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The earlier theoretical analysis for chemically induced dynamic electron polarization (CIDEP), based 
on the stochastic-Liouville equation, is generalized to explicitly include the spin-dependent exchange 
forces in the diffusive trajectories, thus permitting a consistent analysis of the simultaneous effects of 
exchange on both the spin-selective chemical reaction and CIDEP effects. The semiclassical treatment of 
diffusion under a "classical" force field due to the valence interactions requires the introduction of 
spin-dependent diffusive and reactive trajectories, and this is discussed for the Brownian-motion model 
utilized. Our results show that the polarization generated per fractional probability that singlets react 
(P ~ /5), is not sensitive to the actual details of the spin-selective reactive process (although the absolute 
polarization P ~ is sensitive to the reactive process), due presumably to the spatial distinction between 
interradical separations (r) for which the reaction may occur vs those for which CIDEP polarizations 
are developed. The former require 1f µ- (r )Ilk T > 1 while for the latter 1f µ- (r )Ilk T < 1, where J (r) 
is the exchange interaction. It is found that differences in the (nonreactive) diffusive trajectories for 
singlets and triplets give polarizations that are generally negligible compared to those which develop as 
a result of the spin-selective reaction (for our overdamped diffusive model). However, our results for 
more long-range Coulomb interactions between charged radicals show they can produce significant 
changes on P ~ /'J that are quite sensitive to the magnitude of J. Thus ionic-concentration effects on 
P ~ /'J should be an important indicator of the CIDEP mechanism. Results are also given for the 
spin-depolarization process, whereby the effects of spin exchange on a radical pair, which initially 
collide with residual nonthermal polarization, are to destroy this polarization. The effective range of the 
spin exchange is found to be weakly enhanced as the range of J (r ) is increased. Also, it is shown 
that, for several variations of a simple exponential dependence of J (r) on r, P ~ l'J is hardly affected, 
although nonexponential dependences can introduce marked changes. 

I. INTRODUCTION 

In Paper 11 of this series we developed a detailed 
theoretical analysis of the phenomenon of chemical­
ly induced dynamic electron polarization (CIDEP) 
based on our earlier preliminary account. 2 In that 
work we employed a fairly simple description of 
the combined effects of the relative diffusion of the 
radical pair and of the possibility of their engaging 
in a spin-selective chemical reaction, which could 
initiate the spin polarization process. That is, the 
diffusion was treated as that for simple Brownian 
diffusion; the effects of the valence forces (which 
can become very large) on this diffusion were ig­
nored for simplicity. Second, the effects of a spin­
selective chemical reaction were introduced phe­
nomenologically by a simple irreversible (in the 
chemical-kinetic sense) "first-order chemical rate 
constant" giving the probability of the radical pair 
reacting per unit time as a function of the inter­
radical separation. 

It is clear that a more rigorous treatment should 
include the valence forces in an explicit manner 
and, in particular, one that is consistent with the 
inclusion of the exchange forces in the spin Hamil­
tonian. One would then want to include the effect 
of such forces on the relative diffusive motion of 
the radicals, while at the same time recognizing 
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that these forces are the fundamental cause of the 
chemical reactions. In fact, one should expect to 
treat the processes in a manner analogous to re­
active-collision theory, but in liquids, of course, 
the diffusive damping of molecular trajectories 
plays a very important role. 

We have, in the present work, introduced ex­
plicitly in a relatively simple fashion, the effects 
of valence forces into the diffusive reactive trajec~ 
tories in order to attempt a more realistic treat­
ment of the CIDEP phenomenon. We continue to 
apply semiclassical theory such that the spins are 
treated quantum mechanically, while the molecular 
motions are treated classically. We also continue 
to employ Brownian motion theory for describing 
the molecular motions. But now the valence forces 
may become the potential terms in the generalized 
Fokker- Planck equation for the combined configu­
ration and momentum phase space. 3 This well­
known general expression for Browian motion is 
itself the classic example of a stochastic Liouville 
equation. 4 Actually, for the sake of simplicity, we 
consider the limiting form of the Fokker-Planck 
equation for just configuration space (the Smolu­
chowski equation). The use of this latter, simpli­
fied, expression actually implies the restrictions 
that (1) dynamics only over times long compared 
to diffusive damping times, tr1, are properly de-
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scribed and (2) oscillatory type behavior due to 
motion with substantial valence forces is taken as 
being overdamped, e, g., if F represents such 
forces, then one is assuming I div Fl « µ,{3, where 
µ, is an appropriate reduced mass. 3 (A convenient 
way of physically regarding the Smoluchowski equa­
tion is as the limit when {3- oo but D=kT/µ,{3 re­
mains finite. ) It is perhaps this overdamped fea­
ture of the Smoluchowski equation which is most 
unrealistic in terms of representing diffusion in a 
classical force field due to the valence interactions. 

Given these assumptions, it would be a simple 
matter to write down the Smoluchowski equation for 
an arbitrary valence force field. However, one 
must note that for a spin-selective chemical re­
action of radical pairs (e.g. , one where singlets 
react but triplets are repelled) the adiabatic poten­
tial surfaces for the reaction are themselves spin 
dependent. Thus, when one writes the stochastic­
Liouville equation for the spin-density matrix, the 
diffusion operator must now become spin dependent, 
e.g., the density-matrix elements that are pure 
singlet (triplet) must follow singlet (triplet) tra­
jectories, while the off-diagonal density-matrix 
elements of mixed character must follow some 
intermediate trajectory. 

These arguments, which naturally point out the 
need for a spin- dependent diffusion operator in the 
stochastic- Liouville equation for the spin-density 
matrix, have another important implication. There 
is a well-known fundamental problem with all semi­
classical theories of spin relaxation be they of 
more conventional varieties or based on the sto­
chastic- Liouville equation, viz., the spins tend to 
relax to thermal equilibrium at infinite tempera­
ture and one must make ad hoc corrections to 
cause the spins to relax to the temperature of the 
bath. However, the use of a spin-dependent poten­
tial in the stochastic-Liouville equation, as we have 
outlined above, will tend to cause spins of each mul­
tiplicity to relax to their correct spatial equilibrium 
distributions, by virtue of the fact that a particular 
Fokker-Planck (or Smoluchowski) equation yields 
the correct Boltzmann distribution in the long-time 
limit. 3 That is, by the use of spin-dependent diffusion 
in the otherwise classical description of the motion 
of the molecules, one is also including some of the ef­
fects of the "back reaction" of spins on the "lat­
tice." Normally, spin-dependent forces are quite 
negligible in their effects on the motions of the 
lattice, but when one is dealing with large valence 
interactions which are spin dependent, viz. , ex­
change interactions, this is no longer so and such 
matters as achieving correct Boltzmann distribu­
tions are at least as important as are the effects 
of such interactions on the diffusive trajectories. 

In the light of the above introduction, some of the 
questions which we seek to answer are: (1) Will the 
differences in diffusive trajectories for singlet and 
triplet spins yield net differences in their spin pop­
ulations in regions of space where spin polariza­
tion is an effective mechanism; and more important 
(2) to what extent are the predictions on CIDEP 
polarizations sensitive to the details of the valence 
forces and reactive trajectories? We also consider 
in this work the importance of (3) the exact form of 
the radial dependence of the exchange interaction, 
(4) Coulombic interactions between charged radical 
pairs, and (5) the details of the spin-depolarization 
process, whereby a radical pair, which initially 
collides with residual nonthermal polarization, 
has this polarization destroyed by Heisenberg spin 
exchange (HE) (cf. I). All these matters are con­
veniently dealt with by the present formalism. 

II. METHODS 

We shall, as in I, use the stochastic- Liouville 
equation 

ap(r1, t)/at= -i:ie(r1)p(r1, t)+Drrp(ri, t) (1) 

to describe the spin dynamics of a pair of radicals 
a and b under the combined effect of spin inter­
action and relative diffusion. We again write the 
Hamiltonian 3C (r1) in the high-field approximation 
as 

(2) 

where :ic0(ra, rb) is that part of 3C(r1 ) which is diago­
nal in the singlet-triplet representation and includes 
the exchange interaction - J(ra, rb) (½ + 2Sa • Bi,), 
while the off-diagonal part :ic' is independent of r1 

and consists only of differences in g values and 
hyperfine energies between the two interacting radi­
cals. One may then write1 

(3a) 

where 

Q=½ (ga -gb){3/i-
1Bo+(2?~j Mj-~bA~~) (3b) 

and for simplicity we again let J(ra, rb) = J(r), where 
r is the distance between the two radicals, so that 
3Co = 3Co(r). 

However, as distinct from I, we want the diffu­
sion operator nrr to include effects of attraction 
(or repulsion) between the radicals a and b. This 
is formally equivalent to the well-known problem 
of the movement of a Brownian particle in a poten­
tial field and the (Smoluchowski) diffusion operator 
for the classical probability distribution p is given 
by 

nr .,p(r) = DV, [Vp + (1/kT)pv U(r)] , (4) 

where D = Da + Db is the diffusion coefficient for the 
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relative motion between radicals a and b and U(r) 
is the potential energy between them assumed to 
depend only on r. Furthermore, we shall allow 
U(r) to be spin dependent; hence Drr now becomes 
a spin- as well as r- dependent operator. 

