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A general and detailed analysis is given of the phenomenon of chemically-induced dynamic electron 
polarization (CIDEP) by means of the stochastic-Liouville method in accordance with the earlier pre­
liminary report. The finite-difference technique employed permits rapid and convergent solutions without 
requiring any untoward assumptions on the nature of the models. The dependence of the polarization 
on the exchange interaction J (r), the Larmor frequency differences between the interacting pair of radicals, 
diffusion rates, and rates of spin-selective chemical reactions are given in detail. It is shown that models 
in which J(r) is taken to decay exponentially with r, the radical-separation distance of the radical pair, 
yield results which are distinctly different from those for a contact exchange model, when J 0 [the value 
of J(r) when r is at the distance of closest approach] is appreciable. The former, more realistic 
model yields substantial polarizations asymptotically independent of J 0, but larger the slower the de­
crease of J(r) with r; the contact exchange model, however, rapidly goes to zero with increasing J 0• These 
asymptotic values of polarization are predicted to be as high as 10-40 times the equilibrium polarizations 
(P.Q) for sensible values of the relevant parameters, while for values of J 0 yielding maximum polarizations 
(generated at the formative reaction), they can be greater than 100 P eq• These results are of the correct 
order for agreement with recent experiments. The polarizations have been related to the CIDEP intensities 
that one may observe for typical schemes of radical production, reaction, and relaxation in order to allow 
a comparison of the theoretical predictions with experiment. 

I. INTRODUCTION models,6•6 or the effects of a radical-radical re-en­
counter.7 We have already pointed out1 that all these 

Recently we have called attention1 to the fact that it are submodels of the complete dynamics, whereby the 
is possible to develop a rigorous analysis of the in- motion modulates the exchange interaction and 
teresting new phenomenon of chemically induced polarization is developed; and it is the complete dy­
dynamic electron polarization (CIDEP) by means namics, without untoward simplifying assumptions, 
of the stochastic-Liouville method,2 •3 and we presented that is explicitly included in a rigorous solution to the 
a preliminary account1 of our results, which showed stochastic-Liouville equation. 
that for reasonable models it was possible to predict In our desire to formulate the model of an exchanging 
substantial polarizations. In this report, we present a and diffusing radical pair in such a manner as to be 
detailed account of our theoretical methods and consistent with reasonable physical expectations, we 
results on CIDEP. found that we could avoid undue approximations most 

The stochastic-Liouville method,2 •3 is a method conveniently by seeking finite-difference solutions to the 
whereby one may simultaneously include the details stochastic-Liouville expressions. That is, we have been 
of the spin interactions and dynamics, represented in a able to obtain complete and rigorous solutions for 
proper spin Hamiltonian, as well as the classical reasonable models of the exchange interaction and its 
stochastic behavior of the motions of the spin-con- spatial extent ( e.g., an exponential decrease with 
taining radicals in liquids including, when necessary, distance) and the diffusion at the price of numerical 
spin-selective chemical reactions. In the sense of (but very rapid) computer solutions. Our quantitative 
simultaneously including both dynamical and stochastic predictions should then be very useful to the experi­
parts, it bears a formal similarity to the Boltzmann menter as well as a standard for comparison with other 
equation in the kinetic theory of gases. more approximate approaches. In general, we find that 

There have been several earlier attempts to analyze our complete solutions are more complex in detail than 
CIDEP4- 9 in terms of the combined effects of an any of the approximate earlier models, although that 
exchange interaction between a radical pair formed of Adrian7 provides useful, but not quantitative, 
from a dissociating molecule and Larmour frequency insights. 
differences between the two radicals. The primary In Sec. II we discuss our theoretical method including 
feature of all approaches is that the relative motion of the stochastic-Liouville equation, the basic models, 
the two radicals will modulate the short-range exchange and the finite difference methods. Our results are 
interaction.3 However, the difficulty of including this presented and discussed in Sec. III. The relationship 
latter feature has resulted in the use of simplifying between the CIDEP polarizations calculated by the 
approximations such as the consideration of just the methods of Sec. II for individual collisions and actual 
lifetime of a single encounter,4 adiabatic-crossing-type CIDEP intensities that may be observed in an experi-
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ment is discussed in Sec. IV along with a comparison 
with recent experiments. A summary and conclusions 
appear in Sec. V. 

II. THEORETICAL APPROACH 

A. Stochastic-Liouville Equation 

The basic equation describing the spin dynamics of 
radicals under the combined effects of spin interactions 
and diffusion in liquid solution is the stochastic­
Liouville equation given in terms of the spin-density 
matrix p(r;, t) 2 •3 : 

ap(r;, t)/at= -i:JC.x(r;)p(r;, t)+Dr,p(r;, t). (2.1) 

In this equation X.X(r;) is the Liouville operator as­
sociated with the spin Hamiltonian JC(r;) (i.e., for any 
two operators A and B, A"'B=[A, BJ). We shall 
consider the interaction of a radical pair ab, so we 
may write 

(2.2) 

where JC0(r0 , rb) is that part of JC(r;) that is diagonal in 
a basis set of coupled electron spins (i.e., singlet-triplet 
representation). It is given by 

JC0(ra, rb) = i (ga+gb)13.Ji-1Bo(Sa,+sb,) 

+i (L0 A;I;+ Lb Akik)(Sa+Sb) 
i k 

The off-diagonal part JC' of JC(r) is independent of r 
and is given by 

JC'= ½(ga-gb)13.Ji-1Bo(Sa,-Sb,) 

+½(L0 A;I;- LbAkik)(ScSb), (2.4) 
j k 

Equation (2.4) expresses the fact that JC' consists only 
of differences in g values and hyperfine energies between 
the two interacting radicals. J(r0 , rb) in Eq. (2.3) is 
the exchange interaction between radicals a and b, 
which depends explicitly on ra, rb ( or more meaningfully 
on r, the radial distance between the radicals as well 
as their relative orientations). We have neglected in 
Eqs. (2.2)-(2.4) any intramolecular anisotropic g or 
A tensor contributions, which tend to average out in 
liquids in times of the order of 10-10- 10-11 sec. While 
this is not rigorous, any effects from incomplete 
averaging should represent small corrections to the 
ga, gb, Aa, and Ab used in Eqs. (2.3) and (2.4). We also 
neglect spin-rotational terms, since spin-rotational 
relaxation is even faster, TJ ;:510-12 sec. We have also 
neglected relaxation due to intermolecular electron­
electron dipolar interactions, which, like J (r0, rb) are 
modulated by the relative translation diffusion of the 
radicals. In neglecting dipolar interactions, we are 
guided somewhat by the fact that for free radicals in 
normal liquids, the exchange mechanism usually 

predominates in the concentration-dependent spin 
relaxation. The explicit relaxation effects of these 
terms may be included at another stage in the analysis 
(cf. Sec. IV), and we are only neglecting any direct 
effects they may have on the polarization process. We 
further assume, for simplicity, that J(ra, rb)=J(r), 
i.e., the exchange interaction is independent of the 
relative molecular orientations and depends only upon 
radical distance r. Also in the analysis of high-field 
experiments we need only consider the secular AJI;,S0 ,­

type terms. 
The operator Dr, in Eq. (2.1) is the diffusion opera­

tor for the relative diffusion between radicals a and b, 
i.e., the diffusion in the intermolecular vector r. This 
may be taken to be a normal Brownian diffusion process 
(a Wiener-Einstein process) with diffusion coefficient 
D=D0 +Db, i.e., the sum of the individual diffusion 
coefficients. This amounts to neglecting any spin­
dependent effects on the diffusive motion, which should 
be a good assumption when Ji I J(r) I <kT.10 

The diffusion operator r, can be written in spherical 
polar coordinates as 

r,= r,+ (l/r2)ro, 
where r,, the radial part, is given by 

(2.5) 

r,= (1/r2)(a/ar)r2 (a/ar) (2.6) 

while the angular part ro is 

Our above assumptions effectively allow us to write 
JC(ra, rb)-l'{JC(r), so one may integrate out the angular 
dependence (of 8 and ct>) in Eq. (2.1) leaving a 
stochastic-Liouville expression for11 

1
1( 12" p(r, t) = dO sin0 dq,p(r, t) 

0 0 

(2.8) 

given by 

ap(r, t)/at= -iJC"(r)p(r, t)+Dr,p(r, t). (2. 9) 

The Laplace transform of Eq. (2.9) is 

sp(r, s)-p0(r)= -iJC"(r)p(r, s) 

+D(a2/ar2 )p(r, s), (2.10) 
where 

p(r, s) = 1"" e-•1rp(r, t)dt 
0 

(2.11) 

and p0(r)=rp(r, 0) gives the initial condition. Equa­
tion (2.10) is an equation in only the single spatial 
variable r as well as in the spins of the radical pair. One 
could solve Eq. (2.10) by expanding p(r, s) in eigen­
functions of the diffusion operator2 •3 (viz. a spherical 
Bessel function expansion). However we have found it 
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more convenient to employ a finite difference tech­
nique. That is, one writes12a 

iJ2p(r, s)/ar2= (1/M2)[,o(r-M, s) 

-2p(r, s)+p(r+M, s)], (2.12) 

where Ar is a small, but finite, increment in r. In 
principle, one must take M small enough to properly 
represent the functions varying in r. In our case J(r) 
is the most rapidly varying function of r and this 
method allows us to consider a wide range of functional 
dependences of J with r. 

