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It is shown how the analysis of Freed et al. for ESR lineshapes in the slow tumbling region may be 
generalized to include anisotropic liquids. Particular emphasis is given to the case of nitroxide radicals in 
liquid crystal environments with cylindrically symmetric restoring potentials U (/3). It is found that when 
[U(/3)[;$ kT, spectral appearances are qualitatively (but not quantitatively) similar to those for isotropic 
liquids. In particular, the spectra are sensitive to the model of reorientation. They are also predicted to be 
a very sensitive indicator of effects of anisotropic viscosity. The analysis given for the motional narrowing 
region yields analytic expressions for the needed spectral densities, where previously only numerical results 
had been obtained. The analytic expressions are valid when [U(J3)[,$kT. Analytic solutions to the rotational 
diffusion equation appropriate for I U (/3)[> kT are given and it is outlined how they may be applied to 
magnetic resonance. 

I. INTRODUCTION 

In the earlier papers in this series1- 4 we have devel­
oped a detailed theoretical analysis of ESR spectra in 
the slow tumbling region. This is the region where 
conventional relaxation theory does not apply. That is, 
I X1(t) I TR~ 1, where X1(t) is the rotational-dependent 
perturbation in the spin Hamiltonian and TR is the 
rotational correlation time. In II (Ref. 2) we have 
compared experimental results on the "nitroxide" per­
oxylamine disulfonate with the theoretical predictions 
and were able to obtain generally good agreement. 
More interesting, perhaps, was the demonstration that 
slow tumbling studies with nitroxides could effectively 
distinguish between models of molecular reorientation 
( e.g., jump diffusion vs simple Brownian motion). 

There has, over the past several years, been consider­
able interest in the ESR of paramagnetic probes doped 
in liquid crystals,4 •6 since the probes may be effectively 
utilized to study the microscopic structure and proper­
ties of the liquid crystal in a number of cases.4 •6 A 
theory of ESR linewidths for liquid crystals was given 
in some detail by Glarum and Marshall,6 who assumed 
a simple single exponential decay constant for the rota­
tional motion, which is formally equivalent to a "strong 
collision" model.6a More recently, Nordio et al.7 •8 have 
developed a detailed analysis of ESR linewidths based 
on numerical solutions of the rotational diffusion equa­
tion with cylindrically symmetric restoring potentials. 
These theories have been conventional in the sense 
that the motional narrowing condition I X 1(Q) I TR<<l 
has been assumed to hold. However, in a number of 
laboratories,4 •6•9 slow tumbling ESR spectra have been 
obtained when viscous liquid crystals were utilized. 

In view of the potentially interesting information 
one may hope to obtain about the molecular dynamics 

ies might yield. The method we employ is a synthesis 
of our previous analysis1-4 with those of Nordio et al.7 •8 

This synthesis is conveniently obtained because both 
methods rely on eigenfunction expansions. We have, 
however, found that considerable simplifications of 
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FIG. 1. First derivative line shapes for an axially symmetric 
nitroxide as function of X2(A4=0) for Brownian diffusion. The 
different >-2 values are - 0; - - - -2.0; •·• -3.5; -·-• -7.5 with 
intensity factors of 11, 30, 96, and 956, respectively. All 
correspond to TR=l.84X1()-9, g11=2.0027, g.L=2.0075, A11= 
33.4 G, A .L= 5.42 G, (2/3112) T2-1/[ 'Y• [ =0.1 G, and are centered 
about Bo=3250 G. 

of a probe from such viscous liquid-crystal spectra, we Nordio and Busolin's methods could conveniently be 
thought it worthwhile to extend our theoretical analy- achieved, and we therefore discuss aspects of the mo­
sis1- 3 of slow tumbling in isotropic liquids to include tional narrowing theory from this point of view. Our 
the anisotropic liquid case. This has permitted us to slow tumbling results are developed for nitroxides in 
explore the kinds of results and information such stud- extension of our earlier work.1- 3 The availability of a 
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great variety of nitroxide spin labels of different shapes 
makes them potentially very useful for probing the 
structure and dynamics of liquid crystals.4 •5•7-·9 Also, 
their spectra are simple enough to permit rigorous 
analysis even in the slow tumbling region. 

The slow tumbling theoretical method is developed 
for anisotropic liquids in Sec. II and typical results are 
discussed in Sec. III. Our analysis of aspects of the 
motional narrowing region is given in Sec. IV including 

perturbation results for the case when the restoring 
potential is comparable to or less than kT. A summary 
appears in Sec. V. The perturbation scheme for dealing 
with nonsecular terms, in particular nonsecular dynamic 
frequency shifts, for slow-motional spectra appears in 
Appendix A. Solutions to the diffusion equation in the 
presence of very strong axial restoring potentials appear 
in Appendix B with an outline of how they may be 
utilized for magnetic resonance spectra. 

II. THEORETICAL METHODS: ANISOTROPIC LIQUIDS 

A. Stochastic Liouville Equation 

We start with the Stochastic Liouville equation of motion for the spin-density matrix1•4 : 

(a/at)p(fJ, t) = [ -iJC(fJ)X- ro]p(fJ, t) 
with 

(2.la) 

(2.lb) 

where JC(fJ)X is the superoperator of the orientation-dependent spin Hamiltonian and ro is a Markoffian operator 
for the rotational reorientation of the molecule, with fJ representing the orientational angles. Also Po(fJ) is the 
unique equilibrium probability distribution of I'o. The unsaturated absorption of the A;th transition is obtained 
from ImZx;, where1 

and 
(2.2) 

(2.3) 

That is, Z(fJ, wh; is the steady-state solution_ of p(fJ, t) for the A;th transition and is time independent in the frame 
rotating with impressed frequency w. Also, Z(wh; is the equilibrium average over all orientations fJ. Substitution 
of Eq. (2.3) into Eq. (2.la) leads, for the case of no saturation, to1 

(2.4) 

where JC0 is the orientation-independent part of JC(fJ), JC1(fJ) is the perturbing orientation-dependent part, while 
w1=-yJ31 with B1 the strength of the applied microwave field. The averaging of Eq. (2.4) to obtain an expression 
for Z(w) .must follow the prescription of the first postmultiplying Eq. (2.4) by Po(fJ) and then integrating over 
all fJ.4 

One generally expands Z(fJ, w)x; in a complete orthonormal set of eigenfunctions (when available) of ro to 
solve Eq. (2.4). However, when P 0 (fJ) ~const, i.e., an anisotropic liquid, it is usually more convenient to define 

Z(fJ, w)=Po-1' 2(fJ)Z(fJ, w) 

and then expand the Z (fl, w) in eigenfunctions of 

I'o= Po-112 (fJ) roPo112 (fJ), 
where [from Eq. (2.lb) J 

(2.5) 

(2.6a) 

(2.6b) 

Equation (2.6a) may be regarded as a "symmetrizing" transformation, since it transforms the non-Hermitian 
operator r 0 (i.e., its matrix representation in an appropriate basis is a Hermitian matrix) into the Hermitian 
operator I'o whose right- and left-hand eigenvectors are just complex conjugates. 

