-oscillator function for the torsional motion about 
each of the three minima. Linear combinations of these 
functions having the proper symmetries are given, and 
they are degenerate to zero order. Let 

(2.12) 

and a first-order approximation of the torsional split
ting given by 

The torsional splittings 3!::..0 in the zeroth level are 
plotted as a function of V3 in Fig. 1 where both are 
expressed in units of megacycles per second. This fig
ure is based on a semiempirical relation given by Hecht 
and Dennison13 for large barriers, but is extrapolated 
to the separation of the ground pair of rotational levels 
when V3=O. 

C. Matrix Elements of the Spin-Rotational Coupling 

The term alz has only diagonal matrix elements 
with value aMr in the representation of Tables I and 
II. The nonvanishing matrix elements of the spin func
tions J,Ea and I.Eb are given by: 

(iJ;•r,±½ If/a I Vl 81
I,±½)= (iJ;•'r,±½ I f,Eb I Vl'I,±½)* 

= ±eI'(s I Ea Is'), (2.15) 
(H,CkllJCalH/k'l)=!::.., for k~k', (2.13) where 

so 
(2.14a) 

and 
(2.14b) 
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FIG. 1. Torsional-splitting frequency as a function of barrier 
height (V3) for the lowest torsional level of a methyl rotor. The 
curve is extrapolated to the separation of lowest rotational levels 
for V,=0. 

r(s I Ea Is') =os,EaOs,,A+o,,AOs',E,+o.,E,os',Ea• (2.15') 

Terms involving a'I ±SCF are being neglected in the 
present formulation (see Sec. VI). For the plane rotor 
functions we get: 

(i/lR,m I exp(±2i¢) I VIR,m' )= Om,m'±2• (2.16) 

In order to evaluate the matrix elements of exp(±2icf,) 
in the torsional-oscillator representation, it is useful to 
expand this function around each of the three barrier 
minima, because the overwhelming probability is for 
cf, to lie very close to one of these values. Thus 

exp(±2icf,) 

""exp(±2ia) (e)±Ck-1l[1±2i(0k)-2(0k) 2• • • ], (2.17) 

where 

0k=[0-(k-1)¾1r] and k=l,2,3. (2.17') 

We assume in the evaluation of this term a "zero
differential overlap" approximation: 

(H ,,(kl) 10kn I H ,,,(k") )"" (H ,,(k) 10kn I H ,,,(k) )okk'Okk"• 

(2.18) 

The matrix elements of interest may be found in stand
ard references.14 The high-frequency terms for which 
v'~v" turn out to be unimportant. Neglecting these 
terms we obtain 

(i/;8r,, I exp(-2icf,) I i/;''r,,) 

= (iJ;•'r,, I exp( +2icf,) I i/l'r,, )* 

= exp( -2ia) [1-20)]r(s I Ea Is'), (2.19) 

13 K. T. Hecht and D. M. Dennison, J. Chem. Phys. 26, 13 
(1957). 

14 H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry, 
(John Wiley & Sons, Inc., New York, 1944), p. 79. 
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where 

and 
(2.2Oa) 

(2.2Ob) 

III. ISOLATED ROTOR-SPLITTINGS 

It is assumed in this section that, while an ensemble 
of methyl-group rotors is thermally distributed, the 
thermal contact of the rotational and spin degrees 
with the rest of the degrees of freedom is much weaker 
than the spin-rotational coupling. Then the energy 
levels between which ESR transitions occur are ob
tained from the combined eigenfunctions of Xsr+XR. 

A. Free Rotation 

For free rotation: 

(i/lR,mfri/1s I Xsr+XR I YIR,mi/lr,/;s )= ER,m 

+-y,B,Ms+'YpBzMr+aMsMr= ER,m+ Esr- ( 3.1) 

Recognizing that ER,m»a' the only important non
diagonal terms are [from Eqs. (2.15) and (2.16) J 
(if;R,+1if;Ebr,±½YIS I XR+Xsr I YIR,-1if;E•r,±½Yls )= =F-½a'tMs 

(3.2) 

and their Hermitian conjugates. Thus, in the high
temperature region, when few methyl groups are in 
the m=±l levels (see Sec. IV.B), the ESR spectrum 
consists primarily of four lines separated by a/2-y, G 
of equal width and intensity ratio nearly 1: 3: 3: 1. 
However, for low temperatures corresponding to an 
appreciable population in the m = ± 1 levels, the effect 
of Eq. (3.2) on the splittings must be considered. A 
diagonalization of the matrix 

yields the two eigenvalues 

and 

corresponding to splittings at ±½[ ( a±a') /-y.J and 
±½[(a=F-a')h,J G, respectively. 