B. Polarizations 

The time-dependent polarization of radical a, or 
Pa(t), is given by 

Pa(t) = - 2 Tr{p(t)Sa,}, (2.13a) 

where the sign convention yields positive equilibrium 
polarizations P eq and where 

p(t)= [" r2p(r, t)dr. 
0 

(2.13b) 

The Laplace transform of Pa(t) is then given by 

Fa(s) = -2 Tr[~"" rp(r, s )drSa,]. (2.14) 

It is easy to see, by writing 2Sa,=(Sa,-Sb,)+ 
(Sa,+Sb,), that Eq. (2.13) is 

Pa(t) = -[psro(t)+PTos(t)] 

+[PT-r_(t)-pr+r+U)] (2.15a) 
while 

Pb(t) = +[psroU)+PToS(t)] 

+[pr_r_(t)-PT+T+(t)]. (2.15b) 

In Eq. (2.15) S, T0, and T ± refer to the standard 
singlet and triplet states of the radical pair, while PAB 

refers to the ABth matrix element of p.13 One notes 
from Eqs. (2.15), that the first bracketed terms yield 
opposite polarizations for radicals a and b, while the 
second bracketed terms give identical polarizations. In 
the high-field approximation the form of Eq. (2.4) 
means that only S and To states couple to give induced 
polarizations, while T ± states remain unchanged 
(cf. Sec. II.D). 

One notes that the initial condition must be specified 
to solve Eq. (2.10). The precise initial conditions one 
utilizes depends on the specific physical model ap­
propriate to the experiment. Thus, for example, one 
may have a chemical reaction that produces radical 
pairs initially in pure singlet (or pure triplet) states. 
Then the stochastic-Liouville equation (2.9) or (2.10) 
is solved subject to this initial condition, e.g., Po(r)ss= 
o(r-r0 )/ra2, where r0 is the initial separation. Alterna­
tively, the polarization may be conceived of as being 

generated whenever independently produced radicals 
approach one another and have a finite probability of 
reacting. The initial conditions here would then involve 
equal populations in the S and T0 states, which is a 
direct consequence of ( 1) having equal initial popula­
tions of states +a, -band -a, +b and (2) having 
random initial phases, i.e., P±a,H,=fa±b(t=O)=O, etc. 

Thus, the polarization transform Pa(s) may be ob­
tained from Eqs. (2.10)-(2.12), (2.14), and the Laplace 
transform of Eq. (2.15a) once the appropriate initial 
conditions are chosen. Then Pa(t) is recovered by 
inverse transformation. However, we shall find that we 
need just the limiting value of Pa(t) as t-Hx:,, which is, 
according to the well-known equality,14 

Pa""= limPa(t)= limsFa(s). (2.16) 

In the high-field approximation, when the T ± states 
do not contribute to the induced polarization, then one 
has 

Pa""= -2 lim s 1"" r Re[psr 0(r, s)Jdr. (2.17) 
•-+0 0 

C. Stochastic Matrix and Boundary Conditions 

The application of the finite difference technique,12a 

expressed by Eq. (2.12), is essentially equivalent to 
transforming the continuous diffusion equation (a 
Fokker-Planck equation) into a discrete Master equa­
tion involving a transition-probability matrix W,12h 

coupling p(r, t) between discrete values p(r0+jM, t) 
wherej=0, 1, 2, • • •, N. These discrete values form a 
column vector g. Thus 

(2.18) 

If we let r0 = d be the distance of closest approach, and 
if we do not allow any net accumulation of radicals at 
this point, then this establishes a boundary condition, 
which is formally equivalent to a reflecting wall.128 

This condition is 

(2.19a) 

or equivalently 

ap(r, s)/ar]r_d-[p(d, s)/d]=O. (2.19b) 

In finite difference notation, Eq. (19b) becomes 

1[,o(d+t:..r, s)-p(d-t..r, s)]/2!:l.r} 

-[p(d, s)/d]=O. (2.19c) 

Then for r=d Eq. (2.12) gives 

Da2p(r, s)/ar2]r=cr*(D/M2 ) 

X {-2[1+ (t..r/ d)Jp(d, s )+2p(d+t..r, s)}, (2. 20) 

where we have now eliminated the p(d-t..r) term. 
In order to make the calculation tractable, one must 
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limit the space to a finite region, the outer limit of 
which is given by rN= r0+ NM. A choice of the value of 
rN is guided by two considerations: (1) it must be 
large enough that particles separated by rN exert an 
exchange interaction J(rN)=O; (2) the probability 
YN,K is small that particles separated by rN will diffuse 
close enough (i.e., to rx) such that J(rx) is nonneg­
ligible. One has YN,x=rx/rN.15 This second condition is 
needed to permit re-encounters of the radical pair. It is 
clear that a reflecting barrier at rN would induce physi­
cally unjustified extra encounters ( especially as 
t-'>oo !). But an absorbing wall may be satisfactorily 
employed, since, as rN becomes large, the fraction of the 
re-encounters not included becomes negligible. [Note 
that Condition (2) is appropriate only for very dilute 
solutions. More moderate radical concentrations would 
probably require rN chosen as the mean distance 
between successive radical-radical encounters and some 
adjustment is made in Sec. III for faster diffusion 
rates.] Thus, as t-'>oo the radical pair achieves unit 
probability of being separated by rN»r0• 

We now adopt the notation of writing p(r0+jM, s) 
as p(j, s) and a transition-probability matrix element 
of Win Eq. (2.18) as Wro+i11r-ro+Mr as Wk,i• Then the 
absorption condition at r=rN is 

(2.21) 

The total Wis then given as a tridiagonal matrix: 

D 
a,2 

-2[1+(ar/d)] +2 

1 -2 1 

1 -2 1 

1 -2 1 

1 -2 0 

2 0 

(2.22) 

where the last row has been determined by the con­
servation of total probability requirement ( see below). 

Note now that in the finite difference technique we 
approximate the integral in Eq. (2.14) for Pa(s) as 

l
oo N 

rp(r, s)dr= L V(i)p(i, s), 
0 i=l 

(2.23) 

where V(i) is the radial weighting factor for the r;th 
position. Specifically one has 

V(O) = d<ir/2 

Now the diffusion equation in the absence of spin­
dependent phenomena, is of course 

dp(r, t)/dt= r,p(r, t)-'>Wp(r, t), (2.25) 

where p(r,t)=rp(r,t), and p(r,t) is the classical 
probability density. The arrow in Eq. (2.25) just 
reflects the passage to a finite difference expression 
[cf. Eq. (2.18)]. Then the conservation of probability12b 

condition becomes 

N 

L V(i)W;,1=0 for j=O, 1, • • •, N. (2.26) 
i-0 

That is, the weighted sum of elements of W for each 
column must be zero. The W matrix given by Eq. 
(2.22) is seen to be in accordance with Eq. (2.26). 

There is a convenient way to keep rN large enough to 
satisfy the above two conditions, while having <ir small 
enough to be converging to the correct solution and yet 
to keep N from getting too large. In the region where 
J(r),=O one has ro5:r5:rM with rJli<<rN, In this region 
<ir must be chosen small enough compared to the 
variation in J(r). However, for rM5:r5:rN, where 
J(r)=O, M can be taken much larger and still ade­
quately describe just the Brownian diffusion. We take 
the <ir in the latter region asf times larger than that of 
the former region (where f..__,10). Then Eq. (2.24) 
becomes 

V(O)=dM/2 

V(i)=r;M for O<i<M 

V(M)=rM(l+f)M/2 

V(i)=r;fAr 

V(N)=rNJM/2. 

for M <i<N 

(2.27) 

The matrix elements of W are again given as in Eq. 
(2.22) for r;<rM, For r;>rM they can be obtained from 
the elements of Eq. (2.22) by dividing by f2. The Mth 
row is determined by the conservation of probability 
[Eq. (26)] with the V(i)'s of Eq. (2.27). One finds 

WM,M-1= [2/(l+J)](D/M2 ) 

W M,M= - (2/f) (D/ <ir2 ) 

w M,M+l= [2/ (l+J)j](D/ t,.,2 ). 

D. The Matrix Solution 

(2.28) 

V(i)=r;<ir for O<i<N 

V(N)=rN<ir/2. 
One now needs the matrix elements of X(r)"'p. 

( 2. 24) These are obtained utilizing Eqs. ( 2.2 )-( 2.4). One 
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finds that 

ss STo ToS ToTo 

0 -Q Q 0 

-Q 2J(r) 0 Q 
xx(s, To)= (2.29) 

Q 0 -2J(r) -Q 

0 Q -Q 0 

for the subspace defined by the S and To levels. In the 
high-field approximation this subspace does not couple 
to the remainder of the 16X 16 dimensional space 
needed for a complete representation of xx. Further­
more, in this approximation, [XxpJr+r+= [Xxp]r_r_ =0, 
so the T ± states cannot contribute to the polarization 
process. Note that in Eq. (2.29) 

2Q= (ga- gb)/3;h-1Bo 

+(I:;0 A/M1a- I;bAkbMkb) (2.30) 
j k 

so 2Q is the difference in ESR resonant frequencies 
between radicals a and b ( when J = 0). Actually Eqs. 
(2.29) and (2.30) imply a particular configuration of 
nuclear spin states in the two radicals, but this is 
sufficiently general for considering the interaction of an 
arbitrary radical pair. 