One may then transform Eq. (2.la) to be 

(a/at)p(fJ, t) =[ -iJC(fJ)X-I'o]'f,(fJ, t), (2.7) 
where 

(2.8) 
and the equivalent of (2.4) becomes1 

{ [w+Xox+x1(fJ)X-if'o]Z (fJ, W) l>.1 = (w1/2)Po-112 (fJ) [s_x po]>.;. (2.9) 
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Then the matrix elements of .Z(O, w)x; for the relevant transitions may be expanded in complete sets of ortho­

normal basis functions Gm(O) as 
.Z(O, w);,.1= L [Cm(w)J>,;Gm(O) (2.10) 

m 

and from Eq. (2.2) we have 
Z(w)x1 = f dOZx; (0, w )P0

112 (fJ). (2.11) 

Equation (2.11), utilizing Eq. (2.10), may be written as 

Z(w)>.1= L (Gm(fJ) I Po112 (0) )[Cm(w) 1;, (2.12) 
m 

where we have introduced a "matrix-element" formalism, e.g., for an orientation-dependent operator 0(0) 

(Gm(fJ) I 0(0) I Gn(O) )=JGm*(O)O(O)Gn(O)dO; (2.13) 

while, from Eq. (2.9), we have1 

[w-wxJ[Cm(w) 11+ L (Gm(O) I [JC1(0)XCm,(w) 1;-iro[Cm,(w) ]>.; I Gm,(O) )=qwxdx,(Gm(O) I Po1
'
2(0) ). (2.14) 

ml 

When the Gm(O) are eigenfunctions of ro with eigenvalues Em, then 

Pi12 (0) =Go(O) 

and Eqs. (2.12) and (2.14) become 
Z(w)x;= [Co(w) ]>.; 

and 
[(w-wx;)-iEm][Cm(w)]x;+ L (Gm(O) I [JC1(0)XCm,(w)]>.; I Gm,(O))=dx;qW>,.Om,O• 

ml 

(2.15) 

(2.121) 

(2.141) 

Equations (2.121) and (2.141) are formally equivalent to the expressions for isotropic liquids1 and their method of 
solution is identical. Equations (2.14) or (2.141) may be written in matrix notation as 

aC= U, (2.14") 

where C is a column vector of the coupled coefficients [Cm(w)]x;, a is the complex-symmetric matrix defined by 
the lhs of either Eq. (2.14) or (2.141), U is the column vector representing the rhs of either of these equations 
and Eq. (2.12) or (2.121) indicates which coefficients are needed for the absorption. 

B. Rotational Diffusion 

For the case of rotational reorientation under a cylindrically symmetric restoring potential, one may write for 
Brownian motion7

•8•10 •11 

aP(O, t) /at= - r P(O, t) =RVo2P(O, t)- (R/kT) (sinf3)-1(a/a/3) [sinf3JP(O, t) ], 
(2.16) 

where R is the rotational diffusion coefficient, V0
2 is the rotational diffusion operator in the Euler angles a, /3, 

'Y, and J is the restoring torque. When J=O, Eq. (2.16) is simply the equation for isotropic Brownian rotational 
diffusion. Note that the angle /3 is the angle between the molecular z axis and the director. The two "natural 
values" for perfect alignment for which the diffusion equation (2.16) is conveniently solved are /3eq=0 or 1r/2. 
They correspond, respectively, to prolate (rod) and oblate (disk) symmetric tops.7•8 It is always possible to 
transform the magnetic parameters (A and g) into the molecular coordinate frame5•7•8 •11 based on {3eq=O or 1r/2 
(whichever is appropriate) when their principal axes do not include the molecular z axis. In the usual cases, the 
director axis will be taken to correspond to the laboratory z axis defined by the applied de field, but when this is 
not so, one must apply a further transformation bringing the director axis into coincidence with that of the ap­
plied de field. 

That is, in general, we write JC1(0) as (in the notation of Freed and Fraenkel12•13) 

JC1(!.1, '¥) = I: iLmm"L(Q)Dm"m'L('1F)F11./(L,mlA 11 )L,m1l, (2.17) 
L,m 1ml ,mll ,µ,,i 

where the F 11 ,;'<L,m> and A 11 _;<L,m1> are irreducible tensor components of rank L, with F1 in molecule-fixed coordi­
nates, while A is a spin operator quantized in the lab axis system. The Dm" ,m,<L> (i') terms then include the trans­
formation which takes the lab z axis into the director axis and is specified by only two angles, while the 
D--m,m"<Ll(fJ) include the transformation from the axis system including the director, to an appropriate molecule­
fixed axis (i.e., one for which /3eq = 0 or 1r /2). Equation (2.16) describes the motion of the fJ, i.e., that of the mole-
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cule relative to the director; while, if needed, a separate analysis may be given of the director motion relative 
to the applied de field ( cf. Appendix B). 

The simplest restoring potential for a nematic liquid crystal would be of form 

although by general symmetry arguments 
00 00 

U = I: 'Y2n cos2n/3= I: 02nP2n(f3), 
n=l 

where the P2n(f3) are Legendre functions. For the simple form, Eq. (2.18), one has 

::i = - a U / a(3 = 2'Y2 sin/3 cos/3 
and Eq. (2.16) becomes 

aP(n, t) /at=R'vri2P(D., t) +2>-2R[cos/3 sin(3[aP(n, t) /af3]+ (3 cos2(3-1)P(n, t) ], 

where >-2= --y2/kT. The equilibrium distribution P0(Q) is given by 

P0(Q) = ( 1/4r) P0((3) = exp(>.2 cos2(3) /471'2 J d(3 sin(3 exp(>.2 cos2(3). 

The order parameter (P2((3)) is just 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22a) 

(2.22b) 

Note that for (30<1.=0, one requires >-2>0 from Eq. (2.22a), while for (3e<J.=11'/2 one has >.2<0. The symmetrizing 
transformation, Eq. (2.6), leads to 

(2.23a) 
where 

J(>-2, x) =[ -l+x2(3->.2)+>-2x4] 

= { - (2/15) >-2Do,0°(Q) + [2- (2/21) >-2]Doi(Q) + (8/35) >-2Do,04 (Q)} (2.23b) 

and x=cos/3. The eigenfunctions of ra for >-2=0 are the normalized generalized spherical harmonics [or Wigner 
rotation matrices: NL-112DK~(n), where NL=871'2/(2L+l)]. One may use them as a convenient orthonormal 
basis set for anisotropic liquids,7 •8 where now the term in >-2 in Eq. (2.23a) will lead to off-diagonal "matrix ele­
ments" between the N L-112DKML(Q) of different L values. That is, the eigenfunctions of r 0 now become linear 
combinations of the N L-1l2DKML(Q). When I >-2 I < 1, one may utilize simple perturbation theory, since r 0 is a 
symmetric operator, (cf. Sec. IV). When I >-2 I »1, Eq. (2.23a) may be transformed to simple forms equivalent 
to a damped oscillator in angular coordinates, and this limiting case is discussed in Appendix B. 

