
Downloaded 28 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 43, NUMBER 7 l OCTOBER 1965 

Theory of Saturation and Double-Resonance Effects in ESR Spectra 
JACK H. FREED 

partment of Chemistry, Cornell University, Ithaca, New York 
(Received 12 March 1965) 

A theory of satura,ion in the electron spin resonance spectra of dilute solutions of free radicals has been 
developed in terms of the general Boltzmann equation for the density matrix given by Bloch and Redfield. 
It is shown, in contrast to the earlier theories, that, in general, a composite line arising from a set of de­
generate nuclear spin states must be described by a generalized (matrix) saturated Lorentzian rather 
than a single line of over-all saturated Lorentzian shape. The general properties of this solution are dis­
cussed in detail for the case when electron-nuclear dipolar interactions are the only important nuclear­
spin-dependent relaxation mechanism. A particularly simple situation exists when similar nuclei are com­
pletely equivalent. Then each composite line consists of a superposition of saturated Lorentzians, and the 
linewidths and saturation parameters of each component depend only on the values of the total spin and 
of the z component of spin of the associated configuration of the completely equivalent nuclei. Thus it 
would be possible to saturate some components to a greater extent than others. These simple components 
may become coupled together in a complex fashion when the time-dependent fluctuations of the dipolar 
interactions for equivalent nuclei are no longer identical, which is often the case for aromatic-ring protons. 
Further coupling may be expected from the effects of nuclear-quadrupole interactions and from inter­
molecular-exchange phenomena and are only qualitatively discussed. In the absence of saturation the 
present theory reduces to the linewidth theory of Freed and Fraenkel. 

Detailed expressions are obtained for steady-state electron-nuclear double-resonance (ENDOR) effects 
on radicals containing completely equivalent sets of nuclei. The saturating fields can lead to coherence and 
induced-transition effects. It is shown how the latter, under appropriate conditions, can result in enhance­
ment of saturated ESR spectra. It appears necessary for enhancements that lattice-induced nuclear spin 
transitions should be comparable in magnitude to the lattice-induced electron spin transitions, or else 
cross transitions involving both nuclear and electron spins must be important in the relaxation process. 
Coherence effects involving both electron and nuclear spin transitions should be unimportant when the 
main contribution to the ESR linewidths results from secular processes and is nuclear spin independent. 
This is also the condition for NMR linewidths to be significantly narrower than ESR linewidths. Com­
plications still arise from the coherence and linewidth coupling effects of the different nuclear transitions 
being excited. A brief discussion of enhancement by a transient "heating" effect is also given. 

1. INTRODUCTION 

IN a number of recent theoretical and experimental 
studies,1- 7 many detailed properties of the unsatu­

rated line shapes of electron spin resonance of free 
radicals have been elucidated, and it has been shown 
that such studies can often yield useful information 
about dynamical molecular processes such as molecular 
tunbling motions, internal rotations, solvent complex­
ing, etc. These processes modulate the molecular spin 
systems and thus lead to spin relaxation effects which 
determine the line shapes. Since these mechanisms also 
determine the saturation behavior of the spectra, satu­
ration studies represent another method by which 
information may be obtained about them. The recent 
successful experiments of Hyde and Maki8 with elec-

1 J. H. Freed and G. K. Fraenkel, J. Chem. Phys. 39, 326 
(1963). References to this work are designated by I. 

2 J. H. Freed and G. K. Fraenkel, J. Chem. Phys. 40, 1815 
(1964). 

8 J. H. Freed and G. K. Fraenkel, J. Chem. Phys. 37, 1156 
(1962); 41, 699 (1964); J. H. Freed, P. H. Rieger, and G. K. 
Fraenkel, ibid. 37, 1881 (1962). 

4 J. Gendell, J. H. Freed, and G. K. Fraenkel, J. Chem. Phys. 41, 
949 (1964). 

6 J. H. Freed and G. K. Fraenkel, J. Am. Chem. Soc. 86, 3477 
(1964). 

6 J. H. Freed, J. Chem. Phys. 41, 2077 (1964). 
7 J. H. Freed and G. K. Fraenkel, J. Chem. Phys. 41, 3623 

(1964). 
8 (a) J. S. Hyde and A. H. Maki, J. Chem. Phys. 40, 3117 

(1964); (b) J. S. Hyde, Bull. Am. Phys. Soc. 9,568 (1964). 

tron-nuclear double resonance (ENDOR) suggest that 
this technique would also be useful in relaxation studies. 

The recent theory of linewidths of Freed and Fraenkel1 
deals in detail with the unsaturated line shapes of ESR 
spectra with well-resolved hyperfine structure. It was 
shown that in such situations degenerate ( or multiple) 
hyperfine lines will be described by superpositions of 
unsaturated Lorentzian lines which may in general 
have different widths. This prediction is contrary to 
the earlier theory of Kivelson9 which, based on the 
general Kubo-Tomita theory,1° assumed a degenerate 
hyperfine line to be a single Lorentzian with an averaged 
width. The necessity for introducing superpositions of 
lines is demonstrated quite clearly in the interpretation 
of alternating linewidth phenomena which can arise 
from solvent or internal-rotation induced modulations 
of the hyperfine splittings.1•3•5•7 Careful measurements 
on the spectrum of the tetracyanoethylene anion,4 where 
the widths are strongly dependent on molecular tum­
bling modulations of the electron-nuclear dipolar inter­
action, demonstrated that the degenerate hyperfine lines 
did in fact have different shapes a result incompatible 
with an assumption of averaged Lorentzians. The im­
portance of considering unsaturated Lorentzians as 
superpositions must of course carry over to the treat­
ment of saturation effects in ESR spectra. 

9 D. Kivelson, J. Chem. Phys. 27, 1087 (1957); 33, 1094 (1960). 
10 R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954). 
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Earlier theoretical and experimental work on ESR 
saturation by Lloyd and Pake11 was concerned only 
with the nondegenerate hyperfine lines of peroxylamine 
disulfonate, and while Stephen and Fraenkel12•13 devel­
oped a theory for degenerate hyperfine lines which was 
utilized in saturation studies by Schreurs and Fraenkel,14 

theirs takes as its starting point the assumption that 
each degenerate hyperfine line is a simple average 
Lorentzian, whose saturation behavior is represented 
by a single saturation parameter. In this paper we are 
concerned, in part, with extending the treatment of 
the linewidth theory in I involving superpositions of 
Lorentzians to conditions when saturation effects be­
come appreciable. The earlier saturation theories11- 13 

assume at the outset that a master equation can be 
written solely in terms of populations of the spin 
eigenstates, i.e., one may neglect off-diagonal elements 
of the density matrix. A detailed demonstration of the 
effects of degeneracies requires, however, a more general 
approach, and it can be seen that the simplified master 
equation used in the earlier theories is not always 
correct. It is also useful to have a formulation in which 
the correct unsaturated linewidths appear in the results, 
so there will be no ambiguity about the detailed shape 
of the saturated hyperfine lines, and this also requires 
the correct evaluation of off-diagonal density-matrix 
elements. The theory in I, while rigorous for degenerate 
lines, was based on the Kubo-Tomita14 analysis of a 
linear response to an applied oscillatory field and is 
thus not applicable to saturation problems. In this 
paper the general Boltzmann equation for the density 
matrix as developed by Bloch15 and modified by 
Redfield16 and Abragam17 is utilized. It contains the 
oscillatory field explicitly in the Hamiltonian and readily 
permits an analysis of saturation effects. 

The detailed application of the general theory is in 
general quite complex. However, the emphasis is on 
the special conditions applicable to the ESR of well­
resolved hyperfine lines where intermolecular exchange 
effects are small ( these effects are not readily handled 
in terms of the Bloch formulation), and this permits a 
number of simplifying assumptions. Nevertheless, many 
of the interesting effects which one may hope to note 
experimentally are based upon further rather specific 
properties of the relaxation mechanisms, and we try to 
elucidate what a few of them are as well as conditions 
under which they may be realized. The present treat­
ment is also applicable to the case where more than one 
oscillatory field is applied, and this permits a discussion 
of steady-state ENDOR experiments. 

11 J.P. Lloyd and G. E. Pake, Phys. Rev. 94, 579 (1954). 
12 M. J. Stephen and G. K. Fraenkel, J. Chem. Phys. 32, 1435 

(1960). 
13 M. J. Stephen, J. Chem. Phys. 34,484 (1961). 
14 (a) J. W. H. Schreurs and G. K. Fraenkel, J. Chem. Phys. 34, 

756 (1961); (b) J. W. H. Schreurs, G. E. Blomgren, and G. K. 
Fraenkel, ibid. 32, 1861 (1960). 

11 (a) F. Bloch, Phys. Rev. 102, 104 (1956); (b) R. K. Wangs­
ness and F. Bloch, ibid. 89, 728 (1953). 

18 A.G. Redfield, IBM J. Res. Develop. 1, 19 (1957). 
17 A. Abragam, The Principtes of Nuclear Magnetism (Oxford 

University Press, London, 1961). 

2. THEORY OF SATURATION 

A. General Theory 

i. Hamiltonian 

A spin system is described by a spin Hamiltonian 
of the form 

Mc(t) =~+Mc1(t)+lie(t), (2.1) 

where, in the high-field approximation,18 

~=g,/3.BoS,-liL'Y;l,,Bo-li'YeLi'i;S,l,;; (2.2a) 
i " 

is the time-independent Hamiltonian, from which zero­
order energy levels as well as transition frequencies may 
be predicted. Here {3. is the Bohr magneton; Bo is the 
externally applied de magnetic field assumed to be 
along the z axis; -y.=-J-y.J and 'Y; are, respectively, 
the magnetogyric ratios of the electron and the ith 
nucleus; g, and i'i; are averaged values (see I) of the 
g-tensor and isotropic hyperfine interactions (in gauss), 
respectively. The summations are over all magnetic 
nuclei in the radical. Only radicals with a single un­
paired electron ( S = ½) will be considered. It will also 
be assumed that the ESR consists of well-separated 
hyperfine lines which are, in general, degenerate. JC1(t) 
in Eq. (2.1) includes the terms which are randomly 
modulated by the lattice and lead to line broadening 
and relaxation. It may be formally written in terms 
of irreducible tensors as 

JC1(t) = '°' F _l(L,m) (t) A _l(L,-m) L../ µ,i µ.., ' (2.2b) 

where F,,j<L,m> is a random lattice function and 
A,.J<L,-m) contains only spin operators. The different 
types of perturbations in JC1(t) are distinguished by the 
subscript µ and the different nuclei in the radical by i. 
The rank and component of the tensors are given by 
L and m, respectively. In Eq. (2.1) e(t) represents the 
interaction of the spins with a time-dependent mag­
netic field which is assumed to be made up of one or 
more monochromatic oscillatory fields. 

ii. Density Matrix Equation of M otion16-17 

One may define a density matrix er, for a spin system. 
It obeys the equation of motion 

u,=-i[JC(t), er,]. (2.3) 

Due to the random nature of JC1 (t), it is necessary to 
consider a statistical ensemble of systems described by 
the average density operator: er=ii,. It is shown in the 
general theories1s-17 that when 

(2.4a) 

where Tc is a correlation time for the random motions 
leading to relaxation and the pointed brackets indicate 

1s This equation neglects the a;S±J.'f terms on the assumption 
that they will lead to frequency shifts which are small compared to 
the observed linewidths. But see R. W. Fessenden, J. Chem. Phys. 
32, 747 (1962); also, G. K. Fraenkel, ibid. 42, 4275 (1965). 
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an ensemble average, only terms to second order in 
X 1(t) affect the relaxation. Furthermore, when 

(2.4b) 

any effects of the rf field on the relaxation terms are 
negligible. 

One obtains in the high-temperature approximation: 

u= -i[Xo+e(t), o]-I'(u-uo), (2.5) 

where u0 is the equilibrium density matrix given by 

uo exp(-hXo/kT) "'N-1(1-qXo). (2.6) 
Tr[exp(-h'JCo/kT)] 

N is equal to the number of eigenstates of Xo and 
q=h/kT. Since I e(t) I is assumed small compared to 
Xo(t) (see below), it has been omitted from Eq. (2.6). 
Also, 

-[I'(u-uo)]aa'= L,'Raa'/J/J'(Uf!f3'-UOf3/J'), (2.7) 
(3/3I 

where the relaxation effects of 'JC1(t) are contained in 
the relaxation matrix Raa'/3/3' given by19 

Raa'/3(3' =2Jaf3a'/3'(Waf3)-oa'{J' L,Jayf3y(Wyf3) 
'Y 

-Oa(JL,Jya'yfJ'(WfJ'y) (2.8a) 
'Y 

and 

Jaf!a'f!'(w) = L, j;j(p.,v;L)(w) L,[A11 }L,q)]af! 
L;µ,P;i,j q 

•[A,jL,q)]a'f!'*• (2.86) 

Here AafJ is a shorthand notation for the a, (3 matrix 
element of A. The spectral densitiesj;/11 ••;L>(w) are the 
Fourier transforms of correlation functions, g;/11 ••;L) ( r) : 

1 {"' j;/µ.,,;Ll(w) =2;_
00 

g;/µ.,,;L>(r) exp(-iwr)dr. (2.8c) 

These correlation functions are determined by the 
properties of the Fµ.,/<L,m) (t). They are given in detail 
in I and in Ref. 6 for electron-nuclear-dipolar, g-tensor, 
and quadrupolar interactions. 