One easily finds that by transforming the matrix 
of Eq. (2.29) to a representation of 

p± = ( 1/v'2) (ps,s±PTo,To) 

instead of ps,s, PT,T etc. that [X.XpJ+.+=0, which just 
expresses the conservation of spin in the reduced four­
dimensional subspace. This can (in the absence of 
spin-selective chemical reactions, which destroy radi­
cals, see Sec. E) be used to convert the needed sub­
space to just three dimensions. 

The complete solution given by Eq. (2.10) now 
becomes a matrix equation3

: 

[s1-W'+iil]p(s) = p(O) (2.31) 

such that the vector space in which e(s) is defined is the 
4(N+1) dimensional space formed from the product 
of the four-dimensional spin space [of Eq. (2.29)] and 
the N+1 dimensional space of Eq. (2.22). The con­
servation of total probability (<P) in this space is given 
by 

<P(s)= J"" r[ps,s(r, s)+Pro,roCr, s)]dr 
0 

N 

= L V(i)[fis,s(i, s)+.iir0r 0(i, s)]= 1/s. (2.32) 
i=O 

That is, we normalize to unity just in terms of Sand T0 

states neglecting the unimportant T ± states. The il in 
Eq. (2.31) is block diagonal, where each block is given 

by Eq. (2.29) for the particular value of r. The W' in 
Eq. (2.31) is just the W matrix of Eq. (2.22) [as 
modified according to Eq. (2.28) and the associated 
discussion], but with each element replaced by the 
product of that element and a 4X4 unit matrix, since 
Dr, is independent of spin. 10 

One solves Eq. (2.31) 16a for the elements of p(s) or 
p(i, s) and then the polarization is given, from Eq. 
(2.17) by 

N 

P 0 ""=-2limsI; V(i) Re[psr 0 (i,s)]. (2.33) 
s--i>Q i=O 

The vector p(0) in Eq. (2.31) consists of the initial 
conditions. One can anticipate a variety of initial 
conditions ( cf. Sec. II.B ), but since Eq. ( 2.21) is 
linear and homogeneous in p ( r, t), then one is free to 
superpose solutions for the simplest forms of initial 
conditions to obtain solutions for more complex initial 
conditions. We have only had to consider the case of 
pure singlet at ro= d, for which Ps.s(i, t=0) =o,.o/V(O). 
The case of pure T 0 at r0= d may easily be shown to give 
values of Pa(t) exactly opposite to that obtained from 
the pure S initial condition. One first rewrites Eq. 
(2.29) in a coupled basis set as16b: 

J 

0 

-Q 

( 

(ps,ro+PTo,s)) 

X (ps,ro-PTo,s) • 

(ps-Pro) 

(2.34) 

The term in (ps+Pr) is uncoupled as already noted. 
The initial condition p(0) in the same basis as Eq. 
(2.34) is for pure triplets, thus seen to be just minus 
that for pure singlets [note ps,r(i, t=O)=OJ. The 
superposition property of the solution to Eq. (2.1 ), 
then means that Pa(t) given by Eq. (2.15a) (recalling 
T ± states do not contribute) only changes in sign. Any 
mixture of Sand T0 initial states then follows from the 
superposition. Thus initial random distribution of 
singlets and triplets cannot give any polarization. 
Other kinds of initial conditions are considered when 
the effects of chemical reaction are discussed. 

By similar arguments to that just given, one finds 
from the form of Eqs. (2.31) and (2.34), that the 
effect of letting Q-+-Q is equivalent to changing the 
sign of the polarization provided the initial condition 
is just some admixture of singlet and triplet [ with no 
initial polarization, i.e., Ps.r(i, t=O) =OJ. [Similar 
conclusions may be obtained from Eqs. (2.15) and 
(2.30) for the definition of Q.] The effect of changing 
J--J is also seen, from Eq. (2.34), to result in a 
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reversal in sign of the polarization [provided 
ps,T(i, t=0)=0J. 

E. Polarization Effects of a Selective Chemical Reaction 

One conclusion of Sec. II.D was that no polarization 
could be created unless there was an excess of singlets 
or triplets. When two independently produced radicals 
happen to collide, then there will be equal probabilities 
of forming a singlet or each of the triplet states and as a 
result no polarization. This situation however is 
changed if the radicals can react via a selective chemical 
reaction, i.e., the probability for a reaction is higher for 
singlets than for triplets ( or vice versa). Such a selective 
reaction will have the effect of eliminating some singlets 
at the first encounter leaving a net triplet character. 
The situation is now similar to that we have previously 
considered. Therefore the polarization process may now 
begin. We shall follow the usual approach, by assuming 
that the probability for reaction is proportional to the 
singlet character of the colliding radicals and also that 
the radicals have to be within a certain distance to 
react. [The latter assumption is essentially equivalent 
to a sphere of influence concept. 17] Thus we define a 
"first-order chemical rate constant" k ( r) that gives 
the probability of the radical pair reacting per unit 
time as a function of the interradical separation r. 
It is necessary to introduce this "rate constant" into an 
augmented W'-matrix, to allow for disappearance of 
singlet ( or triplet) at the first encounter as well as all 
subsequent radical-pair encounters. One may use a 
variety of forms for the functional dependence of k(r) 

2.0 ....-, 
I 

1.5 I 
I 

"'Q 
1.0 I 

I 
)( I Ba. 0.5 

Q 
c> 
0 

0 
10 II 

FIG. 1. Polarization Pa"' as a function of J 0 for the contact 
exchange model. Solid curve: D= 10-6 cm2/sec and dashed curve: 
D= 1()-6 cm2/sec. Other parameters used are Q=O.SX108 sec', 
d=4 A, M=l A. Graph gives log,0(Pa"'X103) vs log10J 0• Sign 
of Pa"' determined as in Table II. This graph scales by replacing 
the abscissa variable log10(J0) by log10[10•J od2/16D] and by using 
Qd2/16D=O.SX10<s-.) where•= 11 and 10 for the solid and dashed 
curves, respectively, and M/d= 1/4. 

on r. We have utilized the simple form 

k (r;) = k8;,o (2.35) 

so the "sphere of influence" is just d to d+Ar. 
We then may take as our initial condition, the instant 

when the radical pair first approaches to the minimum 
separation d, since no polarization can previously have 
been built up for random-initial singlet and triplet 
character. Thus, our solutions based on Eq. (2.33) just 
give the total polarization developed per radical-pair 
"collision," where by a single collision we include the 
first encounter and all re-encounters of the radical pair 
before they finally diffuse away. This polarization also 
includes the effect of the chemical reaction in depleting 
the total number of radicals. 

The augmented W' matrix [cf. Eq. (2.31)] that 
properly includes the effects just described of the 
chemical reaction is given by letting 

1 

W'(k)=W'(k=O)-k 

1 
2 

½ 

0 , (2. 36) 

0 

i.e., decay of radical only from d to d+Ar and only that 
of pure singlet character. The associated off-diagonal 
density-matrix elements PsT 0(d) and PTos(d) must also 
decay by a Heisenberg uncertainty in life-time effect 
given as the mean of the decay rate of S and T0 

states,20
•
18 or just ½k. 

WhenEq. (2.36) is utilized, then the total probability 
CP(t) [or CP(s) its Laplace transform] given by Eq. 
(2.32) is no longer unity, reflecting the loss of radical 
due to the chemical reaction. We define the recombina­
tion probability per "collision" as 

where 
5'= 1-(P, 

CP= lim CP(t). 
t➔"J 

(2.37) 

It is therefore useful to define a normalized polarization 
Pa as 

Fa(t) = - 2 Tr[p(t)Saz]/Trp(t) = Pa(t)/CP(t). (2. 38) 

Fa(t) gives the correct polarization for the radicals 
that survive the "collision." (However, it will be shown 
in Sec. IV that the quantity most directly related to 
experimental results is Pa "'/5'.) 
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FIG. 2(a). Pa"" as a function of Q for the contact exchange 
model. Separate curves are for D= 10-3, 10-6, 10-7 cm2/sec. Other 
parameters used are Jo= 1012 sec1, d=4 A, .:lr=0.25 A. Sign 
of Pa"" determined as in Table II. This graph scales by replacing 
the abscissa variable QX 10-8 by (Qd2/16D) X 10.--s, and each 
curve corresponds to a particular value of Jod2/16D=1X10<12-,) 

for A and 1 X 10<10-,) for B. The values of • are shown. Also tJ.r / d = 
1/16. (b) Same as (a), but Jo=1010 sec•. 

III. RESULTS 

The Eqs. (2.31) and (2.33) are very conveniently 
solved by the use of Gaussian elimination of banded 
matrices on a 360/65 IBM computer, with only about 
a second of running time for each calculation.19,20 

We found that the limit s-o needed for Eq. (2.33) 
was always reached for s::;l0-8D/(M2). The actual 
convergence with s can be seen in Table I. 