One may proceed to solve Eqs. (2.12) and (2.14') in the format of Eq. (2.14") in either of two ways. One may 
first diagonalize r 0 in the O.N. basis set of N L-112DKML(Q) to obtain the eigenfunctions (appropriate for cylin­
drically symmetric restoring potentials) 

GKllrn(Q) = L aKMnL5)KML(Q)/NL112 (2.24a) 
L 

with 
(2.24b) 

and then apply Eqs. (2.12') and (2.14') in terms of these eigenfunctions. We have found it somewhat more con­
venient for computer simulation to simultaneously diagonalize the terms in 3C1(Q)X and rain Eq. (2.14) utilizing 
as our basis set just Gm(n)-DKML(Q)/NL112. Then the spectrum is just determined from Eq. (2.12). 

We now note two useful variants of Eq. (2.23a): (1) For axially symmetric rotational diffusion we have,7•8 •10 •13 

in symmetrical form, 

while (2) for anisotropic viscosity referred to the laboratory frame or director axis10 •14 

raDKML(Q) = {l?.1.L(L+l)+ (ll11-R.1.)ML1l.1.>-d(>-2, x) }DK~(Q). 

(2.25) 

(2.26) 

The combination of anisotropic rotational diffusion and anisotropic viscosity is extremely complex and does not 
appear to be solved. It follows from Eq. (2.25) that the term in Eq. (2.14) in ra becomes 

(DKML Ira i DK•MP)= {[R.1.L(L+l)+(R11-R.1.)K2]0L.L•-R.1.>.2(DKML IJ2(>-2, cos/3) I DK~')}OKK'0MM' (2.27) 
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with a similar expression from Eq. (2.26). It thus follows that computer programs written for isotropic liquids 
are easily modified by (1) adding the contributions fromX2f(X2, x) in Eq. (2.27) to the matrix a in Eq. (2.14"); 
and (2) utilizing the integrals ('.Do,oL /N L 112 I Pi12 (fJ.)) in their appropriate places in Eqs. (2.12) and (2.14). Thus 
the (symmetrized) 15 form of the equations for isotopic liquids given in I and II are easily modified for anisotropic 
liquids by adding to each (symmetrized) equation on the lhs [cf. Eqs. (Al)-(A6) of II] 

-i-hRX22CK,ML( j) +i2RX2(l-X2/21) (2L+ 1) 112 

XL (2L'+l)l/2(-l)K-M( L 
L' -M 

2 L'X L 2 L') 
CK.~'(j) 

0 M -K O K 

+i-s-\RXl(2L+1) 112 I:(2L'+1) 112 (-l)K-M( L 
4 

L'X L 
4 

L')cK.~'U) (2.2s) 
L' -M O M -KO K 

and by changing the rhs side of each equation to be 

(2.29) 

with 

1
1 

(-U(x)) 
/ 0 = _

1 
exp 2kT dx. 

Then, for a nitroxide Eq. (2.12) becomes 

7 Z(w) ;=Io-1 EL ~n (2L+ 1) 112 (l
1 

'.Do,oL(O, /3, 0) expHx2X2)dx) C0,0L(j), (2.30) 

with the absorption being given by ImZ ( w); ( with Z = Utr • C). 
The possibility that higher order terms in the expansion of U given by Eq. (2.19) has been considered by Luck­

hurst,5 who found it useful to let 
(2.31) 

The diffusion equation (2.21) then becomes 

R-1 ( a/at)P(fJ., t) = Vri2P(fJ., t) + 2[X2( 3 cos2{3-1) + 2X4 cos2/3( S cos2{3-3) +cos/3 sin/3(X2+ 2X4 cos2{3) ( a/a/3) ]P(fJ., t), 

(2.32) 

where 

4 

-R-1I'o=v'o2+ L A2m'.Do,lm(n), 
m-0 

Ao= [ - (2/1S)X22- (8/63)Xi- (8/3S)X2X4], 

A2= [2X2(1-X2/21) + (12/7)X4- (8/21)X2X4- (200/693)X42], 

A4= [(96/lOOl)Xi+ (128/38S)X2X4+ (16/7)X4+ (8/3S)Xl], 

A6= (64/231)X2X4+ (832/346S)Xi, 

As= (512/643S)Xi. 

(2.33) 

(2.34a) 

(2.34b) 

(2.34c) 

(2.34d) 

(2.34e) 

Thus the additional terms to be added to the usual (symmetrized) nitroxide equations are just given by [cf. 
Eq. (2.28)] 

4 ( L 2m L'X L 2m L') 
iR L A2m(2L+1) 112 L (2L'+1)1i2(-1)K-M CK'M'L'(j) 

m-0 LI -K O K -M O M 
(2.35) 

while the rhs of each equation is still given by Eq. (2.29). 
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Fm. 2. First derivative line shapes for an axially symmetric 
nitroxide in the case of low ordering as function of TR for Brownian 
diffusion: (a) 1"R=3X10➔ intensity factor (a measure of the 
relative integrated intensity) is 5.08; (b) TR= 10-s, intensity 
factor is 3.48; (c) 1"R=3X10-s, intensity factor is 4.38; (d) -, 
1"R=3X1Q-7, intensity factor is 10.02; - - - rigid limit. All cor­
respond to X2=-0.975, X.=0, g11=2.0024, gJ.=2.0078, A11= 
33.75 G, AJ.=5.34 G, (2/3112)T2-1/! 'Ye!=L0 G, and centered 
about Bo=3235 G. Note that all spectra are normalized to the 
same total height. 

C. Model Dependence 

We have so far only considered the case of the Brown­
ian motion limit. The opposite limit of strong collisions 
that randomize the orientations (subject to a Boltz­
mann distribution) with each collision may be conven­
iently obtained by first noting such a process is associ­
ated with the conditional probability distribution 

P(flo In, t) =Po(n)+[o(n-no)+Po(n) J exp( -t/T)' 

(2.36) 

where T-1 is the mean collision frequency. More gen­
erally one may write for a Markov process16 : 

P(flo I n, t) = exp( - rot)o(n-no), (2.37) 

where I'o is the collision operator required in our 
stochastic-Liouville treatment. A comparison of Eqs. 
(2.36) and (2.37) with the second representation of 
o(n-n0) ofEq. (4.5) yields 

ro \ u,,)=[1-on,o]T-11 Un) 

or from Eq. (2.6) 

ro I Gn) = [1-on,o]T-l I Gn); 

(2.38a) 

(2.38b) 

where the I un) and I Gn) are the eigenfunctions of fo 
and i'0 , respectively, for the Brownian diffusion case. 

