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The stochastic Liouville method is applied to analyze the general problem of unsaturated ESR line 
shapes for triplets undergoing rotational diffusion. Detailed line shape simulations are obtained for the 
cases of high-, low-, and zero-field resonance, large or small values of an axially symmetric zero-field splitting, 
and slow through fast rotational diffusion. It is shown how all these parameters can have profound effects 
on the observed ESR spectra. 

I. INTRODUCTION 

In a recent study, Norris and Weissman1 examined 
the line shapes of triplet molecules tumbling slowly in 
viscous media. They were able to show that their 
spectra agreed favorably with what was predicted for 
small diffusivelike reorientational jumps as compared 
to spectra predicted for large reorientations (i.e., equal 
conditional probabilities for reorientation by any angle). 
Their work, then, suggests the possible value which 
such studies of triplet line shapes may have. 

Because of the small zero-field splitting of their 
triplets (D,--..,100 G), Norris and Weissman were able 
to successfully use the secular approximation to greatly 
simplify the calculation of their predicted spectra by 
finite difference techniques. More recently, Sillescu2 has 
used a related approach to discuss secular ESR line 
shapes for slow tumbling. 

Given that such studies can be of considerable 
interest for the study of molecular motion, it would 
clearly be valuable to be able to predict line shapes in 
the more general cases when the secular approximation 
is no longer valid. Even for the triplets studies by 
~orris and Weissman, the neglect of nonsecular terms 
precluded the possibility of their utilizing the Am= 2 
transition. The problem of ESR (doublet) line shapes 
has already been discussed by Freed, Bruno, and 
Polnaszek3 in recent work. The method employed in I 
was based on Kubo's stochastic Liouville approach.4 

An equation of motion for the spin-density matrix is 
written in terms of both its spin and orientational-diffu­
sion dependence.3 Rapidly converging steady-state solu­
tions are then obtained by means of expansions in 
eigenfunctions of the Markovian-diffusion operator. In 
the present work, we apply this approach to the prob­
lem of triplet line shapes. 

Perhaps the main difference between the triplet and 
the usual free radical doublet problem is that the triplet 
zero-field splitting is not, in general, small compared to 
the Zeeman term. Hence, high-field approximations 
need no longer be valid. We, therefore, must adopt an 
approach which applies for all values of the Zeeman 
field. This was not the case in I, where the density 
matrix approach, use:ul for discussing both line shapes 

and saturation phenomena, requires modification when 
high-field approximations do not apply. This problem 
is a difficult one, and is treated rigorously by Bloch5 and 
Abragam6 only for the case of a simple line. They show 
that the modified-Bloch equations for low fields,6 

wherein the susceptibility is proportional tow, the radio 
frequency, rather than w0, the Larmour frequency, apply 
at least in special cases. By means of a linear response 
approach, wherein we forego any description of satura­
tion effects, it is possible to obtain fundamentally 
sound descriptions of the line shapes without such 
problems. Thus, we treat the triplet line shape problem 
from this point of view, which is also closer to Kubo's 
original treatment of the stochastic Liouville method.48 

We also examine the characteristics of zero-field and 
low-field triplet line shapes. 

II.THEORY 

A. Formulation 

We start with the general expression for the imaginary 
part of the magnetic susceptibility resulting from a very 
weak rf field of frequency w/21r being applied to the 
system7 •8 

The perturbation of the spins by the rf field is given by 

(2) 

i.e., an oscillating field along the a= x, y, or z direction. 
We shall assume an essentially isotropic g value and an 
ensemble of noninteracting triplets, so that 

( 1') 

where ;Jl is the concentration of triplets, 'Y• is the 
gyromagnetic factor, Ma is the operator for the ath 
component of the magnetization of the sample, and Sa 
the corresponding spin operator. Also, 

Sa(t)= exp(iXt)Saexp(-iXt), (3) 
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N is the number of eigenstates of the Hamiltonian nX 
of the system [in the absence of e(t) ], and Eq. (1) is 
expressed in the high temperature approximation 
[(hX/kT)«1]. 