In our computations, we have employed as the form 
of l(T) 

l (T) =lo exp[ -A (T-d) J for r''?., d (3.la) 

or 

l(T;) =10 exp[ -jMT J for j=O, l·••M. (3.lb) 

[In discussing our results, it is convenient to define a 
distance Tex for which l(T+Tex)=l0-5l(T), or Tex= 
:x.-15 lnlO.] In the limit as A gets very large, Eq. (3.lb) 
is just a simple "contact exchange" model: 

(3. lc) 

More precisely, this contact exchange model is one in 
which the molecules are either in or out of the region 
where 1 0~0. It does not allow for the molecules to 
take any diffusive steps and remain in the region where 
lo~O. 

We have solved Eqs. (2.31) followed by Laplace 
inversion to obtain Pa(t) [cf. Eq. (2.15)] as a function 
of time for several cases. One finds that the polariza­
tions have fully developed in 10-8 sec for D= 10-5 

cm2/sec, 10-7 sec for D= 10-5 cm2/sec, (and TN"-'100-
200 A), and in general, the time of development of 
polarization is inversely proportional to D. (These 
time evaluation results are fully consistent with our 
findings on convergence as s-o cf. Table I.) This 
justifies our neglect of T1 processes during the collision. 
They are explicitly included in the rate analysis of 
Sec. IV. 

We have found that satisfactorily convergent solu­
tions (cf. Table I) are obtained [with Eq. (3.lb)] 
when ~Tis chosen so that20 l(T;)/l(T;+~T)=eMr-:::,5, 
and then Mis taken so that l(TM);:::::,O while TN"-'100-
200 A for D?:. 10-4 sec with f"-'l0-20.21a (However, for 
D= 10-3 cm2/sec and smaller Q,,__,,108 sec-1, very large 
values TN"-'900 A are needed to guarantee convergence, 
although most results below are given for TN"-'200 A, 
since new collisions and reactions should occur at such 
distances in moderate concentrations. Note that a study 
of Pa 00 vs TN can show the role played by re-encounters in 
both building up new polarization and in destroying 
previously built-up polarization.) 

Scaling of Results. One finds that the system of Eqs. 
(2.8)-(2.11), (2.19), (2.35), and (3.1) permit a scaling 
by introducing the dimensionless variables x= (T/d)-1 
and T=Dt/d2, while solving for <I>(x, T)=d-1p(T, t) for 
thelimitT-oo.21hOne thenhasfromEqs. (2.13), (2.14), 
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Fm. 3(a). Pa"' as a function of Jo for initial singlet (or triplet) state. Solid curve: , •• =2 A, dashed curve: , •• =4 A, dotted curve: 
8 A. Other parameters used are D= lQ-6 cm2/sec, Q=2X108 sect, d=4 A. Sign of Pa"' determined as in Table II. This graph scales by 
replacing the abscissa variable log10(J 0) by log10[1011 J od2/16D] and by using r .. /d= 1/2, 1, and 2, respectively, and Qd2/16D=2X 10-a. 
(b). Pa"' as a function of Jo for initial singlet (or triplet) state. Solid curve: Q=0.5X108 sect, dashed curve: Q=2X108 sec1, dotted 
curve: Q= 8X 108 sec-1. Other parameters used are D= 10-5 cm2/sec, , •• =4 A, d=4 A. Sign of Pa"' determined as in Table II. This 
graph scales by replacing the abscissa variable log10 (J0) by log10[1011Jod2/16D] and by using Qd2/16D= 1 x10-11Q and r .. /d= 1. (c). Pa"' 
as a function of J0 for initial singlet (or triplet) state. Solid curve: D= 10-5 cm2/sec; dashed curve: D= 10-0 cm2/sec. Other parameters 
used are Q=2.0X108 sect, r •• =4 A, d=4 A. Sign of Pa"' determined as in Table II. (d). Pa"' as a function of Jo for initial singlet 
(or triplet) state. Solid curve: d=2 A, dashed curve: d=4 A, dotted curve: d=8 A.. Other parameters used are Q=4X 108 sec', r .. = 
4 A, D= lQ-6 cm2/sec. Sign of Pa"' determined as in Table II. 

and (2.16) that the polarization Pa"' may be written as 

Pa"'(Jo, Q, Tex, D, d, k) 

i.e., the apparent dependence of Pa"' on the six variables 
Jo, Tex, Q, D, d, and k may be reduced to a dependence on 
just four dimensionless variables Jod2/D, Qd2/D, 
Tex/d, and kd2/D. Equivalent comments apply to (P 

and 5'. (In the contact exchange model, Tex/d should be 
replaced by the radial extent of J 0~0 in units of d.) 
We show results with respect to the regular dimen-

sional variables for physical clarity but we indicate how 
they may be scaled based on the dimensionless variables. 

A. Contact Exchange Model 

The results for J(T;) given by Eq. (3.1c) are shown in 
Figs. 1 and 2. In Fig. 1, the functional dependence of 
Pa"' on J 0 is given for several cases. One can fit the 
curves shown (as well as many other results we have 
obtained) to the functional form (for Q<Jo) 

(3.2) 

where r1 may be interpreted as the lifetime of a bi-
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FIG. 4. Pa"' as a function of D for initial singlet (or triplet) 
state. Solid curve: J 0= 1010 sec-1, dashed curve: Jo= 1012 sec-1, 
dotted curve: J 0= 1014 sec-1. Other parameters used are Q=0.5X 
108 sec-1, r •• =2 A, d=4 A. The small insert shows the shape 
correction to the J O= 1012 sec-1 curve if r •• = 4 A is used. Sign 
of Pa"' determined as in Table II. 

molecular encounter and is found to be well approxi­
mated by [cf. Eq. (2.27)] 

T1""'V(0)/D. (3.3) 

This result for r 1 may be compared with the usual 
Brownian diffusion result of r 1-v-'"'411'Dd/ .1 V, where .1 V 
is the "reaction volume,"22- 24 to show that .1 V is just 
the annular volume of the "contact region" 471'dV(0) 
(which is valid for M/2d<<l). The J dependence of 
Eq. (3.2) is essentially that found for equivalent 
models of Heisenberg spin exchange,24

•
25 although the 

dependence on Dis modified by the coefficientf(Q, D) 
[which by scaling, may be written asf(Qd2/D)]. The Q 
dependence of J(Q, D) is strongly dependent on the 
value of D, as may be seen from Fig. 2. One finds for 
Q"-'10-8 sec-1 that j( Q, 10-3) a: Q, J(Q, 10-:) a: Q0·45

, 

while j( Q, 10-7) a: Q0·2. (However, if YN"-'900 A instead 
of rN'-...,200 A is used, then J( Q, 10-3) a: Q0·48.) These 

results for J( Q, D) are independent of J. The composite 
of the features in Figs. 1 and 2 has not been adequately 
predicted by the earlier simplified models. 

B. Polarizations in the Absence of Chemical Reactions 

Our results on polarizations in the absence of chemical 
reactions are shown in Figs. 3-5 and in Table II. 
These are the results for J(r;) given by Eq. (3.lb). 
One sees by comparing Figs. 3(a) and 1, that for small 
] 0 values (dependent on the value of D), all the curves 
of Fig. 3(a) show identical J dependence as the simple 
contact-exchange model and with very similar values of 
Pa 00, But for J 0>J0 (max) [where J 0(max) is the value 
of J 0 corresponding to a maximum in Pa00

] the polariza­
tion Pa"" first decreases, but then levels off to a value 
virtually independent of lo, i.e., Pa""(asympt). One 
finds that this asymptotic value is dependent on r0 x, 
the larger the value of rex, the greater is Pa""(asympt) 
as one would anticipate on simple physical grounds. 
This important feature is distinctly different from the 
contact exchange model of Fig. 1 and has the important 
consequence of permitting significant polarizations to 
develop even while J 0 may be very large (i.e., > 1012 

sec-1). There is a tendency for Pa"'(asympt) to depend 
linearly on rex [cf. Table II and Fig. 3(a)]. Figure 
3 (b) shows that Pa"' ( asympt) does depend significantly 
on Q, i.e., a higher Q value gives a higher Pa"'(asympt). 
Figure 3 ( c) shows a typical effect of Don the maximum 
in Pa"" as a function of 1 0. For Q ;5108 sec-1, J 0(max) is 
approximately proportional to D (as in the "contact 
exchange" model), but for higher Q values, this is no 
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FIG. 5. Pa"' as a function of Q for initial singlet (or triplet) 
state. Solid lines: r •• =8 A, dashed lines r •• =4 !. Values for 
D=l0-6 and lQ-e cm2/sec are given. Other parameters used are 
Jo= 1013 sec-I and d=4 !. Sign of Pa"' determined as in Table II. 
Scaling is according to Eq. (3.4b) and is asymptotic in J od2/16D. 
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TABLE I. Convergence of polarization calculations. Pa"'Xl03.• 

10-1;2.4 10-2/17. 6 10-3/38.1 10-4/38.8 

1.0/11.9 0. 75/11.3 0.5/11.2 0.25/11.2 
1.0/21.3 0. 75/20.4 0.5/20.3 0.25/20.3 
1.0/35.2 0.75/34.2 0.5/33.4 0.25/34.2 

42/6.5 72/10.6 112/11.7 212/11. 2 
42/21. 6 72/21. 6 112/20.8 212/20.3 
42/38.4 72/36.1 112/35. 1 212/34.2 

2755 

:::; 10-0/38. 5 

• Pa"' values are to the right of values of parameters varied. Calculations are for no chemical reaction and singlet initial case. Values 
of the other parameters used are D= 10-5 cm2/sec, and d=4 .\, J 0 = 1013 sec1, , •• =4 A, except as noted otherwise. 

b s'=st:.r2/D, J=l014 sec1, , •• =8 J\, Q=2X10-S sec1. 
• Q=0.5X108 sec-1. 
d Q=2.0X108 sec-1. 
• Q=8.0X108 sec1. 