We now define a function F(r) as 

F(r) = (1/kT)VU(r) = (1/kT)[a U(r)/ar] (5) 

[where F(r) is however an operator in spin space] 
and then take advantage of the orientation indepen­
dence of JC0(r) and F(r) to obtain the following equa­
tion for p(r,t)=rp(r,t) [i.e., rp(r;,t) averaged 
over orientations]: 

ap(r,t)/at=-iJC"(r)p(r,t)+Dfrr,(r,t) , (6) 

where 

f rp(r, t) = [a 2 p(r, t)/ar2

] + (1/r){a /ar}[F(r)p(r, t)] 

and F(r)=rF(r). (7) 

The polarization at time t of radical a is given 
by 

(8) 

where 

p(t) = 1"' rp(r, t) dr 
0 

(9) 

We are usually interested in the polarization at the 
end of a collision, i.e. , P; = limt- .. P. (t). Then 
one has1 

ss ST0 

- iQ 

P; = - 2 lims J 
00

r Tr[Sa.c7Hr, s)] dr 
s• 0 0 

ec'-2RelimsJ
00

rp8 T (r,s)dr, (10) 
s• 0 O O 

where p(r, s) is the Laplace transform of p (r, t) and 
the approximate equality represents the use of the 
high-field approximation, so only the Sand T 0 

states are important. 1 

We again solve 

[s + iJC" - Df r ]p(r, s) = p(r, t = O) = p0(r) (11) 

by the finite-difference technique already extensive­
ly described in J, i.e. , we rewrite Eq, 11 as 

[sl +in- DW]p(s) = p(0) ' (12) 

where p(s) and p(O) are vectors in a 4(N+ 1)-dimen­
sional space formed from the direct product of a 
4- dimensional spin space with N + 1 discrete values 
of r. Also 1 is the unit matrix, '2 is the matrix 
of elements of the operator JC", and W is the transi­
tion matrix obtained by applying the finit~-differ­
ence technique to the diffusion operator rr. The 
0 matrix is identical to that used in I, but the W 
matrix is different due to (1) the inclusion of poten­
tial forces and (2) the spin dependence off r• We 
illustrate the effects of the spin dependence of fr 
by writing iJC"- Df r of Eq. (11) in the 4-dipiension­
al spin space for states Sand T

0 
in which rr is 

naturally defined. That is 

ToS ToTo 

iQ 0 

iJC"- nfr = - iQ 

( 

D"I'r,ss 

i2J(r) - Df r, sr 0 iQ ). (13) 

iQ 0 

0 iQ 

Here fr,ssand fr,TT are, respectively, the diffusion 
operators for singlet and triplet states. 5 By a 
simple generalization of our discussion of the in-­
clusion of spin-selective chemical reactions, 1 we 
note that for the off-diagonal elements, e.g., 
Psr

0 
the proper diffusion operators should be 

(14) 

That is, physically, regarding rr from a finite­
difference point of view, it gives the jump rate 
between different values of r. As such, fr ss and 
fr,TT yield the lifetime-uncertainty broade~ing of 
the S and T O states at a spec,i.fic position r due to 
jumps to other positions. Then Eq. (14) follows 

- 2iJ(r)- Dr r,TS -iQ 

iQ - Dfr,TT 

from the usual uncertainty-in-lifetime effects for 
off-diagonal density-matrix elements. a-9 

We now give the resulting W"' matrix appropriate 
for each N + 1-dimensional subspace corresponding 
to ct=SS, ST

0
, ToS, or T

0
T

0
: 

n-1wg, 0 =- (2/Ar2)(l+Ar/d)+r1Fa(l)/Arr0 , (15a) 

(15b) 

D"1Wj,1• 1 =Ar-2 -Fa(j)/2Ar, (16a) 

D"1W;",1 = - 2/Ar2 + (2Ar)"1[Fa(j + l)r1.i/r1 

- Fa(j- l)ri-1/r1] , (16b) 

.V-1Wj, 1• 1 =Ar-2 +Fa(j)/2Ar , (16c) 
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where 0<j <M, and 

n-1~,M-1=2/(l+f)t:.r2 -F°'(M)/M(l+f) , 

n-1
~,M = - 2/ft:.r2- F°'(M- 1lrM_i/rMt:. (1 + f) 

n-1w;,M•1 = 2/f(l + f)M2 

while for M <j < N, 

n-1w;,;_1 = 1//t:.r2 
, 

n-1w;,, = - 2/f2t:.r2 ' 

n-lvfo/,J+l = l/f2t:.r2 

in addition 

n-1~-1.N=o 

n-1~,N-l = 2/f2t:.r2 ' 

n-1~.N=O . 

(17a) 

' (17b) 
(17c) 

(18a) 

(18b) 

(18c) 

(19a) 

(19b) 

(19c) 

Note that in Eqs. (15) and (16) t:.r is the distance 
between the/hand (j - l) th adjacent positions, 
wherej'."oM, i.e., r 1 =r1_1 +t:.r. Also r 0 =d, the 
distance of closest approach. For j > M, r1 - r;_1 

= ft:.r and Mis chosen so that J(rM),,: 0 and F°' (rM) 
=Fa(M):,:0. Thatis, forr<rM, thereisanr-de­
pendent exchange interaction and a potential field 
against which the diffusion takes place and small 
increments of t:.r are required for a proper solu­
tion; while for r >rM, the Hamiltonian :JC(r) is inde­
pendent of r and the diffusion is simple unhindered 
Brownian, so larger increments ft:.r with J- 10-20 
may be utilized to adequately represent the motion. 
We have already pointed out in Paper I that the use 
of a finite-difference technique corresponds to a 
description of the diffusion by a discrete master 
equation. Thus, when there are restoring forces, 
one usually inposes the further condition on the 
size of t:.r (beyond those given in I) that it be small 
enough that the off-diagonal elements of Ware non­
negative, while the diagonal elements of W must be 
nonpositive. 10

•
11 It then follows from Eqs. (15)­

(19) that 

(20) 

where, in our models, Fa(0) is the largest of the 
Fa(j)'s. 

As we have done in Paper I, we have incorporated 
an absorbing wall at r = r N• so that, whenever the 
two radicals have separated by rN, they may not dif­
fuse together again, By choosing r N sufficiently large, 
convergent results may be obtained. 1 In I a re­
flecting wall at r = d was included. In principle, 
our explicit inclusion of valence forces removes 
the need for such a boundary condition, but we have 
found it useful nevertheless. 

The condition of conservation of total probability 

N 

I:V(i)Wf,;=0 forj=0,1,··•,N 
i•O 

(21) 

has been used extensively (cf. I) to obtain Eqs. 
(15)-(19). The radial weighting factors V(i) are 
given in I [Eq. (2. 27)]. 

Note that in finite-difference notation Eq. (10) 
becomes 

N 

P:=-2Relims L,V(i)pST (i,s); 
s- 0 ial O 

(22a) 

but in the present case, where valence forces can 
explicitly lead to "bonding" in which r,,: d for long 
periods, it is often more useful to consider 

P;(N) = - 2 Re limsp 5T
0
(N, s) , 

·- 0 

(22b) 

which represents just the separated particles at 
t- 00 • Similarly, the probability of survival per 
collision (l' is given as1 

N 

(l' = lims L V(i)[p(i, s) 55 + p(i, s)ToT ] , (23a) 
s- 0 i •l O 

where (since T. states are being neglected, cf. I): 

N 
L, V(i)[p(i, 0) 55 + p(i, O)T T ] = 1 , 
ial O 0 

i.e. , the density matrix is normalized at time 
zero. However, the fraction of particles which 
have separated at t- 00 is 

P(N)=limsV(N)[p(N,s)55 +p(i,s)T
0
T

0
] • (23b) 

s- 0 

For the probability of reaction during a collision 
one has 

~ = 1- (l' or ~(N) = 1- (l'(N) . (24) 

In Paper I, where the spin-selective chemical 
reaction was represented by an irreversible chemi­
cal rate, which merely "destroys" radical, one had 
P; = P;(N), (l' = (l'(N), and 3' = 3'(N). In the present 
case, the trapped singlet radical pairs at r,,:d are 
not lost to the system, so that (l' (t) = 1 for all t 
[ note (l' = limt- ., <P (t), etc. ] and properly one should 
look at the P;(N), (l'(N), etc. , for the separated 
radicals, which contribute to the ESR spectrum. 
However, we note that the diffusion Eq. (4) auto­
matically includes detailed balance, so that as long 
as U(r) remains finite, there will still be a finite 
probability that a "bound" pair of radicals can 
separate even though U(r = d) is very large, But, 
because the absorbing wall at r = r N is kinetically 
irreversible (representing, in a sense, infinite 
space for the relative diffusion of a single radical 
pair) as t = 00 even the "tightly bound" pairs must 
separate to r N• This feature can be overcome by 
either (1) considering finite but long times and by 
studying Pa(N, t), etc.•, or by (2) introducing (simi­
lar to I) an irreversible kinetic process which 
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FIG. 1. Spin Dependent Potentials U"' (r) as a function 
of r the interradical separation. The solid curves labeled 
S and T represent the exchange potentials utilized for 
singlet and triplet states respectively, with a reflecting 
wall at r = d. The dashed lines represent the usual con­
tinuation of the potentials in the absence of a reflecting 
wall (cf. text). 

permanently removes the strongly bound radical 
pairs as they form by valence attractions and by 
studying P:=P:(N), P=P(N). We have used Meth­
od (2) primarily because of its computational con­
venience, but we have made some efforts at a com­
parison of results for the two methods. We con­
sider this irreversible kinetic process after our 
discussion of potential surfaces. 