We now separate :JC into 

where :JC, is the Zeeman part of the Hamiltonian and 
X1(Q) contains the orientation dependent zero-field 
splitting terms. Here, X1(Q) need not be small compared 
to X,. In the presence of random motion of the triplets, 
X1 (Q) becomes a random function of time. We assume 
that the motional process can be described as a sta­
tionary Markoff process. It then follows that an 
appropriate ensemble average operator Sa(n, t) obeys 
the stochastic Liouville equation of motion,3.4 

(a/at) Sa(n, t) = ixxsa(n, t) - fnSa(n, t), ( 4) 

where AxB=[A, B] with initial condition (for isotropic 
distribution of orientations) 

(5) 

Here rn is the stationary Markovian operator which 
satisfies the differential equation 

( a/at) P(n, t) = - rnP(n, t), (6) 

where P(n, t) is the probability of finding a molecule at 
the particular orientation n at time t. Let 

Sa(s)= 1"' e-• tSa(t)dt 
0 

(7) 

be the Laplace transform of Sa(t). Then Eq. ( 4) with 
Eq. (5) may be transformed to 

Now, in Eq. (1'), the trace over orientational degrees 
of freedom is replaced by a classical average, 

where P 0(Q) is the equilibrium distribution of orienta­
tions obeying 

r Po(r!) =0. (10) 

It follows from Eqs. (7) and (9) that the susceptibility, 
Eq. (1), may be rewritten as 

x"(w) = (;J1:y.2w/2NkT) 

XTr[{ (Sa(iw) )Av+ (Sa(-iw) )A,} Sa], (11) 

where Sa(±iw) are the Laplace transforms of the spin 
operator with S= ±iw, and the trace is now only over 
spin degrees of freedom. The plus and minus signs are 
found to correspond to the two counterrotating com­
ponents of the rf field. Note that it follows from Eqs. (7) 

and (3), the Hermiticity of Sa(t), and the fact that ro 
is a real operator independent of spin, that 

(11') 

where the dagger indicates Hermitian conjugate. Thus 
we require (Sa ( s) )Av given by 

(Sa(n, s) )A,= ([s-iX"+rn]-1Sa)Av 

= f dnPo(n)[s-iX"'+roJ-1Sa, (12) 

The method of solution is to expand Sa(n, s) in a 
complete set of orthogonal eigenfunctions of rn, i.e., 
Gm(n), with eigenvalues Em 

m 

where am,a(w) are still operators in spin space. It then 
follows from Eq. (11') that 

am(w) =amt(-w)Nm1 ~ fdnGm*(Q)Gm,*(Q), (14) 

where 
Nm= f dnGm*(Q)Gm(n). 

Clearly, from Eqs. (7), (9), and (13), 

(Sa(n, ±iw) )Av=aa,o(±w) 

(14') 

(15) 

when we take Pocx:Go(n)=l, i.e., an isotropic a priori 
distribution of orientations. 

B. Triplets BiJ_B0 

Here, we are interested in S,,. Now, the nonzero 
matrix elements of Sx are(± I Sx I 0)= (0 IS,, I±)= 
v'l./2. It thus follows from Eqs. (11), (11'), and (15) 
that 

x"(w) = (v'1w/2NkT)m:y.2 Re[(- I ax,o(±w)I 0) 

+(o I Gx,o(±w)I +)], (16) 

where the a,,,0(±w) terms imply that the effects of both 
the rotating and counterrotating components are to be 
added. Also, we have, for the zero-field terms 

X1 = L { 6-Il2m:)o,m'2(Q) + (E/2) [:D2,m,2(Q) 
m' 

(18) 

Here, n represents the Euler angles for the transforma­
tion from molecular to space fixed axes.9 For a rota­
tional-motion modulation of X1 (n), we shall employ the 
solutions for isotropic rotational diffusion. That is, we 
have Gm-➔:DKML (n), the Wigner rotation matrices, with 
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eigenvalues Em=EL,K,M=RL(L+l), with R the as 
isotropic rotational diffusion coefficient. The case of 
anisotropic rotational diffusion is also readily handled,9 •10 