The prime on the summation of Eq. (2.7) indicates 
that it is restricted by the condition 

(2.7') 

where the angular frequencies WafJ are defined by hwaf! = 
-hwf3a=Ea-Ef3 and Ea represents the energy of the 
ath eigenstate of fiXo. The restriction of Eq. (2. 7') 
on Eq. (2.7) is applicable provided that the energy 
difference between any pair of eigenlevels, given by 
WafJ, as well as any double difference Waa'-w/3f3', may 
either be taken as zero or large compared to I e(t) I 

19 There are small imaginary terms in R,.,.•~w which are neglected 
in the present discussion. They are sometimes important and 
methods for including them in the absence of saturation effects are 
discussed by G. K. Fraenkel, Ref. 18, 

and I I'(u-o-0) j.16 Thus from an examination of Eqs. 
( 2.2a) and ( 2.4), we obtain the conditions 

I "I.Bo I, I I'(u-uo) J, 

(2.9) 

and we assume no accidental near equalities of any of 
the three kinds of terms on the left of Eq. (2.9). 
Conditions given by Eq. (2.9) are equivalent to saying 
that all the lines in the spectrum (both for electron 
spin and for nuclear spin transitions) are either well 
separated in the presence of relaxation and saturation 
effects or they are degenerate. It implies, furthermore, 
that e(t) must have a frequency component lying close 
to that of a particular spin transition if it is to have 
any appreciable effect on the spectrum, and then it 
will excite no other spin transitions which are not 
actually degenerate with the first. 

iii. Power Absorption 

We consider a single rotating rf field 

B1(t) =B1(coswti+ sinwtj) (2.10) 

whose frequency lies near that of an ESR transition 
frequency. It induces a magnetic moment M(t) in a 
macroscopic sample. (This field may be thought of as 
one of the components of a linear field B,,= 2B1 coswti.) 
The power absorbed by the paramagnetic spins may 
be expressed as20 

P= -M·dB1(t)/dt 

= -wB1i/2[M+ exp(-iwt)-M_ exp(+iwt) ], (2.11) 

where M±(t) =M,,(t) ±iMy(t). 
Now M±(t) may be calculated statistically from its 

associated quantum-mechanical operator 

by 
(2.12a) 

(2.126) 

where m, is the concentration of electron spins. Equa­
tion (2.9) assumes an assembly of noninteracting spin 
systems, that are well represented by Boltzmann statis­
tics. Since this equation represents a trace over all 
spin states, it will be invariant to a choice of zero-order 
basis functions. 

B. Transitions and Relaxation Matrix 

i. Basis Functions and Transitions 

A convenient set of basis functions used in I may be 
abbreviated by 

J 7±)= J ±; {J,_<•)M,.l) 

= l m,= ±½) IT ! J,_<•J M,. ), (2.13) 

20 See Ref. 17, p. 48, 
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that is, the product of an electron spin wavefunction 
I m,) with the products of nuclear spin functions 
I J,_<•lM,.). Here ru represents the uth completely 
equivalent subgroup of nuclei of the rth group of 
equivalent nuclei. !Nuclei are said to be equivalent if 
they are identical in JC0+e( t) and completely equivalent 
only if identical in JC1(t) as well, [see Eq. (2.l)].21 } 

Defining the operator 

J,.= L Ii, 
i in Tu 

then I J,.M,.) represents the eigenfunction of J,.2 and 
J,., with eigenvalues J,.(J,. + 1) and M,., respectively. 
The superscript K denotes the different degenerate 
states of the same value of J, .. The term in braces 
I J,_<•lM,.} thus corresponds to a particular configura­
tion of nuclear spin states. 

It is useful to relate the different eigenstates and 
their matrix elements to the particular ESR hyperfine 
lines to which they contribute. Let I ar) and I a,+) 
denote two eigenstates which contribute to the Ath 
line, such that 

(2.14) 

i.e., they have the same combination of nuclear spin 
functions but differ only in their value of m,. The 
subscript j ranges in value from 1 to Dx. (Note that 
N= 2LxDx.) Now the matrix elements of any operator, 
0, involving only the I ai±) may be written as follows 
when it is desired to order them according to the transi-

21 Further details on equivalence versus complete equivalence 
are given in I. When equivalent nuclei differ only slightly in 
:J(\ (t), then it is useful to consider them as completely equivalent 
and then to introduce a simple first-order correction. That is, if 
the rth equivalent group is composed of two completely equivalent 
subgroups ru, r,, and if g,.,.,.<•:•:L>=g.,<•:•;L>+.:1,<•:•:L>, where 

I Ll,<,,;,;L) /g.,c,.;,;L) I «1 (for allµ, v, and L), 

then using Eqs. (2.8) 

where 

~ g;;(p,,,L) ( T) [A µ}L,q) ]ap[ A,jL,q) ]a'W * 
i,i in r11 ,ri, 

= g,,c,.,,,L)[A.,,<L,q)]ap[A,,,<L,q)]a,w* 

+.:1,<,,,,,L) { [Aµ,ru(L,q)]ap[A,,,CL,q)]a'W* 

+[Aµ,,.(L,q)]ap[A, ,,.,.<L,q)]a•p,*} 
1 

A •. ,(L,q)= ~ A •. ,<L,q) 
i in ru,r0 

and the term in Ll/•·•·Ll is a small correction to be added to those 
Raa'PP' matrix elements for which the term in g.,<•·•,L> is nonvan­
ishing. In the case of the linewidth matrix, this amounts to a 
neglect of the small off-diagonal elements compared to the large 
(corrected) diagonal terms. For the transition-probability matrix, 
this amounts to a neglect of weak pseudotransitions (see Sec. 4). 
If it is desired to calculate the error involved in such approxima­
tions, it is better to use the representation of products of the two 
equivalent groups rather than their coupled representation, as the 
calculation of off-diagonal matrix elements is much more difficult 
in the latter representation. (Note that the theory given in I is 
treated in full detail with the former representation.) 

tions to which they are related: 

(2.15a) 

where Ox1 •➔ is referred to as the matrix element for 
the Ajkth transition, and we sometimes use 

(2.15b) 

where the superscript tr stands for transpose. When 
j=k in Eqs. (2.15), the second subscript is dropped 
(i.e., Ox;;➔= Ox1➔), and whenever it does not result in 
ambiguity the forward arrows are also dropped. When 
w lies close to the resonant frequency wx of the >..th 
hyperfine line which is well separated from the other 
lines in the spectrum, then the trace of Eq. (2.12b) 
need only be taken over those states which contribute 
to the >..th line. Furthermore, from the nature of the S± 
operator this trace need only be taken over all pairs 
of states I ar) and I ai+) obeying Eq. (2.14). By 
definition they also obey 

(2.16) 

We neglect accidental degeneracies of hyperfine lines 
for simplicity ( although the formulation can readily 
be extended to include them). Thus the >..th composite 
ESR hyperfine line is assumed to arise only because 
Ex1±= Ex1 ± for all values of j and k. It then follows 
from Eq. (2.2a) that the relation 

M,">.i-= L M,/i=M/ 
u in r 

must be obeyed independent of j and for all r. 

ii. Steady-State Equations 

(2.17) 

It is convenient to study the deviation of the density 
matrix from its equilibrium values given by 

x=u-uo, (2.18) 

Steady-state solutions for the Xx; will be obtained where 

(2.19) 

with Zx1➔ time independent. 
Then the >..th hyperfine line leads to a power absorp­

tion 

where 

Px=filliw-y,BiL( S_x1Zx/'), 
i 

(2.20) 

(2.21) 

Expressions for the Zx1 are obtained from Eq. (2.5). 
In the present case of a rotating rf field given by Eq. 
(2.10) which excites only electron spin transitions we 
may take: 

fie(t) = ½fi-y.B1[S+ exp( -iwt) + s_ exp( +iwt)]. (2.22) 

Let 
(2.23) 
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Then taking the (ar 11 a;+) matrix element of Eq. (2.5) 
gives 

w11.Z11.1-i exp( -iwt) [r(x) ]x1+d(xx1 +-x11.1 -) = qwxd, 

(2.24) 

where Aw11.=w-w11. and xx;"' are the departures of the 
populations of states I a;±), etc., from their thermal 
equilibrium values. They are taken as time-independent 
in the steady-state solution, and must obey the condi­
tion L;x;=O which follows from the normalization 
L;o-o, = L;o-;= 1. Oscillatory terms have been neglected 
in Eq. (2.24) as they have zero time average values.15 

It may be shown from I that, in the present notation, 

(2.25) 

where k and l need not be equal. Thus, while there are 
only D11. distinct Zx1 needed for Eq. (2.20), there are 
D11.2 distinct Zx1• which may be coupled by Eqs. (2.24) 
~nd (2.25). The general expression for all the D11.2, Z11.1• 

IS 

AwxZx;.-iLRx, •. x,mZx, m + (dxx;, +-dxxik -) 
l,m 

= qwxd<>jk, ( 2.26) 

where <>;k is the Kroenecker delta function. The Xll.i•"' 
whenj;=k are called pseudodiagonal density matrix ele­
ments, since they connect degenerate basis states. In 
general, then, the coupled Eqs. (2.26) must be solved 
to obtain the absorption. 

iii. Weak Fields-No Saturation 

When the applied rf field is very weak, the XA;• + will 
be very small and their product with d11.1, etc., will be 
higher order in the rf field, so they may be neglected 
in Eq. (2.26). One then obtains 

AwxZx;.-iLRx;.,x,mZx,m=qwxdow (2.27) 
l,m 

The "normal-modes" solution of Eq. (2.27) may be 
obtained by first diagonalizing the Rx1 •• x,m matrix. The 
detailed form of this matrix is given in I, and since 
the solution of Eq. (2.27) is readily shown to be 
equivalent to the linewidth formulation given there, it 
is not pursued here except to note that the degenerate 
hyperfine line is given by a superposition of Lorentzians. 
This superposition may, of course, be obtained quite 
simply when the Rx1.,x, .. matrix is automatically diag­
onal (i.e., Rx1 •• x,m=Rxu,>-i••ox1,.x,m). Then Eq. (2.27) 
yields 

Zx1= qwxdTx;[(w-wx) Tx1+i]/[1+ (w-wx) 2 Txi2], 

(2.28) 

for each of the X,.± pairs of states. Here T x1 = - ( Rx1 ,xJ-1 

is the transverse relaxation time for the X;th transition, 
and the Lorentzian form of Zx/' is apparent. 

iv. Relationships between Transition Probabilities 
and Linewidths 

While detailed expressions have been given in I for 
the terms in the Rx1>,x, .. matrix (i.e., the linewidth 
matrix for the Xth hyperfine line), it is useful to relate 
these terms to the lattice-induced transition probabil­
ities which are important in saturation phenomena. It 
may readily be shown (see Appendix A, I, and Ref. 17) 
that the diagonal terms are given by 

-Rx1.,11.ik= T\ik-1+½( L Wa 1-,.+ L Wa.+,.), (2.29) 
,-;=a,-- ,-;=ak+ 

where W,s,. is the transition probability from the ,8th 
to the -yth state and I a,±)= I X;± ). There is an impor­
tant physical distinction between lattice-induced transi­
tions in which Am.= ±1 (nonsecular transitions) and 
those where there is a change in nuclear spin quantum 
numbers but Am.= 0 (pseudosecular transitions). The 
dependence of the nonsecular terms on the relevant 
Tc is given to a good approximation by the usual Debye­
type function Tc/ ( 1 +wo2Tc2), where 

wo= r,,-y;,.B,Bo, 
while that of the pseudosecular terms is 

Tc/ ( 1 +wn2Tc2)""Tc, 

since the condition WnTc«l (where Wn represents a 
nuclear Lamor frequency) is almost always obeyed in 
liquids (see Appendix A) even when woTc»l. (For 
protons wn/w0=-do.) The T\1,-

1 in Eq. (2.29) repre­
sent only secular line-broadening effects (i.e., effects 
from modulations of energies of the spin states). Now, 
the only kinds of off-diagonal terms which can appear 
(except when quadrupole effects are important) using 
the set of basis functions given by Eq. (2.13) are of 
form Rx;;.>-,. and Rx;;,>-•/ where, for example, 

--Rx,;.xa=½ L W,-,(a;+,a.+) .f;=k. (2.30) 
,-;=a,-+,ak+ 

The W<ai,a•>.,- are pseudotransition probabilities given 
by: 

(2.31a) 

where a; and Otk are any degenerate pair of eigenstates. 
Note that when j = k one obtains the normal transi­

tion probabilities 

vV(a; ,a;) ,,-<>;k= Wan= 2J arran(Wan). (2.31b) 

The pseudotransition probabilities imply an uncertainty 
in the appropriate degenerate set of zero-order states 
from which transitions occur due to the random fluctu­
ations of X 1(t). It follows from the assumed stationary 
Markoff time variation of JC1 ( t) as well as its Hermitian 
character that the pseudotransition probabilities obey 
the relations 

W(a1,ak),,-= W-y,(a>,a;)= W*-y,(a;,a,) 

= W*(ai,a;),-y• 

(2.32a) 



Downloaded 28 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

SATURATION AND DOUBLE RESONANCE IN ESR 2317 

It follows from the detailed forms of the terms in X1 ( t) 
(given by Table I and Eq. ( 4.19a) of I that 