B. Hindered Rotation 

The diagonal matrix elements are again given by 
Eq. (3.1) with E•T,• replacing ER,m• But now there 
are important off-diagonal terms coupling states of the 

same v and Mr but different s, so that the 3X3 matrix: 

(

E,,±+211, 

=i=t. * 

=i= t, 

=i=t, 

(3.4) 

=i=t, * 

must in general be diagonalized for each value of v, 
where [from Eqs. (2.15) and (2.19)] 

t,=½(a')t exp(2ia)u,Ms, 

u,= [1- 20,2], 
and 

(3.5) 
If 

v,=a'u,/611,<<l, 

then the eigenvalues to second order are: 

E,,± +211,+M,v,2Ms2, (3.6a) 

E,,±-i1,+½(a')u,Ms[(v,±1)2=F4v, sin23a]½, (3.6b) 

E,,±-il,-½(a')u,Ms[(v,±1)2=t=4v, sin23a]½. (3.6c) 

For v,= 0, these results are independent of the angle a 
and very similar to those of Eqs. ( 3.3). Note that the 
ESR transition corresponding to Eq. (3.6a) is un
shifted in the second-order approximation while those 
from Eqs. (3.6b) and (3.6c) are shifted. If, however, 
v,»1, i.e., vanishingly small torsional splitting, then 
it is found that the correct zero-order wavefunctions 
are (for Mr=+½) given by 

1 3 
.n

3
L,H,(k) I a;ajf3k)if;s. 

VJk=l 
(3.7) 

k~i, j and i<j and the two other functions obtained 
by cyclic interchange of the H,(k) with the I a;aif3k). 
The zero-order energies are given by: 

k= 1, 2, 3, (3.8) 

yielding the splittings: 

which is just the classical result for a static methyl 
group except for the factor u,. All of the off-diagonal 
elements in the representation Eqs. (3.7) are equal to 
il,, and may be treated by simple perturbation theory 
except when a~½(mr), n=O, 1, 2,· ··,for which the 
k= 1 and 2 energies in Eq. (3.8) are degenerate. 

The hyperfine lines resulting from the Mr=±! nu
clear spin states are unaffected by the above consider
ations. 
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IV. RAPIDLY RELAXING ROTOR 

A. Basic Model 

It is now assumed that the rotational motion is in 
strong enough thermal contact, via interaction with 
the random, intermolecular motions of a liquid or the 
thermal lattice vibrations of the solid, that it is rapidly 
returned to thermal equilibrium despite its coupling 
to the spin system. This situation may be treated with 
a rigorous, albeit simplified model whereby the thermal 
contact of the rotational levels is introduced in the 
form of collisions occurring at a mean frequency, T-1. 

A theory based on a "strong collision" approximation 
has already been developed.16 However, it is necessary 
to generalize the treatment to include the case where 
the spin-rotational coupling is able to couple states 
of different nuclear spin symmetry in order to handle 
the present problem. The general considerations and 
results are given in the Appendix. The use of a single T 

is certainly a great simplification over the actual situ
ation, but after the formal results are obtained, it 
should still be possible to modify this assumption, but 
in an admittedly ad hoc fashion (see Sec. VI). Note 
that this theory is still developed on the assumption 
that thermal "collisions" are essentially nuclear spin 
independent in their effects. 