(- \ C \ 0)=C(l), (0 \ C \ -)=C(-1), 

(0 IC I 1)=C(2), (1 IC I 0)=C(-2), but in this work we mainly confine our examples to the 
isotropic case. By means of the methods of I, Eqs. (8) 
and (13) yield sets of coupled differential equations for 
matrix elements of the coefficients aK,ML(±w). We 
introduce the modified coefficients11 

(-1 IC I 1)=C(3), (1 IC I -l)=C(-3), 

(-11 CI -l)=C(a), (0 IC I 0)=C(b), 

(11 CI l)=C(c). (20) 

CKML(±w) = ±i(- )K-Ma_K-ML*(=Fw) (19) We also let P-=-D/6112 and set E=0. The coupled equa­
tions for the CK,ML(w, i), where w will be dropped for 
convenience, are, in terms of the 3j symbols: and abbreviate the matrix elements of the CK,ML(±w) 

2 L') ] Co,F(-1) =½v'2o(L,0), (21b) 
-2 2, 

+2( L 
2 

L') ( L 2 L') ( L 2 L') ] Co.-1u (3)-2 CoP(-3)+v'1 Co.F(-1) =0, (21c) 
-1 2 -1 -1 -2 3 -1 -1 2 

(2L+1)-1[w-iRL(L+l)]C0,1L(b)+P L (L 
2 

:)[-v2Ci 

2 
L') 

0 
{CoPO) +CoP(2)} 

LI 0 0 1 

2 L') ] Co,F(-2) =0, 
-1 2 

(21e) 

(2L+ 1)-'[(w-2w,)-iRL(L+ I) Jco,-,'(3)+P ft G : :)[ v2 C _: :) {Co.o"(l)+Co,.V(2) J 

+2 C _: ~') {C0,,"(a)-Co,.V(,)I] ~o, (2lf) 
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2 L') 
0 2 

CoP(-1) 

-2( L 2 L') ] Co,aL'(-3) =0, 

-2 -1 3 

(21g) 

(2L+l)-1[(w+w0)-iRL(L+l)]Co,2L(-2)+PI:(L 
2 

L')[6112
( L 

2 

LI 0 0 0 -2 0 

L') 
2 

CoP(-2) 

+2( L 2 L')Co,oLl(1)+-v'2( L 2 L') ( L {CoP(c)-CoP(b) }+"2 2 L') ] CoP(-3) =0, 
-2 2 0 -2 1 1 -2 -1 3 

(21h) 

L') 
1 

{CoP(c)-CoP(a)} 

The equations for Cx,ML(-w, i) are obtained by letting w--w and Cx,ML(w, i)--C1rnL(-w, i) in Eqs. (21). 
From Eqs. (16) and (19), 

x" (w) = (-v'2"w/2NkT)m'Y,2 Im[±Co,0°(±w, 1) ±C0,o0(±w, 2) ]. (22) 

In Eqs. (21) we can introduce rotationally invariant width terms T2-1(i) where i= 1, 2, or 3 for the ±1, ±2, and 
±3 transitions simply by letting RL(L+l)-T2- 1(i)+RL(L+1). We otherwise neglect other relaxation mecha­
nisms (e.g., rotational modulation of the g tensor) and other sources of broadening assumed to be small. 

Similarly, one can introduce rotationally invariant relaxation transitions between the + 1, 0, and -1 levels, but 
we assume the latter are small. Equations (21) apply for Leven, but only a and b for L~0. All others are for 
L>0. When the equations are truncated for L>n, the dimension of the coupled equations is (2+Jn). The coupled 
equations needed for E~0 can readily be written down,12 but are somewhat more complicated than Eq. (21), so 
they are not reproduced here. 

C. Triplets B1 11 Bo 

Here, we have (+ \ S, \ + )= -(- IS.\ - )= 1, and we obtain 

x"(w) = (m'Y.2w/NkT) Re[(+ I a,,o(-w) I+)-(- I a,,o(-w) \ - )] 

= (;fl'Y.2w/NkT) Im[C0,0°(w, a) -C0 ,o°(w, c)]. 