(2.32b) 

A list of the nuclear spin-dependent transition proba­
bilities arising from the dipolar and g-tensor terms are 
given in Appendix A. These transition probabilities 
may be seen to have the properties that they are zero 
between degenerate states or states having different 
values for the { J,.). (These results are no longer correct 
when quadrupole terms become important since they 
will connect states of different J, .. ) These properties 
are a simple consequence of the nature of the basis 
functions Eq. (2.13) and the fact that the only nuclear 
spin-dependent terms in X 1(t) which are being con­
sidered are the dipolar terms and they involve either 
J, .. or J,." operators. Furthermore, it is always possible 
to order the degenerate { J,_<•lM,.} states so that the 
value of K ( as well as the value of J ,.) will be preserved 
in a transition. This conclusion may be expected from 
general group-theoretic considerations.22 Furthermore, 

22 The above nuclear functions correspond to eigenfunctions of 
the operator J,.2+bJ11r., where bis arbitrary. The eigenfunctions 
corresponding to each eigenvalue of this operator must transform 
irreducibly under 9l (apart from accidental degeneracy), where 9l 
is the group of all possible symmetry transformations of this 
operator, i.e., each set of m degenerate eigenfunctions forms a 
basis for a unique m-dimensional irreducible representation of 
this group. Further, it is possible to order the partner basis func­
tions of a particular basis set by the index", such that they are not 
only orthogonal to all other basis functions corresponding to 
different irreducible representations, but they are also orthogonal 
to basis functions of the same irreducible representation but dif­
ferent values of this index"· Now if an operator O commutes with 
all the members of the group 91, it can only have matrix elements 
between functions belonging to the same irreducible representation 
and having the same index number "· The operator X 1 (t), is, by 
definition, invariant to all the permutations of the r.th group of 
completely equivalent nuclei. In the case where these nuclei have 
I=½, the group 9l may be taken as this permutation group. This 
follows from the fact that all the simple-product nuclear spin basis 
functions [which appear as linear combinations in our representa­
tion Eq. (2.13) J corresponding to each value of M,.. may be 
obtained from one another by the permutation operators. E. P. 
Wigner in Group Theory and Its Application to the Quantum Mec­
hanics of Atomic Spectra (Academic Press Inc., New York, 1959), 
Chap. 13, shows that this last condition leads to the result that all 
the functions, which in the present discussion correspond to 
M,,.=l (where l=J,., J,.-1, •··, 0) include all the irreducible 
representations (of the permutation group) contained in the func­
tions corresponding to M,,.=l+l (where l< J,.) plus one new and 
distinct irreducible representation of dimensionality D(n, M,.=l) 
-D(n, M,.=l+l) [where D(n, M,.) refers to the degeneracy of 
nuclear states for n spins giving a particular value of M,.J. It is 
readily seen that such a breakdown into irreducible representations 
is equivalent to the breakdown into eigenfunctions of the operator 
J,.2+bJ,... 

The case where I>½ is more complex, and 91 must then contain 
more members than just the group of permutations of equivalent 
nuclei. Calculations for the cases n<4 and I= 1 show that a set of 
degenerate eigenfunctions of J,.2+bJ,. will in general be reducible 
under just the permutation group. However, the irreducible repre­
sentations that are then obtained are different and distinct, and 
this is sufficient for our purposes. 

If one attempts to use group-theoretic techniques in dealing 
with equivalent but not completely equivalent nuclei, one is 
immediately confronted with the obstacle of incoherent time varia­
tions in 3C1 (t) of the terms corresponding to the different equivalent 
sets, as well as the tedious problem of evaluating the terms in Eqs. 
(2.8b) in basis sets different from Eq. (2.13). 

the pseudotransition probabilities also are seen to have 
the property of only connecting States er.;, a.k, and 'Y 
where the values of {J,. <•>} and { J,, <P>) remain un­
changed.22 When this conclusion along with Eq. (2.30) 
is applied to Eqs. (2.24) to (2.26), it is seen that a 
separate coupled equation of fonn (2.26) may be 
written for each set of states corresponding to the same 
value of all the { J,_<•>). Of course, the properties of 
each set corresponding to the same { J,.) but different 
K are identical. The above remarks will lead to other 
simplifications when saturation effects become impor­
tant. 

C. Saturation 

In the event that the rf field is strong enough that 
the X>-i,•" must be retained in Eq. (2.26), it is necessary 
to obtain the matrix elements ()..,.± II )..k±) of Eq. (2.5). 
Thus 

[r(x) ]x;4= 2dZx/', 

[r(x) ]x1-= -2dZx/', 

wherej= 1, 2, • • ·, Dx. 
Also 

[r(x)],s,s=0, 

(2.33a) 

(2.33b) 

(2.33c) 

where f3 refers to all eigenstates except I ),.i± ), and there 
are N-2Dx such states. Now Eqs. (2.7) lead to 

[r(x) ]a;a;= L W(a4a;):yzX 1aka;- L TVa;(")'z.")'m)X
1
-,,nm, 

kin a,'l't 1'k,1'l 

(2.34) 

where Eqs. (2.31) have been used. Note that in Eq. 
(2.34), 'YI refers to the lth member of the "{th set of 
degenerate levels, while Ct.j refers to the a.th set. The 
transition probabilities in Eq. (2.34) are subject to 
the conditions discussed in the previous section. Thus 
the summations in Eq. (2.34) need only be taken over 
states I a.k ), I 'Y1 ), I 'Ym) which have the same {J,_<•l} 
as the particular state I a.i ). Note that only the real 
parts of the "pseudodiagonal" elements of x are in­
volved in the coupled equations. 

i. Completely Equivalent Sets of Nuclei 

Before considering the general solution of the satura­
tion problem, the case where pseudotransition proba­
bilities are unimportant, i.e., Wca1,a,.),n= Wa,.,-,,,5ik is 
treated. This is, of course, the case when all equivalent 
groups of nuclei are also completely equivalent. Then 
Eq. (2.34) takes the particularly simple form: 

[r(x)]a;a;= LWam(Xa1-xn), (2.35) 
1'k 

and Eq. (2.26) is also simplified [cf. Eq. (2.30)] and 
becomes 

where 
(2.36') 
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TABLE I. Saturation factors for sets of completely equivalent nuclei. 

DJ• 

</>(], MJ)a,b I=½ l=l 

MJ J </>(], MJ)a,b b«l b=l b»l n=l; n=2; n=3; n=4 n=l; n=2 

2+17b+33b2+9b3 
±! ! 0.5446 0.2500 

2+20b+54b2+36b3 

2+b 
±½ I 1 0.750 0.5000 2 2 

2+2b 

2+13b+21b2+9b3 
! 1 0.4018 0.2500 1 

2+20b+54b2+36b• 

1 + 18b+95b2+ 150b3+32b4 

±2 2 0.4805 0.2000 1 
1 +2ob+ 127b2+288b3+ 180b4 

1+3b+b2 

±1 1 0.6250 0.3333 1 3 1 1 
1+4b+3b2 

1 + 15b+65b2+96b3+32b4 
2 1 0.3393 0.2000 1 1 

1 +20b+ 127b2+288b3+ 180b4 

0 0 1 1 1.000 1.0000 2 1 

1+2b+b2 

1 1 0.5000 0.3333 1 3 1 
1+4b+3b2 

1 + 14b+6lb2+84b3+32b4 
2 0.3117 0.2000 1 

1 +20b+ 127b2+288b3+180b4 

• See Eq. (3.1). b b=Wn!W,. • Degeneracies of states for n equivalent nuclei of spin I,, for a particular value of J =~;I;. 

and Eqs. (2.33) and (2.35) become, 

['Wa;+-y;(Xa;+-x'Y;) = 2Vi.;[qwx-(Xa;+-xa;-) ]= Ux;, 
'Yi 

(2.37a) 

'Yi 
= -2Vx;[qwx- (Xa;+-xa;-) ]= -Ux;, (2.376) 

E'W/J;-y;(;xp;-X-y;) =0, (2.37c) 
'Yi 

and 

Ex-r;=O, (2.37d) 
'Yi 

where Subscript j now indicates the jth set of functions 
corresponding to the same value for the {J •• M}. The 
restricted sums (indicated by primes) are only over 
States 'Yi where j is always the same. Note that I {11 )~ 

I a1± ). There are in fact 

A (J • .C•l) =2Il(2J,.+1), 

states corresponding to { J,. <•l), so 

N= E A(J •• <•l) = I:D(J,.)A(J,.C•l), (2.38) 
,c,Jr,,, Jru 

where D(J,.) is the degeneracy of the states of a 
particular set of values of I Ir., M •• }, and is the same 
for all values of IM,.}. 

a. Transition probability matrix. Equations (2.37) 
may be written in matrix notation as 

(2.39) 

W is a singular AX A matrix ( where the particular 
subscript has been dropped). When the rank of W is 
A-1, then a replacement of any of the A [Eqs. 
(2.37a)-(2.37c) J by Eq. (2.37d) leads to a nonsingular 
matrix and Eqs. (2.37a)-(2.37c) become: 

(2.40) 

where the superscript on Wi indicates the matrix 
formed by replacing the ith row of W by ones and Ui 
indicates the ith component of U has been replaced 
with a zero. Let C;1 be the cofactor of W;1; C;f be the 
cofactor of W;l; and C;k.Jl the klth cofactor of C;1. 

Several useful relations follow in part from the property 
of W, that the nth row ( column) is equal to the negative 
of the sum of all the other A -1 rows (columns) . 
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(1) 

(2) 

(3) 

(4) 

(5) 

C;;= C;;= C;;= C 

C;zi= - C;/= C;l- Cilk 

ck/- ck/= A ckl.ij 

for all i,j; 

i,.t=j,.t=k; 

l,.t=k; i,.t=j; 

l,.t=k; i-;6-j, k, l; 

( 2.41) 

It may be shown, utilizing a theorem of Ledermann,23 

that C;;, the diagonal double cofactors C;;,;;, and also 
C;J,ik are always positive. The signs of the Cii,kl how-

(2.46b) 

where e; and o; measure the small deviations from the 
average, so 

Then from Eq. (2.44) one obtains 

,, dqwxTx 
Zx- =--------

' l+(AwxTx) 2+d2Txrlx 

(l+e;T2) (l+o;T1) x--------- (2.47) 
1+ {QxJ[l + (AwxTx) 2+d2Txrlx]}' 

ever, depend in general on the relative values of the W;;. where 
It follows that 

x;= I:(Cd/ AC) ukz, (2.42a) 
Qx; = e;Tx(2+e;Tx+ 2o;rlx+o;rlxe;Tx) +o;rlx 

k 

where l is arbitrary and 

(Xa;+-xa;-) = Lrla;+a;-,klUk1/2, 
k 

+ (Awx) 2o;rlxTx2+d2e;rlxTx2. (2.47') 

If the right-hand factor in Eq. (2.47) is expanded in 
(2.42b) powers of e;Tx and o;rlx then to first order in these terms 

we obtain from Eq. (2.20) 
where 

rl;;,kz=2C;,kz/C. (2.42c) 

[Note that the relation LkCk= AC has been used in 
Eq. (2.42a) .] Thus for the present case when only one 
rf field is present, Eq. (2.42b) yields 

(Xa; +-xa;-) =rl,.y x;[qw>. - (Xa; +-Xa;-) ], ( 2.43) 

where n,.;=rl>.;.>-; is the saturation parameter for the 
AJth transition. 

b. Line shapes. Now Eqs. (2.36) and (2.43) yield 

Zx; = dTx;qw,.( AwxTx;+i) /[l + (Aw,.Tx;)2+d2Tx;rlxJ. 

(2.44) 

When this equation is substituted into Eq. (2.14), it 
is seen that the saturated absorption from a multiple 
hyperfine line is given as a superposition of saturated 
Lorentzians and each component, corresponding to a 
different set of values of the I J,.), will in general have 
a different width Tx;, and a different saturation param­
eter rlx;• If, for two components, T,.;rl>.,>>Tx.nx., then 
it will be possible to saturate thejth component without 
saturating the kth. 

Suppose, however, that all the Tx; as well as the i"h; 
are nearly equal for each value of >,,. Then it is useful 
to define 

T -1- D -1 L T -1 X - A A; (2.45a) 
i in X 

and 
g -1-n-1 :En -1 X - X >-1 , (2.45b) 

j in X 

Also let 
Tx;-1= Tx-1+e; (2.46a) 

i.e., a single saturated Lorentzian with an average Tx 
and rlx. Corrections to Eq. (2.48) may be obtained by 
including quadratic terms in expanding Eq. (2.47) but 
the results are quite complex for the case of appreciable 
saturation.24 

ii. Coupled Saturated Hyperfine Lines 

In the event that pseudotransition probabilities given 
by Eq. (2.31a) make important contributions to the 
unsaturated linewidths and to the spin-lattice relaxa­
tion, the coupled equations (2.26), (2.33), and (2.34) 
must be solved. It is then necessary to generalize Eqs. 
(2.33) to 

(2.49) 

where both j and k can take on any of Dx values. Also 

(2.50) 

where f3z and f3m refer to all pairs of degenerate states 
which are not included in the >,,th set of transitions. 