Thus we may write 

I'o=[l- [ Go)(Go \ JT-1. (2.38c) 

It is convenient to set T-1=-R. Thus by analogy with 
model-dependent behavior for isotropic liquids we may 
more generally write 

(2.39) 

where En is the Brownian diffusion eigenvalue [cf. Eq. 
(2.23a) after it has been diagonalized] and B(n) is 
the "model parameter," which, for strong collisions, is 
from Eq. (2.38b) just 

B(n) =R/En for n.e0 (2.40) 

while B(n) = 1 for Brownian diffusion. Intermediate 
jump cases may be obtained (by analogy with the cor­
rect isotropic liquid case) by weaker dependences of 
B(n) on En-1, i.e., by interpolation between the two 
limits. Consideration of axially symmetric diffusion 
[cf. Eqs. (2.23a) and (2.25) J may also be included by 
analogy to II.16 

Note that the above interpolation procedure requires 
first that Eq. (2.23a) or Eq. (2.32) are diagonalized 
to yield the En. The model parameter B ( n) is then 
introduced and then the resulting diagonal matrix ex­
pressed by Eq. (2.39) is transformed to the ~K~ 
representation, in which the general computer program 
is written. 

III. RES UL TS 

Our slow tumbling programs2 •3 modified for aniso­
tropic liquids as discussed in Sec. II have been studied 
for several cases. We note that running times on an 
IBM 360/65 computer are comparable to those for 
isotropic liquids3 ( typically only about 10%-25% 
longer). Some improvements in the programs have 
been made by (1) truncating the contributions of the 
pseudosecular terms for lower L values than needed 
for secular terms and (2) truncating the expansions 
in the "quantum number" K at a level where K<L 
when anisotropies in the magnetic parameters, e.g., 
(g.,-gy) [expressed in the molecular coordinate system 
in which the molecular z axis is the symmetry axis for 
the (anisotropic) rotational motion] are smaller than 
the axially symmetric portions of the parameters. 

Typical results are shown in Figs. 1-5. Figure 1 shows 
the effect of varying the order parameter I A2 I (for 
negative A2, i.e., an oblate top) in the incipient slow­
tumbling region1- 3 for a nitroxide; in particular TR= 
1.84X 10--9 sec [where TR= (6R)-1]. One sees that the 
effect of increasing the orienting potential is (1) to 
decrease linewidths considerably, and (2) to introduce 
larger shifts in the positions of the line. (1) is due to 
the fact that the effective [JC1(t)- (JC1)] is being re­
duced as the motion is more hindered, while (JC1), the 
average part of the perturbation, which causes the 
shifts, departs more from its isotropic value of zero. In 
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Fm. 3. First derivative line shapes for an axially symmetric nitroxide in a highly ordered case as a function of TR for Brownian 
diffusion: (a) - TR=3X10-10, intensity factor is 77.9; - - - TR=3Xl<r9, intensity factor is 52.9; •• •, TR=3X10-S, intensity factor is 
16.3; (b) rigid limit. All correspond to >-1= -7.5, ~=0. All other parameters as in Fig. 2. Again all spectra are normalized to the same 
total height. 

.":·•· .. .,..'""' 
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Fm. 4. A comparison of first derivative line shapes for different 
rotational models. - Brownian diffusion, TR=3X10-B, intensity 
factor is 4.38; - - - free diffusion, TR= 1.92X 10-S, intensity factor 
is 3.61; •·• jump diffusion, TR=l.43X10-S, intensity factor is 
3.01. All other parameters as in Fig. 2. 
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Fm. 5. First derivative line shapes for an axially symmetric 
nitroxide as a function of the anisotropic viscosity parameter 
N = R.11/ RJ. for Brownian diffusion. - N = 1, intensity factor is 
3.48; - - - N = 6, intensity factor is 3.30; • • • N = 24, intensity 
factor is 5.33. All correspond to T ih = 1 X 10-8• All other param­
eters as in Fig. 2. 
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general, the slow-tumbling spectra appear to look more 
like motional narrowing results as I .\2 I is increased 
with TR held constant, although the frequency shifts 
are characteristic of anisotropic liquids. Also, we have 
not found much sensitivity of our results to having 
.\4;=0, if the combinations of .\2 and .\4 are chosen to 
keep (P2(cos/3)) constant. In Fig. 2, .\2 is held constant 
at a low degree of ordering, A2"-'- l, a typical value 
for nitroxides,4•5 •9b while TR is varied over two orders of 
magnitude in the slow tumbling region: 3X 10-9-3X 10-7 

sec. These figures may be compared with Fig. SB of I 
giving equivalent results for an isotropic liquid. Such a 
comparison shows that the trends are quite similar in 
the two cases, but there are very distinct quantitative 
differences in the details of the line shapes. Figure 3 
also shows results for a range of TR except here a large 
ordering, .\2= -7.5, was used. It is clear, from this 
figure, that the spectra are much less sensitive to 
changes in TR when there is large ordering. 

Typical model-dependent effects are shown in Fig. 4 
for a region of TR which is particularly sensitive to 
rotational model ( cf. II). We have used the value of 
A2"-'-1. One sees qualitatively the same type of effects 
in Fig. 4 for the partially ordered anisotropic liquid as 
compared to the results in II for isotropic liquids. 
Again, however, there are significant quantitative dif­
ferences. We find about the same sensitivity of the line 
shape to choice of model for the low ordering param­
eters as for the isotropic case, but less sensitivity to 
model for higher ordering, i.e., I .\2 I > 1. An important 
feature we wish to call attention to is the sensitivity of 
the absolute position of the center of the spectrum 
(i.e., the midpoint between the two outer extrema) as 
one goes from Brownian to moderate jump, to strong 
jump17 ; e.g., for TR= 1 X 10-8 sec, there are apparent 
.ilg11 shifts of 0.9 G and 1.5 G, respectively, for moderate 
vs strong jump compared to the Brownian motion 
result. Similar results are found for isotropic liquids, 
although this feature had not been previously utilized.2•3 

Some comments apply to the model-dependent com­
putations. The model parameters B(n) utilized are 
given by unity and Eq. (2.40) for Brownian motion 
and strong collisions ( or large jump), respectively, and 
these are the two limiting cases. We have chosen, as an 
intermediate case (by our interpolation procedure), 
the model parameter B(n) = (En/R)-112 for n;=O. For 

.\2=0, this reduces to the intermediate jump case (or 
equivalently the "free diffusion" case) utilized in II. 
While our interpolation method is not rigorous for 
anisotropic liquids, the deviation of the Brownian rota­
tional diffusion eigenvalues for I .\2 I ;S 1 from their iso­
tropic values when .\2 = 0 is found to be small ( cf. Sec. 
IV). Therefore, in these cases, the interpretation of our 
intermediate jump models should be quite similar to 
that given for isotropic liquids.2 

Another point to be made about Fig. 4 has to do 
with the parameter S, defined as the ratio of the sepa­
ration of the outer hyperfine extrema to that for the 
rigid limit value.2•3 It is important, in making model­
dependent spectral comparisons, to adjust the apparent 
TR's for the different models to get S to be comparable2•3 

and this was done in Fig. 4. We have shown in Ref. 3 
that for isotropic liquids S~S(TRA,) (where Az is the 
z component of the hyperfine tensor with the molecular 
z axis taken as parallel to the nitrogen 2p--,r orbital) so 
that a measurement of S can be utilized to determine 
TR, Similar comments apply to anisotropic liquids, but 
now S is a function of the restoring potential as well 
and this would considerably complicate such a proce­
dure. 