A. Potential Surfaces 

We show in Fig. 1 the representation of u"'(r) 
which we have employed. This has been chosen by 
analogy to the well-studied, hydrogen-atom-pair 
potential surfaces12 as well as for computational 
convenience. That is we write U55 (r) ~ (H0 +H1)/ 

(l+S) and UTT (r)~(H0 -H1)/(l+S), where H 0 is the 
"Coulomb integral," H1 is the exchange integral 
which we shall write as - nJ(r), and S the overlap 
integral. The usual S and T energy surfaces are 
shown by the solid curves for r > d and the dashed 
curves for r < d. We take d to be the interradical 
distance characteristic of the stable bond. As 
noted above, we introduce a reflecting wall at r=d 

[i.e., U55 (r) = UTT(d) = 00 for r < d] as a convenient 
approximation to the repulsive terms which domi­
nate both the S and T curves at short internuclear 
distances. Then for r > d we note that usually H1 
is several times larger than H0 and is the main 
source of the attractive forces, while S tends to be 
small. 12 Thus for convenience we let 

(25) 

and it is reasonable to approximate J(r) for r > d 
by an exponential decay in r: 

(26) 

[While Eqs. (25) and (26) (and Fig. 1) represent the 
forms of the potentials we have employed in most 
of our computations, we have also considered ef­
fects of Coulomb-type attractions and repulsions 
which contribute equally to both Sand T potential 
surfaces as well as some variation of J(r) from 
that given in Eq. (26) (see Sec. III).] It follows 
from Eq, (5), that 

F 55 (r) = - FTT(r) = (>.iiJ0/kT) exp[- ;\.(r- d)] (27a) 

and from Eq, (14) that 

FsT 
O 
(r) = F Tos (r) = ½[ F 5 5 (r) + FTT (r)] = 0 . (27b) 

That is, while the singlet terms in p diffuse under 
an attractive potential and the triplet terms under 
a repulsive potential, the Ps,To terms experience 
normal Brownian diffusion. 13 

We now define a "first-order chemical rate con­
stant" k(r) which gives the rate at which a singlet 
radical pair, tightly bound by the attractive valence 
forces between singlets [i.e., F ss (rs:: d)], is ir­
reversibly removed from the system, so that it 
can never again dissociate even as t- 00 [ cf. dis­
cussion after Eq. (24)]. We use the simple form 

(28) 

so that only the singlet radical pairs in the contact 
range d to d + t:..r are affected. This is indicated 
in Fig. 1. In this application, the use of k is thus 
largely that of a computational artifact. A large 
value of k guarantees that the singlet radical pair 
remains bound, while a small value of k does not 
fully prevent them from separating as t- 00 , For 
comparison purposes, calculations also are per­
formed for F 55 (r)=FTT(r)=O, i.e., for exchange 
forces absent (EFA), but k * O. This case is very 
similar to (but not the same as) the model used 
in I. For the EFA case, one can only rely on the 
effects of the irreversible process with rate con, 
stant k, to deplete singlet radical pairs. The dif­
ference between the EFA case used here and that 
in I is that, in the latter, off-diagonal elements 
Ps ,To (d) were taken to decay with rate constant ½k, 
while in the present work they do not. The present 
choiceismade, becausefromEq. (27b), the Ps,T

0
(d) 

elements are not "trapped" by the valence 
forces, so that it is inappropriate to irreversibly 
remove them from the system when dealing with 
the model in which the exchange forces are present 
(EFP), and as noted EFA is meant for comparison 
with EFP. These distinctions do have physical 
consequences which will be enumerated in Sec. III. 
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B. Initial Conditions 

In Paper I the initial condition of p0(r) = p 0o(r 
- r 0)/r~ (where p0 is the initial r-independent spin­
density matrix) was utilized throughout, since for 
the models considered there, either (1) polariza­
tions started upon initial formation of the radical 
pair or (2) equal amounts of Sand T0 radical pairs 
formed from random encounters had to reach r 0 = d 
to react by the spin-selective chemical reaction be­
fore the polarization could begin. For the current 
models being considered, the very diffusion rates, 
as well as relative equilibrium probability distri­
butions, differ for the S and T0 spins, and this can 
only be properly considered by starting the radical 
pair initially at p0(r)= p0o(r- r 1 )/r~, where J(r1 ) 

"'O, etc., i.e., the interradical separation is large 
enough thattheir various interactions are negligible. 
We, therefore, can again use the standard Brown­
ian motion result for the "rate constant" of new 
bimolecular collisions which produce either S or 
TO states1

•
3

: 

(29) 

The appropriate CIDEP intensity la, contribution 
is [ cf. I, Eq. (4. 6)) 

(dla/ dt)k2 = k2(rr)na (t)nb(t)[P:(rr) - AP(rr)2 Reps ,T
0
(t)], 

h th 1. ·t d d • ·t· 1 . (30) w ere e exp 1c1 epen ence on 1m 1a rr is 
indicated and na(t) and nb(t) are the number densi­
ties of radicals a and b. AP(rr) is defined as the 
fractional change in polarization which exists at 
the onset of the collision and is discussed below. 
Now, if the effect of valence forces on the diffu­
sive motion were neglected as in I, then the first 
term in Eq. (30) could equally well be written as 

k2(d)n/t)nb (t)P:(a) 

since, as already noted above, the polarization 
effects do not begin until r= d and the time evolu­
tion of our expressions with initial condition r = r r 
would just involve simple diffusion till the value 
r=d is reached. That is, one would have 

(31) 

To get around the arbitrariness of initial condition 
r r, we usually employ a transferred polarization 
P;(d1 ) as 

~a1(rj1 
- r-;,1)-1(1- d/rN)p;(rr) , (32) 

rN 

where the arrow points to the expression corrected 
for an absorbing wall at r=rN (cf. Ref. 21 in I). 
Note that when the effects of valence forces on the 
diffusion are included, then P;(d1 ) is no longer 

the true polarization developed with initial condi­
tion r = d, but this definition allows us to compare 
results of P;(d1 ) for different initial values of r 
without having to correct for the differences in 
k/rr). 

C. Dimensionless Units 

It follows from our above discussion and that of 
Paper I (cf. Sec. III) that our expressions may be 
written in dimensionless units, that is, 

p:(at) = P:(Jrj],2/D, Qa2/D, rEX/d,nJo/kT) (33) 

with equivalent functional dependences for the 
transferred ff(d1) and AP(d1). [Note that their­
reversible rate constant of Eq. (28) introduces the 
further dimensionless variables, ktr/D and Ar/d.] 
Here rEx= ;\-15ln10 [i.e., J(r+rEX)= 10-5J(r)]. As 
we have found in I, the dimensionless variables are 
useful for establishing convenient relationships, 
while the normal physical variables are more di­
rectly useful for comparison with experiments. 

D. Polarization Quenching 

As we have already noted, the quenching of 
initial polarization due to Heisenberg spin ex­
change (HE) upon a random collision is also an 
important process, if the over-all kinetics of the 
problem is to be dealt with adequately, such as by 
Eq. (30). This polarization quenching can take 
place even when the bimolecular collision does not 
induce any spin-selective chemical reaction. 

The polarization quenching is readily obtained by 
our methods described in I and above. One has 
only to select as the initial condition that 2 Reps, To 

= 1 [ cf. Eq. (30)) or more precisely 

2 Rep5 T (r) = o(r - rr)I~ • 0 
(34) 

(while the other initial values are Pss =PTT= Imps, To 

= o). The calculation based on Eqs. (6) and (10) 
then leads to 

- AP(rr) = P:[rr, Ps ;T /t) * 0]- 1 , (35) 

where P:[ r r, p s, T
O 

(t) * 0] is the polarization which 
remains at the end of the collision, after having 
started with the initial condition given by Eq. (34). 
The quantity AP(rr) appears in Eq. (30) and the 
validity of Eq. (35) rests on recognizing that Eq. 
(1) is linear and homogeneous in p(r, t) so one may 
superpose solutions obtained for simple initial con­
ditions to obtain solutions for the more complex 
initial conditions. We can again define a trans­
ferred AP(d1) in exactly the samemanneras Eq. (32) 
for P;(d1). Note, however, that AP(d1 ) is not equal 
to AP(d) for finite values of J 0 and rEX, since the 
spin depolarization by HE will start for rr > d as 
long as I J(rr)I > 0. Note also, that by Eq. (27b) 
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TABLE I. Effects of diffusion under exchange forces on polarization and spin-selective 
reaction. a, b 

1011 

(0. 0025 kT) 

1013 

(0. 25 kT) 

1014 

(2.5 kT) 

4x1O14 

(10 kT) 

1 X 1015 

(25 kT) 

1014 
1012 
1010 

108 

0 

1014 

1012 
1010 

108 

0 

1014 

1012 
1010 

108 

1014 

1012 
1010 

108 

1014 
1012 
1010 

108 

21. 4 (21.4) 
10. 5 (10. 45) 

0.198 (0. 200) 
-4.7x1O-4 (2.O2x1O-3) 
-8.5x1O-3 (0) 

7. 99 (7. 82) 
4. 36 (3. 76) 
9. 06 X 10-2 (7. 21 X 10-2) 