The more general form of Eq. (2.34) is 

-½ I: (Wca.a1),;,mXa;a,+ Wca;a1),;, .. Xa1ak) 
l in a,"}"m 

+ L Wca;a•l.<lli/l .. lX.B,11 .. , (2.51) 
/lz,/lm 

24 D. Kivelson U, Chem. Phys. 41, 1904 (1964) J gives the 
quadratic correction term for the case of no saturation. Note that, 
to first order in ,;Tx and ~;fix, the definitions Tx=Dx-1'1:.;;nxTx; 

23 W. Ledermann, Proc. Cambridge Phil. Soc. 46, 581, (1950). and flx=Dx-1'1:.;;nXOx; are equivalent to Eqs. (2.45). 
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where it is again assumed that EfJ, E-y¢Ea• In Eq. 
(2.51) 

(2.52) 

and is a "secular linewidth" between Degenerate States 
a; and <Xk resulting from instantaneous differences in 
the time-dependent energy fluctuations of these states.26 

Also 
(2.53) 

The terms of Eq. (2.53), for which States a;¢ak¢ 

fJ;¢fJk, do not have the usual lifetime effect on the 
linewidths, although the Wca;a;),-y terms do. 

It is convenient to define symmetrized matrix ele­
ments 

(2.54) 
and 

[r(x) ]a;a;= ½[I'(x) ]a;a; +½[r(x) ]a.a;• (2.55) 

It follows from the Hermitian character of x that 

Then Eq. (2.49) may be rewritten as: 

[r(x) ]x;,±= ±2dZ"x;., 

(2.56) 

(2.57) 

and it may be shown from Conditions (2.27) that 
[I'(x) ]x;•"' is given by Eq. (2.51) with the Xa;/3" replaced 
by x'a;fJi, etc. From Eq. (2.26) we obtain 

ll.wxZxH-(i/2) I:(Rx; •. >-,m+Rx.;,Aim)Zx,,m 
l,m 

+d(x\;•+-x'x;.-)=qwxdo;k- (2.58) 

Now Rx;• ,x, m is nonzero only if j = l and/ or k = m.1 Then 
it may be shown that 

(2.59) 

by recognizing that only the nuclear spin functions are 
permuted by 'A;k ➔-'>Aki➔ , etc. One need only permute 
the nuclear spin-dependent terms in Eqs. ( 4.46) to 
( 4.48) of I, neglecting small frequency changes in the 
spectral densities which are negligible under the usual 
conditions that wn«Tc-1; w0. The off-diagonal elements 
given by Eq. (2.30) may also be seen to yield the 
desired conditions under this approximation. It follows 
from Eq. (2.59) that the second term on the left in 
Eq. (2.58) becomes: 

-iI:Rx;;,AlmZx,,m, (2.58') 
l,m 

where l=j and/or m=k and only the symmetrized 
matrix elements given by Eqs. (2.54) to (2.56) need 
be considered in the solution. 

26 This term will become important if, for example, an alterna­
ting linewidth is present, since this phenomenon results from large 
instantaneous energy differences of degenerate zero-order states. 
When nuclei are completely equivalent, then this term must 
vanish. (See Appendix A.) 

Equations (2.58) may be written in matrix notation 
as: 

(2.60) 

and Eq. (2.57) with the symmetrized form of Eqs. 
(2.51) becomes: 

WX= -2fi+z". (2.61) 

It is useful to order the vector X so that it may be 
divided into a principal part of dimension N given by 
2C and including all diagonal elements Xa; and the re­
mainder including all the pseudodiagonal x' a;au where 
j¢k, i.e., 

The rows and columns of W may then be ordered in a 
consistent fashion so that it appears as the partitioned 
matrix 

W=(W W1) 

W2 W12 ' 

(2.62) 

where W is an NXN matrix which corresponds to the 
matrix defined in Eq. (2.37). If N' is the number of 
different degenerate pairs of states, then W12, W1, and 
W2 are N'XN', NXN', and N'XN dimensional, 
respective! y. 

The first N equations of Eq. (2.61) (which involve 
W and W1) are linearly dependent since, using Eq. 
(2.34), it follows that 

I:r(xla1a1=0. (2.63) 
a; 

Thus one of these equations must be replaced by 

(2.63') 
a; 

in order to carry out the solution. [This replacement 
will again be indicated by a superscript j in W and 
Dtr in Eq. (2.61) .] Note, however, that in general 

(2.64) 

It is also true that the first N columns of W ( which 
include W and W2) are also linearly dependent. This 
may be shown by rewriting Eq. (2.51) as 

[r(x) ]a;a•= L(Wa;ak,'YJ [xYm-HXa;+x,,.) J 
'Ym 

+terms in x''Ym'Y• (m¢n), (2.65) 

and by noting that for the a;akth row the sum of all 
the coefficients of the components of i equals zero. 
Thus Eqs. (2.41) and (2.42), which applied to W when 
W1 and W2 were negligible, will still apply to cofactors 
of elements of W when W1 and W2 are no longer negligi­
ble, but these cofactors must be obtained in terms of 
the full W matrix. The solution to Eqs. (2.60) and 
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(2.61) becomes 

[ (Llw>.) 2R-1+R+ S]Z" = Q 
where 

(2.66a) 

(2.66b) 

It may be shown by using Eqs. (2.41), (2.42), and the 
general form of D that 

(2.66c) 

wh~re 12>.;,>-• is the appropriate generalization of !:2>.1 ,>.u 
which was defined by Eq. (2.42). Note that for j~k, 
states corresponding to the A;th and Akth transitions 
must be coupled in some fashion via the lattice-induced 
(pseudo-) transition probabilities i:t}i>.; ,>.. is to be non­
vanishing. The matrix elements of S involving pseudo­
transitions AJk are more difficult to calculate from Eq. 
(2.66b) since Eqs. (2.41) and (2.42) are directly 
applicable onlr to the cofactors of W. However the 
calculation of S from Eq. (2.66b) must still be inde­
pendent of ,y__hich of the N rows of Wis taken asj. The 
real part of Z is obtained from 

(2.67) 

Equation (2.66a) has the form of a generalized (matrix) 
saturated Lorentzian shape for the vector Z". The 
"normal modes" solution, in the presence of appreciable 
saturation, is now seen to involve the diagonalization 
of the matrix 

( Llw>.2R 1-l- R + S) 

which for S negligible would just require diagonaliza­
tion of R. The absorption ~ctrum will, however, 
depend only on the transitions 2,;,;Z>./' [see Eq. (2.20)]. 
The solution for ~ is obtained by a matrix inversion 
of Eq. (2.61). The detailed solution of Eqs. (2.66) is 
greatly simplified by recognizing that only those states 
(and transitions) are coupled which correspond to a 
particular set of values of the { Jr. <•l} as long as only 
the relaxation terms discussed in Appendix A are 
important.26 Further simplifications based on other 
symmetries are discussed in the example given in 
Sec. 3.B. 

3. ILLUSTRATIONS OF THE SATURATION 
THEORY 

A. Completely Equivalent Sets of Nuclei 

i. Electron Spin vs Nuclear Spin Transitions 

We treat some simple examples which illustrate the 
theory and show how composite hyperfine lines are 
affected by saturation. The easiest situations to discuss 

26 Note that the selection rules on JC1 (t) discussed in Sec. B.iv 
and E9. (2_.34) show that only those Wca;ak),(BlBm>, for which the 
subscriptsJ, k, l, and m refer to the same { J,.<•) I have any effect on 
the Xai•i· Thus the inclusion of these new terms does not affect the 
separation of the terms and states depending on their values of 
{J,.M}. 

are those for which pseudotransition probabilities are 
negligible (i.e., all equivalent nuclei are completely 
equivalent), so this case is treated first. It is further 
assumed that there is only a single set of such nuclei 
in the radical. Let us also neglect cross-relaxation effects 
given by Eqs. (A3) and (A4) as well as dipolar terms 
in Eq. (A2). Such approximations will be valid in (1) 
the slow tumbling region where worc>>l, so that the 
pure nuclear spin-flip terms in Eq. (Al) are the domi­
nant nuclear spin-dependent terms, and also the nuclear 
spin-independent terms in Eq. (A2) must be large; or 
(2) when worc«l and the dominant relaxation terms 
are the last two terms in Eq. (A2) .27 (It is also being 
assumed that isotropic spin-density fluctuations have 
no important relaxation effects.) Case ( 1) is more 
interesting because it leads to coupled relaxation of 
the different hyperfine lines. These approximations 
mean that all the electron spin transition probabilities 
W, are independent of nuclear spin, although the 
nuclear spin transitions depend upon the value of J 
and Mas given in Eq. (Al), but let ½jnn(Dl(O)=Wn, 

Now for A; corresponding to a particular set of J 
andMJ 

n;.;=nJ.M,=2w.-1<1>(J, MJ), (3.1) 

where the cp(J, MJ) must be calculated using Eq. 
(2.42c). The results are given in Table I for several 
different values of J and M J. Note that these results 
are applicable whether the identical particles are I=½ 
(protons); I= 1 ( e.g., 14N nuclei), etc. All that is 
changed is the degeneracy of the different components 
of the hyperfine line corresponding to a particular value 
of MJ. The values of cp(J, MJ) are also given for the 
special cases Wn«W,, Wn= W,, and Wn>>W •. In the 
first case¢( J, M J) is always unity because this implies 
that nuclear spin transitions are negligible. Thus the 
pair of states contributing to the A;th transition is 
essentially isolated from all the other states. The case 
Wn»W. is seen to yield ¢(J, MJ) = (2J+l)-1. This 
is easily understood as resulting from the fact that the 
2 J + 1 pairs of states corresponding to a particular 
value of JM are "shorted" together by a large Wn, and 
to use the analogy with an equivalent electrical circuit,16b 

we then have 2J + 1 "conductances" of equal magnitude 
in parallel, through which excited electron spins 
(m.= +½) can return to their unexcited states 
(m,= -½). When Wn~W. the situation is more com­
plex, but since there are more relaxation or "conduct­
ance" paths than just the A1th, the ¢(J, MJ) lie some­
where between the two extremes. Note also from Table 
I that the components of a line corresponding to a 
particular M J but different J will have different satura­
tion parameters, and, in general, the components corre-

27 M. J. Stephen and G. K. Fraenkel assumed in their calcula­
tions, a fast exchange, i.e., worc«l although 'this required an 
unusually short r.< 10-11 sec. They included all terms equivalent 
to Eqs. (Al)-(A4) except isotropic ones, but could set the 
j(wo) ,s,j(0). 
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sponding to the lower values of J will saturate more 
readily. 

ii. Predictions from Experimentally Measured S pectal 
Densities: Para-Dinitrobenzene 

The condition that Wn~W., which leads to more 
complex relaxation processes, appears to be a possible 
physical situation for ESR experiments on sharp, well­
resolved spectra. For such cases the rotational correla­
tion time Tc often obeys the condition WoTc>>l and 
exchange effects may be negligible. The dipolar terms 
in Eq. (A2) are small as a result of the slow tumbling 
approximation and we may expect that other mecha­
nisms must dominate in W,, such as the effect of a 
g-tensor anisotropy as well as intermolecular interac­
tions of the electron spin. 

It is possible, from the low-temperature ( -55°C) 
linewidth study of para-dinitrobenzene,2 to estimate 
many of the terms contributing to W, and W n for 
this radical by using the relations between linewidths 
and transition probabilities as given by Eqs. (2.29), 
,ts well as the expressions in Appendix A. We find as 
the intramolecular contributions to W.(Am,= ±1, 
Am1= 0) ,28 with Tc= 2.01 X 10-10 sec, to be in seconds-1 

w.<G2)= 13.4x102, 

w,<DNG2)= -12.7x 102 MN, 

W,(DHG2)=2.12x102 MH, 

W,(DN)=S.92X102 MN2, 

W,(DH)=0.758X102 MH2, 

W,(DNH)= -2.08X102 MNMH, 

where the subscripts N and H refer to the 14N and 
proton nuclei, respectively, while D and G2 refer to 
dipolar and G-tensor terms. 

The contributions to Wn(Am1= ±1, Am,=0) are28 ,29 

WN(D)=166X103/2(JN, ±MN), 

WH(D)=25.7X102f2(h, ±MH), 

The residual (nuclear spin-independent and presumably 
partly intermolecular) contributions to W. are difficult 
to estimate. The residual contributions to the linewidths 
in para-dinitrobenzene were estimated experimentally 
to be of the order of 0.4X 106 sec-1. If it is assumed that 

28 W,<DH> and W Hem are estimated from the theoretical calcula­
tion given in Ref. 2 for jH<D> (0) and not from the anomalous 
experimental result reported there. 