In the present application we consider the Ea and 
Eb as well as the A spin symmetries as being distinct. 
Our arbitrariness in selecting the particular sets of 
degenerate Ea and Eb functions does not affect the 
final results, since all macroscopic observables are ob
tained by taking a trace over all states, and the trace 
is invariant to a choice of basis functions. The particu
lar choices that are being made, however, permit a 
consistent account to be taken of the exclusion princi
ple. We therefore have three spin density matrices: 

uA=TrR(pA), 

a-Ea= TrR (pEa), 

( 4.1) 

which are defined according to Appendix A. The terms 
in the Hamiltonian (A4) are XR given by Eq. (2.10), 
hJC81 given by the first two terms of Eq. (2.2) plus 
the first term of Eq. (2.9), and li'U2 given by the last 
two terms of Eq. (2.9). We are not considering any 
spin-rotational coupling effects which give rise to li'U1, 

so Eqs. (Al 7) through (A19) for the spin density 
matrices may be simplified accordingly. The further 
identifications: 

p(Ea,2)= exp( -2iq;), 

p(Eb,2)= exp( +2i4>), 

K(Ea,2) = ½ ( a') J T,EaS z, 

15 J. H. Freed, J. Chem. Phys. 41, 7 (1964). 

and 
( 4.2) 

are made. This interaction has no effect on the outer 
components of the four-line ESR hyperfine pattern 
typical of a methyl group, since they involve only the 
Mr=±¾ nuclear spin states. 

B. Linewidths 

The absorption spectrum of the two center lines is 
determined by the off-diagonal density matrix ele
ments,16 which have steady-state values given by 

where j= A, Ea, Eb, when a rotating microwave field 
with angular frequency w, and strength B1 is applied. 
The power absorbed is given by 

P±a:. I:si,±- Im(Zj,±), 
i 

(4.4) 

where Sr is the jth matrix element of the electron spin 
lowering operator. In the present case, in the absence 
of saturation, the Zi obey the equation16 

(4.5) 

where 

Aw=w.-w, 

and 
q=li/kT. 

Equation ( 4.5) is written separately for the M 1= +½ 
and -½ lines, and the results are identical for each. 
Now R;,k is the linewidth matrix which may be ob
tained from Eqs. (4.2), (A18), (A19), and (2.15)
(2.19), and is given by 

where 

and 

rD 

D(l+r) 

D 

rD ) 
D , 

D(l+r) 

(4.6) 

( 4.6a) 

(4.6b) 

Equations ( 4.6) may be shown to follow because, by 
symmetry as well as the evenness of the spectral den
sities, 

(4.7a) 

16 J. H. Freed, "Theory of Saturation and Double-Resonance 
Effects in ESR Spectra," J. Chem. Phys. (to be published). 
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and 

j1(aE. -aA) = j1(aE,-aA) = j1 (a.1-aE.). ( 4.7b) 

The particular forms of the spectral densities in Eqs. 
(4.6a) and (4.6b) depend upon the choice of rotational 
functions as well as the temperature. The coupled Eqs. 
( 4.5) and ( 4.6) may be solved by first diagonalizing 
the R matrix. [This procedure may be simplified by 
first transforming to equations in ZE= (zE. +zE,) and 
ZE,= (zE.-ZE,) .] The solution may be written as 

zA+zE= [g+G-/(Llw-i/T_)-g_G+/(t..w-i/T+) ], 

where 
T±-1=D(l+}r±½p), 

g±= (pr)-1(1-!r±½P), 

G±= qw,d[J.1 +½(2-r±p)JE.J, 

p= (9r2-4r+4)½. 

(4.8) 

( 4.9a) 

(4.9b) 

(4.9c) 

( 4.9d) 

Simple limiting cases exist for r= 1 and r=0. For 
r= 1, z.1 and ZE are coupled, but 

and for r=O 

ZA = qw,df.1/ (Llw- oi)' 

ZE= qw,d2JE./[Llw- (2D+o) i], 

(4.10) 

(4.11a) 

(4.11b) 

where o, which represents all other line-broadening 
effects (assumed independent of nuclear spin), has 
been inserted. Equation ( 4.10) is formally equivalent 
to the semiclassical result6 which shows that the ±½ 
lines are broadened by the rotational mechanism. Equa
tions ( 4.11) represent a quantum effect indicating that 
only the fraction of systems containing E spins are 
broadened, while the A spins are not. The situation 
expressed by Eq. ( 4.8) is intermediate between these 
two limits when O < r < 1. The physical significance of 
these results may be seen by examining the following 
cases. 