The effects of anisotropic viscosity on the slow­
tumbling spectrum are illustrated in Fig. 5. This is the 
case where Eq. (2.26) applies. In this figure, TR.1.= 

(6JL)-1 is kept constant at 1X 10-s sec, while .\2"-'-1, 
and TR11= (6~11)-1 is varied. The effect of keeping TRJ. 

constant is to keep the value of S virtually constant. 
However, one sees gross changes in the central region 
of the spectrum as TRI I is decreased from equality with 
TRJ., Such results encourage one in the expectation that 
the slow-tumbling spectra would be very sensitive to 
effects of anisotropy in the viscosity.18 We note that 
such effects are much more dramatic than the depend­
ence of slow-tumbling spectra on anisotropic diffusion 
of the radical [cf. Eq. (2.25)]. We also wish to call 
attention to the fact that if the spectrum is sensitive to 
the slow motion of the director itself,5 then such a 
motion would introduce qualitative dependence on the 
"quantum number" M similar to that for effects of 
anisotropic viscosity. The inclusion of such motion into 
our programs can be attained by a straightforward, al­
though complex, generalization of our stochastic­
Liouville procedures.9b 

IV. MOTIONAL NARROWING REGION 

In the motional narrowing region, the linewidths are given by the relaxation matrix, which depends upon the 
spectral-density function12 ,13 ,15 

where 

J(w) =Re J.~ G(T) exp(-iwT)dT, 

0 

(4.1a) 

( 4.lb) 
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and :JC1(t) may be written in the form of Eq. (2.17). We now assume that :Dm"m'L(\Jf) =om"m', i.e., the director axis 
is parallel to the de field (or else we write our expressions below in terms of A 11 ,/'<L,m'l = Lm' :Dm"m'L(w)A 11 }L,m'l). 
Then the correlation function becomes13 

G(T) = 
L,LI ,m,ml ,JJ,v,i,; 

with 

F .,(L,m)F .,(Ll,m')*X " e(L L'· m m'· q q'· T)[A .(L,q)][A .(Ll,ql)]* 
p.,t V,J L...J ' , ' ' ' ' #A,l 11,J q,ql 

(4.2a) 

e(L, L'; m, m'; q, q'; T) = ([:D-m,/L> (t) - (:D-m,/L> (t))} [:D_,,., ,q'<L'>*(t+T) - (:D_,,,, ,q'<L'>*(t+T)) ]). ( 4.2b) 

It is clear from Eqs. ( 4.1) and ( 4.2) that the real part of the Fourier-Laplace transform 

K(L, L'; m, m'; q, q'; +iw)= {
0 

exp(-iwt)e(L, L'; m, m'; q, q'; t)dt (4.2c) 
0 

is needed for the linewidths. The ensemble averaging implied by the angular brackets may be written for any 
function (or operator) Ja(O) as 

and 
(4.3a) 

(4.3b) 

where, in general, P(O; 00, t) is given by Eq. (2.37) and we usefa'(O) =Ja(O)-(fa(O) ). Now note that the eigen­
functions I Gn) of r 

( 4.4) 
form a representation of o(0-00), so 

o(O-Oo) = L I Gn(O) )(Gn(Oo) I = [Po(Oo) / Po(O) ] 112 LI Un(O) )(un(Oo) I = LI Un(O) )(un(Oo) I, ( 4.5) 
n n 

where 
I Un)= I Po(0) 1i2Gn(O) ), 

(um I = (Po(n)-1
'
2Gm(O) I 

are, respectively, the right and left eigenv~ctors of I'=P1t2rP-1t2 such that 

n 

(4.6a) 

(4.6b) 

(4.7) 

The last equality in Eq. (4.5) results because o(O-Oo) is nonvanishing only if O=Oo, It then follows from Eqs. 
(2.37), (4.5), and (4.7) that 

P(O,Oo,t)=Eexp(-Ent) lun(O))(un(Oo) I =[Po(O)/Po(Oo)]112 :Z:exp(-Ent) IGn(O))(Gn(Oo) 1- (4.8) 
n n 

Then one has from Eqs. (4.2c) and (4.3) 

since 

and 

Ko1,(s) = L [ (Uo(O) I Ja(O) I Un(O) )(un(Oo) I fb*(Oo) I Uo(Oo) )/ (s+ En)] 
n;,'O 

I Uo(O) )= I Po(0) 112Go(O) )=Po(O) 

(Uo(O) I = (Po(n)-1t2G0(n) I = 1, 

(4.9) 

(4.10a) 

(4.10b) 

where the unprimedfa(O) may be used in Eq. (4.9) provided the summation is restricted to n¢0. Alternatively, 
from Eq. ( 4.8), 

(4.9') 

Equation ( 4.9') and its Laplace inverse transform e(t) give the useful result that needed spectral densities (where 
s-iw) or correlation functions for the case of anisotropic liquids are obtained in an identical fashion to that for 
isotropic liquids provided the eigenfunctions and eigenvalues of the symmetrized r are used instead of those for 
isotropic liquids [ viz, the :DKML(O)]. One must, however, be careful for the fact that, in general, Ua(O) )¢0 
(i.e., these are first order shifts) for anisotropic liquids and also that I G0(0))=P0

1' 2(0). The eigenfunctions 
I Gn) and their eigenvalues may be obtained directly from the computer program that diagonalizes the matrix 
[ -i:JC(n)x-ro]=a by first suppressing all terms in X(O)X. However, ordinary perturbation theory may be 
utilized, when the A; are small enough, since the matrices are symmetric. 
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Perturbation 1,'heory 

We now consider Brownian diffusion of form Eqs. (2.25), (2.26) and/or (2.32) (i.e., cylindrically symmetric 
restoring potentials). Then in the limit when the I A2n I of Eqs. (2.33), (2.34) are small (see below), we employ 
perturbation theory to yield the eigenfunctions of Eq. (2.33) [or (2.25) or (2.26) J in the form given by Eq. 
(2.24a). Then, if we let the aKMnL of Eqs. (2.24) become aKMnL(i) for (j) th order in perturbation theory, one has 

aKMnL(O)=on,L, (4.lla) 
4 

aKMnL(l)= (-l)K-M+l(2n+ 1)1/2 I: A2m(2L+ 1)1/2 
m==O 

X c: 2

: :x_: 2
; ~)R,[(Ex,M"'°'-EK.ML'"')J-', for L:;t-n, (4.llb) 

where 
EK,Mn(O) = EKML'(O)On,L' ( 4.12) 

is the zero-order eigenvalue from Eq. (2.25) or (2.26) when A2=0 [more precisely replace RJ. by IL in Eq. (4.12) 
and below when Eq. (2.26) is used]. The validity of the perturbation theory only depends on having 

I aKMnL(i) I <<1. ( 4.13) 

The first- and second-order corrections to EK.Mn are just 

EK,Mn(l)=(-l)K-M+l(2n+l) ± A2m( n 2m nx n 2m 
m=O -K O K -M 0 

(4.14a) 

EK,Mn(2)=(2n+l) I:l['E,A2m(2L+1) 1i2( n 
2
m LX n 

~ m==0 -KO K -M 
~)JR,'/ (EK,M"'°'-lix,,,"'"')). 