29 Note that in para-dinitrobenzene there are two pairs of 
equivalent protons which are not completely equivalent. Thus 
from Footnotes 21 and 2, 

I t:,.H<D>/gH<D) I =0.31, 

which amounts to appreciable differences in the calculation of 
proton spin transitions. We do, however, neglect the differences 
in the protons for the present order-of-magnitude estimates. More 
accurate calculations of transition probabilities would require the 
methods of Sec. 2.C.ii (or the approximation in footnote 21 when 
fVII«W,). 

exchange-type effects may be neglected (see Sec. V) 
and the remaining relaxation effects (such as dipolar 
coupling of the electron spin to the nuclear spins of 
solvent molecules) are governed by a relaxation time 
of roughly the order of magnitude as that for intra­
molecular effects,30 then, because of the slow tumbling 
condition the secular effects dominate the nonsecular 
effects in the linewidths, so an order-of-magnitude 
estimate of w,cresidual) may then be obtained as 

(0.4X 106) /wiTc2= 30X 102 sec-1, 

which is of the order of W,CG2l and WHCDl,31 These 
estimates are only meant to be suggestive, and indicate 
that at least in the region wiTc2~ 100, it is possible that 
WH might be of the order of magnitude of w., and 
nuclei such as 14N with large dipolar terms might even 
have WN> W •. The calculation of n in the previous 
section would then not be very good for the 14N nuclei, 
since the nuclear spin-dependent terms in W,, i.e., 
W,lDNl and W.CDNG2) would be appreciable. This also 
means that the combined electron-nuclear spin-flip 
transitions Eqs. (A3) and (A4) would also become 
important. (The effects of modulation of isotropic 
hyperfine interactions, which have been neglected in 
the present discussion, can become important for nuclei 
having large isotropic splittings.3) 

Arguments similar to the above indicate that even 
when WH,...,.,W,, the hyperfine linewidths need not have 
large contributions from terms depending on M H, which 
is, of course, the experimental result in Ref. 2. Then 
variations in saturation behavior of the different hyper­
fine components for proton containing radicals will be 
due primarily to the variations in the ~h.M rather than 
the TJ,M, In fact, it is clear from Table I that as long 
as WH,...,.,W, the variations in nJ,M can be considerable. 
A final point to note is that the complicating effects 
of incompletely equivalent nuclei may well become 
important in determining nJ,M when WH,...,.,W, even 
when these effects play a negligible role in the TJ,M• 

B. Coupled Saturated Hyperfine Lines 

As an example of a calculation employing coupled 
saturated hyperfine lines we will consider the simplest 
problem, that of two protons which are symmetrically 
equivalent but not completely equivalent. The unsatu­
rated case was treated in I, Sec. VII. In the extension 

30 It should, however, be noted that, if intermolecular correlation 
times are involved and are associated primarily with translational 
diffusion, then the Stokes formula gives 1'trans=9Trot (Ref. 17, p. 
302). A discussion of intermolecular effects that are expected to be 
important is given by Stephen and Fraenkel (Ref. 12), assuming 
Ttran.wo<<L For long correlation times, Ttranswo>> 1, the spectral 
densitiesj (wo) depend on the microscopic diffusion process. Never­
theless, reasonable models (Ref. 17, p. 462) indicate that an 
order-of-magnitude estimate of j(wo) will be given by j(o)/ 
(WoTtrans) 2 in this limit. 

31 Note however that Schreurs and Fraenkel [Ref. 14(a) J 
obtained a considerably larger estimate (about 30X 104 sec-1) of 
the remaining contribution to the saturation parameters from 
their room-temperature experimental data on the b-benzosemi­
quinone anion. Ther could not account for such large valu\:~ 
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to saturation one must invert the W matrix, a 10X10 
matrix in the present case. Since the simplifications 
inherent in Eqs. (2.41) and (2.42) are no longer fully 
applicable, we do not attempt to perform this operation 
in detail. The notation we employ is given in Fig. 1. 
There will be eight diagonal elements Xa, Xa', Xb, Xb', 
Xe, Xe', xa, xa, and two off-diagonal elements x'b'c' and 
x'be which are coupled according to Eq. (2.61). When 
the + 1 (-1) transition is excited only Z+1 (Z_1) has 
a nonvanishing value. Thus Eq. (2.66a) becomes 

[ ( .1.w+1) 2+ ( R+1.+1) 2+ R+1,+1 S+1 +1JZ11 +1 = R+1+1qw+1d. 

(3.2) 

R+1.+1 is r!:_adily obtained from Eqs. ( 4.46) to ( 4.48) 
of I, and S+1.+1 = d2!.'i+1,+1. A similar expression may be 
written for Z"-1, so each of the ± 1 transitions are 
given as simple saturated Lorentzians, although their 
saturation parameters include effects of pseudotransi­
tion probabilities. The center line, however, is doubly 
degenerate. This line will include nonvanishing matrix 
elements Zo, Zo,, and Z00 ,. It is clear from symmetry 
that 

(3.3) 

[These relations follow in detail by first noting from 
Eq. (7.5) ofithatR00 =R0,,o,= (A+B) ;Ro,001=Ro,,o,,y= 
C and R00, ,oo' = B are the only nonvanishing matrix 
elements of R. Then one may use the fact that all of 
the (pseudo) transition probabilities from a state b to 
any other state 'Y are equal to those from c to the same 
state -y. (The same remark is true for States b' and c'.) 
Equations ( 3.3) are then obtained from the expressions 
for r(x)bb-r(x)ee, r(x)w-r(x)e'e', and Zo-Zo,,] 
These symmetry relations permit one to reduce the 
order of the simultaneous equations to be solved to 
the two equations 

(3.4b) 

which are obtained from Eq. (2.58). Equations (2.61) 
may be reduced by using sums of the bth and cth rows 
and of the b'th and c'th rows. Then W becomes a 8X8 
matrix and X an eight-dimensional vector, etc.32 ; it is 
necessary to replace fitr in Eqs. (2.61) and (2.66) by 
])tr, which differs from the former only in that Dwtr= 
zjjbOtr and f)b'Otr= 2Db'Otr. The solutions expressed by 
Eqs. (2.66) may now be applied in the revised two­
dimensional transition space and the eight-dimensional 
space of the (pseudo) eigenstates. Equation (2.66a) is 

(

A+ B( 1 + Y) ~2d2!.'io,o 

2C(1-Y)+2S00',o 

2C(1-Y)+So.o0' )(Zo) (qw>,,d) 

(A+B) Y+B+SOO',OO' ZoO' = 0 ' 
(3.5) 

where 
Y= (.1.w>,,) 2/[(A+B)B-4C2], (3.6) 

and the matrix elements of S in Eq. (3.4) are those 
defined by Eq. (2.66b). Letting the 2X2 matrix of 
Eq. (3.5) be represented by m, then the shape of the 
central line may be obtained from 

Zo+Zo1 =2qw>,,ffi22/det Im i (3.7) 

and will depend in detail on the saturation terms of S. 
The result expressed by Eqs. (3.5) may be compared 

to the calculation involving two completely equivalent 
spins of ½ as given in Table I. The present results 
indicate a breakdown of the selection rules for com­
pletely equivalent spins which prevented any connec­
tion between the J = 0 and J = 1 degenerate components 
of the center line. Thus fio,o involves spin-lattice transi­
tion-induced couplings between degenerate zero-order 
states ( which are now expressed in the simple product 
representation). These effects also lead to a coupling 
of the degenerate, microwave-induced transitions which 
apRear in the form of the off-diagonal matrix elements 
of S in Eqs. (3.5). Lastly, there is a coupling of the 
linewidths given by the term C (and discussed in more 
detail in I). 

4. DOUBLE-RESONANCE EFFECTS 

A rotating rf field lying close to a resonant frequency 
for nuclear spins may modify the microwave signal 
being monitored in several ways. The rf field, by virtue 
of its coherence, can cause a change in the eigenstates 
seen by the microwave field. The rf field will also 
demonstrate the characteristic of inducing transitions 
between coupled states, and this effect will appear to 
be most useful for studying free radicals in solution. 
An Overhauser-type effect, which would be important 
if nuclear resonance frequencies were being monitored, 
is not expected to be important in ESR studies (see 
below). These different effects are most simply illus­
trated in the case of a free radical with S= ½ and one 
nucleus with I=½, so this case is discussed first. A 
number of complications arise when both signals are 
very strong and comparable in magnitude making a 
detailed analytical solution somewhat difficult. But be­
cause of the successful Hyde and Maki experiment, it 

32 The simple symmetry features of the present example may be 
generalized to more complicated situations in a manner analogous 
to that outlined in Sec. 7 of I for the unsaturated case. One need 
only note which sets of Zxi; and corresponding sets of Xx,;± must 
be equal by symmetry and solve for corresponding sums over the 
equivalent members of each set. 
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a= I+;++> b•I +;+->c=I+;-+> d = I+;--> 

l'" l"" !·-• 
a'= I-;++> b' = I-;+-> c' = I-;-+> d'• I-;--> 

Fro. 1. Notation for product spin representation and ESR 
transitions of radical with two equivalent protons. 

is of interest to see how enhancement of a saturated 
ESR line could be brought about by such a technique.33 

A. Four-Level System: S=½; I=½ 

In this case the rf frequency, wn, lies close to one of 
the resonance frequencies of a single spin I=½, inter­
acting with the electron spin. From Fig. 2 and Eq. (2.2), 
they are 

Wab= I 'YnBo+h.an !, 
Wa'b'= I 'Y..Bo-h.an j. 

( 4.la) 

(4.lb) 

For purposes of the present calculation it is not 
necessary to assume that this is the only interacting 
magnetic nucleus but only that there are no other 
nuclei equivalent to the one under consideration. Then 
States a, a', b, and b' in Fig. 2 represent a particular 
configuration of all the other nuclei. Let us further 
assume that the microwave frequency w. of strength 
B. lies close to waa,, while Wn is close to wa'b', i.e., 

Utilizing Eqs. (2.5) and 4.3), one obtains the matrix 
elements 

( 4.Sa) 

( 4.Sb) 

[A.+~n- (i/Tb'a) ]Zb'a-d.Zb'a'+dnZa'a= 0, ( 4.Sc) 

which show that Za'a and zb'a' may be expected to be 
coupled via the presence of Zb'a• Here Tb'a-1 is the 
linewidth which is associated with the transition a-b' 
whiled. is equal to din Eq. (2.23), and d,. is the equiva­
lent term for the nuclear transition.34 

The equations (2.33) and (2.35) for the diagonal 
elements become 

L Waa(xa-xa) = 2d.Z"a'a, 
a,ca 

( 4.6a) 

L Wa'a(xa-xa) = -2d.Z"a'a+2dnZ11b'a', (4.6b) 
a¢af 

LWba(xb-xa) =0, ( 4.6c) 
ar'b 

L wb'a(Xb'-xa) = -2dnZ11b'a', (4.6d) 
a,cbl 

with equations like (2.37c) for the (A-4) other levels 
(4.2) and 

Now Eq. (2.22) must be replaced by 

E(t) = h.B.[S+ exp( -iw.t) + S_ exp( +iw.t)] 

+h..B,.[J+ exp(-iwnt)+L exp( +iw,.t) ]. (4.3) 

The applied fields may be expected to generate 
steady-state density-matrix elements: 

Xa'a = Za'a exp ( iw.t), 
and 

(4.4a) 

(4.4b) 

It follows from Eq. (2.9) that a,. is large enough so 
that Matrix Elements Xbb' and Xab will be negligible. 
Note, however, that the two rotating fields, taken to­
gether, couple States a and b' and lead to a non vanishing 
"overtone" term 

(4.4c) 

33 Double-irradiation techniques are frequently employed in 
NMR experiments. However, effects common to nuclear magnetic 
douhle resonance such as spin decoupling are precluded in the 
present case by the condition of Eq. (2.9) (")',li;)»I ENMR(I) I, 
where the suhscript indicates the rotating fiekl close to an NMR 
fre(Juency (cf. Ref. 17). If the opposite condition, "Y.d;«I •ii) I, 
held for any particul-r a,, then by exciting the resonance of such 
nuclei Ell) one would expect to remove any effect such nuclei 
might have on the ESR spectrum. 

( 4.6e) 

Equations (4.6a) and (4.6b) differ from Eqs. (2.37a) 
and (2.37b) in the appearance of a term in Z"b'a' 
which leads to the induced transitions and to Over­
hauser effects of the nuclear resonance upon the levels 
a and a/. 

-++--0- b Ms Mi 
<:--i> + -

l"'aa' 

"'ab 

! .. ~ 
-+ 

a' 
<~ 

b' 

Fro. 2. Transitions and eigenstates for double resonance in a 
radical with S = ½ and I=½. 

34 In the calculation of d. it is important to recognize that Eq. 
(4.3) omits the term h,B.( S+e-i.,,.i+s_e+i"n1). Its effect depends 
on a departure from the high-field approximation, even though the 
assumption in Footnote 18 is valid. Thus, if the high-field wave­
functions are corrected to first order in a.SJ "f' and the aforemen­
tioned term is then included, it is found that d,.0 (i.e., in the high­
field limit) becomes dn±, where dn±=d.0[1± ("Y,hn) (a./2Bo)] and 
the signs depend on whether m,= ±i. For protons, I "Y,hn I =660 
and when B0 =3300 G, d,.±=d.0[1± (a./10) ], and the effect is not 
negligible. We are indebted to D. H. Whiff en for calling this to our 
attention. Since the sign of dn± is obvious in the discussion, it has 
not been explicitly included. 
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Equations ( 4.5) and ( 4.6) may be written in matrix 
notation as 

and 
(4.7a) 

(4.7b) 

Note that these matrices span two different spaces, 
which, in the present case consists of the three-dimen­
sional space of the relevant transitions and the A­
dimensional space of the relevant eigenstates. Here T-1 

is a 3X3 diagonal matrix whose elements are the in­
verse relaxation times Ta/Ji K is a 3X3 matrix; D a 
3 X 2A matrix and Dtr is the transpose of D where the 
superscripted j has the same meaning as in Eq. (2.40); 
Z is a 3 X 1 column vector equal to Z' + iZ"; etc. The 
matrix elements are readily obtained by inspection. 
The formal solution to Eqs. ( 4. 7) is 

[KTK+T-1+S]Z"=Q 
and 

Z'=TKZ", 

( 4.8a) 

(4.8b) 

where Z" may be obtained by matrix inversion in 
Eq. (4.8a). Here T= (T-1)-1. S is given in a form 
similar to Eq. (2.66b): 

Sx;.~•= [2D(WJy-1Dtri]x;.~•=dx;d~.n»;.~., ( 4.9) 

where the subscripts indicate the different transitions. 
Equation ( 4.9) is seen to be quite general applying to 
larger spin systems and more induced transitions than 
the example with which we are presently concerned. 