1. Highly Hindered Oscillations at Low Temperatures 

We assume only the first torsional level is signifi
cantly populated. Then 

( 4.12a) 
and 

r=[1+(3Ll0) 2r2J-1, (4.12b) 

exp ( 2Llo/ k T) 

J.1 = 2 exp( -Llo/kT) +exp(2Ll0/kT) ' ( 
4

•
12

c) 

for Llo/kT«l, U'-'½(1+2Llo). Thus when (3Llor)2<<1, 
i.e., when the thermal broadening of the hindered rota
tional levels is greater than the splitting 3t..0, the for
mally classical line-broadening result (except for uu2 
which approaches unity as V8-oo) Eq. ( 4.10) is ob
tained, but when (3Llo)2»1 the A level is well enough 

separated that it will not be broadened. Note that 
for free rotations at low enough temperatures, where 
only the m= 0, ± 1 levels are significantly populated, 
the same discussion applies where now Eqs. (4.12a) 
and (4.12b) are replaced by r= [l+(hr/J)2J-1, and 
D=n(a'2r). 

2. Free Rotation at High Temperatures 

The high-temperature condition means that 

C-=-h2/2IkT= 7.6°/T«l. 

It then follows that 

Z(R.1) =Z(RE.) =Z(RE,) = (C/ir)l 
and 

J.1=fE.=fE,=t. 

( 4.13) 

The spectral densities in Eqs. (A18) and (A19) in
volve the frequencies given by 

Wrr'=h-1C4(1±mr,) =4.0X l012 (1±mr,) sec1 (4.14) 

since mr=mr,±2 for nonvanishing terms. Now the 
De bye-type function r / (1 +wrrh2) has its maximum 
value of Tmax/2 for Tmax-1= I Wrr' 1- Thus, except for 
the mr' = ± 1 levels, this function can be no greater 
than 1.2SX 10-13 sec. Then j1 (a;-(3j) < ½rM neglecting 
the mr' = ± 1 levels, or 

D' .:s;:i-12a'2Tmax~ (2,r) 240 sec1, 

assuming a'~(21r)70X106 sec1, and is negligible com
pared to other sources of line broadening. The contri
bution from the mr' = ± 1 levels with fractional popu
lations e-0 ( C/1r) l"-' ( C/1r) l gives 

D"-'T\( a'2r) ( C/1r) ½ 

which should be small, if not negligible, while r~0. 
This result is thus substantially different from the 
classical result for a free rotor,6 since the latter does 
not include the factor (C/1r)l, nor does it distinguish 
between A and E nuclear spins. 

V. COMPARISON WITH EXPERIMENT 

A. Solids 

Horsfield et al.11 and Miyagawa and Itoh18 have 
found that the radical CHsCHCOOH trapped in 1-a
alanine exhibits a methyl splitting whose Mr=±½ 
lines broaden and then split out upon cooling from 
room temperature to 77°K. This suggests that at 
higher temperatures the condition r-1»a', Ll is fulfilled 
while at lower temperatures r-1«a', Ll. They give a 
classical interpretation consistent with Ll«a', but the 
possibility of Ll"-'a' may not be excluded by their 
results, so that the observed low-temperature split
tings could depend on Ll. Their linewidth analysis at 
184°K sets r=S.4X10-10 sec, where now r is given the 
meaning used in the present paper. 

17 A. Horsfield, J. R. Morton, and D. H. Whiffen, Mo!. Phys. 4, 
425 (1961); 5, 115 (1962). 

18 I. Miyagawa and K. Itoh, J. Chem. Phys. 36, 2157 (1962). 
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Heller19 obtained the radicals CH/;(COOH) 2 (I) and 
CH/;H(COOH) (II) trapped in methyl malonic acid 
and both contributed to a single spectrum. For a par
ticular orientation of the crystal, the room-temperature 
spectrum was consistent with 

a)Ie(I/"·-'aMe(II)"'ancn('-'(211")70Xl06 sec1 (5.1) 