The coupled equations needed to obtain these coefficients are 

2 L')[ (L 2 L' ) -\12 {Co,-1Ll(1)+CoP(-1)} 
0 0 0 1 -1 

-2 C : ~} c,,.,v (3)-C,,"'( -3)} }•(L, 0), 

(2L+l)-1[w-iRL(L+l)]Co,oL(b)+P L (L 
2 

L')[-v'2 (L 
2 

L') 
LI 0 0 0 0 1 -1 

X { c,,_,u (I )+C,_,L' ( -1 )+C,,_,v ( 2)+C,,,"' ( - 2) J ]-o, 

(23) 

(24a) 

(24b) 
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(
L 2 L')[ (L 2 L' ) (ZL+l)-1[w-iRL(L+1)]Co,oL(c)+P L --vl \Co,-1Ll(2)+CoP(-2)} 

LI 0 0 0 0 1 -1 

(
L 2 L') ] +2 {Co,-2Ll(3)-Co.F(-3)l =-8(L,0), (24c) 
0 2 -2 

(
L 2 L')[ (L 2 L' ) (2L+l)-1[(w-wo)-iRL(L+l) ]Co,-1L(l) +PL -6112 C0,_1Ll(1) 

LI 0 0 0 1 0 -1 

(
L 2 L') (L 2 L' ) (L --vl (CoP(a)-CoP(b) }--vl Co,-F(3)-2 
1 -1 0 1 1 -2 1 

2 L') ] Co,P(-2) =0, 
-2 1 

(24d) 

(2L+l)-1[(w-wo)-iRL(L+l)]Co,-1L(2)+P 1:(L 
2 

L')[61i2(L 
2 

L' )co,-1L'(2) 
LI O Q O 1 0 -1 

+-v1.(L 
2 

L'){CoP(b)-Co,oLl(c)}--vl(L 
2 

L')co,-2Ll(J)+2(L 
2 

L')CoP(-1)]=0, 
1 -1 0 1 1 -2 1 -2 1 

(24e) 

(2L+ !)-•[ (w-¾)-iRL( L+ I) JC, __ ,'(3)+ Pf, G : :)[-"2 G _: ~J / c, __ ,L( l)+C,.J(2) j 

-2 G _: :) (C, . ."'(a)-c,.,"'(,)I] ~o, (24f) 

(2L+ 1)-•[(w+w,)-iRL(L+ 1) JC,.,L(-1) +Pf G : :)[ 6"' ( ~l : :) C,.,"'(-1) 

--vl( L 
2 

L') {Co,oL'(a)-Co,oL'(b) 1--v2( L 
2 

L')co.F(-3)+2( L 
-1 1 0 -1 -1 2 -1 

2 L') ] Co,-1L'(2) =0, 
2 -1 

(24g) 

+-v2( L 
2 

L') ICoP(b)-Co,oLl(c)}--vl( L 
2 

L')co,2L'(-3)-2( L 
-1 1 0 -1 -1 2 -1 

2 L') ] Co,-1Ll(l) =0, 
2 -1 

(24h) 

(2L+l)-1[(w+2wo)-iRL(L+l)]Co,2L(-3)+P L (L 
2 

L')[2 ( L 
2 

L') (Co,oLl(a)-Co,oL'(c)} 
LI Q 0 0 -2 2 Q 

( 
L 2 L') ] --vl {CoP(-1)+CoP(-2)} =0. (24i) 
-2 1 1 
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D. Perturbation Theory 

There are two limiting cases in which Eqs. (21) and 
(24) may be solved more simply. 

1. High-Field Case 

Here, D, 6R«wo. A simple analysis of Eqs. (21) 
shows that one can neglect all terms on the rhs of 
Eq. (21a) not involving Co,i(l) provided Lis not so 
large that L(L+ l)R«wo is not fulfilled. In this approxi­
mation ( the secular approximation), C0,0°(1) couples 
only to the other C0,0L(l), L>0. A similar simplified 
set of equations for the Co,i(2) is obtained from 
Eq. (21b). It is in this approximation that Norris and 
Weissman's calculations are valid. 

In order to obtain the half-field transition in this 
approximation, it is necessary to use perturbation 
theory. Thus, the terms in Eqs. (21a) and (21b) which 
couple in CK,ML(3) terms are used to mix in to second 
order in perturbation theory a small amount of half­
field transition character. The perturbation method is 
similar to that discussed in paper I, Sec. IV. Equations 
( 24) for the B1 11 Bo case may be treated in a similar 
manner. 