2m 

0 
(4.14b) 

One may then use Eqs. (2.24a), (4.10)-(4.14) to obtain explicit expressions for (4.9') [but written in terms of 
the more complete form of Eq. ( 4.2c) as needed for the linewidths]. One obtains, as a result of the cylindrical 
symmetry, that • 

K(L, L'; m, m'; q, q'; s) =Km/L,Ll(s)om,m'Oq,q' (4.15) 

and Eq. (4.15) is more general than just for the perturbation analysis. Since the terms of interest in JC1(Q) are 
usually L=L'=2, we give the results for Kmq<2l(s). [Note that the summations in Eq. (4.2a) are accordingly 
simplified.] Also, we only give terms in ;\2 (i.e., ;\4=0) .19 •20 

K00<2l =¼I 1+[( 4/21) + ( 4/7)R00];\2- (0.077SR00+0.0532)A22} /[s+6RJ.], 

K01<2) =¼/ 1+ [(2/21)+ (2/7)R01]A2- (0.1283Ro1+0.0106);\l} /[s+ Eo,i2<0l], 

K02<2) =¼/ 1-[( 4/21)+ ( 4/7)R02]A2+ (0.0311R02-0.0166);\l}/[s+Eo,22<0l], 

Ku <2) = ¼I 1+ [(1/21) + (1/7)Ru]A2- (0.0752Ru+0.0093)A22} /[s+ E1,12<0)], 

K12<2)= ¼{ 1-[(2/21)+ (2/7)R12];\2- (0.0852R12+0.0214)A22} /[s+Eii<0l], 

K22C2l = ¼{ 1+ [( 4/21)+ ( 4/7)R22]A2- (0.0426R22+0.0020);\22} /[s+ E2,22(0l]. 

Also, as a further consequence of the cylindrical symmetry of the restoring potential one has 

KK ,M(L) = K-K ,-_l/L) = K-K ,M<L) = KK ,-M(L). 

We have in Eqs. (4.16) used the definition (but withs suppressed) 

RKM(s) =RJ./[EK~<o)+s]. 

(4.16a) 

(4.16b) 

(4.16c) 

( 4.16d) 

(4.16e) 

( 4.16f) 

( 4.17) 

( 4.18) 

One notes from Eqs. ( 4.16) that it is sufficient to require I A2 I ;$1 in order that the effect of the restoring potential 
on the spectral densities be considered as a perturbation.21 This covers many actual experimental cases.4 •6 •6 •9b 

V. SUMMARY 
We have shown how our methods for describing 

slow-tumbling ESR spectra for isotropic liquids may 
be readily extended to include spectra for anisotropic 
liquids. We have developed these methods in detail 

for dealing with spectra of nitroxide probes. One finds 
that as long as the restoring potentials are not much 
greater than kT, the analysis of the slow tumbling 
spectra for anisotropic liquids is qualitatively similar 
to, although quantitatively different from that for iso-
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tropic liquids. More specifically, one should first study 
the motional narrowing spectra to extract out the 
ordering parameter (P2 (cos{3) ), from the line shifts, 
and then use the Lorentzian widths to estimate ra, 
the rotational correlation times. These results, extrapo­
lated into the slow-motional region, aid in the inter­
pretation of the latter (which are more sensitive to a 
choice of these parameters) ; and then a careful analysis 
of model dependences may be made for the latter. We 
find the slow-motional (anisotropic) spectra are usually 
as sensitive to the nature of the model of the reorienta­
tion ( e.g., Brownian vs jump diffusion) as are those 
for isotropic liquids. However, in particular, the slow­
motional spectra for anisotropic liquids are predicted 
to be very sensitive to effects of anisotropic viscosity. 

The motional narrowing region for anisotropic liquids 
may be handled somewhat more conveniently than 
discussed by Nordio et al.1•8 by first symmetrizing the 
hindered rotational diffusion operator. In particular, 
when the restoring potential is not greater than kT, a 
simple perturbation theory approach may then be 
utilized to obtain analytic expressions for the needed 
spectral densities, which Nordio et al.1•8 obtained nu­
merically. Analytic methods are outlined for handling 
the effects of residual damped oscillations when the 
restoring potential is much greater than kT. Such ap­
proaches could prove of some use in dealing with the 
motion of the director. 

.While there is a great abundance of nitroxide spin­
label-type probes, the question exists whether our 
methods are applicable to other paramagnetic probes. 
In particular vanadyl acetylacetonate (Vacac), where 

I= 7 /2, is a very frequently used probe.H The cou­
pling of the eight allowed transitions via the pseudo­
secular terms, which introduce effects of forbidden 
transitions,1 requires methods that are formally equiva­
lent to what we have utilized for nitroxides ( where 
I= 1) , if one wants to cover the whole range from fast 
through slow motion; but now many more coupled 
transitions are involved. Kaplan22 has briefly outlined 
how the finite difference approach4 may be applied to 
anisotropic liquids when only secular terms are kept 
and the allowed transitions are uncoupled. But, as 
noted, this is insufficient. One may hope to use per­
turbation methods on the pseudosecular terms, but 
(cf. Ref. 1 and Appendix A) if the anisotropic hyper­
fine terms are comparable to the (fast motional) 
nuclear-spin Larmour frequencies I wn±an I, then this 
would not be a satisfactory approach. And this is the 
case for Vacac as well as for nitroxides. [One can, 
however, calculate approximate line shapes, valid for 
incipient slow tumbling, by repeatedly applying the 
central line in our nitroxide program to each of the 
Vacac lines, with proper inclusion of nonsecular terms, 
cf. Appendix A.9h·23] We note, however, that slow­
tumbling spectra from aromatic ring protons ( with 
large nuclear Larmour frequencies compared to dipolar 
terms) allow a decoupling of pseudosecular terms by 
perturbation methods, thus allowing a simplification 
of their analysis. 

In conclusion, then, we note studies of ESR line 
shapes, especially in the slow-motional region, should 
prove valuable in elucidating molecular dynamics in 
liquid crystals. 