TABLE II. Asymptotic values of polarizations for large J 0.•,b,h 

r •• =2 A• r0 .=4 Ad r •• =8 A• 

Qx10-s sec-1 D cm2/sec Pa"'Xl03 r (Pg Pa"'Xl03 r (P« Pa"'Xl03 r (Pg 

0.5 10-• 1.68 0.499 3.35 0.499 6.79 0.499 
1 2.69 0.497 5.36 0.497 10. 7 0.496 
2 3.73 0.492 7.42 0.492 14.5 0.492 
4 5.12 0.487 10.1 0.487 19.6 0.487 
8 7.02 0.480 13.8 0.480 26.3 0.481 

16 9.51 0.470 18.5 0.471 34.6 0.473 
32 12.7 0.456 24.5 0.459 44.5 0.463 

0.5 10-• 5.67 0.484 11. 2 0.484 21.6 0.485 
1 7.75 0.476 15.2 0.477 28.7 0.478 
2 10.5 0.465 20.3 0.466 37.6 0.469 
4 13.9 0.450 26.7 0.453 47.9 0.458 
8 18.0 0.431 34.2 0.436 59.2 0.446 

16 22.5 0.407 42.2 0.416 71.2 0.432 
32 27.1 0.379 49.8 0.392 84.0 0.417 

o.s 10-s 14.9 0.446 28.1 0.451 48.5 0.458 
1 19.0 0.426 35.4 0.434 58.4 0.447 
2 23.2 0.403 42.6 0.415 68.2 0.435 
4 27.6 0.377 48.7 0.395 78.6 0.424 
8 32.8 0.349 55.6 0.375 88.5 0.413 

16 37.9 0.319 64.5 0.356 96.6 0.402 
32 42.0 0.289 70.7 0.337 104.0 0.392 

•Jo= 1013 sec-1 was utilized except for D= 10-4 cm2/sec, where J 0 = 1014 sec-1 was used. 
"The signs of the polarization are determined as follows. i) No chemical reaction: Sign[Pa"']= -[SignQ][SignJ]{Sign[rss(l=0)-

PTT(l=0) ]} ; ii) spi~-selective chemical reaction (reaction 0£
0 

S states): Sign[Pa"']= [SignQ][SignJ]. 
•Values of d=4 A, M=0.25 A, M=32, N=72, TN=212 A utilized. 
d Values of d=4 A, t:J.r=0.25 A, M =32, N = 72, rN=212 A utilized. 
• Values of d=4 A, M=0.5 A, M=32, N=72, TN=220 A utilized. 
r The results are given for Pa "'X 103 in the no chemical reaction case and for (Pa"' /ff) X 103 in the spin-selective reaction case ( with 

random initial condition). For no chemical reaction, multiply table entry by I Pss(t=0)-PTOTO(t=0) J. 
g Survival probability for R.I. condition in the presence of a spin-selective chemical reaction with k = 1016 sec-1, i.e., kM2 / D» 1. 

Xote that Pa"' and (P scale for different values of kt:.r2/D as shown in Fig. 7. 
h The results of this table scale according to Eq. (3.4b); thus if Q=22X106, , •• =4 A and d=2 A, one obtains the same polarization 

as for Q=5.5Xl08 sec', r •• =8 A and d=4 A, which may be interpolated from the table. 
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FIG. 6. Pa°'/;J as a function of Jo for spin-selective chemical 
reactions. Curves shown for random initial (R.I.) condition, 
with solid curve: D= 10-6 cm2/sec and dashed curve: D= 10-6 

cm2 /sec. Other parameters used are , •• =4 A, Q=108 sec-1, 

d=4 A, k!1r2/D»1. Sign of Pa°' determined as in Table II. This 
graph scales by replacing the abscissa variable log10(Jo) by 
log10[10'Jod2/16D] and by using Qd2/16D=1X10<8-•> where 
•= 11 and 10 for the solid and dashed curves, respectively. Also 
, •• /d= 1. 

longer strictly true [cf. Fig. 3 ( c)]. The dependence of 
Pa 00 on the contact distanced is illustrated in Fig. 3 ( d) 
(again given as a function of lo), For J 0<Jo(max) 
there are significant differences for the different d 
values, with Pa"' increasing as d increases. However, the 
Pa"'(asympt) (for ] 0>1012 sec1 ) are quite similar for 
the different d values although they do increase slightly 
with decreasing d. This latter variation [•-..,10% in 
Fig. 3 ( d) J is increased for larger Q values, but decreases 
for smaller Q values. In all other graphs and our tables, 
we have used a single value of d= 4 A. The composite 
of the parts of Fig. 3 may be summarized by the simple 
relations (based on dimensionless variables) 

for J <J0 (max) 

(3 .4a) 
and 

Pa"'(asympt) =g(Qd2/D, rex/d),.....,g(Qd2/D) (rex/d) 

(3.4b) 

where f, g, and h are very similar functions of Qd2/D. 
Also if a r1 is defined (by analogy with the contact 

exchange model) as 21 o (max) r1 = 1, then we find : 

(3.4c) 
(neglecting effects of Q). 

Figure 4 shows Pa"' as a function of D for various 
values of 10. One finds that Pa"' goes through a local 
maximum, the position of which is determined by ] 0• 

For 1 0= 1012 sec1 this maximum lies in the normal 
diffusion region, while for 1 0= 1010 sec1 or 1 0= 1014 sec1 

this local maximum will lie in the very fast or very slow 
diffusion limit, respectively. The existence of this local 
maximum is closely related to the maximum in Pa"' 
versus lo shown in Fig. 3. The effect of changing Q is 
merely to shift the x axis. The effect of changing rex 
is shown in the small insert. A larger rex gives a less 
pronounced local maximum. This suggests that if 
experiments could be performed that yield Pa"' as a 
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Fm. 7. Graphs of (a) Fa°" and (b) (P as a function of k for 
spin-selective chemical reactions. The solid lines are for random 
initial (R.I.) and the dashed for triplet initial (T.I.) conditions. 
Other parameters used are J 0=1018 sec-•, , •• =4 A, Q=1X108 
sec-1, d=4 A, !1r= 1 A. Sign of Fa°' determined as in Table II. 
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Fm. 8. Graphs of (a) P,.00/ff in units of 
10-3 and (b) (ll=l-ff as a function of Q 
for spin-selective chemical reactions. 
Curves shown for random initial (R.I.) 
condition and for values of D of 10-3 and 
10-4 cm2 /sec with J 0= 1014 sec-1, and 
values of 10-6, 10-6, and 10-7 cm2/sec 
with Jo= 1013 sec-1. Other parameters 
used are r01 =4 A, d,,;4 A, kt!..r2/D»l. 
Sign of P,.00/;f determined as in Table II. 
Scaling is according to Eq. (3.4b) and is 
asymptotic in J od2/16D. 
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function of D, it might be possible to determine some­
thing about the properties of J(T). The dependence of 
Pa 00 on Q for different Tex and D is illustrated in Fig. 5. 
The value of Tex has almost no effect on the functional 
form of Pa00 on Q, as predicted by Eq. (3.4b), and this 
functional form is very similar to that obtained for the 
contact exchange model. 

We present in Table II a range of values of P 0
00

, 

which should be useful for the experimenter as well as 
for comparison with results that may be obtained from 
more approximate theoretical models. Since it is most 
likely true that Jo> 1012 sec-1 (and also to avoid 
excessive tabulation), we present Pa00 (asympt) in 
terms of all the other relevant parameters. 

C. Polarizations in the Presence of Spin-Selective 
Chemical Reactions 

Some of our results for the case of polarizations in the 
presence of spin-selective chemical reactions are sum-

Q X IQ-S 
(b) 

marized in Table II and in Figs. 6-8. We consider as 
initial conditions, either the random (R.I.) case (equal 
amounts of Sand To) or pure triplet (T.I.), where only 
To is included. One finds from Fig. 6 that the functional 
dependence of P 0

00/:J;:::::;,P0
00 uponJ0 is somewhat similar 

in form to that shown in Fig. 3 for no chemical reaction. 
However, the maximum in P 0

00/:J has virtually dis­
appeared compared to the asymptotic value of Pa00/:J. 
Figure 7 shows typical results for the dependence of 
Pa 00 and (P on k [ of Eq. ( 35)]. One finds that for 
/::..T2k/ D ~ 1 both Pa 00 and (P achieve an asymptotic 
value independent of k, while Pa 00 is also independent of 
whether the initial condition is R.I. or T.I. Actually 
Pa00 for T.I. is nearly independent of k, while for R.I. 
and t:..r2k/ D< 1 it drops off very rapidly to negligible 
values. These results are as expected, since for 
t:..r2k/D> 1, any radicals in an S0 state would com­
pletely react before diffusing out leaving only triplets, 
or half the initial number of radicals in the case of 
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R.I., while for !::i.r2k/D< 1 the R.I. condition is not 
modified sufficiently to generate significant polarization 
Pa,, ( cf. Sec. ILE). Note that 5' = 1-CP from Fig. 7 (b) 
gives for T.I. the combined probability that a radical 
pair initially together in a T0 state will have first been 
converted to So and then react. 