A more direct method which yields essentially the 
same result is obtained by first correcting the I - ) and 
\+)states to first order in the perturbation Eq. (17) 
(let E= 0). Then 

I ±')""' \ ± )±(v'2Do,cf=i2P /wo) I 0)± (Do,'fiP /wo) \ =F ), 

(25) 

and we otherwise neglect JC1 in the Hamiltonian except 
for the small energy corrections ( to second order) . The 
energies become E±"'"' E±' +6112D0iP, where E±' are 

E±' = ±wo±2(P2/wo) [(2/5)- (1/7)Do,o2- (9/35)D0,o4]. 

(26) 

.Now, from Eqs. (1) and (16) (but neglecting the non­
resonant rotating component of the linear rf field), we 
have 

i."(w)~ ;f1:y.2w 
X - NkT 

X Re["(<+' I Sx(t)l -')(-' I Sx(0)\ +'))A,e-iwtdt 
0 

;J'l"f.2W p2 1"' . = -- - Re dte-""t 
NkT w0 0 

X (exp(i2E+'t)Do,-i2*(t)Do,-i2(0) )A,, (27) 

where we have used Eqs. (25) and (26). When the 
second order energy corrections dependent on orienta­
tion are neglected, then we have 

(28) 
and 

or a simple Lorentzian of width 6R=rR-1, where 
2wo'=2wo+(4/15)(D2/w0), causing a small downfield 
shift. A more careful analysis shows that the downfield 
shift is (2/7) X (D2/wo). There is still a small residual 
orientation-dependent term from the second order 
energy, but it is found to average out when D2/w0R«33O 
with a negligible Lorentzian width component of 
5.28X m-5 (D4/w0

2R). This analysis is most conveni­
ently performed by solving the first expression of Eq. 
(27) [with the approximations of Eqs. (25) and (26) 
for X1] by utilizing the general method of Eqs. (7)-(9) 
and ( 13) and recognizing that, since the matrix elements 
of Sx as well as Sx(t) are orientation dependent, both 
terms must be included in all averaging procedures.1a 

A similar perturbation analysis for H1 II Ho yields in 
the approximation of Eq. (29), 

x1i"(w) =x.1."(w). (30) 

Note that, from the form of Eq. (29), the observed 
derivative linewidth of the half-field line in a field­
swept experiment is given by 

o= (2'Y.)-1[(2/\!J) \T2-1+6R}], (31) 

where 2'Y• is the "effective" gyromagnetic factor and 
T2-1 is the rotationally invariant width term. 

2. Fast Motional Case 

Here, D«6R. This is the condition for conventional 
relaxation theory to apply. One obtains a single 
Lorentzian line at w=wo with14 

T2-1= (Li2/20) [3J(0) +5J(w0) +2J(2w0) ], (32) 

where b.2 = 2(D2/3+E) and J(w) = 12R/[(6R) 2+w2]. 

This result can also be obtained from a perturbation 
analysis of Eqs. (21) using only terms up through L= 2. 
Cases 1 and 2 are clearly not mutually exclusive. 

E. Rigid Limit Spectra 

The triplet spectra in the rigid limit were simulated 
essentially in the manner of Kottis and Lefebvre15 and 
of Wasserman et al.16 Several modifications, however, 
have been made which improve the efficiency of the 
program. First, the basis sets used may be written as17 

\ <l>m)= L Dm•m1 (q>, 0, 0) Im'), (33) 
ml 

where the I <l>m) are just the high-field spin functions and 
Im') the functions quantitized in the molecular frame. 
This basis set leads to a real and symmetric matrix 
representation for the Hamiltonian when E=O. 

The resonant fields BB are then obtained from 

2(B92+½D2)
112 sin(V+n-ir/3)-(w/\ 'Y, I) =0, 

V = ½ arccos { [ ( 27 /2) B9
2 D ( cos20-½) - f>a] 

X [27B96+27B94.D2+9B92.D4+.D6J-1i2}' (34) 

x.1."(w)"-'cx: (P2w/Swo2) Re[(w-2wo')-i6RJ-1 (29) where n=l for a flm=2 transition, and n=2, 3 for 
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TABLE I. A comparison of linewidths for the dm=2 transition 
as obtained from computer simulations and from perturbation 
analysis. 