APPENDIX A: NONSECULAR TERMS 

In previous slow-motional work, contributions from nonsecular terms have generally been neglected in dis­
cussions of the unsaturated lineshapes, although they have been included for saturation effects in I. In the high­
field approximation, when I 3C1(fl) I <<wo, it is possible to use a perturbation-type scheme for the complex-sym­
metric matrices analagous to a Van Vleck transformation, and this has been utilized in I in our discussion of 
saturation effects. In the case of anisotropic liquids, where line shifts are an important index of the ordering 
parameter, the small dynamic frequency shifts from the nonsecular terms must be included. The application of 
(second-order) perturbation theory resulting from nonsecular terms in3C1(fl) may be summarized by the addition 
to the equation for the coefficients of the ith transition [i.e., CKAI'( i) J the terms 

I: (LKM I :JC1X(fl),; I L"K"M")(L"K"M" l :JC1X(fl);; I L'K'M')V;;(L, L', L")CK'M,L'(i), (Al) 
j,L' ,Lfl ,Kl ,KIi ,Ml ,MIi 

where 
[ LKM)=N L-lf2'J)KML(fl). (A2) 

:JC1X(fl) ;; is the ijth "matrix element" of :JC1X(fl) and 

V,;(L, L', L") =![(E;,L,K,M-E;,L",K" ,M")-1+ (Ei,L' ,K' ,M'-Ej,L" ,K" ,M")-1], (A3) 

where the dependence of V,; on K, M, etc. is implied but not shown explicitly, with 

E;,L,K,M=w(j)+iEL,K,M (A4) 

[cf. Eqs. (2.23a), (2.24a), (2.25), (2.39), (4.4), and (4.14) for EL,K,M], where w(i) is the resonant frequency of 
the ith transition (including, in general, the diagonal contribution from the secular terms in 3C1(fl), e.g., 
(L, K, MI :JC1X(fl).,800 IL, K, M)). Since for slow motion, 

R, XR<<wo (ASa) 
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[or more precisely L(L+ l)R«wo for L values of interest], and since in high fields 

I JC1(fl) I «wo 
one may approximate 

(ASb) 

(A6) 

where the latter approximate equality follows because in high fields, if i is an observed ESR transition, then 
JC1X(fl)nonsec only couples to those j's for which w(j)~O (i.e., diagonal density-matrix elements), cf. I. Equation 
(Al) considers only the nonsecular shifts and width contributions to the regular transitions; thus we are ignoring 
the very weak "stealing" of intensity by thew( j)~O transitions the relative magnitude of which is [ JC1(fl) 2 [/wc2<< 
1.1 [When JC1X(fl) pseudosec are considered, then w(i)-w(j)~ I a±wn I, i.e., of the order of nuclear transition 
frequencies. It was shown in I, that if ID I<< I a±wn I, then perturbation theory may be applied to these pseudo­
secular terms, while if D ~ I a±wn I, then perturbation theory is not adequate. The latter is the case for 14N, 
while the former is true for ring protons. Note that if perturbation theory is applied for the pseudosecular terms 
for the case of ring protons, then since I a±wn I may be of the order of R for slow tumbling, the full V;i(L, L', L") 
of Eq. (A3) is called for.] 

When Eq. (A6) is utilized, then one may sum over the dummy indices L", K", M" in Eq. (Al) to achieve 

wo-1 I; I: (LKM [ JC1X(fl);;JC1X(fl);i I L'K'M')CK'M'L'(i). (A7) 
j L'KIMI 

Note that Eqs. (Al) or (A7) allow off-diagonal coupling between the CKML(i) for the ith transition but different 
values of LKM. This is a result of the fact that we have in the van Vleck-type scheme, allowed for I X1(fl) I ~R, 
so that the different LKM levels may be near degenerate with respect to JC1(fl). Note also the neglect of the imagi­
nary part of the E,,L,K,M in the form Eq. (A6) means that nonsecular width contributions are ignored compared 
to nonsecular dynamic frequency shift terms since the former are [from Eq. (ASa) J much smaller. It is useful, in 
evaluating Eq. (A7), to utilize the relationship24 

:I:>m1' ,m1L1(n) :I:>m2' ,m/2(fl) = I: (2L+ 1) (Li ~ 
L,m,m1 mi' ~ 1 

(A8) 

The nonsecular part of the Hamiltonian for the case of a single nuclear spin is given for example by Freed and 
Fraenkel.12 We summarize the results for the nonsecular shifts for the three principal transitions utilizing the 
notation in the Appendix of II. The following is to be added to the lhs of the symmetrized form15 of Eqs. (A1)­
(A3) in II (where X= 1, 2, or 3, respectively): 

- !_ [/o-(Fo2+2F2)+/0 (F0D'+2F2D<2l')m+-h(7I(I+ 1)-m2) (D2+2D<2l2)+2b2(J(J+1)-m2) ]CK,oL(X) 
Wo 

(
2
L+ l) 

112 

I; (2L' + 1) 1t2{-,A(Fc2- 2Fl) +-hm(FoD' - 2F2D<2l') --Jr[SI (I+ 1) -8m2](DL 2D<2l2) 

Wo LI 

(A9) 

where mis the nuclear quantum number for the Xth transition. We have, in Eq. (A9), retained only those contribu­
tions that will add to already nonzero matrix elements of a and have neglected those terms that would create 
new off-diagonal elements. This is readily justified by noting (1) the nonsecular correction terms are of order 
I JC1(fl) 2 I /w0 or I JC1(fl) I /w0 smaller than the secular and pseudosecular contributions, so (2) one may again 
use perturbation theory to essentially first order ( cf. I). 
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We have found that the nonsecular corrections to the six forbidden transitions are not needed for nitroxides. 
In fact they are less than wn, which has already been found to have a negligible effect for nitroxides at X band. 

APPENDIX B: ROTATIONAL DIFFUSION WITH A VERY STRONG AXIAL RESTORING POTENTIAL 

Consider the rotational diffusion equation, Eq. (2.16), which for ::l = 0 is analogous in form to the quantum 
mechanical equation of the spherical top.10 Since the terms in ::l depend only on Euler angle {:J, for axially symmetric 
restoring potentials, it is still possible to separate variables by letting 

G(a.{:J-y) = y({:J) expi(Ka.+M-y). (Bl) 

Then the differential equation for y({:J) is7 
•
10

•
23 

a2y ay M 2+ K2- 2M K cos{:J ( . ay ) 
-R-1rpy= - +cot/3- - . y+2A2 cos/3 sm{:J - + (3 cos{:J-l)y = -R-1Ey 

a{:J2 a/3 sm2{:J iJ/3 
(B2) 

or letting x=cos{:J and symmetrizing rp [cf. Eq. (2.6)], gives 

-R-1rpy= (1-x2) ( a2y/ax2) -2x( ay/ax) -[ (M2+ K2- 2MKx) I ( 1-x2) Jy+Ad(A2, x) y. (B3) 

We now assume that A2»1, i.e., the restoring potential is much greater than kT, so that the angle {:J does not 
deviate much from the perfect alignment value assumed to be zero (i.e., a prolate top). Then, to lowest order in 
{:J and A2-1, one has 

-R-1rf{''(a2/a/32)+~1(a/a{:J)-(11/f:J)2-Al{:J2+2A2-MK, (B4) 

where v= IM-KI. The substitutions y({:J) =v({:J)/{:J112 and z=Az1'2{:J yield the standard differential form 