-2.5x1O-3 (7. 23x1O-4) 

-3.5x1O-3 (O) 

8.77 (7.68) 
7. 99 (3. 76) 
0. 800 (7.2lxl0-2) 
4. 85 X 10-3 (7. 28 X 10-4) 

9.68 (7.59) 
9. 68 (3. 72) 
9.64 (7.14x1O-2) 
6. 86 (7. 20 x1O-4) 

10.3 (7.54) 
10. 3 (3. 69) 
10. 3 (7. 09 X 10-2) 
10. 3 (7. 16 X 10-4) 

O. 520 (O. 519) 
o. 254 (0. 254) 
4. 88x1O-3 (4. 86x1O-3) 
5.92xlo-5 (4.91XlO-5) 

0 

0. 529 (0. 518) 
0. 289 (0. 253) 
6. 2 X 10-3 (4. 86 X 10-3) 
6.3x1O-5 (4.91xlo-5) 

0 

0. 592 (0. 519) 
o. 539 (0. 253) 
5.4x1O-2 (4. 86xl0-3) 
6. 0 X 10-4 (4. 91 X 10-5) 

o. 659 (0. 517) 
o. 659 (0. 253) 
0. 656 (4. 86 X 10-3) 
0. 467 (4. 91 X 10-5) 

o. 705 (0. 517) 
o. 705 (0. 253) 
0. 705 (4. 86 X 10-3) 
0. 705 (4. 91 X 10-5) 

41. 2 (41. 2) 
41. 2 (41. 2) 
40. 7 (41. 2) 

-9. 5 (41. 2) 

15.1 (15.1) 
15.1 (15.1) 
14. 5 (15.1) 

-39. 9 (15.1) 

14. 83 (14. 84) 
14. 83 (14. 84) 
14. 77 (14. 84) 

8.14 (14. 84) 

14. 68 (14. 69) 
14. 68 (14. 69) 
14. 68 (14. 69) 
14. 68 (14. 69) 

14. 6 (14. 6) 
14. 6 (14. 6) 
14. 6 (14. 6) 
14. 6 (14. 6) 

avalues are given both with the exchange forces of Eqs. (4), (5), and (27), and in the ab­
sence of these exchage forces for comparison. The latter are in parentheses. The random 
initial condition is assumed. All values are transferred results for rt=d, cf. Eq. (32). k 
is defined by Eq. (28). 

~alues of the ~ther parameters used are: Q=lx~o8 sec-1, D=~o-5 cm2/sec, d=4 A, rEX 

=4 A, Ar=O. 05 A, M=l6O, N=360, /=20, rN=212 A, r 1 =11. 85 A, kT/1i=4XlO13 sec-1, 
sAr2/D=10-18. Results scale according to Eq. (33), etc. 

the diffusion of PsT is unaffected by the valence 
forces illustrated iR Fig. 1, and also that the de­
polarization, even for random collisions, begins 
well before radicals approach near to d (i.e. , the 
region where valence forces may significantly af­
fect the motions). 

It follows from Eq. (30) and Paper I that the 
steady-state enhancement Vis given (in terms of 
the steady state intensities If 5 and 1:s of radicals 
a and b) as 

_ (I:,S- 1g5
)_ P:Ti/3 

V-(I:S+If)-fJPeq(l+T1/3AP/fJ)' 
(36) 

where (3 = (k0fJ k2 )
112 is the experimentally observed 

second-order decay constant and k0 is the zero-or­
der rate of production of radicals. [Equation (36) 
is obtained when one assumes radicals a and bare 
created at the same rate and react only by the 
spin-selective chemical reaction.] Note that by 
Eq. (32), etc. , V is independent of r,, the trans­
ferred radial separation, as it should be. 

III. RESULTS 

A. Exchange Forces 

Typical results for the exchange forces defined 
by Eqs. (4), (5), and (27), and k defined by Eq. 
(28) are given in Tables I-IV. We compare in 
Table I the results for P-, fJ, and P .. /fJ both in 
the presence of the exchange forces (EFP) in the 
diffusion Eq. (4) and in their absence (EFA) (all 
other parameters remaining constant including the 
exchange terms in the spin Hamiltonian). This is 
done for a variety of values of J 0 and k. One finds 
that fJ, the fraction which reacts, depends on k 
(and Ar), but is independent of J O for EFA. In the 
case of EFP, the results for fJ show a marked 
dependence on J 0, the larger the value of J O the 
greater is fJ due to the enhanced effectiveness in 
trapping singlets at r = d, where they can react. 
Thus for small J O ~ 1011 sec-1, there is no differ­
ence between EFP and EFA in the values of fJ, but 
for J 0?. 1013 sec-1 the differences are quite marked. 
Another trend, which also emphasizes the in­
creased trapping properties of EFP, is that for 
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TABLE II. Effects of diffusion rate, in presence of exchange forces, on polar­
izations and spin-selective reaction. a,b 

D = 10-4 cm2/sec D=lO-6 cm2/sec 

J 0(sec-1) k (sec-t) p"" X 103 /:f :f P""xlO3/:f :f 

1012 1014 11.5 0.458 36. 0 0.574 
(0. 025 kT) 1012 11.5 0.047 36. 0 0.514 

1010 11. 0 4. 9 x10-4 35.9 4. 53 X 10-2 
108 -31. 0 4. 9 x1O-6 30. 0 4. 92 X 10-4 

1013 1014 5,.11 0.475 34.6 o. 577 
(0. 25 kT) 1012 5,06 5. 61 X 10-2 34.6 O.529 

1010 0,404 6. 29 X 10-4 34.5 5,68Xl0-2 
108 -465 6. 3 X 10-6 28.3 6, 29 X 10-4 

1014 1014 5.36 0.563 33.l 0.642 
(2.5 kT) 1012 5.36 0,291 33.1 0.635 

1010 4.79 5.9ox10-s 33.l o. 309 
108 -52,5 5. 96 X 10-5 32.3 5. 9lx1O-3 

4 X 1014 1014 5.35 o. 631 32. 3 o. 719 
(10 kT) 1012 5.35 o. 630 32. 3 0.719 

1010 5.35 0,606 32.3 0,719 
108 5.33 0.128 32.3 0.688 

1x1O15 108-1014 5.34 0.673 31. 7 0.772 
(25 kT) 

aAll values are transferred results for rt= d, cf. Eq. (32). Exchange forces are 
given by Eqs. (4), (5), and (27). k is defined by Eq. (28). 

1Yalues of the other parameters are given in Table I. 

J 0?. 1013 sec-1
, the disparity between EFP and EFA 

increases ask decreases. Thus, at J0~ 1015 sec-1, 

ff is independent of k (for the values of k shown) for 
EFP, but is negligible for kf:. 1010 sec-1 and EFA. 

The results in Table I for EFA for p"" /ff are 
found to be independent of k as already noted in 
Paper I [however, whereas in I, this independence 
had to be qualified as being for J 0> 1010 sec-1 (D 
,:510-5 cm2/sec), the present case does not require 
this, since as noted in Sec. II Ps T is here not 

' 0 affected by k ]. This is also generally the case for 
the larger values of J0 (and k) for EFP, In fact, 
in these cases the results for P""/ff are virtually 
identical for both EFP and EFA even when the re­
spective values for ff are markedly different (e.g., 
the cases of large J O and k = 108 sec-1 

). This im­
portant result demonstrates that, to a large extent, 
the polarizations are independent of the details of 
the spin-selective chemical reaction, and they are 
just linearly dependent on ff. This, of course, 
means that in our models, where nJ0/kT» 1, and 
the radical trapping (and reacting) region is around 
r~ d, the region where polarization is developed 
lies where r > d such that Ii J(r)/kT« L This is 
precisely the feature which is included in a simple 
manner in the EF A model as well as in I (where 
effects of k on Ps ,T are differently treated). But 
the actual values of ff and P"" are very model 
sensitive. 

However, for the smaller values of J O and k, the 
EFP and EFA results for P""/ff do not agree. In 
fact P""/ff and p"" for EFP change sign in some 
of the cases. This must be due to a new mech­
anism generating the polarization which no longer 
depends upon ff. When ff is negligible, then the 
small differences in Boltzmann factors for singlets 
vs triplets in the polarization region can have the 
effect of leading to a slight excess of singlets gen­
erating polarizations (this we call a relative diffu­
sion model or RDM), which are negative in sign to 
effects of the reaction which depletes singlets. 
But for our model, the RDM polarizations are 

TABLE III. Effects of range of exchange forces on 
polarization and spin-selective reaction. a,b 

rEX=2 A rEX.=4 A 
J 0 (sec-1) P""x103/5' g: P""x 1O3/'J 'J 

1011 54.9 0.520 41. 2 0.520 
1012 10.2 0,520 14.6 0.520 
1013 7,73 0.526 15.1 0.529 
1014 7.65 0.560 14.8 0.592 

4x1014 7.60 0.594 14.7 0.659 
1015 7.58 0.616 14.6 0.705 

aAll values are transferred results for rt=d, cf. Eq. 
(32). Exchange forces are given by Eqs. (4), (5), and 
(27). 