D/R 

(A) Small D • 

Bi II Bo 30 
Bil.Bo 30 
Bi II Bo 100 
Bil.Bo 100 

(B) Large Db 

Bi II Bo 40 
Bil.Bo 40 
Bi II Bo 200 
Bil.Bo 200 

Derivative linewidth 
in gauss 

---------- Position of 
Computer 
simulation 

17.6 
17.5 
5.4 
5.6 

145 
144 
42.5 
42.5 

Perturbation absorption 
result0 max. X2 

17.5 3 296 G 
17.5 3 296 
5.5 3 296 
5.5 3 296 

132 2 924 
132 2 928 
32.3 2 920 
32.3 2 894 

• Bo =3 300 G; D/1 'Y, I= 150 G; T,-1/l 'Ye I= (v'3"/2J 0.5 G. 
b Bo =3 .roo G; D/1 'Ye I =I 435 G; T,-1/I -y, I= (v'3°/2) 15 G. 
c Cf. Eq. (31). 

Am= 1 transitions. Equation 34 results from solving 
the secular determinant for the eigenvalues and setting 
the difference equal to I wh.1- Note that D=D/1 'Y, I­
The eigenvalues are then given by 

E;=}(3Be2+ D2) 1'
2 cos(V +½k1r), (35) 

where k=0 for i= 1, k=4 for i=O, and k= 2 for i= -1. 
It is then a simple matter to solve for the eigenvectors 
'¥;= Lm a;m'Pm, from which real analytic expressions 
are obtained for the transition probabilities W;i: 

( 1) B1 parallel to Bo, 

W;j= [a;1a;1-a;_1aH]2+¼[a;o(ai1+a1_1) 

-a1o(a;1+a;-1)]2•sin26; (36a) 

(2) B1 perpendicular to Bo, 

W;1= [a,1a;o-a,oai-1]2+ [a,oa;1-a;-1aio]2 

-¼[a;o(a11+a1_1)-a1o(a;1+a,-1) ] 2 sin26. (36b) 

The integrations over all orientations are performed in 
the usual manner. 

III. DISCUSSION OF RESULTS 

The coupled equations were solved using Gaussian 
elimination with pivoting. Single precision was found 
sufficiently accurate ( within 0.01 % of double precision 
results). Diagonalization methods are not readily very 
convenient for field-swept simulations, because the 
CKML(a), a=a, b, ore have no dependence on w0 (which 
is varied over a wide range in a field-swept experiment), 

while the other CKML(i) have such explicit dependence. 
Thus, one cannot separate out wo from the diagonaliza­
tion, and repetitive diagonalizations would be required. 
For small relative variations in w0 or frequency-swept 
simulations, diagonalization methods are, of course, 
convenient. 

While the same value of T2-1 was used for all transi­
tions in the results shown, it was found that only 
T2-1(i) had any significant effect on the spectral line for 
the ith transition. The calculations were based on the 
triphenylene triplet, where D/1 'Y, I = 1 435 G, and 
E=0. The calculations were of three types: (A) high­
frequency, w/l 'Y, I =B=3 300 G. (9.24 kMc/sec) and 
field sweep, (B) low-field, Bo=wo/l 'Ye I =300 G and 
frequency sweep, ( C) zero-field and frequency sweep. 
However, these results scale for any triplet with E=0 
provided the value of B or B0 is chosen so (A) D/w= 
0.43, (B) D/wo=4.78, (C) wo=0. [E.g., for D/1 'Ye I = 
100 G, we require (A) B= 230 G, (B) Bo= 21 G, 
(C) Bo=O.J 

For case (A), the effects of the counterrotating field 
[the C0,o0 ( -w, i) in Eq. (22) J were negligible. They 
were very important for the low field spectra. 