One finds from a comparison of Fig. S(a) (for R.I. 
and !::i.r2k/D> 1) and Fig. 2 (for the contact exchange 
model) that the Q dependence of Pa °'/5' is virtually the 
same as that for Pa,, calculated for no reaction and 
contact exchange. By comparing Fig. S(a) with Fig. 5 
(no reaction, T.I., and the same exchange interaction) 
one observes that not only is the Q dependence of 
Pa°'/5' (R.I., with reaction) and Pa°' (T.I., no reaction) 
identical in the two cases, but the actual values of 
Pa °'/5' are also identical. 

We have also examined the k dependence of Pa ""/5' 
and have found that Pa°'/5' is independent of k for such 
values of 10 that Pa 00 has assumed its asymptotic value. 
This, of course, means that the functional forms of 
Pa"' and 5' on k are identical. For lower values of 10 we 
found that Pa "°/5' has a weak dependence on k, but it is 
much weaker than that of Pa°' [cf. Fig. 7(a)]. For 
normal diffusion rates (i.e., D= 10-4-10---5 cm2/sec) and 
lo> 1010 sec1 one can take Pa "°/5' to be independenf of k. 

One observes from Fig. S(b), that the fraction of 
radicals that have reacted (5') is larger both for smaller 
values of D and for larger values of Q. This Q de­
pendence is presumably due to radical pair re-en­
counters. The larger the Q value, the more effective is 
the S-T0 mixing. Then the radicals undergoing a 
second or higher encounter will have developed greater 
S character for higher Q. Thus one predicts 5'>0.5 
in the R.I. case. (For the T.I. case, CP is exactly twice 
that for the R.I. case.) The D dependence in Fig. S(b) 
is probably due to the fact that a smaller D value means 
slower motion, hence more time for the S-T0 mixing 
process. 

Note that the values in Table II are again for 
Pa°'/5'(asympt) and also for k!::i.r2/D> 1. As we have 
just noted, these values are identical to Pa'° for the no 
reaction case. 

D. Conjectures on Interpretation 

The dependence of Pa'° on Q for different values of D 
as illustrated in Fig. 2 and S(a) and detailed in Table II 
is useful in trying to determine the nature of the 
polarization process in terms of the simpler models 
given by earlier workers and recently reviewed by 
Freed. 3 The Pa 00 ex: Q dependence for very fast diffusion 
may be compared to the simple result obtained from 
polarization due to an initial encounter for the contact 
exchange model,3 when, for lo>>Q, 

It is as though there is not sufficient time for S-T0 

mixing via Q when the radicals are apart, and the very 
small polarizations generated ( even from subsequent 
encounters) will occur essentially as that for the initial 
encounter. This appears justified by our observation 
that when rN is increased from ,...._,200 A to ,...._,900 A, so 
that re-encounters due to radicals which have first 
separated by very large distances are included, then 
Pa 00 ex: Q0·48• As the motion slows down, there is then 
sufficient time for S-T0 mixing while the radicals are 
apart thus enhancing the polarization at a subsequent 
encounter (e.g., the mechanism suggested by Adrian7 

where Pcx:Q112 ). But, as the motion becomes even 
slower, one might expect that the S-T0 mixing becomes 
optimal for all Q values, so that the polarization becomes 
almost independent of Q. 

The fact that Pa°'-Pa"°(asympt) for 10> 1012 sec1 

may, in part, be rationalized in terms of the fact that 
the effective region of polarization [ which includes the 
"desirable" range in l(r), i.e., l(r)<l012 sec] merely 
moves out further from r0, while the inner region 
[where l(r) > 1012 sec1] is probably primarily effective 
in just cancelling any polarizations via the spin­
exchange mechanism,1°·24 or by the spin-selective 
chemical reaction. 

The fact that Pa°'/5' becomes independent of k for 
large 10 can be understood by the following arguments. 
The chemical reaction acts to eliminate a fraction 
5'(k) of singlets. If one assumes that this is the only 
effect of the chemical process, one may then calculate 
the polarization as though there were no chemical 
reaction, but with the initial condition [pr0r 0(0)­
Pss(0)]=5'(k). Since Pa°' is proportional to [pr0r 0(0)­
pss(0)], we see that Pa""/5' becomes independent of k 
and equal to Pa'° (T.I., no reaction). It is easy to see 
that this argument is valid even though the total 
disappearance of singlets also involves subsequent 
encounters. The assumption that the only effect of the 
chemical process, represented by k, is to destroy 
singlets corresponds to neglecting the two matrix 
elements with value k/2 in Eq. (2.36). The effect of 
these elements is to destroy polarization in the region d 
to d+M [cf. Eq. (2.35)]. If l 0>10 (max), then the 
polarization in this region is quenched anyway by spin 
exchange and the assumption is then valid. For 10< 
l 0(max), one would expect these matrix elements to 
become important; therefore Pa°'/5' should depend on k, 
as one in fact finds. 

IV. CIDEP INTENSITIES 

The polarization results given in Sec. III are for 
single encounters. These polarizations will, of course, 
decay to the equilibrium value Peq due to Ti processes. 
Also the radicals carrying the polarization may be 
destroyed due to chemical processes. New radicals may 
also be formed, for example, due to a light source. 

The ESR intensity depends not only on the actual 
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polarization but also on the number of radicals. To 
calculate the ESR intensity for a CIDEP experiment, 
we therefore have to include the actual kinetics of the 
system. We illustrate the way in which this may be 
done with some simple examples. These examples will 
show that the observed CIDEP intensity depends not 
only on Pa 00 but also on T1 and t1;2 ( the half-life of the 
radical) in such a way that even if Pa"'<O for a given 
line, this in itself is not sufficient for the line to appear in 
em1ss1on. 

The CIDEP intensity at time t Ia(t) may simply be 
defined as 

( 4.1) 

where na(t) is the number of radicals of type a. General 
rate equations may be written for na(t) as well as nb(t): 

dna(t) / dt= ko,a-k1,ana(t)-k2na(t)nb(t)'J ( 4. 2a) 

dnb(t)/ dt= ko,b-kl.bnb(t)-k2na(t)nb(t)'J. ( 4. 2b) 

The zero order k0 terms are the radical source terms due 
to a light beam, electron beam, etc. The first order 
reaction may be due to reactive collisions with other 
radicals or molecules, where we assume for convenience 
that the latter are in sufficient concentration that their 
amounts hardly change. The second order reaction is 
due to radical-radical recombination. The rate con­
stant is most conveniently written as k2'J, where k2nanb 
gives the frequency of collisions and 'J gives the prob­
ability for recombination per collision, [cf. Eq. (2.37)]. 
This reaction is taken as being spin selective requiring 
an S spin state. For convenience in comparison with the 
results of Secs. II and III, the k2 must exclude collisions 
involving T ± states. 

Note that if ko,a=ko,b, i.e., radicals a and bare pro­
duced in pairs, as well as recombine in pairs, while 
k1,a and k1,b are unimportant, then n0 (t)=nb(t). Also if 
identical radicals are formed and recombine, a single 
rate equation may be written in the usual manner, 
[although k2 of Eq. ( 4.2) must be divided by two to 
avoid counting each collision twice]. The rate of 
change of the intensity may be expressed in terms of the 
different independent processes as 

dla/ dt= dla/ dtJo,a +dia/ dt]kl,a +dia/ dtJ2 

+dfa/dt]Ti,a• (4,3) 

The first term in Eq. ( 4.3) may be explicitly written as 

where P.00 (1) is the polarization generated from an 
initial So ( or To) state, which is itself generated by the 
radical-producing step.26 (Note that if triplets are 
generated, then k0 should refer only to the rate of 
production of T0.) The next term in Eq. (4.3) is 

dfa/ dt]kl,a = Pa(l) (dna/ dt)k1,a = -k1,afa(l). ( 4. S) 

The term due to the spin-selective rate equation is 

dla/ dt]k 2= k2na(t)nb(t) I Pa "'-½[Pa(t)-A(t) ]}, ( 4. 6) 

where Pa 00 = (9 Pa 00 is the unnormalized polarization 
after the collision ( the duration of which is taken to a 
good approximation as being negligibly short, cf. 
Sec. III) and P.(t) its value just before collision. 
Equation ( 4.6) is written to include only those col­
lisions that initially form Sor To states (and not T ±), 
since k2 is the total rate constant for collisions initially 
forming only Sor T0 states; while ½[Pa(t)-Pb(t)]= 
2 Repsp 0 (t) is the initial polarization associated with 
just the S-To states [cf. Eq. (2.15), Ref. 13, and dis­
cussion below]. That is, Eq. (2.15) demonstrates that 
Pa(t) may be split into a portion contributed by the 
S-T0 states and another due to the T ± states and the 
latter are unaffected by the collisions. 