1Yalues of the other parameters are given in Table II. 
The random initial condition is assumed. 
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TABLE IV. Effectiveness of radical trapping for diffusion under spin-dependent exchange forces. a,b 

6.F(c> <PIN,t)<<D x103 

sC..r2/D t ~ s "1sec nJ0 =10 kT lfJ0 =25 kT EFA<•> J 0 =4xlo14sec-1 J 0 =l x 1015sec"1 EFA 

10-4 2.5x 10-1° 0.926 0.924 o. 865 
10"6 2.5xl0"8 0.307 o. 514 2. 87X10-2 5.03 8. 8 0 
10"8 2.5xl0"6 6, 99 X 10-3 0.500 2. 93 X 10"4 0.151 10.3 0 
10-1° 2.5X10-4 7.09X10"5 0.500 -2. 7X10-3 10.3 0 
10-12 2.5X10-2 0.460 -4.3X10-3 9.6 0 
10-14 2,5 5, 14X10-2 -4. 3 X 10-3 0.68 0 
10-16 2.5xl02 5.73x10-4 -4.3X10-3 -0.67 0 

aExchange forces are given by Eqs. (4), (5), and (27). 
byaluesofotherparametersusedare: k=0, Q=lxl08 sec-1, D=10"5 cm2/sec, d=4A, rEx=4A, Ci.r=0.05A, 

and random initial condition. 
0Here 6.F is the fraction of particles which have not reached the absorbing wall at rN =22 A. Also r 1 =d=4 A 

andf=l. 
dPolarizations at rN=212 A for r1 =11. 85 A. (Here M=l60, N=360, andf=20.) 
0 In the absence of exchange forces, 6.F is independent of J 0• 

much smaller than normal polarizations which 
arise from substantial values of 3'. 

In Table II we compare results for EFP for dif­
ferent diffusion rates. The general conclusions 
are unaffected, but one finds that (1) radical trap­
ping and reacting is more effective for slower dif­
fusion and (2) RDM polarizations are relatively 
more important (yielding very large values of P"' /ff 
but still small values of p"') for faster diffusion. 

In Table III we compare results for different 
values of rEX• One continues to find P"' /ff is the 
same for EFP and for EFA (the latter is not shown) 
for large k. However an increase in rEx leads to 
an increase in ff, because the ability to attract 
singlets into the reactive region is enhanced. This 
is opposite to the trend for EFA (cf. I), where an 
increase in rEx leads to a decrease in ff due to ef­
fects of S-T0 mixing by the hyperfine interactions. 

The results given in Tables I-III included the 
kinetically irreversible "reaction" at r = d to 
guarantee sensible behavior as the limit t- oo was 
taken (cf. Sec. II). We wished to test the results 
for our EFP model without the presence of this 
artifact, and this requires examining results for 
finite times. We have done this simply by using 
the well-known Fourier (and Laplace) inversion 
result that the behavior at time t is dominated by 
values of s ~ r 1 (and we checked this for the pres­
ent type of calculation in I by direct inversion). 
We give in Table IV results showing the effective­
ness of radical trapping for EFP when k = O. We 
have compared the time it takes for radical pairs 
initially at r=d to collect at rN=22 A, a separation 
where exchange forces are negligible. The results 
for EFA are, of course, independent of J 0; and for 
D= 10-5 cm2/sec used in Table IV 97% of the radi-

cals have collected by s"1 = 2. 5X 10"8 sec. However, 
for EFP and n Jo/kT= 10 about 7% of the radicals 
have not reached rN by 2. 5X 10"7 sec, while for 
n Jo/kT= 25 all but 5% have reached rN by s·1 = 2. 5 
sec. The results for n Jo/kT = 25 show a plateau 
where nearly all the triplets have been collected by 
s"1 = 2. 5 x 10"8 sec but the singlets do not begin to 
be collected until s"1 = 2. 5 x 10·2 sec. We have also 
examined the time-evolved results for P(N) where 
rN=212 A in Table IV. For EFA we have P(N)=0 
for all times, but for EFP large polarizations are 
built up for short times (while the singlets are still 
effectively trapped), but eventually the singlets 
reach rN and neutralize the large polarizations ex­
cept for the small RDM polarizations. It is in­
teresting to note that for nJ0 =25 kT, the plateau 
value of P(N) = 10. 3 x 10"3 is precisely the result 
given in Table I which was obtained for k * 0 and 
t- 00 (for n J 0 = 10 kT, there is no clean plateau 
region, so the comparison is not as clear). This 
kind of agreement supports our use of the artifact 
of the kinetically irreversible reaction at r = d to 
maintain the radical trapping. We note, however, 
that the lengths of time the singlets are trapped for 
EFP are surprisingly short considering the 
strengths of the trapping potential, which should 
lead to stable bond formation. This is undoubtedly 
due in part to the assumption of overdamping 
whereby momentum relaxation effectively occurs 
instantaneously. 

Some comments apply to the calculation for 
nJ0 /kT=25. It was not convenient to choose c..r 
small enough for this case, such that Eq. (20) was 
fulfilled for i = 0 and th.e first several values of j. 
Thus, while some question exists as to the rigor of 
this particular calculation, we note that the results 
given in Tables I-IV show good consistency with 
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TABLE V. Effects on polarizations of different functional dependences for 
J(r) with r. a,b 

J0(sec"1) Jo(d/r) e•X<r-d> Joe•Mr-d) J 0(r/ d) e·X<r-d> Jo(d/r)6 Jo(d/r)12 

108 0.309 0.336 0.368 1. 26 0.359 
109 3.09 3.358 3.678 12.45 3.59 
1010 29.02 31. 24 33.81 71. 53 33.2 
1011 41. 91 40.33 38.67 61. 74 41.2 
1012 13.75 14.77 15.93 91. 6 21. 7 
1013 14.39 15.18 16.01 128 27.3 
1014 14.25 14.93 15.62 163 33.3 
1015 40.3 

aExchange forces are neglected in these calculations. The results are given 
for no chemical reaction, and the table entry is to be multiplied by PToT 

O 
(t= 0) 

-PssU=0). 
byalues of the othe; parameters

0 

used are: Q=lxl08 sec·1, D=lO"5 cm2/ 
sec, d=4 A, rEx=4 A, tl.r=O.25 A

0 
(except for nex1;, to last column where tl.r=2 

A), M=32, N=72,f=2O, rN=212A(butrN=1664A)forthelastcolumnand 
r 1 =4A. 

all those results obtained for liJo/kT< 25 where 
Eq. (20) was fulfilled for all j (and this is also true 
for calculations we have made for liJo/kT= 100). 
Most significant in this regard is the result of 
Table IV that ti.F(N) - O as t- 00 as it should. Also 
we have performed calculations where t:.r= 0. 25 A 
so that Eq. (20) was not completely fulfilled for 
Ii Jo/kT= 10, but we obtained results very similar 
to those of Table I (for the larger values of k). 
(Note that for small k, the fact that k has been 
taken as nonzero only in the j = 0 "box" means 
that as t:.r is changed, an exact comparison for 
small k values does not apply.) In principle, one 
may remove difficulties of this sort by extending 
our methods, whereby we have used two different 
values of t:.r, to introduce a third, very small value 
for t:.r in the region where Ii J(r) > kT, etc. 

B. Functional Forms for J(r) 

Given our results in I and above, that (1) p'° /ff 
remains essentially constant for a wide range of 
descriptions of the spin selective reactive process 
and (2) an asymptotic value of p'° /ff is obtained 
for large J 0 (which is equal top'° obtained for the 
triplet-initial case in the absence of any reaction), 
the question exists as to the sensitivity of this 
asymptotic result to the specific functional de­
pendence of J(r) upon r. We have therefore con­
sidered as alternate forms: 

J(r) = (d/r)"Joe·~<r-a> 

with n = - 1, O, and + 1 as well as 

J(r) =Jo(d/r)" 

(37) 

(38) 

with n = 6 and 12. While exponential forms are 
expected for (medium range) exchange forces, we 
include the r"" form for purposes of comparison, 
noting r"6 is characteristic of long- range van der 

Waals forces. Typical results for EF A are shown 
in Table V. One finds very similar results for all 
three exponential forms, including the existence of 
P; (asympt) for large J 0• As n increases there is 
generally a rather small (and unimportant) in­
crease in P:. The r" 6 form for J(r) behaves quite 
differently yielding generally higher values for p'° 
and showing no leveling off as J O gets larger, al­
though the r"12 form does show some leveling ef­
fects. 