(A2/{:J1i2) ( (d2v/ dz2) +v[ ( 1-4112) /4z2]+ 2-z2} ), (BS) 

the solutions of which are expressible as generalized Laguerre polynomials.26 One therefore finds that the eigen­
function solution to Eq. (B4) is given by 

y,n({:J) = Nn • exp( -A2{:J2/2) (Az112f3) • Ln•(A2(:J2), (B6) 

where Ln•(z2) are the generalized Laguerre polynomials (as defined in Ref. 25). The range of the variable {:J is 
now taken from Oto oo instead of from Oto 1r, which is permissible since the condition Av>l renders y,n({:J)"'O 
for {:J much different from zero. Over this range the y,n(/3) are orthogonal polynomials and one can readily deter­
mine the normalization constants Nn• from standard integrals25 •26 : 

Nn•=[2A2n!/(v+n) !]112 (B7a) 
or 

and also 
f'y.n(f:J) = 2A2R(2n+v)y,n(f:J)+MKRy.n({:J) 

which for axially symmetric diffusion10 •23 [cf. Eq. (2.25) Jone gets 

-ry1K-Mln(13) =[2A2RJ.(2n+v)+MKRJ.+K2 (R11-RJ.)]Y1K-Mln({:J). 

(B7b) 

(B8) 

(B9) 

An equivalent result follows for anisotropic viscosity, cf. Eq. (2.26). The complete eigenfunction solution is then 
from Eq. (Bl) 

GK,Mn(a{:J-y) =exp(iKa)y1K-Mln(13) exp(iM-y). 

We now must rewrite the rotation matrices [which appear in Eq. (2.17)]: 

Dm'm1(a{:J-y) =exp(im'a)dm' ,m1({:J) exp(im-y) 

so that the dm'm 1(/3) are in a more convenient form valid for small /3. One may use the definition24 

dm'm 1(/3)=(lm' I exp[(i/3/h)J11] I lm), 

(BlO) 

(B11) 

(B12) 

where J11 is they component of the quantum mechanical angular-momentum operator with I lm) an eigenfunction 
of J2 and J •· Since /3 is small, it is sufficient to let 

exp[(i/3/h)J11]~1+ (i{:J/h)J11 - (/32/h2)Ju2. (B13) 
Then 

dm•m 1({:J)~om,m+ (/3/2) [om, ,m+if+(l, m)-om' ,m-if-(l, m)] 

+ (/32/4)[{om',m-t-2f+(l, m+1)-om,,mf-(l, m+l) lf+(l, m) 

-{om•mf+(l, m-1)-om',m-d-U, m-l))J _(l, m)], (B14a) 
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where 
(B14b) 

Then the needed integrals involving the 1>m'mL(Q) that arise from the JC1(Q) [e.g., Eq. (2.17)] may be approx­
imated to, lowest order in fJ, as 

(n, K, M / :Dm'mL I n', K', M')"-'on,n'OK,K'-t-m'OM,M'-t-mO•,•' 

+ (1/2A2)0K,K'+m'OM,M'+m[o •.• ,+1(on,n'(v+n) 112- (n+ 1) 112on,n'-1) 

+o,,,'-1( (n+v+1) 112on,n'-n112on,n'+I) J[om',m+d+(L, m)-om',m-d-(L, m) ], (B15) 

where v= I K-M I and v'= I K'-M' I. (Note that 

fan- {" fJdfJ ['" da ['" d'Y, 
0 0 0 

since sinfJ,...._,fJ.) The required "matrix elements" needed to obtain Eq. (B15) are obtained from the recursion 
relations ( cf. Ref. 25) : 

x112y,n(x) =Nn• exp[ -x/2]x•+1Ln•(x) =Nn• exp[ -x/2]x>+112[Ln>+1(x)-Ln-l>+1(x) J 

and 
(B16a) 

(B16b) 

If I A2 I »1, but A2<0 (i.e., an oblate top), then the appropriate expressions are somewhat different. One first 
defines, o= (1r/2)-fJ, so that o represents the small deviation from {Jeq_=1r/2. Then for small o, x=cos{J"-'o. In 
this case one first transforms Eq. (B3) by letting y(x) =v(x)/(1-x2) 1'2, and then keeping terms in lowest order 
in x and I ;\,.2 1-1, yielding 

{ (d2v/dz2)+[1-z2- (M2+K2)/ I A2 I ]v} I A2 I, 

where z= I A2 l112x, the solutions of which may be expressed in terms of Hermite polynomials.25 That is 

YK,M(n)(o)=Nnexp(- I A2 I o2/2)Hn( I A2 l1120), 

where Hn(z) are the Hermite polynomials, with normalization coefficient 

Nn= ( / A2 fl/2/V?r2nn!)l/2 

(B17) 

(B18a) 

(B18b) 

provided o is integrated from - oo to+ oo (instead of -1r/2 to -,r/2). Note, again, that this is, from Eq. (B18), 
a permissible approximation when I A2 I » 1. One also has 

I'yK,M(n)(o) =R[2n I A2 I +M2+K2]yK,M(n) (B19) 

while for axially symmetric diffusion one has 

ryK,M(n)(o) =[(2n I A.2 I +M2)R.L+K2R11]YK,M(n) 

with an equivalent result for anisotropic viscosity [cf. Eq. (2.26)]. The complete solution is now 

o= (1r/2)-f3. 

The rotation matrices may be handled in a manner analogous to the previous case by first letting 

dm'mL(fJ) = L dm'm"L(1r/2)dm"mL(-o), 
mil 

(B20) 

(B21) 

(B22) 

where the dm'm"L(1r/2) are found in tables,24 and the dm"mL(-o) may be expanded as in Eqs. (B12)-(B14), 
(i.e., just replace /3 by -o in these equations). The integrals of type Eq. (BlS) may then be obtained by applica­
tion of the well-known matrix elements for the Hermite functions. 

Equation (B8) for the highly ordered prolate top shows that the relaxation of a nonequilibrium orientation 
happens simply by the molecular z axis being rapidly [r,...._,(;\,.2R)-1] restored to the lab z axis, and this process 
also randomizes a and 'Y even for n= 0 corresponding to an equilibrium distribution in {3 (i.e., the rapid relaxation 
via the restoring torque also depends on v= I K-M I) although if K=M~O so v=O, the relaxation proceeds 
by normal diffusion. Equation (B19) for highly ordered oblate tops shows that a nonequilibrium orientation is 
relaxed by the molecular z axis being rapidly restored to an angle {3eq_=1r/2, while the a and 'Y angles relax more 
slowly (r,...._,R-1) by normal rotational diffusion when n=O (again corresponding to an equilibrium distribution 
in /3 but not in a and 'Y). Note that the macroscopic motion of the director itself would, on geometrical grounds, 
correspond to the prolate case of Eqs. (B7a)-(B10) ( the angle a would be unnecessary); however, proper account 
must then be taken of the frequency-dependent rotational diffusion coefficient R(w) for this phenomenon based 
on the long-range ordering of molecules.27 
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