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Spin-Rotational Relaxation in One Dimension: Angular 
Momentum-Orientational Correlation* 

JACK H. FREED 

Department of Chemistry, Cornell University, Ithaca, New York 14850 

(Received 2 November 1971) 

Spin-rotational relaxation is generally accepted as an 
important spin-relaxation mechanism for both NMR1 

and ESR2 in liquids. One usually uses the Hubbard 
model1 which employs the rotational analog of the 
Langevin equation, for the calculation of angular 
momentum correlation functions.1 That is, one examines 

density P(Bo, 80 I 8, b, t) can then be written down as4
•
5 

.. 
P(8o, Bo I 0, 8, t) =P(Oo I 8, t) _L Pn(8o, Bo I 8, t) 

the random time-dependent behavior of the spin-
rotation interaction term (in units of fi): XsR = J • C • S where 
where the molecular angular momentum J and the 
orientation-dependent spin-rotation tensor C are gov-
erned by rotational Brownian motion. In spherical 
tensor notation, 3 XsR = C10> J • s+ _LmC<2,m> ( SJ) (Z,-m). 

n=-oo 

[
n2H2 inHS] X exp -- ---
2G G ' 

.. 
P(8o, Bo I 8, t) = L Pn(8o, Bo I 8, t); 

n~oo 

Pn(8o, Bo I 8, t) = (2-ir)-1 exp[ -½n2F+in(8-8o) 

(1) 

In general one must calculate the correlation function 
(XsR(t)XsR*(t+r)) to obtain spin-relaxation effects. 
One then finds that for the term involving the spheri-
cally symmetric part of C or c<0> = ½ TrC, the correla-

-inOo( l-e-/J1) //3]. 

tion function (J1(t)Jm(t+r)) is needed, and it decays Also S=8-80e-/Jt and F, G, and H are given below.4 

exponentially with time constant TJ={r1=l/f3', where We have in this form already accounted for the period­
/31 is the friction constant. However, for the orientation- icity in 8. It is thus possible to test a one dimensional 
dependent portion of XsR one has to consider correlation model for the separability of 8 and (J in the correlation 
functions of type1 : ([Jm"::Dom,L(Q)J1+r[h,,:1)0k,(Lll(Q)]1), functions. 
i.e., one needs the joint correlation function for angular Before we proceed, it is instructive to take advantage 
momentum and orientation. Since the six dimensional of the analogy with one dimensional translational 
Markoffian conditional probability function in angular motion to note that for long times (xx)i=D, which is 
velocity and orientation is not known, the usual proce- obtained either by simply differentiating the Einstein 
<lure is to treat the momentum and orientation parts relation, (r)1=2Dt or from the general conditional 
as though they are independent. One then usually relies probability.4 Actually we are interested in the decay 
on the fact that, for Brownian motion, the orientational with time of (!(8)8)1, where /(8) is a function periodic 
correlation time re,L>>r J, to justify this. in 8. Here the averaging is just over the conditional 

The problem of rotation about a fixed axis in space is, probability function (i.e., just 8 and b). As a result of 
however, amenable to direct calculation. This is because the periodicity, we shall find that there will be a slowly 
the problem of noncommutation of rotational operators decaying term in D, which now is given by D=-kT/(3'. 
in three dimensional space no longer exists in one dimen- We adopt the following simple model to elucidate the 
sion. There is then a simple analogy between 8 and (J for main point. For convenience we may think of the model 
this motion and x and x for the translational motion of a as being that of an idealized liquid crystal where the 
Brownian particle. The joint conditional probability molecular z' axis is fixed along the director and makes a 
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constant angle /3 with the lab z axis. Only J,, may be 
nonzero as a result of changes in angle 0 about the z' 
axis. We also assume (in order to get nontrivial angular 
momentum-orientational correlation functions) that the 
z' axis is not a principal axis of C (so C'<2,±1l:;z,,O). Then 
in spherical tensor notation, 

JCs-R(t) =[C(OL2(¾)1/2C'(2,0)]J,, L ~O,ml(Q)S0,m) 

m 

where ~-k,mL(Q) = exp[ikO(t) ]~k.mL(O, /3, 0). Here the 
prime on the C'<Z,ml refers to a molecular axis system 
which includes z' as one of the axes. We thus need cor­
relation functions of type: 

Gn,k(t) = ([J,,eik8J0[J,,ein8J/). 

We obtain from Eq. (1) (and liJ =10) that 

(J,,e-in8 ) 1= (I/Ii) [00e-il1-inD(l-e-il1)2] 

X exp[ -n2F/2-in(00/f3) (l-e-il1)-in00]. 

Then integrating with [J,,eik8]0 over a Boltzmann 
distribution in 0o and over equal probabilities in 00 

yields 

Gn,k(t) = (IkT /li2) { exp[ ( -n2D//3) (/3t-1 +e-il1) Jl 

X[e-/lt_ (n2 D//3) (1-e-ll1) 2]on,k• (3) 

This function is approximated for .Bt»l and {3/n2 D»l 
by 

Gn,k(t)~ (IkT /li2) [e-/lt_ (n2D/ /3) exp( -n2Dt) ]bn,k• 

The spectral density 

J(w) = 1 L: G(r)e-i"'rdr 

from this approximate form (but actually accurate to 
the next order term in n2D//3 from the complete expres­
sion) is 

Jn ,k(W )~ (IkT /li2)/r1{ 1-n2 D[n2 D/ (n4 D2 +w2
) Jlon,k, 

(4) 

which is valid for w2 «{32
• Note that for n4 .IY2«w2

, 

or essentially equivalent to the Hubbard-type result; 
but for n 2 IY2»w2 we haveJ(w)~(IkT/li2 )f3-1 (w 2 /n4 .IY2) 
_which goes to zero as w-0 unlike the Hubbard-type 
result. This latter result is due to the fact that while the 
slowly decaying term in the approximate form of Eq. ( 3) 
has a coefficient smaller by n2D/{3 than the main term, 
its slow decay relative to the main term means that it 
yields a very large (and negative) contribution to the 
time integral for J (0) .6 

It is very likely that this type of interesting feature of 
the one dimensional case carries over into the three 
dimensional case, although the problems of noncom­
mutativity make it difficult to analyze. Of course, for 
the isotropic term in c<0l (and C'<2 ,0> in the present case) 
no such problems can arise. 

* Supported in part by a grant from the National Science 
Foundation (Grant No. GP-13780) and by the Advanced Re­
search Projects Agency. 
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Calculations of the density vanat10n through a 
liquid-vapor interface based entirely or in part on 
thermodynamic concepts give monotonic functions 
even for conditions far from the critical point.1 In 
contrast, investigations based on the statistical me­
chanical theory of molecular distribution functions 
suggest a density profile having oscillatory character.2 

These investigations made use of the Born-Green3 

integrodifferential equation for the density function 
but in no case was this equation actually solved for 
a particular model of the interface. This Communica­
tion is a preliminary report of the first such solutions 
obtained from the Born-Green equation. 

Consider a one component system whose potential 