Note that more properly we must write k2= 
k2[P0 (t), A(t)] and P0

00 =P0
00 [P0 (t), A(t)J in Eq. 

(4.6),27 expressing the fact that k2 and Pa'° are func­
tionals of P0 (t) and Pb(t). We now wish to point out that 
this functional dependence may often be neglected. 
The fraction of S-T0 type collisions must be determined. 
A random encounter at time t between two radicals a 
and b will lead to density-matrix elements: 

and 
Pa+,1,-= ¼[1-P.(t)][l + A(t)] 

Pa-,b+=¼[l + Pa(t)][l-A(t)] 

(4.7a) 

( 4. 7b) 

with no initial phase coherence between such states, 
(i.e., Pa+,b-;a-,b+=O). Then [cf. Eq. (2.15) and Ref. 13] 

Ps,s(t)=PT0 ,T0(t)=¼[1-Pa(t)A(t)] (4. 7c) 

PS,T 0(t)=¼[A(t)-P.(t)J. (4. 7d) 

Now usually I Pa(t) I and I A(t) I are very small com­
pared to unity (i.e., <0.1) due in part to the T1 process. 
Then to a good approximation 

(4.8) 

and k2 simply refers to half of the total number of 
collisions, which is, for distinct radicals a and b, in 
Brownian motion theory17 ,22 ,24 

(4.9) 

Equations (4.7c) and (4.8) also show that random 
collisions between two radicals will always yield equal S 
and T0 character, even if each radical has initial polari­
zation. However, Eq. ( 4. 7d) shows that there is an 
initial nonzero ps,T0(t) due to this residual polarization 
[which has already been included in Eq. (4.6)]. 
The effect of such an initial state on Pa 00 may be studied 
by means of our computer solutions of Sec. II. We have 
found such effects to be virtually negligible when 
J 0>1010 sec-1 (with D:$10-0 cm2/sec and k>D/t::.r2 

sec-1 ), due primarily to the fact that the initial polariza­
tion is quenched by spin exchange (but we will discuss 
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these matters in more detail elsewhere). Finally we 
have for the T1 process28 

dla/dt]r 1 ,.= -n.(t)[Pa(t)-Peq]/T1,a 

=[ -la(t)+na(t)Peq]/T1,a• (4.10) 

The total rate equation for the CIDEP intensity may 

Case 2. The radicals a and b are created at the same 
rate but without any initial polarization of importance. 
The radicals are supposed to react only by the selective 
chemical reaction. We also assume T1,0 = Tu for 
simplicity. The steady state solutions now become 

then be written as and 
(4.16) 

(4.17a) 

( 4.17b) 

dl0 / dt= - la(t)[T1,a-1+k1,a]-½k2[nbla(t)-nJb(t)] 

+[Pa 00 (I)ko,a+ P eqT1,a-1n0 (t)+k2Pa 00n0 (t)nb(t)] 

(4.11) 

with an equivalent expression for h The steady state 
solution is 

(4.12a) 

where e88 = ½[1-na88 l/8 /nbss lass] and where nass 
and nbss are obtained from Eq. (4.2). When, for 
simplicity, ko,a=ko,b and k1,a=ku, then 

The following are two specific cases we consider for 
comparison with recent experiments. 

Case 1. The radicals are created by a light source and 
believed to be initially in a triplet state with initial 
polarization Pa00 (I) as calculated in Sec. III. Also we 
assume that na=nb and k2nb<<k1, so that we may neglect 
the k2 terms. The steady state solutions then become 

(4.13a) 
and 

lass= (P0
00 (J)T1,ako,a+nasspeq)/(l+Ti,0 k1,a). (4.13b) 

Normally the experimental result is given as the 
measured enhancement V defined as the difference 
between the observed intensity and the intensity for a 
normal ESR experiment (i.e., without the CIDEP 
effect), divided by the latter. The normal ESR intensity 
lEsR is obtained from Eq. ( 4.13b) by setting P 0

00 (I) = 0. 
By use of Eq. (4.13) we then obtain the following 
expression for the enhancement: 

(4.14) 

and the steady state intensity can then be written as 

( 4.15) 

From Eq. (4.14) we see that the enhancement de­
pends not only on Pa00 (I), but also on T1,a and k1,a and 
that an increase of k1,a ( decrease of the radical life­
time) will cause an increase in V. From Eq. (4.15) 
we see that V has to be less than -1 if the line should 
appear in emission. 

lass+ hss = 2nass Peq 

l ss_ l ss = (2nass Pa oo13T1/ff) 
a b (1 +f3Tr/fJ) , 

where /3 is the effective decay constant for the radicals 
given by 

( 4.18) 

We may again write the steady state intensity as 
Eq. (4.15) where, now, the enhancement Vis given by 
(but cf. Ref. 26) 

V= Uass_hSS)/(I.ss+us) 

Pa00 Tr/3 
(4.19) 

Equation (4.19) is of the same form as Eq. (4.14) and 
similar conclusions may be drawn. 

Comparison with Experiment. Fessenden29 has recently 
performed some very interesting CIDEP experiments 
on several radical systems (CH2CO2-, CH(CO2-h, 
CJI5OH). He is able to demonstrate that the polariza­
tion must be due to the continuous regeneration of 
polarization by radical-radical reactions. He determines 
a quantity V r that he calls the intrinsic enhancement. 
From our analysis of this section, we find this quantity 
to be equivalent to P 0

00/ff Peq(l+f3T1/ff),..._,Pa00/ff Peq 
[cf., Fig. 7(b)]. His values of Vr range from ,..._,30-100. 
Our results in Table II for Pa00 (asympt)/Peqff range 
from 8-20 (rex=4 A) and 15-35 (rex=8 A) for 0.5::; 
QX 10-S:=;4 (Fessenden estimates Q"--'108 sec-1) and 
D= 10-5 cm2/sec. While our estimates are somewhat 
lower than Fessenden's experimental results, they are 
certainly of the correct order of magnitude, and this is 
encouraging. 

Livingston30 has seen substantial polarizations in the 
COOH•COH·COH system, which he analyzes in 
terms of polarization generated at the radical-formation 
stage. An analysis of his preliminary results in terms of 
Eqs. (4.14) and (4.15) yield the very large values of 
P 0

00/Peq"--'200-400, where his results for Pa00 seem to 
depend on k1 ,0 • This would seem to indicate that a 
more detailed kinetic analysis is needed. 

V. SUMMARY AND CONCLUSIONS 

It has been demonstrated that, by the stochastic­
Liouville method, one may rigorously predict CIDEP 
polarizations for reasonable types of models of the 
exchange interaction, the relative diffusive motion of 
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the interacting radicals, and spin-selective chemical 
reactions. The finite-difference technique employed in 
the present work permits rapid and convergent solu­
tions without requiring untoward assumptions on the 
nature of the models, and the technique is readily 
employed to a variety of models. 

The specific models considered for the exchange 
interaction included a contact exchange model as well as 
an exponentially decreasing J(r) with r. The latter, 
more realistic model, was shown to yield distinctly 
different behavior from the former in that for Jo> 1012 

sec-1 the polarization levels off to a substantial asymp­
totic value P 00 (asympt), which is greater the slower the 
decrease of J(r) with r. This feature is not obtained 
for the contact exchange model, where Pa 00 rapidly 
goes to zero for J 0> 1012 sec-1, demonstrating that this 
(frequently used) simple model is not really adequate 
for proper descriptions of the CIDEP phenomenon. 
The polarizations are, in general, functions of J(r), Q 
(half the difference in ESR resonant frequencies 
between the radical pair), D ( the diffusion coefficient), 
and k ( the rate of spin-selective chemical reactions) 
and these dependences have been detailed. In particu­
lar the dependence of Pa 00 on Q varies with D and 
ranges from Pa 00 o:. Q for very fast diffusion and Q,..__,108 
sec-1 ( when maximum re-encounter distances of "-'200 A 
ar~ utilized); to Pa00 0:.Q1t2 for normal liquid diffusion 
rates; to Pa00 o:.Q• where ½<e<O for very slow diffusion 
and large Q. An interesting result in the case of a spin­
selective chemical reaction is that the S-T0 mixing can 
actually enhance the fraction of radicals that react per 
"collision." Another interesting result for the spin­
selective (random initial condition) case is that the quan­
tity Pa00/;J, where ;J is the recombination probability per 
collision, is independent of the recombination rate k 
when Jo> 1010 sec-1 (for D~l0---5 cm2/sec). 

In our analysis of CIDEP intensities, the polariza­
tions Pa"' have been related to what can actually be ob­
served for typical schemes of radical production, reac­
tion, and relaxation. In general, the signal enhancement 
depends on a product of Pa 00

, with the spin-lattice 
relaxation time T1 and the radical decay rate compared 
to the equilibrium polarization. We are able to predict 
values of Pa 00 /5' that are of the correct order of mag­
nitude compared to recent experimental results of 
Fessenden and this encourages us in the belief that the 
basic CIDEP mechanism is reasonably well under­
stood.31 

The application of our methods to an analysis of 
CID NP and Heisenberg-spin exchange will be discussed 
elsewhere. 