C. Ionic Interactions 

We have, so far, only considered the case where 
Eq. (25) holds so that singlet and triplet spins ex­
perience equal, but opposite, valence forces. 
When the interactions are between charged radicals, 
then spin-independent Coulombic forces become im­
portant. We have studied this case, making use of 
the usual Debye formulas14

•15 for charge-shielding 
effects due to the ionic atmosphere in the solution. 
That is we have 

U(r) = (e2ZaZb/ Er)[e·•<r-a> /(1 + Kd)] , (39) 

where eZa and eZb are the charges on the radicals, 
and where K, the reciprocal thickness of the ionic 
layer, obeys 

K
2 = (41Te 2/EkT)~n,z: ' 

i 

(40) 

where E is the dielectric constant and n1 is the 
number density of the ith-type of particle of charge 
Zp We have obtained results for Kd~¼, since the 
ionic atmosphere effects reduce the range of the 
interactions sufficiently for our computational con­
venience, and are typical of aqueous ionic solutions 
on which HE studies have been made, 15 i.e. , a 
value of U(d) = 5kT /(1 + Kd) corresponding to d- 4 A, 
Z = 2, and E = 80 and ¼ !: Kd .!: 2 corresponding to 
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TABLE VI. Effects of Coulombic interactions on 
polarizations and spin-selective reaction. a,b 

Attraction Repulsion 

Kd POO/fJ fJ ~/ff rr 
1 10·8. 2 1. 587 1.14 0. 0459 4 

1 110.3 1.235 1.86 0. 0812 2 

1 104.4 0. 918 3. 96 0.166 
2 81. 5 0. 713 8.83 0. 302 

No charge 31. 2 0. 527 31. 2 0. 527 

! 12. 2 1. 576 8.82 o. 0459 

½ 13. 3 1. 225 13. 8 0. 0812 
1 15. 5 0. 910 26.4 0.1657 

19. 5 o. 708 44. 5 0.3017 
No charge 40. 2 o. 524 40. 2 0. 524 

¼ 5. 01 1. 575 9. 63 0. 0459 
½ 5.47 1. 225 13. 7 0. 0811 

6.43 o. 910 20.1 0.166 
2 8. 25 o. 708 22.6 0.301 

No charge 14.7 0.524 14, 7 0. 524 

½ 6.71 1.572 12.2 0.0459 
½ 7. 32 1.223 16. 3 0. 0811 
1 8. 61 o. 909 20. 6 0.166 
2 10. 87 o. 707 19. 9 0. 301 

No charge 15.1 o. 523 15.1 o. 523 

1 7.83 1. 567 13. 8 0. 0459 4 

½ 8. 52 1. 220 17. 2 0. 0811 
9. 96 0.907 19.4 0.1654 

2 12. 2 0. 706 17. 7 0. 3007 
No charge 14.8 o. 522 14.8 o. 522 

"spin-independent Coulombic interactions are given by 
Eqs. (34), (40), and (5), and U(d) = 5kT/[1 + Kd]. 

hvalues of the other parameters used are k = 1014 sec-1, 
Q=lxlo8 sec-1, D=lo-5 cm2/sec, d~rEx=4Ai Ar=0.25 
A, N=168, M=128, f=20, rN=236 A; r 1 =34 A. 

~ 0. 01M to greater than 0. 25M in ionic (Z = 2) con­
centration were used, even though the quantitative 
validity of Eq. (39) is uncertain for such high con­
centrations. Typical results for EFA are summa­
rized in Table VI. It is clear that attractive forces 
significantly aid the reaction, essentially by ex­
tending its range, and the longer the range of the 
attractive forces (less ionic screening) the more 
effective it is. [The values of 5-"(dt) significantly 
greater than½ reflect this increased range, and 
not any reaction of triplets.] The behavior of P'° /5' 

is not as simple. For attraction where D~ 10-5 

cm2/sec and J 0 < 1011 sec-1 (or more generally 
J 0T1 < 1) p"'/g: rapidly increases with decreasing Kd, 
representing the fact that radicals are more readi­
ly attracted to r = d (and retained there) where the 
dominant polarization may occur. But for D~ 10-5 

cm2 /sec and J 0 > 1011 sec-1 (or more generally J 0T1 
> 1), P"' /ff decreases as Kd decreases (although the 
effects appear small), since the region of effective 
polarization occurs where r > d, while spin depolar­
ization is very effective for r""d, the region to 
which the radicals are attracted. Generally, op­
posite trends are observed when the Coulombic 
forces are repulsive (except for Kd < 1). The rea­
son why the Coulombic forces can result in changes 
in P"' /ff, while the inclusion of exchange forces had 

no such effects, may be attributed to the fact that 
even when liJ0/kT> 1, the range of r where there 
is effective polarization always obeys liJ(r)/kT« 1, 
but the more long-range Coulombic forces can still 
fulfill U(r)/kT~ 1 in this range of r/. 

D. Quenching of Initial Polarization 

We give in Tables VII and VIII typical results for 
the effects of quenching of initial polarization. We 
have utilized EFA since (1) the off-diagonal ele­
ments Ps,TO• which are the important terms here, 
are unaffected by the exchange forces and (2) the 
depolarization should occur in regions of J 0 ~ D/d2 

« kT/li. The results for a contact exchange model, 
where J(r1 )=Jof'>r

1
,r

0 
appear in Table VII, and may 

be summarized by 

AP(dt) ~{(2J0T1)2 /[1 + 4(J~+ Q2hf]} 

X [1- H(Qd2 /D, Jrtf /D)] (41) 

where 

(42) 

Equation (42) is the same "lifetime for the encoun­
ter pair" that was found for the behavior of P: for 
the contact-exchange model. 1 Also, when H(Qd2 / 
D, Jd

2
/D)=0, then Eq. (41) gives just the proba-

bility of Heisenberg spin exchange per (S - T 0) en­
counter that has been determined from relatively 
simple analytical solutions. 16

•
17 We have found 

that 

2 ~ h(Qd2/D) 
H(Qd

2
/D, Jod /D)=[l+ 4(J~+Q2)?i] (43) 

such that His typically small compared to unity, 
but it has an approximately nearly linear depen­
dence upon Qd2/D (for n~ 10-5 and Q~ 10•8).18 This 
extra term, represents the effect of successive 
re-encounters, which tend to generate new polar­
izations, an effect which was not included in these 
earlier models. 

Typical results for finite range of the exchange 
are given in Table VIII. The most significant dif­
ference from a contact exchange model is that for 
large J 0 ~ 1011 sec-1 (and typical values of D and 
rEx, or alternatively J 0T1 > 1 see below) it is pos­
sible to have c.P(dt) > 1 representing the fact that 
the depolarization is completed at radical separa­
tions > d. For these large J O values, the results 
in Table VIII indicate that AP(d1) varies roughly as 
✓rExld with only a small (positive) dependence on 
Jd

2
/D (and a virtually negligible dependence on 

Qd2/D). For small J 0 (more precisely J 0T 1 < 1 
with T1 defined below) one has a result very simi­
lar to Eq. (41): 

AP(d1)~(2J0T1)
2[1-H°(Qd2/D, Jod2/D)] , (44) 

where 
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TABLE VII. Polarization quenching by a contact exchange mechanism. a-c 

1 2 3 4 5 
6 

Q=l08, .6.r=l A D=lo·5 cm2/sec, .6.r=l A D= 10·5 cm2/sec 
Q=lO8 sec·1 

J 0(sec·1) D= 10-4 cm2/sec D = 10·5 cm2/sec D= 10-6 cm2/sec Q=O.lxl08 sec·1 Q = IO x 108 sec·1 e:.r=¼ A 
108 1.51x1O·7 1. 38 X 10•5 1. O2x 10·3 1. 51 X 10•5 1.O2x10·5 0. 860 X 10•6 

109 1. 51 X 10•5 1. 37 X 10•3 0. 926 X lo•! 1. 5lx1O·3 l.O2xlo·3 0. 860 X 10-4 
1010 1. 51 X 10•3 0.121 o. 911 0.131 0. 926 X 10•! 0. 853 X 10-2 

1011 0.131 0.932 0.999 0.938 o. 911 0.462 
1012 0.938 0.999 1. 000 0.999 0.999 0.989 
1013 0.999 1. 000 1.000 1.000 1. 000 1.000 
1014 1.000 1. 000 1.000 1. 000 1. 000 1.000 

"The table entries give .6.P(d). 
'\ralues of parameters as indicated by column headings. Other parameters used are: d= 4 A, M= 10, N= 30, f= 10, 

rN= 213 A. 
0Note that by scaling most of Column 4 may be obtained from Column 1, and similarly for Columns 3 and 5. 

(45) 

and H' is very similar to H. The form, Eq. (45), 
was also obtained in I in analyzing results for P; 
for small J 0• 

E. Nonspherical Radicals 

All our calculations have been performed for 
spherically symmetric exchange interactions and 
spherical radicals for reasons of simplicity. Since 
most interacting radicals will display anisotropic 
features in their exchange interactions and their 
ability to react, some comments on expected ef­
fects from nonspherical features are appropriate. 

Suppose, for simplicity, we consider the inter­
action of a spherical radical (e.g., an H atom) 
with a highly nonspherical radical with the latter 
represented in Fig. 2(a). The solid curve repre­
sents the outer extent of the radical, while each 
of the dotted curves represents a contour of con­
stant J value (e.g., J varies by a factor of 10 be­
tween adjacent curves). Suppose now a spin-selec­
tive chemical reaction must first take place to 
initiate the spin-polarization process. This re­
quires a region where Ii IJ01 /kT> 1, and this re­
gion should have a large enough extension that vi­
brational relaxation to the bound state may occur. 
In Fig, 2(a), only the region 1 is taken to satisfy 
this condition. Thus the radicals must approach 
to Region 1, where a reaction may take place gen­
erating a net triplet character (symbolized by 5'). 
If now we have D~ 10-5 cm 2/sec, so the polariza­
tion process is due to re-encounters after moder­
ate separations, then these re-encounters may oc -
cur at different regions in Fig. 2(a) (e.g., regions 
labeled 1-4) each with its own characteristic 
range of values of J, In Fig. 2(b) we show the typ­
ical dependence of P"'/ff vs J 0 obtained for spheri­
cal radicals with the results for Regions 1-4 (as 

though they each represented the behavior of a dif­
ferent spherical molecule). (Also, we are neglect­
ing any effects from the orientation dependence of 
d and rEX on Qd2/D and rEx/d in our discussion,) 