( only the CT proton in II exhibited markedly anisotropic 
character) yielding a nine-line spectrum, and the rela
tive intensities of the lines indicate that the radicals 
are present in nearly equal concentrations. At 4 °K, 
the ratios of those lines which were ascribed at high 
temperatures to (I) are no longer 1: 3: 3: 1 but instead 
closer to 1: 1: 1: 1. Heller explains this result as being 
due to nearly free rotation in (I) so that the m= ± 1 
levels are only weakly populated. In the present formu
lation rapid averaging would require that Tr'»a'. The 
further condition that ti.1»a' could lead to a broaden
ing of the two components of E symmetry, without 
the A component being affected, so that the intensity 
of the Mr=±½ lines could be considerably reduced 
without requiring that the rotation be essentially un
hindered. However, the lines ascribed to II have the 
normal room-temperature intensity ratio of 1:4:6:4:1 
at 4.2°K, implying that Tn-'>>a', and also that nC1 

is so great that there is no broadening. Thus Tn-1>>n-1, 
which is surprising, since they both measure the ther
mal motions in the same substance, although admittedly 
at different sites.20 A related prediction is that T-'»a' 
at 4°K in a methyl malonic acid host, while T-'«a' at 
77°K in an a-alanine host.20 In view of such predic
tions, it may be worth considering an alternative ex
planation of Heller's 4 °K spectrum. Let us assume 
that Eq. (5.1) holds, and furthermore that: 

and 

a' Mecn"'a' Me(II)"'a,....._, (271") 70X 106 sec', 

ti.>>a>>n-l,..__,TII-2, 

li1, lin«(kT)-1. 

Then from Eqs. (3.6) the predicted spectrum of I is 
given by Fig. 2 (a), while that for II is given by Fig. 
2 (b). The superposition of I and II, assuming equal 
concentrations, leads to Fig. 2 ( c), i.e., nine equally 
spaced lines in the ratio of 1:3:4:5:6:5:4:3:1, which 
is not far from the observed spectrum.21 The composite 
room-temperature spectrum comes at the same fre
quencies as the 4 °K spectrum, but one expects the 

19 C. Heller, J. Chem. Phys. 36, 175 (1962). 
20 If the T are sensitive to large barrier heights, then one might 

expect that a longer T be associated with a greater barier height, 
although the detailed form of the thermal interaction should be 
considered. See Sec. VI. 

21 The actual derivative spectrum obtained by Heller has ratio of 
derivative heights given by 1:3:4:3:6:3.5:4:3:1. However, 
graphical integration19 showed that the two lines coming at ±a/2 
are actually more intense (but presumably broadened), and 
ranging in relative intensity somewhere from 3.9 to 4.8 .One should 
also consider the possibility of slight inequality of splitting con
stants, residual broadening effects, and overlap of lines in inter
preting the results. 

(a) I I I I I I 
A E A E A E A 

(b) 

A E A E A E A E A 

( c) 

2a a Q 

2 0 -a • ~a -2a 
2 

FIG. 2. Stick diagram of spectrum for: (a) methyl group weakly 
affected by thermal motions, but with large torsional splitting 
and a' =a; (b) same as (a) but including a single proton of hyper
fine splitting a; (c) superposition of (a) and (b) assuming equal 
concentrations. The lines in (a) and (b) are characterized accord
ing to the associated nuclear spin symmetries, and those in (c) 
according to their hyperfine frequencies. 

ratio: 1:2:4:6:6:6:4:2:1 (which agrees with experi
ment). As the temperature is raised above 4°K, those 
components resulting from E nuclear spin symmetries 
should broaden, eventually shift to their room tem
perature locations, and then sharpen up to be compa
rable in width to the A symmetry components. [Figures 
2(a) and 2(b) are labeled according to their spin sym
metries.] Further experimental work should be able 
to distinguish between the various possibilities. They 
suffice, however, to illustrate the kinds of predictions 
obtained from the theory. 

B. Liquids 

Various liquid-state experiments have not indicated 
any relevant linewidth effects on methyl-proton split
tings. This is consistent with T-1»a', but it places no 
condition on ti for these experiments. The possibility 
of coupled motions of several methyl groups is of inter
est,6 ,22 but would require solving the related quantum
mechanical problem in order to analyze such situations. 