It will be sufficient for our present purposes to solve 
the simpler equations for exact resonance, when A.= 
Ap= 0, since this is the condition under which double­
resonance effects will be maximized. Equations ( 4.8) 
and ( 4.9) yield 

( 4.10a) 
and 

+d.d,.(Qa'a,b'a'-Tb'a) Z"a'a'= qwa'b'dn, ( 4.10c) 

Z'b'aa= Tb'a( d,.Z"a'a'-deZ
11b'a'') • ( 4.10d) 

Equation ( 4.10a) is a special consequence of the condi­
tion of exact resonance. The terms in Tb'a arise from 
the effects of the coherence of the oscillating fields 
while those involving na'a,b'a' represent coupling of 
Z"a'a and Z"b'a' due to the induced transitions of the 
oscillating :fields. [Note that Qa'a,b'a' is always negative. 
See Sec. 2 after Eqs. (2.41) .] From Eqs. ( 4.10) we get 

Z", '= qwaa,d,Ta'a (4.lla) 
a a 1+d.2(Qa'a-ta'a') Ta'a+d,.2Tb'aTa'a' 

where 

(4.11b) 

A term in qwb'a'd,. representing an Overhauser effect on 
Z"a'a' is neglected in Eq. (4.11a) since Wa'b'/waa,,.....,,lfh-. 
When d,.2,.....,,0, then ta'a',.....,,0 and Z"0 , 0 ' assumes its proper 
resonance value for the case of only one saturating 
oscillatory :field [see Eq. (2.44)]. When d,2,.....,,0, then 
Eq. (4.11a) becomes 

The decrease in Z"a'a(d,'-o>' when d,. increases results 
from the fact that the coherence effect of the applied 
NMR :field leads to a splitting of the ESR line into 
two shifted components. [If Ta'a= Tb'a= T2, then it is 
easy to show from Eq. ( 4.8a) that Eq. ( 4.12) arises 
from two Lorentzians of width T2- 1 at Aw.= ±d,. which 
replace the original line.] Now when 

( 4.13a) 

this coherence effect on Z"0 , 0 ' may be neglected com­
pared to the normal saturation effect (barring an 
accidental equalityrla,~ta'a which is not likely to occur: 
See below). Now ta'a leads to an enhancement of the 
signal, since it effectively reduces the saturation param­
eter na'a• If ta'alrla'a is not to depend on the magnitude 
of d.2, the condition 

( 4.13b) 

must hold. This is equivalent to neglecting the coherence 
effect on Z"b'a'' resulting from the ESR field as com­
pared to the saturation of Z"b'a'' by the NMR :field. 
A further condition, 

( 4.13c) 

leads to a complete neglect of coherence effects, but 
is not necessary for obtaining an enhancement. When 
coherence effects are appreciable and Eqs. ( 4.13a) and 
(4.13b) are not applicable, then detailed evaluation of 
the relaxation terms is required in order to determine 
whether there will be an enhancement or an attenuation 
of Z"a'a'• It is readily seen that when there is appreciable 
saturation and 

(4.14a) 

then Conditions ( 4.13) are satisfied when 

(4.14b) 

Let us assume that Eqs. (4.14) hold in a particular 
situation. Then ta' ,a' is a maximum as d,.2---+<YJ where 
ta'a(d.'-w>'= (Qa'a,b'a')2/Qb'a'• A measure of the relative 
enhancement is given by the quantity 

( 4.15) 
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TABLE II. Values of the enhancement factor E for several sets 
of values of transition probabilities when the"'••' and "'•'b' tran­
sitions are excited.a 

a b C 

W,1~Wx2= W.= W.= 
w. W.1>>W.2 W.,»Wx1 

(1) W,~W,.~W. 4/3 25/24 25/16 

(2) W,»W,.~W. 1 1 

(3) W,.»W.~W. 1 1 

(4) W.»W,~W,. W./2(W,+W,.) w./(w.+w.1 

(5) w,.~w.»w. 3/2 1 2 

(6) w.»w.»w,. 1 1 1 

(7) w.~w,.»w. 9/8 9/8 9/8 

a See Fig. 2, 

as compared to unity, and for large d.2, 

( 4.16) 

It is of interest to see what kinds of mechanisms can 
yield an enhancement factor E greater than unity. We 
consider transition probabilities as given by Eqs. 
(A1)-(A4). For simplicity let Waa•=Ww=W., Wab= 
Wa•b·= Wn, Wa•b= Wxi, and Wa•b•= w,,2 and neglect 
any terms involving other nuclei in the molecule. We 
may then study the limiting conditions which depend 
on the relative values of these four quantities. The 
results are given in Table II. The largest values of E 
may be obtained by Condition ( 4), i.e., when W,, is 
the strongest relaxation mechanism. An examination 
of Eqs. (A1)-(A4) shows that this is highly unlikely 
unless the isotropic di polar mechanism is very important 
in which case only Conditions ( 4b) may be realized, 
where no enhancement would be expected. However, 
if the Wab nuclear transition is excited instead of the 
wa'b' transition, then the results for Conditions b and 
care interchanged, and a significant enhancement could 
result. If the wbb, ESR transition were being studied, 
then the wa'b', instead of the wab frequency, would give 
enhancement.36 

The other situations where enhancements may be 
obtained are given by (1), (5), and (7) in Table II. 
The remarks about (4) also apply to (5) and most 
likely to ( 1) as well, but these conditions would also 
probably require slow tumbling and/or intermolecular 
exchange effects (see Sec. V). Condition (7) is the 
only one for which enhancement may be obtained in 

36 It may at first glance be thought that an effect of this sort 
could predict the sign of a,.. However, it_ turns out Cse~ )!:q. (~-~)] 
that the low-field ESR line (corresponding to"'••' if a,. 1s positive 
and ww if a,. is negative) will be enhanced by the higher NMR 
frequency if 'Yn is negative and by the low~r NMR fr~quency for 
positive 'Yn independent of the sign of an. This preferential enhance­
ment effect could however be useful in studying isotropic split­
ting-constant flu~tuations 'when they lead to large t~ansi!ion 
probabilities. These remarks also apply ~o the two o_uts1de lines 
arising from any set of n completely eqwvalent nuclei. 

the absence of appreciable cross relaxation. Using the 
slow-tumbling approximations discussed in Sec. 3.A 
and setting W.=Wn, we readily see that Eqs. (4.14b) 
follow for the case of protons. More specifically, the 
saturation factors in Eq. (4.14b) are all comparable to 
Tb'a' but greater than Ta'a and Tb'a, 36 It is fou~d for 
(7) that Eis a maximum when W.= Wn, Physically, 
the enhancement arises for this case because the rf­
induced transitions between States a' and b' "short" 
out the lattice-induced Wa'b', thereby increasing the 
effectiveness of the relaxation path for the a-ta' transi­
tion via States a--tb--tb'--ta'. The maximum when 
W.= w,. follows because if (1) w,.«w. then TVab is 
still very small, while if (2) W.«W,. then Wbb' is the 
rate-controlling transition no matter whether Wb'a' 1s 

shorted. 

B. Completely Equivalent Nuclei 

When several completely equivalently nuclei are 
present (and/or when I>½), the nuclear transitions, 
Eqs. ( 4.1), are degenerate with all the other nuclear 
transitions between states corresponding to the same 
value of m, and obeying the selection rule AM J = ± 1. 
It is expected that the appropriate generalization of 
Eqs. ( 4.13) will still lead to a neglect of coherence 
effects on the ESR transition being excited. But now 
there are "overtone" off-diagonal density matrix ele­
ments between pairs of states for which Am,=0 but 
AM J= ±2, ±3, • • •. Furthermore the relaxation matrix 
for the NMR linewidths is not diagonal [see Eqs. (B4) ], 
and this will lead to a further coupling of transitions 
for which AMJ=±2, Am,=0. These effects may be 
studied for the J = 1 states arising from two completely 
equivalent nuclei of I=½ ( this, of course, corresponds 
to the problem of one nucleus of I= 1) . The J = 0 
states will be unaffected by the oscillatory field w,.. 
Equations equivalent to Eqs. ( 4.5)-( 4. 7) may be 
written down, but since T-1 is no longer diagonal, T 
must be replaced by (T-1)-1 in Eqs. ( 4.8). When the 
equivalent of Eqs. ( 4.13) are applicable, then only 
four Zap terms need be considered in Z. That is, let 
ESR transition j +, - )-1 -, - ), be excited giving 

36 The linewid ths for the tim, = ± 1 transitions are found from 
Eqs. (4.46) and (4.47) of I to be (assuming slow tumbling) 

T .,.-1 = Tb,.-1+¼[j1(0) + (8/3)jD(O) J 
+½[jIG(Q) + (16/3)jDG2 (0) ]Bo, 

Tb,.-l=½jD(O) +[jGo(O) + (8/3)jG2(0) ]Bo2+X'+X, 

where X'~(1+wh.2)X [see Eq. (A2) and Sec. 3.A.i] and, from 
Appendix B, 

Tb,.,-1=¼P(O) +C7/6)JD(O) +x. 
Also nb•a•= (1/Wn)[(1+2b)/(1+b)], where b=W,./W,, and 

I !:la•a,b'a' I= (W,+Wn)-l, 

W,=2j(G2l(wo)Bo2+x, 
and 

W,.=½jD(O). 

It is assumed that gGo(O)B0
2 and X' are the largest terms. 



Downloaded 28 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

SATURATION AND DOUBLE RESONANCE IN ESR 2327 

z. and NMR transitions I - , - )- I - , 0) giving Za; 
I - , 1 )- I - , + ) giving Zb; then the I - , - )-1 - , + ) 
overtone transition giving Zc must also be considered. 
The notation used is I m,; M J ). The resulting value of 
Z 11.r is 

( 4.17) 
where 

and da2=db2=dn2, Also Ta= Tb= Tn, Ta,b-1, and Tc are 
given by -Ra-1, -Ra,b-1, and -Rc-1, respectively, 
which may be obtained from Eqs. (Bl)-(B3).37 In the 
presence of saturation, conditions equivalent to Eq. 
( 4.14) for the neglect of coherence effects among the 
nuclear levels are found to be given by Eq. ( 4.14a) and 

( 4.19) 

But when W.,...__,Wn, Eq. (4.19) will not be the case. Tc 
should, in fact, be comparable to the saturation param­
eters.37 Thus a quantitative calculation of the parameter 
1;.r must include the coherence terms. Note, however, 
that for large dn, T n, and Ta,b have a negligible effect 
on ~.r although they will help determine a double­
resonance spectrum width when Wn is varied. The 
equivalent expression for the center component of the 
ESR line corresponding to J = 1 is given by replacing 
e with e0 in Eq. ( 4.18). But n.0,a= -n.0,b by symmetry 
and sign considerations, ( when the assumptions in Sec. 
3.A.i of the neglect of transition probability terms 
linear in M J may be utilized), so the equivalent of the 
second term in Eq. ( 4.18) vanishes. However, because 
of the complications introduced by the coherence and 
linewidth couplings of the nuclear levels, it seems 
worthwhile to attempt a first approximation to the 
double-resonance spectrum without considering their 
effects in detail. 

C. Simplified Version of Double Resonance 

It is assumed that all the off-diagonal elements in 
(K-iT-1) of Eq. (4.7a) (which is now applied to the 

37 The saturation parameters, using the equivalent of Condition 
(7) in Table II are: 

fl,= (1/N)Wn2 (4W.2+l2W,Wn+4Wn2), 

flb=fla= (l/N)W,Wn(W.2+6W,Wn+6Wn2), 

n,,b= (l/N) 2W,Wn3, 

fl,,a= (l/N) 2W,Wn2 (W,+2Wn), 

fla,b= - (1/N) W.2Wn2, 

N = W,Wn2 (2W.2+8W,Wn+6W n2). 