The main points to note now are (1) P"' /ff is in­
dependent of ff for spherical radicals; (2) for a 
nonspherical radical, ff may be greatly reduced by 
a geometric factor, but if contours around the mol-

/ 

I 

/ ,, 

a 

b 

Pco(asympt)/,1" 
------1 

FIG. 2. Nonspherical radicals. (a) Suggested contours 
of constantJvalue about a nonspherical radical interacting 
with a spherical radical. Spin-selective chemical reac­
tion may occur only at Region 1. (b) Typical variation 
of p"' /:J with J 0d

2 /D for spherical radicals showing sug­
gested equivalent points corresponding to Regions 1-4 in 
(a) (cf. text). 
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TABLE VIII. Polarization quenching by exchange interaction of finite range. a 

A. Dependence on rEx b 

Q=lO7; rEx= J 0=1O8; rEx= 

J 0(sec-1) 2 A 0 SA Q X 10-8 2 Ac 4 A0 s Ac 4A 

108 2. 61 X 10-6 9. 4Ox 10-6 4. 53 X 10-S 0.2 2.58 9.27 44.5 
109 2. 61 X 10-4 9.4Oxl0-4 4.52xl0-3 0.4 2.52 8.99 42.9 
1010 2. 56 X 10-2 8. 68 X 10-2 0.335 0.6 2.45 8.76 41. 7 
1011 0.754 1.015 1. 271 1.0 2.38 8.46 40.1 
1012 1.059 1.188 1.633 2.0 2.24 7.93 37.1 
1013 1.135 1.399 2.072 4.0 2.06 7.23 33.4 
1014 1.241 1.615 2.525 6.0 1. 94 6.74 30.7 

B. Dependence on Other Parametersd 
D=lo-4; Q= D=lo-5; Q= D=l0-6; Q= 

J 0(sec-1) 107 108 109 107 108 109 101 108 109 

---
108 9. 44 X 10-8 9. 4Ox 10-8 8.46x1O-8 9. 40 X 10-6 8. 46 X 10-6 6. 04 X 10-6 8. 46 X 10-4 6. 04 X 10-4 2. 53 X 10-4 

109 9. 44 X 10-6 9. 4Ox 10-6 8. 46x 10-6 9.4ox1O-4 8. 46x 10-4 6. 04 X 10-4 7.87x1O-2 5.74x1O-2 2. 47 X 10-2 

1010 9. 44 X 10-4 9.4ox1O-4 8. 46 X 10-4 8. 68 X 10-2 7.87x1O-2 5. 74 X 10-2 1.002 0.955 0.775 
1011 8. 72 X 10-2 8. 68x 10-2 7.87x1O-2 1. 015 1.002 0.955 1.186 1.179 1.153 
1012 1. 016 1.015 1.002 1.188 1.186 1.179 1. 398 1. 389 1. 360 
1013 1.188 1.188 1.186 1. 399 1. 398 1. 389 1. 613 1.604 1.574 
1014 1. 399 1.399 1.398 1. 615 1.613 1.604 1. 831 1. 822 1. 791 

~he table entries give t:.P(dt). 
byalues of other parameters are D=l0-5 cm2/sec, d=4 A, -0.r=¼ A(½ A for rEx=8 A), N=72, M=32, f=lO (5 for rEx=8 A) rN=112 A (119 A for rEx=8 A), 

r1=1l.5 A (19 A forrEx=8 A). 
0Entries are t:.P(d1) x 106• 

dValues of parameters as indicated by column headings. Other parameters used are: rEx= 4 A, d=4 A, Ar=¼ A, N=72, M= 32, f= 10, r1= 11. 5 A, rN= 112 
A. 
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ecule include Regions 1-4, then the polarization 
that is achieved is still of the order of magnitude 
of P"' (asympt)/5' as calculated for spherical mol­
ecules; (3) since (in most cases) all the polariza­
tion depends on the value of 5' originally generated, 
then we still have the resulting p"' / 5' independent 
of 5', This value of p"'/5' will probably lie some­
where between P"'(max)/5' and P(asympt)/5' for 
many cases, [e.g., P(asympt)/5' for nearly spheri­
cal molecules or approximately p"'(max)/5' if re­
gions like 2 and 3 dominate], 

F. Comparison with Experiment 

Fessenden19 has reported results for the radicals 
CH2COO-, CH(CO2)2, and <\H6OH, which corre­
spond to values 2 or 3 times those we have esti­
mated for p"°(asympt)/ff for spherical radicals, 
but not greater than p"'(max)/5', so it is possible 
that the above arguments apply. In fact they would 
lead to a most probable (or average) J 0~ 1010-1011 

sec·1, 

Verma and Fessenden20 have recently obtained 
polarization results for hydrogen radicals. Here, 
since we are dealing with spherical atoms, the ex­
perimental p"' /5' of ~ 50 x 10-3 should equal 
p"°(asympt)/ff. If we take as nominal values of 
d~ 1 A, rEX~ 4 A, 12 then we get for D = 1, 2, and 
5 x 10"5 values of p""(asympt)/5' 60, 49, and 34 x 10·3 

or rather good agreement (with only a weak de­
pendence on d and a nearly linear dependence on 

rExl• 

We might also comment at this point on the 
charge repulsion and ionic strength effects in 
Fessenden's experiments. Thus, he observes 
significantly lower enhancements for 0. 0lM con­
centrations of CH3CO2 (forming CH2CO2) than for 
0. lM, Also CH(C02)2 yields smaller enhancements 
than CH2(CO2). This could be explained if the non­
spherical radicals are dominated by J 0 < Jmax (Le., 
Regions 2 and 3 of Fig. 2), for which repulsion de­
creases p"' /5' and this decrease is more pro­
nounced for smaller Kd (i.e. , lower ionic strength). 
(Note that one must be careful to distinguish be­
tween the observed enhancement V given by Eq. 
(36) and the polarization P"'/ff). Recent experi­
ments by Livingston21 also suggest the importance 
of ionic concentrations. 

IV. SUMMARY 

A. This Work 

The main result of this work, in which we ex­
plicitly considered the effects of valence forces 
on diffusion and CIDEP intensities, is the demon­
stration that the quantity P;/rr--, the polarization 
generated per fractional probability that singlets 
react, remains virtually independent of the actual 

details of the spin-selective-reactive process. 
This is justified by noting that the actual reaction 
occurs only for values of r for which n J(r)/kT ~ 1, 
while the significant contributions to the polariza­
tion occur for larger values of r such that 
nJ(r)/kT< 1. This implies the adequacy of the 
simple model used in Paper I in which a simple 
spin-selective reaction is allowed to occur just at 
the internuclear separation d except that the pres­
ent work suggests that such a spin- selective chem­
ical process does not directly induce CIDEP de­
polarization; thus the EFA model in this work 
would be more satisfactory. [This latter result 
may well be important for nonspherically symmet­
ric radical-pair interactions, enabling the pos­
sibility of generating values for P: /5' > p:(asympt)/ 
5', cf, Fig. 2(b).] As one would expect, however, 
the actual magnitudes of P: and 5' are sensitive to 
the details of the reactive processes, and one ex­
ample is that for the present EFP model, an in­
crease in the range of J(r) leads to an increase in 
5', just the opposite of that found in I. Yet in many 
experiments, it is sufficient to know just P: /ff. 
Our values of P;/ff for reacting H atoms [for 
which J(r) is spherically symmetric] appear to 
agree well with the experimental results of Verma 
and Fessenden. 20 

We have found that while the differences in the 
diffusive trajectories for singlets vs triplets can 
lead to a net polarization, such effects are general­
ly overwhelmed in our model by the reactive pro­
cess itself when ff is not negligible. 

On the other hand, Coulomb interactions be­
tween charged radicals, which are more long­
range, can indeed have significant effects on P:/rr--, 
and the trends are different depending on whether 
J O is large or small. Such trends as a function of 
ionic concentrations could be useful indicators of 
the details of the polarization process and some 
recent experimental results are discussed in this 
light. 

Our earlier result, that P: /ff achieves an 
asymptotic value for large J 0, has been shown to 
be true for several forms of J(r) which are pri­
marily exponentially decaying in r with the actual 
values of P;/ff rather insensitive to these forms. 
But an r·6 - type dependence does not level off 
asymptotically for large (but reasonable) values of 

Jo. 

Our results on spin depolarization by Heisenberg 
spin-exchange between randomly colliding radical 
pairs are, for a contact-exchange model, similar 
to earlier results on Heisenberg-spin exchange 
except that (1) T 1 the "lifetime" of the radical pair 
is more precisely defined and (2) effects from suc­
cessive re-encounters in the collision are obtained. 
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For J(r) of finite extent, however, the effective 
radial range of depolarization increases roughly 
as hEX for large J 0 with only a weak dependence 
on J 0/ D for the reasonable values of parameters 
investigated. For these values, the effective 
range changes by a factor of order 1 to 2. 5 from 
the contact-exchange value of d. 