VI. DISCUSSION-LIMITATIONS OF 
THE THEORY 

As already noted, the introduction of a single mean 
collision time as a method of describing the undoubtedly 
detailed and complex processes by which rotational re-

22 J. H. Freed and G. K. Fraenkel, J. Chem. Phys. 41, 699 
(1964). 
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laxation occurs must certainly represent a great over
simplification of the actual situations, and further work 
would be necessary to elucidate such processes. There 
are a few comments, based on simple considerations, 
which may be made. In the present model, the collision 
frequency r-1 functions as a measure of the strength 
of the thermal interaction with the lattice vs the spin
rotational coupling, and also represents the magnitude 
of nonsecular broadening of the rotational levels. This 
latter effect is important in the spectral densities as 
given by Eq. (Al9). When detailed thermal mecha
nisms are considered it should be entirely possible that 
several different r's will be obtained. 23 In fact, we may 
expect the broadening of the rotational levels to be 
of the secular type, involving simple fluctuations of 
eigenenergies, as well as nonsecular, involving induced 
transitions. 23 Thus the r appearing in j1(aE.-aA) 
should, in general, result from both secular and non
secular processes. However, the r in j1 ( aE, -aE .) should 
only involve nonsecular processes, since nuclear spin 
independent "collisions" must have identical effects 
on the degenerate pairs of Ea and Eb rotational levels, 
thus leading to a cancellation of secular effects. {This 
argument is based on the reasonable assumption that 
the terms in the spectral densities involving matrix 
elements of the operator F [cf. Eq. ( 4.2)] between 
states of the same torsional level are the most signifi
cant.} Now nonsecular, nuclear spin independent proc
esses can only be effective by leading to high-frequency 
transitions between different torsional levels, and this 
requires strong or sudden collisional mechanisms. Thus, 
to the extent that secular processes become important, 
the results of Sec. IV must be modified to allow 
r(aE., aA) ~r(aE., aE,). 

Another question exists about the detailed evalu
ation of the barrier height V. The usual simplifying 
assumption of a threefold barrier was introduced. But 
for a methyl group in a complex matrix it may be 
necessary to use the more general Fourier series 

+co 
L V:in exp ( i3nq,) 

n=-c:o 

to properly express the barrier height. Furthermore, 
the coefficients Vin in such an expansion are them
selves time dependent as a direct result of the colli
sional processes. This time dependence is a direct 
source of the secular and nonsecular broadening of 
the rotational levels, and is thus formally included 
in the collision frequency r-1. Then the strong-collision 
approximation is essentially equivalent to asserting 
that the relaxation be dominated by strong and sudden 
short-lived changes in the V3n• If collisions continue 
to persist for times long compared to a'-1, then the 
ESR experiment will sample a collection of methyl 
rotors experiencing a static distribution of barriers, 
but this is just equivalent to there being a distribution 
of types of lattice sites for the methyl rotor. True, 

23 J. H. Freed (to be published). 

short-lived collisions become unimportant when their 
occurrence frequency r-1 becomes small compared to 
a'-1• Note also that as collisions become "weaker," 
their effectiveness in inducing transitions should begin 
to depend on the magnitude of the barrier height. 

Another problem centers around the temperature 
dependence of r. The experimental studies17 •2 suggest 
that an exponential law of form r=r0 exp(A/T) may 
be appropriate, but no theoretical justification is offered. 
Further refinments of the theory would involve the use 
of better approximations of the isotropic splittings, 
consideration of the effects of the off-diagonal a'I±ST
terms ( which could become important when separa
tions of rotational levels are comparable to ESR tran
sition energies), and inclusion of the effects of the 
dipolar terms. 

APPENDIX: STRONG-COLLISION RELAXATION 
WHERE STATES OF DIFFERENT NUCLEAR SPIN 

SYMMETRY ARE COUPLED 

Let p(t), the density matrix for the combined spin
rotational system,15 be factorable into the product 
A(t) X<Y(t) where A(t) and u(t) are reduced density 
matrices depending only on the rotational and spin 
degrees of freedom, respectively.15 Let pi(t) = ),.._i(t) ui(t) 
be that portion of the density matrix which only in
cludes all states corresponding to the ith nuclear spin 
symmetry. Then we may write p as the partitioned 
matrix: 

(Al) 

where submatrices ),.._ijuii include all off-diagonal ele
ments between states belonging to the ith and jth 
symmetry classes. Terms such as )l.iiuii or ),.._iiui for 
i,6-j are not allowed, since they violate the exclusion 
principle. Note that the mixed superscripts may not 
be simply permuted. However, the Hermitian property 
of the density matrix and the separability of the two 
reduced matrices leads to 

(A2) 

where t indicates the Hermitian conjugate. The nor
malization of the density matrices is taken to be 

and 
(A2a) 

(A2b) 

so that any differences in population of states of differ
ent nuclear spin symmetries are contained in u. 24 The 
subscripts S and Ri limit the trace operations to spin 

24 The significance of this normalization is most easily seen 
by considering the equilibrium density matrix p 0•=X0•uo•= 
Z(R)Z(S) exp[-fi(Xsi+XR)/kT]. Then Xo'=B•(R) defined 
by Eq. (A 12) and ui is given by Eq. (A 20). 
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states and to rotational states of ith symmetry, re
spectively. 