Both Wn and W, contribute to T0 via Eqs. (B2) and (B3), respec­
tively. The secular contribution, given by Eq. (Bl) is comparable 
in magnitude to Eq. (B2). 

case of a set of completely equivalent nuclei) are 
negligible, so that separate, uncoupled equations may 
be written for each of the Za/3 that are generated by 
the applied oscillating fields. Then the formal solution, 
Eqs. ( 4.8a) becomes 

(T11+T-1+S)Z11 =Q (4.20a) 
and 

Z'=T'Z11, (4.20b) 

where S is given by Eq. ( 4.9); T' and T" are both 
diagonal matrices given by 

( 4.21) 

It is assumed that the T'A; corresponding to the Xth 
degenerate nuclear transition is independent of j and 
is given by Eqs. (Bl)-(B3). Note that K contains 
only the .1; terms. Thus all the coupling, between the 
different Za/s, appear as a result of a nondiagonal S­
the effect of induced transitions. The solution to the 
S= ½, I=½, single-nucleus case neglecting the Over­
hauser effect on the electrons on letting a'-a= e and 
b'-a' = n becomes 

where 

~.= dn2(£2e,n)2Tn/[1 + (.1nT n) 2+dn2Tn0n], ( 4.22b) 

It is readily seen that when .1,= .1n = 0, Eqs. ( 4.22) 
become Eqs. ( 4.11) (neglecting coherence effects). If 
the ENDOR spectrum is monitored after subtracting 
off the ESR signal,38 then for .1.= 0 and n.T.d.2» 1: 

2
:hw. =d.(Z

11
ENnoR-z

11
EsR) 

= qw.dn2Qn ( l-E-I) T n 
n. 1+(.1nTn) 2+E-1TnQndn2 

( 4.22c) 

That is, a saturated Lorentzian of width T n and 
saturation parameter Qn/ E is obtained and the signal 
strength is proportional to (l-E-1). The extension to 
where m degenerate (or nondegenerate) nuclear transi­
tions are induced is [from Eqs. ( 4.20) neglecting 
effects on the ESR] again Eq. ( 4.22a), but now 

(4.23a) 

where Fis the mXm determinant with elements 

(f;;)-1= T;j(l+.1rT?+T;S;), (4.23b) 

f;i= Su for i~j [where S;,i is defined by Eq. (4.9)], 
and F;i is the cofactor of ]ii• Note that Jrii(d.-co) = S;, 
and a generalized enhancement factor is given by 

(4.23c) 
38 J. S. Hyde (private communication) has developed such a 

technique. 
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Equations ( 4.23) are related to a result given by 
Stephen,18 who, however, treated a multiple hyperfine 
line as an averaged line. We have also given the explicit 
dependence on the nuclear line-shape factors, Eq. 
(4.23b), and have retained double cofactor terms S;, 
instead of his diagrammatic approach.39 

For the two nuclei J = 1 case, the e± lines and the el 
line, have enhancement factors E of -H and ¾, respec­
tively, in the slow-tumbling approximation when 2Wn 
is set equal to W •. The central component, where J=O, 
will not be enhanced (i.e., E= 1). Somewhat greater 
enhancements are predicted for radicals containing 
larger numbers of nuclei both equivalent and inequiva­
lent since there will be more relaxation paths whose 
"effective resistances" will be decreased by the applied 
NMR field. 

In the absence of favorable conditions for a steady­
state ENDOR experiment [e.g., Conditions (2), (3), 
or ( 6) of Table II] it might be possible to utilize other 
techniques. Thus, for example, if W .>>W,.,....,W., a triple 
resonance technique in which both NMR frequencies, 
Eqs. ( 4.1), are simultaneously excited may be expected 
to lead to signal enhancements. On the other hand, if 
W n>>W., W.,, a double-ESR technique, where both the 
ESR transitions (in Fig. 2, for example) are simulta­
neously excited, could be useful. 

D. Transient Effects 

In the Hyde and Maki ENDOR experiment,8 the 
NMR field is pulsed. This raises the question of the 
importance of transient effects. The appropriate equa­
tions including transient effects may be obtained by 
taking matrix elements of Eq. (2.5), where e(t) is 
given by Eq. ( 4.3), and then integrating with the 
initial condition on u that it be the steady-state solution 
when B,. in Eq. ( 4.3) is zero. Then the resulting Z,.; 
defined by Eq. (2.19), which would now be time 
dependent, may be substituted into Eq. (2.20) to 
obtain the time-dependent power absorption. For times 
long compared to the T,.1 and n,.1, the steady-state 
solutions discussed above should be obtained. Because 
of the complexity of the transient equations, no attempt 
has been made to solve them. However, we can make 
a very crude estimate of some of the effects of such a 
transition from one steady state to another if we regard 
this as an exponential decay process without any 
excessive oscillations. During this period there will be 
(1) power absorption due to the transfer of energy 
from the microwave field via the spins to the lattice, 
and the rate of this transfer is shifting from one steady­
state value to another; (2) a net absorption or emission 
of energy depending on whether there is a net increase 

39 A direct comparison of this result with Stephen's13 leads to the 
re!Ations flA=2fl>.< 8 > and flA.,2= (flAfl.,-4!h.,< 8 >) where the super­
scrints S refer to the terms given by Stephen. Thus the O; and O;,; 
needed in Eqs. ( 4.26) and ( 4.27) can be calculated using Stephen's 
diagram method. [See discussion after Eqs. (2.41) for the signs of 
theOA, .. J 

or decrease of radicals with m.= ±½ when the NMR 
field is on, i.e., a possible "heating" of the electron 
spins. If there is a predicted enhancement in the final 
steady state, then the effect of ( 1) should be increasing 
steadily to this value (averaging over oscillations). The 
total energy change from (2) is for the four-level sys­
tem in Fig. 2: 

( 4.24) 

where t1xa=xa00-xa0, etc., where the superscripts refer, 
respectively, to d,.-oo and d,.-o. If it is assumed that 
Eqs. (4.14) apply and that w.,,..._,o, then Eq. (4.24) is 
a maximum (indicating net absorption) for a.-oo 
where: 

t1xa+t1xc=½[W.W,./(W.+ W,.) (2W.+ W,.) Jqwo=Oqwo. 

( 4.25) 

This result, which is obtained from Eq. (4.7b), is 
independent of which of the two nuclear transitions of 
Eq. ( 4.1) are excited. Assuming that the steady-state 
enhancement is small ( e.g., ,..._,10%), then for large 
powers, the absorption due to (1) is approximately 
proportional to Eq. ( 4.6) with E,..._,1. Then using Eq. 
(2.20), the ratios of the absorption by (1) to that by 
(2), when averaged over the length of the pulse t is 
approximated by 

( 4.26) 

Using the expression for !.100 , obtained from Table I, 
the maximum is found to occur for W.= W,., where 
[P2/ Pilmax= l/16(W .t)-1. Thus for pulse times ~ 
We-1=¾!.100, the effect of "heating up" the spin systems 
could lead to a nonnegligible enhancement of the 
signal. Note that for W.= W,., a.-oo; xa0 = -xa,0= 
½, Xb0 = -xb10 = +¼; Xa 00 = i, Xa 100=xb100 = -¾, Xb

00=¼ 
in units of qw0, where the approximation Waa'"'wbb,"'Wo 

has been used. 
Any more accurate estimates await a detailed solution 

of the proper transient equations. 

5. SOME REMARKS ON EXCHANGE EFFECTS 
AND SATURATION 

The general theory presented in this paper is applica­
ble when both chemical and quantum-mechanical ex­
change effects are negligible compared with other relaxa­
tion mechanisms. It is of interest, however, to take 
note of the effects that significant exchange processes 
will have on the applicability of the theory. A rigorous 
development of this problem would require a theory 
recast to include intermolecular exchanges, such as 
given by Kaplan,40 Alexander,41 or Currin,42 as well as 
to include the relaxation effects discussed in the present 
paper. We outline a simple, intuitive approach and are 
concerned only with the case of well-separated hyperfine 

40 J. I. Kaplan, J. Chem. Phys. 28, 278 (1958); 29,462 (1958). 
41 S. Alexander, J. Chem. Phys. 37,966,974 (1962). 
42 J. D. Currin, Phys. Rev. 126, 1995 (1962). 
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lines affected by incipient exchange effects, i.e., dilute 
solutions. In a simple model we may assume strong 
collisions which destroy the original memory of the 
colliding particles but short enough that no effective 
relaxation occurs during a collision. Thus, in chemical 
exchange, a collision between a radical and a parent 
molecule with a different nuclear spin configuration will 
transfer the electron spin to a different environment 
with a probability of ½- The effect on each of the un­
saturated well-separated hyperfine lines is then an un­
certainty in lifetime broadening proportional to the 
exchange frequency and to the sum of the statistical 
weights of all the other lines,43 since the latter reflects 
the number of nuclear spin states of the radical to 
which effective (nondegenerate) transitions may be 
made. In other words, in the slow exchange limit 
chemical exchange effects look like nuclear spin transi~ 
tions of the radical system where the unpaired spin is 
being transferred to different nuclear sites. In the 
presence of saturation, then, chemical exchange effects 
should appear as enhanced rates of nuclear spin flips. 
In an ENDOR experiment a very large rate of lattice­
induced nuclear spin flips will cause the added effect 
of the NMR field to be unimportant although moderate 
rates could be helpful. ( See Table II for further details.) 
It may be shown from the appropriate steady-state rate 
equations that the chemical exchange mechanism in fact 
tries to equalize the populations of radicals having 
different nuclear spin configurations but the same sign 
of the electron spin. 

Heisenberg exchange effects when looked at in the 
same manner will be important only when two radicals 
of opposite electron spin and of different nuclear spin 
configurations collide. When they separate, there is a 
SO% probability that the up and down electron spins 
have exchanged nuclear environments. Thus the broad­
ening of any particular hyperfine line is again propor­
tional to the exchange rate as well as to the statistical 
weights of all the other lines ( as predicted more rigor­
ously by Currin42) • In this case the exchange acts to 
equalize the ratios of the populations of electron spins 
+½ to electron spins -½ for each of the nuclear con­
figurations. This is again equivalent to "shorting" out 
nuclear spin transitions, i.e., electron spin excitations 
due to the resonant field are transmitted to other 
nuclear configurations, so that for the relaxation to 
be complete there still must be an accompanying lat­
tice-induced downward electron spin flip. 

This discussion has so far neglected any considerations 
of the effects of degeneracies, which must be properly 
treated in a manner that will be invariant to a choice 
of degenerate states and degenerate transitions as in 
Sec. 2. However, it is worthwhile to note that the 
modified Bloch equations, in the absence of saturation, 
predict that when transitions connect degenerate hyper­
fine components which have different linewidths, then 

44 P. J. Zandstra and S. I. Weissman, J. Chem. Phys. 35, 757 
(1961). 

the lines will experience a lifetime broadening effect 
when the transition rate is smaller than the differences 
in linewidths, but, when the transition rate becomes 
gre_ater, ~he d:generate lines will appear to merge into 
a smgle hne with an average linewidth.44 This con~ider­
ation thus_ has important consequences for the theory 
presented m the present paper and for the theory in I. 
A detailed analysis and justification of these remarks 
awaits a rigorous theoretical formulation. 

6. SUMMARY AND CONCLUSIONS 

A general theory of saturation in the electron spin 
resonance spectra of dilute solutions of free radicals 
has been formulated in terms of the general den~ity­
matrix equations of motion due to Bloch Redfield and . ' ' Abragam. This theory predicts a saturation behavior 
for a composite hyperfine line that is different from 
the earlier theory of Stephen and Fraenkel which 
assumed ( 1) that such a line in the absence of saturation 
is a simple Lorentzian and (2) transition probabilities 
to (and from) degenerate zero-order basis states may 
b_e avera~ed over !hese degenerate states in rate equa­
tions which describe the populations of the different 
basis states. Thus, while Stephen and Fraenkel ot>tained 
a single linewidth ( r---1) and saturation parameter (Q) 
!or each composite line, the present theory shows that 
m general more than one T and Q will be required. In 
fact T and Q become matrices in the space of all transi­
tions whose frequencies are nearly equal to that of the 
exciting field. A particularly simple situation arises 
when all equivalent nuclei are also completely equiva­
lent, and the only significant nuclear spin-dependent 
transitions arise from intramolecular electron-nuclear­
dipolar interactions. Then, if the wavefunction of each 
such completely equivalent group is written in the 
coupled representation corresponding to particular 
values of JM and M [where (K) is a degene1a::y index], 
it follows that each degenerate component of the 
multiple line corresponding to a particular M but a 
different JC•J will behave as a separate SJ.turated 
Lorentzian with its own T and n. Then, 'the greater 
the value of J for a component, the smaller will be its 
value of T J and rlJ, so that this component will saturate 
less readily. Predictions based on the experiments and 
calculations of linewidths in para-dinitrobenzene anion 
sugg~st that in the slow-tumbling region ( viz., w0

2rc2>> 1) 
ob tamed at below room temperatures ( where inter­
molecular exchange effects appear to be negligiLle) 
it might be possible for the dipolar-induced rate of 
proton spin transitions to be comparable in magnitude 
to the rate of electron spin flips, while the I➔N rate 
coul~ even be great:r. This remark must be strongly 
qualified by the considerable present uncertainty about 
the nuclear spin-independent relaxation mechani,,ms. 
It is under such conditions that the rlJ for a particu-

44 A related calculation is discussed in Sec. III of J. H. Freed, 
J. Chem. Phys. 41, 7 (1964). 
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lar value of M are expected to differ markedly. It 
is frequently the case that protons, which are evuiva­
lent in Meo are not completely equivalent in liX1(t). 
This is true for the electron-nuclear-dipolar interaction 
of the ring protons in p-dinitrobenzene. Such an in­
equivalence complicates the description of saturation be­
havior by destroying the selection rules for the dipolar­
induced transitions which lead to the above simple 
picture of superpositions of saturated Lorentzians. 
Specific degenerate components of a composite hyperfine 
line may then be coupled via these transitions, and this 
will result in further coupling through the saturating 
microwave fields as well as through their linewidths 
( this latter phenomenon is discussed fully in I). The 
resulting multiple line may now be described as a 
generalized (matrix) saturated Lorentzian from which 
the detailed line shape can be calculated by standard 
matrix techniques. Appropriate symmetry considera­
tions such as those employed in the example of two 
not completely equivalent protons can be used to 
simplify these calculations. In the absence of saturation, 
the present theory reduces to the linewidth theory 
presented in I. It is important to note that while, in 
the absence of saturation, these coupling effects may 
make very small contributions via the linewidths, they 
can become important in the presence of saturation 
via their effect on the saturation parameter. Such 
might well be the case for the protons in p-dinitrobenzene 
in the slow tumbling region. The electron-proton 
dipolar interaction was found experimentally to have 
a very small effect on the linewidth compared to con­
tributions from proton-spin-independent and presum­
ably secular mechanisms. But if this proton--dipolar 
interaction is the dominant mechanism inducing proton 
spin flips, and if they occur at a rate comparable to or 
greater than electron spin flips, then "pseudotransi­
tions" involving degenerate states will become impor­
tant. The theory given here does not include the detailed 
effects of quadrupole terms. They represent another 
mechanism for lattice-induced nuclear spin transitions. 
However, they are expected to couple ( degenerate) 
states of different J. Incipient chemical and Heisenberg 
exchange effects have only been discussed qualitatively 
They may be expected to serve as mechanisms for 
nuclear spin transitions, but they should also effec­
tively couple together all degenerate components of a 
multiple hyperfine line. 