ACKNOWLEDGMENTS 

We wish to thank R. W. Fessenden and R. Livingston 
for communication of their results prior to publication. 

* Supported in part by the National Science Foundation (Grant 
GP-13780) and the Materials Science Center, Cornell University. 

t Present address: Chemistry Department, University of 
Aarhus, 8000 Aarhus C, Denmark. 

1 J. B. Pedersen and J. H. Freed, J. Chem. Phys. 57, 1004 
(1972). 

2 (a) R. Kubo, Adv. Chem. Phys. 16, 101 (1969); J. Phys. 
Soc. Jap. Suppl. 26, 1 (1969); (b) J. H. Freed, G. V. Bruno, 
and C. F. Polnaszek, J. Phys. Chem. 75, 3385 (1971); J. Chem. 
Phys. 55, 5270 (1971); (c) J. H. Freed, in ESR Relaxation in 
Liquids, edited by L. T. Muus and P. W. Atkins (Plenum, New 
York, 1972). 

• J. H. Freed, Annu. Rev. Phys. Chem. 23, 265 (1972). 
4 R. Kaptein and J. L. Oosteroff, Chem. Phys. Lett. 4, 195 

(1969); R. Kaptein, Ph.D. Thesis, Leiden, 1971. 
6 H. Fischer, Chem. Phys. Lett. 4, 611 (1970). 
6 S. H. Glarum and J. H. Marshall, J. Chem. Phys. 52, 5555 

(1970). 
7 F. J. Adrian, J. Chem. Phys. 54, 3918 (1971). 
8 P. W. Atkins, R. C. Gurd, K. A. McLauchlan, and A. F. 

Simpson, Chem. Phys. Lett. 8, 55 (1971). 
9 F. J. Adrian, Chem. Phys. Lett. 10, 70 (1971). 
10 It is possible to include the effects of intermolecular charge 

and exchange interactions on the diffusion process by means of 
the stochastic-Liouville approach particularly for the finite dif­
ference method utilized here. These matters will, however, be 
discussed elsewhere, J.B. Pedersen and J. H. Freed (unpublished). 

11 The fact that rn does not appear in Eq. 2.9 may be easily 
seen by first expanding p(r, t) in eigenfunctions of rn [i.e., 
spherical harmonics Y ML(O, <f>)]. The integration of Eq. (2.8) 
will only leave the Yl(O, q,) term, but rnY0°=0. 

12 (a) H. S. Carslaw and J. C. Jaeger, Conduction of Heat in 
Solids (Oxford U. P., London, 1959). (b) J. B. Pedersen in 
ESR Relaxation in Liquids, edited by L. T. Muus and P. W. 
Atkins (Plenum, New York, 1972). 

13 It is often useful to interconvert between density-matrix 
elements in the S, T 0, T ± representation and those in the product 
representation of doublet pairs, which we write as P+a,-b;+a-b= 
P+a-b; P+a,-b;-a+b, etc. The relationships are easily obtained in the 
usual way, and we give the important ones here for convenience: 

Also: 

PT±, T± = Pa±,b±, 

PTo. To=½ (P+a.-b+P-a,+b) + Rep+a,-b:-a+;,, 

PS,S = ½ (P+a,-b+P-a,+b) -Rep+a,-b;-a+b, 

P±a,'fb=½ (Ps.s+PTo,Tol ±Reps,To, 

P+a,-b;-a,+b = ½ (PTo,To-Ps.s) +ilmps,To• 

14 G. E. Roberts and H. Kaufman, Tables of Laplace Transforms, 
(Saunders, Philadelphia, 1966). 

16 J. M. Deutch, J. Chem. Phys. 56, 6076 (1972). 
16 (a) Even within a finite difference approach in the variable r, 

one could first solve for the eigenvectors (and eigenvalues) of the 
W matrix Eq. (2.22) and then rewrite Eq. (2.31) in this new rep­
resentation. We have not done this in part because 1) e(0) is 
rendered more complex for our cases, and 2) for arbitrary varia­
tion of J(r) with r, JC• in the combined spin and r space becomes 
more complex (cf. Ref. 3). It may be noted that such an approach 
should be equivalent to first Fourier transforming from r to k 
space, then expanding fi(k, s) in eigenfunctions of the diffusion 
operator, and then using finite difference methods. (b) The 
matrix of Eq. (2.34) can readily be diagonalized, yielding eigen­
values >-=0, ±[J(r)2+Q2]"2• All three eigenvectors are functions 
of r, so such a diagonalization would introduce "nonadiabatic" 
couplings into the W (cf. Ref. 3). We have chosen to avoid this 
complication. 

17 S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943). 
18 N. Bloembergen and Y. R. Shen, Phys. Rev. 133, A37 

(1964). 
19 Copies of our program are available upon request. 
20 We have obtained improved convergence over Ref. 1. The 

trends reported there are generally in agreement with those 
reported here (although there are numerical changes), but the 
t:i.r dependence and results for slow diffusion (D;Sl0-6 cm2/sec) 



Downloaded 28 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

2762 J.B. PEDERSEN AND J. H. FREED 

needed revision. Therefore, the accurate results reported in this 
work should be utilized. 

21 (a) A useful check on the diffusional portion of the program 
(and the boundary conditions) is to use the fact that, F,,;= 
r;/r, 16 (i.e. the probability that particles separated by r, will 
diffuse to r;). When there is a very fast chemical reaction at 
r0 (i.e., ktl.r2»D), one may write for F, the fraction of particles 
started at rk such that ro<rk<rN which react: ro/rk; but since rN 
is finite and particles reaching rN are absorbed, the fraction must 
be corrected to ro/rk- (ro/rN)<P= (1-(l>). The computed results 
for(!>, do give excellent agreement with this expression. (b) Note 
that <I>(x, u) =f<I>(x, r)e-"'du obeys the equation u<I>(x, u)­
<I>(x, 0) =[-i(d2/D)Xx(x)+a2/ax2J<I>(x, u) with initial condition 
<I>(x, 0) = (l+x)p(r, 0) and 

p(t) = 1~3 (x+1)<I>(x, r)dx. 
0 

22 L Amdur and G. G. Hammes, Chemical Kinetics (McGraw­
Hill, New York, 1966), Chap. 2. 

23 M. Eigen, Z. Physik. Chem. Neue Folge 1, 176 (1954). 
24 M. P. Eastman, R. G. Kooser, M. R. Das, and J. H. Freed, 

J. Chem. Phys. 51, 2690 (1969). 
26 Note that the functional form of Eq. (3.2) cannot be predicted 

by perturbative methods, involving J as a perturbation, cf. Refs. 
24 and 2(c). 

26 Note that more rigorously, Eq. (4.4) should be written in a 
form recognizing that the radicals may have hyperfine structure 
[cf. Eqs. (2.3) and (2.4) ], and one is interested in the intensity 
of a particular (ith) hyperfine line. Then Eq. (4.2) become Ia,= 
n.,P., and Eq. (4.4) would more correctly be written as 

d!;•] = Pa,ko,a ~ Pb;Pa""(/, Q;,;) =Pa,ko,aPa""(I, Q,, Av), 
ko,t 1 

where p0 , and Pb· are the normalized probabilities that radicals 
a and b are respe~tively associated with the ith and jth hyperfine 
levels; also Q;,; is the associated value from Eq. (2.30), and the 
functional dependence of Pa"" on Q;,; is indicated. We have not 
explicitly done this in order to retain simplicity in illustrating 
the main points. 
~ Note here that this term should be 

Pa,k2na(t)nb(t) ~ {Pb;Pa""[Q,,;, P.,(t), Pb;(/)] 
i 

-½[P0 , (t)-Pb; (t) ]}, 

while the first order term of Eq. (4.5) should be -P.,k1,ala,i, 
cf. Ref. 26. 

28 If we were considering properly the detailed hyperfine struc­
ture of the radicals, one would require, in general, coupled relaxa­
tion expressions amongst the hyperfine levels, cf. J. H. Freed, 
J. Chem. Phys. 43, 2312 (1965). When simple symmetry rela­
tions exist for the requisite transition probabilities (e.g., only 
pure nuclear-spin-flip terms and no cross-flips involving simul­
taneous electron-nuclear flips), then thes.e coupled relaxation 
expressions may be conveniently formulated in terms of the 
P •. (i.e., the differences between the m,=+ and - states for 
ea~h nuclear configuration), cf. Ref. 24 and J. H. Freed, D. S. 
Leniart, and H. D. Connor, J. Chem. Phys. (to be published). 

29 R. W. Fessenden, J. Chem. Phys. (submitted). 
30 R. Livingston (private communication). 
31 Adrian [J. Chem. Phys. 57, 5107 (1972)] has recently 

estimated CIDEP intensities using an interesting but approxi­
mate approach. His tabulated results (given for large Jo values) 
do not display the kind of functional dependences found in our 
work, although they are of comparable order of magnitude. 