The equation of motion for p [cf Eq. (2.2) of Ref. 
15] may be written in terms of each submatrix. Thus 
for example 

(d/dt) (cr'Ai) = -i[JC, p(t) JH. (A3) 

Note that, while the matrix elements of the commu
tator itself are restricted to states of symmetry j, both 
JC and p(t) within the commutator could have matrix 
elements involving states of other symmetry. The Ham
iltonian with which we are concerned is 

Now let 
(A4) 

(AS) 

where 'U11 includes all spin-rotational coupling terms 
which do not connect states of different symmetry, 
while 'U2 includes only such terms. Define 

JCs,i=JCs,+ ('U11
);, 

where 
('U1')i= TrR; I Bi(R)'U11 l. 

The interaction representation is introduced as 

(A6a) 

(A6b) 

(A7) 

p/(t) =exp[i(JCR+XsJ)t]p(t) exp[ -i(JCR+Xs,i)t], 

(A8) 

'U1,;*(t) = exp[i(JCR+JCs,i) t]'U / exp[ -i(JCR+Xs,;) t], 

(A9) 

where the subscript j is used to indicate that these 
terms are expressed in terms of the Xs,i Hamiltonian, 
and l is either 1 or 2. Equation (A3) may then be 
transformed to this interaction representation. It is 
assumed that a strong collision occurred at time to, 
and Eq. (A3) is expanded about to to second order. 
It is also assumed that after a strong collision: 

TrR(p,*(to) l =TrR{B(R) Xcr;*(to)} 

<T;i*(to) 0 

0 cr/*(to) (A10) 

where B(R) is the matrix which may be partitioned 
so that 

and 
Bi(R) =Zi(R) [exp(-hJCR/kT) Ji 

[Zi(R) J-1=TrR,[exp(-hJCR/kT)]. 

(All) 

(A12) 

[Zi(R) J-1 is the rotational partition function normal
ized for the ith symmetry states. Thus the strong 
collision is assumed to restore each set of rotational 
states belonging to a particular spin symmetry to its 
respective Boltzmann distribution, while also having 

no effect on er* (to), which includes the relative popula
tions of states of different spin symmetry. The dis
appearance of off-diagonal submatrices }._ii*(to) in Eq. 
(A6) after a strong collision does not necessarily require 
that important nuclear spin dependent intermolecular 
forces exist. These submatrices contain only off-diagonal 
elements between rotational eigenstates, so they are 
relaxed by secular mechanisms which broaden each 
of the coupled rotational states differently and by all 
nonsecular processes (i.e., induced transitions) involv
ing these levels, since they lead to uncertainty in life
time broadening of each of the levels.23 Under the 
above conditions, Eq. (A3) leads to 

(a/at)cr/*(t, to) 

= -i TrR{ ['U1,;*+'U2,;*, B (R) cr;*(t0) Jii} 

-r,{ J:a,to", • ( 1) + 'll,., •(I), 

['ll,,,*(t')+'ll,,,'(I'), B(R) a,'(10) ]]")+ • • •. (A13) 

Now usually 
'U/= LK(q,opcq,ll, (A14) 

q 

where l= 1 or 2, K(q,l) and F(q,l) are spin and rotational 
operators, respectively. So 

'U1,;*(t) = I:CF1(q)*(t)- (F/q) )j]Ki,/q)*(t)' (A15) 
q 

with a similar expression for 'U2,/( t). Equation (A13) 
can be greatly simplified by noting that all terms first 
order in 'U2./ must vanish, because by definition they 
can have no diagonal matrix elements between rota
tional states. Furthermore, the first-order term in 
'U1./(t) vanishes as a result of Eqs. (A7) and (A15). 
This leaves one second-order term in 'U1,;* and another 
in 'U2,;*. The arguments given with respect to Eqs. 
(2.10)-(2.12) of Ref. 15 may be applied here to show 
that 

i}___cr/*(t) = f""[i}___cr/*(t, tO)] r-1 exp(-0/r)d0. 
at O at to:at-o 

(A16) 