Steady-state solutions when both electronic and 
nuclear spin transitions are excited by separate oscilla­
tory fields (ENDOR) have been obtained for several 
cases. The simplest case of S= ½ and a single I=½ is 
discussed in detail. The nuclear rf field is an effective 
means of inducing transitions between nuclear spin 
levels but it also can mix the nuclear states by virtue 
of its coherence. While the former effect could enhance 
a saturated ESR signal, the latter could reduce the 
signal strength. This coherence effect becomes unimpor­
tant in the presence of appreciable saturation by both 
fields (whose interactions with the spin systems are 

set to be comparable in magnitude), when T for the 
overtone transition resulting from the combined nuclear 
and electron spin transitions generated by the applied 
fields is much smaller than the saturation parameters 
for these transitions [see Eqs. ( 4.14)]. Such a situation 
may be realized for slow tumbling when secular nuclear 
spin-independent line-broadening mechanisms should 
dominate the ESR linewidths. The enhancement effect 
of the induced transition mechanism can be significant 
when (1) cross-relaxation effects involving a simultane­
ous nuclear and electronic transition play a dominant 
role in the relaxation or (2) lattice-induced nuclear 
transitions (Wn) are comparable to the electronic 
transitions (W.). (1) may be achieved for example by 
large fluctuations of the isotropic hyperfine interactions 
with a correlation time comparable to w0, while (2) 
may be achieved when there is slow tumbling and an 
absence of large exchange effects. It is found, in ex­
tending the treatment to a set of completely equivalent 
nuclei, that the states corresponding to different M J 

but the same JM can still exhibit coherence effects, 
because of the multiple rf-induced transitions between 
them, and also because of couplings via the linewidths 
for these transitions. However, if these effects are 
neglected, a simplified expression for ENDOR enhance­
ment is obtained, where, again, components of the same 
M J but JC•l exhibit independent behavior. The effects 
of noncompletely equivalent nuclei and/or exchange 
phenomena are expected to lead to complications such 
as those already mentioned for the case of saturation 
with a single (microwave) field. 

Careful experimental studies would be required to 
determine the relative importance of the kinds of effects 
discussed here. 
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APPENDIX A: LATTICE-INDUCED TRANSITION 
PROBABILITIES 

The lattice-induced transition probabilities given 
here are based on the relaxation terms discussed in I, 
where the various spectral densities are given. Emphasis 
is on the dipolar and g-tensor terms. It is assumed that 
Wnrc«l for all nuclei and that the important remaining 
terms are nuclear spin independent.12 ,45 

Transition Probabilities 

i. Nuclear Spin Transitions 

Wa,-y±= ½jr,.r.(D) (0) [J,.( fr.+ 1)-Mr)Mr.± 1) ], 

(Al) 
45 If first-order corrections are made to the high-field wave­

functions, 18,34 it is found, for example, that the g-tensor terms can 
affect W a,H for nuclear spin transitions leading to a replacement 
of j,uruD(O) in Eq. (Al) by [jru,,P(0)±2(ii,u/Bo)j,,.<D02>(0)Bo 
+(aru/B0) 2j 6 •(0)B0

2], where the signs correspond to ms=±½. 
This will not be important unless the g-tensor terms are very much 
greater than the dipolar terms. For the para-dinitrobenzene case 
discussed in Sec. 3 the effect is readily found to be negligible. 
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where I ak+) is given by Eq. (AS'), and 

2331 

ii. Electron Spin Transitions 

Wa,,,±= L)j, •• ,<Dl(wo)M,.M,,+ 1:4j,.<DG2l(wo)BoM,. 

+2j<D2l(wo)Bo2+x, (A2) 

where X includes all remaining terms 

h± )= I a)(! m,±1 )/1 m. )) Om,,'f½• (AZ') 

iii. Combined Electron-Spin-Nuclear-Spin Transitions 
( Cross Relaxation) 

(a) Wa,-y±= [½j,.,.<D) (wo) +½j,.,Yl(wo)] 

X[J,.( J,.+ 1) -M,.(M,.=i=1) ], (A3) 
where 

(b) Wa,-y±= Zj,.,_<D) (wo) [J,.(J,. + 1)-M,.(M,.±1) ], 

(A4) 

Pseudotransition Probabilities 

i. Nuclear Spin Transitions 

Wca;,a.±,h±= ½j,.r, (D) (0) J( J,. =i=M,.) J( J,,±M,.) 

r,,~r., (AS) 
where 

\ )= I ->' J,}•l; M,.±1) j J,,(p); Mr,=Fl) (AS') 
O!k± 

1 
O!J ! Jr}<); Mr.) J Jr}p); Mr,) 

and 

or 
= I O!k±)(I J,,<P); M,, )/j Jr,(p); M,,=Fl)). (AS"') 

Alsof(J, ±M) = [(J±M) (J=i=M+l) J½. 

ii. Combined Electron-Spin-Nuclear-Spin Transitions 

(a) W(a;,a•±h±= [½jr.r,(D) (wo) +½ir.r, (I) (wo)] 

Xf( J,. =FM,.) f( J,,±Mr,) 

(A6') 

(b) W(a;,a•±)1'±= Zj,.,,<D) (wo)f( Jr.=FMr.)J(J,,±M,,) 

ru~r., (A7) 

The terms given by Eq. (Al) will contribute to the 
pseudosecular line broadening given by Eq. ( 4.4 7) of I; 
those given by Eqs. (AZ), (A3), and (A4) contribute 
to the nonsecular line broadening, Eq. ( 4.48) of I. 
Equation (AS) leads to Eq. (4.S2) of I, while Eqs. 
(A6) and (A7) give Eqs. ( 4.53) of I. The off-diagonal 
linewidth terms in I are ambiguous as written (since, 
while summations are implied, they are not given 
explicitly). They may be rewritten as follows ( where 
the summations have been performed). Equation 
( 4.SZa) of I becomes 

and Eq. ( 4.S3) of I becomes 

- Ra;a'a,±a,pseudosec= [¼j,.,,1 ( wo) +¥-jrur, (D) ( wo) J 

Xj( J,. =i= Mr.) J( Jr,±M,,)' 

where I a,±) is given by Eq. (AS'). Equivalent expres­
sions may be written in place of Eqs. ( 4.SZb) and 
( 4.S3b) of I. 

Equation (2.SZ) may be written as 

T' a;a,-1= L [jr.s, (I) (0) +Jj,.,, {D) (0)] 
ru,8v 

X¼[M,.,;-M, •.• ][M,,,;-M,,,.]. 

The expressions for Wca;a,),(~u'lml may also be obtained 
for the pseudo- and nonsecular terms discussed in I. 
They will include the effects represented by X in 
Eq. (AZ). 

APPENDIX B: LINEWIDTHS FOR NUCLEAR 
TRANSITIONS 

We consider only a completely equivalent set of 
nuclei. In dilute solution, when exchange effects are 
unimportant, the dominant relaxation mechanisms will 
be the effect of dipolar interactions with the unpaired 
electron as well as all other lattice-induced electron 
spin transitions. (The quadrupole interactions are again 
being neglected.) However, any secular interactions in 
JC1 ( t) that are nuclear spin independent cannot affect 
the linewidths of the nuclear transitions, because of 
the commutation of such terms with both JC0 and J ± 
( that is, such terms cause no transitions from eigen­
states of JC0, and their induced energy fluctuations 
cancel out just as the static electron spin Zeeman 
energy does in the nuclear transition). Let a and a' 
represent two states of the same m. and J<•l but 
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different values of MJ, then 

-Raa',aa'seo= ¼[jr,(I) (0) +Jj,,(Dl(0)][Ma-Ma,]2 (Bl) 

-Raa',aa'pseudosec= ½j,/DJ (0) [2J(J + 1)- (Ma2+ Ma,2) J 
I B2) 

X[14J(J+l)- (Ma2+Ma12 ) =i=5(Ma+Ma,) J 
+¼j,,(1l(wo) [2J(J+ l)-M,.(Ma=Fl)-Ma1 (Ma1=Fl)] 

+2pDG2) (wo) [Ma+ M a 1]+ 2j<G2> (wo) Bo2+ x. (B3) 

The superscripted plus and minus signs on the R­
matrix elements in Eq. (B3) refer to the sign of m,. 
There are also off-diagonal R-matrix elements which 
arise from the first term of Eq. (2.8a): 

= -½jr/Dl(0) IJ(J, -M)J(J, -[M+l])l (B4a) 

and 

- R,lf-1,M,M,M+lpseudosec 

= -½irr(Dl(0) lf(J, M)J(J, [M+l]) l, (B4b) 

THE JOURC\AL OF CHEMICAL PHYSICS 

where the subscripts on R indicate the values of M J of 
the states being coupled. When the nonsecular terms 
in Eq. (B3) involving dipolar interactions are negligible 
( e.g., in the slow-tumbling region), one may show, 
using the equivalent of Eqs. (2.20), (2.22), and (2.27) 
for the nuclear magnetic resonance, that in the absence 
of saturation, the degenerate NMR line one obtains 
( corresponding to each of the two values of m.) 1s a 
single Lorentzian with linewidth: 

r-1 = ¼j,,(I) (0) +tir,(D) (0) + 2j<G2) ( wo) Bo2+ X. (BS) 

One must perform the sum equivalent to Eq. (2.20) 
for each value of J to obtain this result. However, 
when the dipolar terms in Eqs. (B3) are important, the 
composite line shape becomes considerably more com­
plex. In a steady-state ENDOR experiment, the NMR 
transitions are monitored in a fashion that is different 
from a conventional NMR experiment ( viz., each 
transition affects a different part of the relaxation paths 
for the ESR spectrum), so that, in general, the terms 
in Eqs. (Bl) to (B4) will have a different effect on the 
ENDOR spectrum. 
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A comparison between infrared absorption and neutron inelastic-scattering measurements indicates 
the existence of a broad low-energy (around 400 cm-1) protonic level in KH2PO4 above the Curie point. 
This level is only weakly discerned in the ir but is seen quite clearly in neutron scattering. The mode is 
explained as resulting from splitting of the ground level of the proton in a slightly asymmetric double 
minimum potential well where tunneling~of the proton takes place. The asymmetry is caused by the inter­
action between the different protons, and it changes slowly with time as the result of the collective motions 
of the protons. Prominent changes in ir spectra in the 400-cm-1 range were found on cooling through the 
Curie point, indicating the disappearance of the tunneling mode. 
,i. This picture allows a simplified treatment of the system, leading to the existence of two correlated phase 
transition points, and a negative thermal expansion coefficient of the H bond at temperatures between 
these points. The two transition points are identified as the Curie point and the melting or dissociation point 
of the crystal. The theory also suggests an increase in the dielectric constant as the melting point is ap­
proached, corresponding to the Curie-Weiss behavior as the Curie point is approached. 

1. INTRODUCTION 

IN KH2PO4-type crystals it is known that the motion 
of the protons is responsible for the ferroelectric 

transition. The involvement of the protons is seen for 
example from the large shift in the Curie point upon 
deuteration.1 Moreover, the hydrogen bond, being the 
weakest bond in the crystal, is probably also responsi­
ble2 for the low melting point of these crystals ( e.g., 

1 F. Jona and G. Shirane, Ferroelectric Crystals (Pergamon Press, 
London, 1962). 

2 Y. Imry and I. Pelah, Isreal A.E.C. Report IA-861 (1963). 

253°C for KH2PO, as against 1340°C for K3PO4). 
The neutron-diffraction data of Pease and Bacon3 on 
KH2PO4 show a symmetrical elongated proton distri­
bution along the axis of the hydrogen bond above the 
Curie temperature, and a more concentrated distribu­
tion below it. There are several ways of explaining 
their results above the Curie point: the proton might 
be located asymmetrically near one of the oxygens, 
but be statistically disordered in the crystal sites, or 

3 R. S. Pease and G. E. Bacon, Proc. Roy. Soc. (London) A220, 
397 (1953); A236, 359 (1955). 