A. High-Frequency and Field Sweep 

The results for this case are given in Figs. 1-3. 
Figure 1 shows the results when B 11-Bo. As the rota­
tional motion increases from the rigid limit, both the 
Am= 1 and 2 lines initially broaden. However, fast 
motion leads to a narrowing of the Am= 1 transition 
until it becomes Lorentzian with its absorption maxi­
mum at B=3 300 G and width given by Eq. (32). 

The broadening of the Am= 2 transition with in­
creasing R is shown more clearly in Fig. 2. The deriva­
tive widths obtained in this figure are given in Table I, 
and are compared with the prediction of Eq. ( 31) , even 
though the condition D/w0«1, required for the validity 
of this equation, is not fulfilled. The predicted widths 
are systematically low, although they are of the correct 
order. Also, the position of the absorption maximum is 
shifted significantly downfield. On the other hand, when 
spectra were computed with a small D/1 'Ye I = 150 G, 
then the agreement with Eq. (31) as given in Table I is 
seen to be very good. The small downfield shift of 2 G 
is also properly predicted by the perturbation analysis 
of Sec. II.D. 

The Am= 2 transition for B 1 11 Bo is shown in Fig. 3 
and results also given in Table I. These results are very 
similar to what is obtained for the Bil_ Bo case. 

B. Low Field and Frequency Sweep 

The results for this case are given in Figs. 4 and 5, 
which show the B 1l_B0 and B1 II Bo rf orientations, 
respectively. In both cases, as the motion starts, the 
rigid limit spectra occurring in the region of w"-'D= 
1 435 GX I 'Ye I are seen to broaden out. However, as 
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Kilogauss __., 

(c) 
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Kilogauss-

(b) 

1.25 1.70 2.15 2.60 3.05 3.50 3.95 4.40 4.85 

Kilogauss--

(d) 

FIG. 1. Line shapes as a function of D/ R for a triplet with B1 perpendicular to B0. (a) .-\bsorption line shapes. (b) First derivative 
line shapes. The different lines correspond to • • •, D/ R=5; n=6; - - -, D/R=20, n=B; -, D/ R= 200, n= 12. (c) and (d) Rigid limit 
absorption and first derivative line shapes. All plots are for D= 1 435 G, w/1 y, I =3 300 G, a rotationally invariant vJT2-1/2 h, I= 
15 G and E=O. The field Bo is swept. 

the motion becomes rapid, one finds that for Bil.Bo 
a Zeeman line appears at w,.._,w0=300 GX \ 'Y• \, while 
there is a negligible contribution in the region of w,.._,D. 
In fact, in the motional narrowing region, the width of 

the Zeeman line is found to be given by Eq. (32), as 
expected. [More precisely, the Lorentzian width of 
Eq. (32) is for x."(w)/w, cf. Eq. (1).] This, then, is a 
simple example of a more general phenomenon: that if, 
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FIG. 2. Half-field line shapes as a function of DIR for a triplet with B1 perpendicular to B0. (a) absorption line shapes. (b) First 
derivative line shapes. The different lines correspond to: .. • •, DI R=40; n=8; - - - -, DIR =200, n = 12; -, DIR= 1000, n= 16. Other 
details as given in Fig. 1. 

in the rigid limit, the spins are quantized essentially in a 
molecular frame ( the Zeeman field is only a perturba­
tion), they will nevertheless appear to be quantized in 
the laboratory frame yielding the usual Zeeman line, 

when the tumbling rate of the molecule is fast compared 
to zero-field splittings. 

In the case of B1 II Bo, a Zeeman line cannot appear. 
Instead, a line appears at w = 0 with width predicted by 
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FIG. 3. Half-field line shapes as a function of D/ R for a triplet with B1 parallel to B0. Details as given in Fig. 2. 

Eq. (32). This line would have been apparent in Fig. 5 
had we plotted x"(w)/w instead of x"(w). It is seen 
from Eq. (1) that the latter must go to zero at w=O. 
It is also found that, for very slow motion, x"(w)/w 
shows a resonance at w,...,_,O, which broadens out as does 
the regular line which occurs around w,...,_,D. A similar 
phenomenon, but for a simple model of a classically 
resonanting magnetic moment, has been found by 

Kubo and Toyabe.4"•18 The equivalent occurs for zero 
field [case (C)] wherein it is easily understood (see 
below). In the present case, with a perturbing Zeeman 
field, the explanation should be essentially the same. 