Thus Eqs. (A13) and (A16) yield an equation of 
motion for cr/*(t). The resulting equation is simplified 
by setting cr*(t0) equal to cr*(t) and neglecting higher
order terms in the expansion, an approximation which 
is valid when 'Ui2, 'U22<<r-2• The second-order term in 
'U1,;* leads to results essentially equivalent to Eqs. 
(2.13) to (2.15) of Ref. 15 while the term in 'U2,/ 
gives the coupling between states of different spin 
symmetry. Thus 
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where 

Ra,a;'f!;/,j'= L [Ka,f!,Cq,l)Kf!;'a;'(ql,l)2jqq' 1(ai-/3j) 
q,ql,l 

and 

- LOa;fJ;KfJ;'-Yk (ql,l) K W>i (q,l)jqq'l( ')'1,--{3j) 

'Yk 

- "'"'· fJ K (q',l)K fJ (q,l)y' l(-y _Q )] L..tUai ; ai 'Yk 'Yk, j qq' k fJj 

'Yk 

(AlS) 

1• ,1(a·-R·)=Zi(R) "'"'[exp(-Er;')p. ,(q.Op., ·'"',l) 
qq i f-.JJ .L.J kT rirl r 1 r 1 

ri,ri' 

X 1 + T 2 i,)Ol,I]· (Al9) 
Wa,f!.i T 

Here the ai and /3i are eigenstates of Jes,; while the 
ri and ri are eigenstates of JCR, The prime on the 
summation in Eq. (A17) indicates a restriction on the 
energies of the eigenstates given by 

We now introduce the ad hoc assumption25 that r,,*i(t) 
relaxes to a Boltzmann distribution given by 

where 

and 
[Z,( S) J-1=Trs{ exp( -fiJCs,,/kT)) 

(A20) 

(A20') 

(A21) 

which measures the fractional population of rotational 
levels of jth symmetry at thermal equilibrium, is intro
duced to account for the normalization of Bi ( R), r,i ( I) 
and },.i(t) given, respectively, by Eqs. (A12), (A2a), 
and (A2b). Whenever l=l then i=j, and when l=2, 

i,6-j for nonvanishing terms in Eqs. (AlS) and (A19). 
Nate that Oa,f!; also implies O;j, Since the interaction 
representation in Eq. (A17) is dependent on i via 
Eqs. (A6) and (A9) it may be necessary to transform 
Eqs. (Al 7) back to the Schroedinger representation 
and then re-express them in a consistent set of spin 
basis functions, by means of appropriate unitary trans
formations. 

25 A rigorous demonstration should involve an argument based 
upon the exact conservation of energy for transitions induced by 
'U1 and 'U2, so that detailed balance is satisfied at equilibrium. The 
present treatment involving the broadening of rotational levels by 
collisions obscures this point. 
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Thermal Decomposition of Acetylene in Shock Waves 
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Using a shock tube and an improved T.O.F. mass spectrometer displaying spectra every 20 µsec, the 
pyrolysis of acetylene was shown to proceed through the sequence 

C2H2->C,H,->C,H.--,C,H2->CsH2->• • • 

in the temperature range 1600°-2400°K. All these intermediates reach steady-state concentrations, that 
of the radical C,H3 being as large as that of diacetylene under favorable conditions. The primary bimolecular 
reaction of acetylene in which the radical C,H, is formed must also yield hydrogen atoms. These catalyze an 
isotopic exchange in mixtures of C2H2+C2D, that is about three orders of magnitude faster than the forma
tion of C.H,. The initial yield of acetylene-di is given by the expression 

[C2HD],=k[C2H,+C2D2]lt2, 

which is consistent with the proposed partial reaction mechanism. The mechanism of conversion of C4H 3 

into C,H2, etc., is uncertain but undoubtedly involves free radicals. 

INTRODUCTION 

THE pyrolysis of acetylene has been studied ex
tensively. At lower temperatures conventional static 

methods have been used.1- 3 Flow reactor techniques 
were employed to explore the intermediate temperature 

* Present address: Department of Chemistry, Brookhaven 
National Laboratories, Upton, Long Island, New York. 
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