C. Zero Field and Frequency Sweep 

The results for this case are qualitatively similar to 
Fig. 5 for B1 \ I Bo and low fields. 
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w/ lrel (Kilogauss) 

(a) 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 

w/l}•el (Kilogauss) 

(b} 

FIG. 4. Low-field absorption line shapes as a function of 
D/ R for a triplet with B1 perpendicular to Bo. (a) The different 
lines correspond to •··•·, D/R=0.2, n=2; - - -, D/R=20, 
n=8; -, D/ R=200, n= 12. (b) Rigid limit. All plots are for 
D-= 1 435 G, B 0=300 G, and T2-1/I -Y• I = (2/vl) 15 G. The 
frequency, w= I -y, I B, is swept. 

An analysis of x"(w)/w shows two lines of equal 
intensitv at w=D and w=O, for the rigid limit and for 
slow m~tion. These lines are found to be Lorentzian in 
shape with r 2- 1 given by T2- 1=4R for D/6R»l. They 

correspond to the doubly degenerate T:,-T. and Ty-T, 
transitions occurring at w= ±D and to the Tx-Ty 
transition at w=O. Here Tx, Tu, and T, are the standard 
zero-field triplet wavefunctions with zero-field energies 
of D, D, and 0, respectively. For fast motion, a line 

: ·•. 

ee/:.-.::.;::·~-- .. j..... r······· , ..... · · ·j ·········1·········1 
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

wtl-rel (Kilogauss) 

(a} 

I I I I I I 
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

wllrel (Kilogauss) 

(b) 

FIG. 5. Low-field absorption line shapes _as a fu?ctio~ of pl R 
for a triplet with B1 parallel to Bo. Details as given 1n Fig. 4, 
except••·••· is for D/R=5, n=4. 
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narrows up at w= 0, with width as predicted by Eq. 
(32). Of course, the w=O lines are suppressed since 
x"(w) is studied in a real experiment, rather than 
x"(w)/w. 

IV. SUMMARY 

General expressions have been obtained which cover 
a wide range of possible experimental situations associ­
ated with the unsaturated ESR line shapes for triplets 
undergoing rotational reorientation. These include 
high-, low-, and zero-field resonance spectra, large or 
small values of the zero field splitting, and slow through 
fast rotational reorientation. In the present computer 
simulations, an axially symmetric zero-field splitting 
was utilized, but the simulations may be extended to 
more general cases where E;=O, for which the general 
expressions have also been obtained.12 

It is also readily possible to extend the present for­
mulation to cover modes of rotational reorientation other 
than isotropic rotational diffusion. That is, the pos­
sibilities of jump diffusional models or of free diffusion 
involving inertial effects may be studied by minor 
modifications of the expressions given here.10 Also, the 
effects of anisotropic reorientation9 may be conveni­
ently introduced.3•10 

In view of the fact that the rotational motion has been 
found to have quite different effects on different types 
of triplet ESR spectra, one may anticipate that a com­
parison of the range of spectra one can obtain experi­
mentally would offer information that is very sensitive 
to the precise rate and nature of the rotational motion. 
Thus, for example, in high field cases, the Am= 1 
transition is largely quantized in the molecular frame, 
and we obtain the expected sequence as the motion 
increases, viz., initially a broadening of the rigid spec­
trum until roughly D/6R,....,1, whereupon the spectrum 
narrows to the usual Lorentzian. Meanwhile, the 
Am= 2 transition continues to broaden out with a width 
contribution of 6R, as a simple consequence of the 
orientation dependence of its transition moment. In the 
zero-field limit where the spins are quantized in the 
molecular frame, the slow tumbling motion merely 
broadens the line(s) by a width contribution found to 
be just 4R. The case for weak fields involves an inter­
mediate and more complex description between the 
high-fields and zero-field cases. 

We also note that the results obtained here are quite 
appropriate for quadrupole resonance spectroscopy for 

I= 1 nuclei by replacing the zero-field triplet term by 
the quadrupole interaction. However, the smallness of 
the latter would mean that relatively much smaller 
values of R could be studied in this manner. 
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