B. Comparison with Other Work 

We note that earlier attempts (through 1871) to 
analyze CIDEP in terms of a radical-pair mecha­
nism have recently been reviewed, 22 and we have 
already pointed out1

•
2 that these were based on 

simplified submodels of the complete dynamics, 
while the stochastic- Liouville method includes the 
appropriate ensemble average over all the tra­
jectories for the diffusive motion. It was shown 
in Paper I, that our analysis supports Adrian's23 

original idea of the important role played by radi­
cal-radical re-encounters for normal diffusion 
rates (D~ 10-5 cm2/sec), but the description must 
be modified for significantly faster or slower mo­
tion. Adrian has very recently24 presented an ap­
proximate calculation of CIDE P magnitudes (for large 
J 0 only) which explicitly incorporates the re-encount­
er concept, but it is limited by his treatment of the ef­
fects of J(r) in terms of only a fir st-order perturba­
tion, while dealing with the spatial region of large J(r) 
in an ad hoc fashion. Our exact numerical results 
in I and this work are again consistent with Adri­
an's24 qualitative model when D~ 10"5 cm2/sec, but, 
although his results for large J0 are of comparable 
order of magnitude, they do not display the kind 
of functional dependences found in our work, pre­
sumably due to his simplifying assumptions. Evans 
et al. 25 have very recently attempted an analytical 
solution to the stochastic-Liouville equation given 

in Ref. 1, for a simplified and approximate model. 
That is, they attempt to approximate the effects of 
an exchange interaction of finite extent as a Dirac­
delta function with the same volume integral. 
Their result bears just a qualitative similarity to 
our contact-exchange model given in I (as well as 
an earlier form reviewed in Ref. 22). We, have, 
however, already pointed out in I, that the predic­
tions for the more realistic models which include 
the finite range of J(r), are qualitatively different 
from contact-exchange models (including the model 
of Evans et al.). The former yield substantial 
polarizations, asymptotically independent of J0• 

Evans et al. introduce a selective chemical re­
action also with a delta function range and at the 
same internuclear distance as J(r). The models 
including exchange forces given in this present 
work clearly show that the chemical reaction 
should properly occur at closer internuclear dis­
tances than the CIDEP polarization effects of J(r) 
as we have discussed above, This leads to qualita­
tively different dependence of CIDEP on the rate 
constant for our models with finite range of J(r) 
(as well as Adrian's work) vs the delta function ap­
proach of Evans et al. (Another apparent weakness 
in their work is their neglect of a distance of clos­
est approach in the relative diffusive motion. The 
radicals are thus free to move into one another.) 

While all the previous work (including I) treated 
the relative motion as simple, unhindered Brown­
ian motion, it is only in the present work that ef­
fects of attractions and repulsions (both spin de­
pendent and independent) have been considered in 
an effort to deal with more realistic models. The 
stochastic-Liouville approach is quite general, and 
one may expect to see more complete descriptions 
of the dynamics in the future. 26 

APPENDIX: GLOSSARY OF MAIN SYMBOLS 

d = r 0 Distance of closest approach of the radical pair (i.e., contact distance) 

D = D., + Db Diffusion coefficient for relative motion of radical pair 

Dr r, Dr r Diffusion operator for relative diffusion of radical pair 

DW Finite-difference transition matrix for diffusion 

eZ1 Charge on i th molecule 

F(r)= (r/kT)[au(r)/ar] Dimensionless force of interaction between radical pair, F(r)=r"1.F(r) 

B', B'(N) Probability of reaction for the radical pair per collision 

JCx(r1) Liouville operator for the radical pair, associated with the spin HamiltonianJC(r1 ) 

I.,, lb CIDEP intensities for radicals a and b 

1:s, i:s Steady-state values of I., and Jb 

J(r.,, rb), J(r) Exchange interaction between radical pair 
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n/t), nb(t) 

Pa(t), P'; (or p"°) 

P';(r1 ), P';(rt) 

(I>= 1- ;)' 

p(r) 

Q 

r 0 =d 

rEX=>,-15ln10 

t.r; ft.r 

s 

V(i) 

/3= (ko5'k2)112 

K 

>, 

p(r1 , t), p(r, t) 

p0(r) = p(r, 0) 

p(t) 

EFP{EFA) 

RDM 

J. B. PEDERSEN AND J, H. FREED 

Note Jmax is the value of J0 which gives the maximum value of P"°/5'. 

First-order rate constant for irreversible disappearance of singlet radical pairs 
when in contact 

Zero-order rate of production of radicals (e.g., due to a light beam) 

One-half the second-order rate constant for new bimolecular collisions at separa­
tion r 1 or d 

Number density of radicals a and b 

Polarization of radical a at time t and at infinity 

P'; generated from an initial separation for the radical pair of rr, or transferred 
according to Eq. (32) to rt 

The fractional change in the polarization from that which exists at the onset of the 
collision 

Probability a radical pair does not react per collision 

Classical distribution function for relative motion of the radical pair 

Half the difference in ESR resonant frequencies of the two interacting radicals 

Distance of closest approach of the radical pair 

Separation of radical pair at the initiation of a collision 

Separation distance such that J(r>rM) and U(r>rM) are zero 

Position of outer absorbing wall 

Radial increments for finite differences 

Singlet state 

Triplet, M = 0 state 

Longitudinal spin-relaxation time 

Potential energy of interaction between the radical pair, which can be spin de­
pendent [e.g. , U ss (r) is potential for singlet radical pairs] 

Radial weighting factor for r 1 th position for finite differences 

Experimentally observed second-order decay constant 

Dielectric constant of solvent 

Debye's reciprocal thickness of the ionic layer 

Exponential decay constant in r for J(r) 

Spin-density matrix for radical pair; p(r, t) = rp(r, t) 

Space average of p(r1 , t) 

Lifetime for the encounter pair 

Finite-difference matrix of the elements of JC •(r1 ) 

Model with exchange forces present (absent) in the diffusion equation 

Relative diffusion model; an EFP model where radical pairs are not permanently bound 

1J. B. Pedersen and J, H. Freed, J. Chem. Phys. 58, 
2746 (1973). Hereafter referred to as Paper I. 

2J. B. Pedersen and J. H. Freed, J. Chem. Phys. 57, 
1004 (1972). 
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3s. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943). 
4R. Kubo, Adv. Chem. Phys. 16, 101 (1969); J. Phys. 

Soc. Jap. Suppl. 26, 1 (1969). 
5Ideally one would expect from a "complete" theory that 

the density matrix would relax to the thermal equilibrium 
value p

81
=exp(-1f:JC/kT)/Tr[exp(-1f:JC/kT)]. The form 

of Eq. (13) suggests that the relaxation tends to p' eq 

= exp(-(1fJCo/kT)/Tr[exp(-1f:JC0/kT)] where :J<'0 of Eq. (2) 
includes both the (average) Zeeman terms JCo,. (cf. I) 
and the exchange interaction 1f0 J• More precisely the 
f, just relaxes each matrix ele~ent piJ for i,j=S, T 0 

with respect to radial position according to :ic0,J. At 
least two other types of condition are needed to get re­
laxation to /; 'eq: (1) Interconversion between S and T 0 

induced by :JC', where such interconversion is important 
only in the spatial regions for which nJ(r)/kT (since 
nJC'/kT«l); and (2) since [:ic0 J, JC 0 .l=[r,, JC0 .J=0, 
it is only necessary to add then ~ reguiar T 1 mechanism. 
However, because [JCo,J, JC']"' 0 one cannot readily 
modify our expressions tp get relaxation to Peq• The 
problem arises because r, is written in a basis which 
does not diagonalize :JC', i.e., the quantum nature of the 
back reaction of the "lattice" on the spins is not fully 
included. In the present case where :JC' «Jt'0,., J 0,kT/1f 
this problem is not important. 

6J. H. Freed, in ESR Relaxation in Liquids, edited by 
L. T. Muus and P. W. Atkins (Plenum, New York, 
1972). 

7N. Bloembergen and Y. R. Shen, Phys. Rev. 133, A37 
(1964). 

8This statement can be analyzed from the point of view 
of a simple ''two-site" model involving a single spin S 
of ½ jumping between two sites A and B such that for 
I ±)A - I ±)8 the jump rate, when neglecting Boltzmann 

factors, is independent of spin. If a simple relaxation 
matrix treatment is given (cf. Ref. 6) involving the 
matrix element for the transition from A to B, one finds 
that R+A-A +a-8 =½(W+a-+A+W-a--Al, R+A-A •A-A 

=-½(W+A-'♦a+W-A_-8 ), where Rc,.c,.',llll' is'a relaxation 
matrix element and W .tA.-zB is the transition probability 
from ± A to ± B etc. (properly including Boltzman fac­
tors). Our use of rr is seen to be a generalization of 
this to a continuous range of sites. 

9Note that, while we are not explicitly including any T1 
process during the collision, a more complete analysis 
would allow for T-S relaxation when the radicals are 
strongly interacting (i.e. , at r ~ d). Then this would 
have the effect of reducing somewhat the spin selectivity 
of the reactive process. ff, as defined by Eq. (24), 
would no longer simply correspond to the value of PToTo 
- Pss after the reaction (to which the polarization gen­
erated will be proportional), but is easily modified for 
this purpose. One could, in an ad hoc fashion, intro­
duce transition probabilities Ws-T0(r) and WT0-s(r), 
with an appropriate "range of influence" in r, into Eq. 
(13), such that Ws-T0(r)/WT0-s(r) =exp(21fJ/kT). Also 
the diagonal elements for PsT and PTs should have added 
to them: (½)(Ws-T+ WT-s) with off-diagonal elements 

between PsT and PTs equal to minus these diagonal ele­
ments. Such an analysis is necessarily incomplete be­
cause of the neglect of the T*1 states and their role in 
the spin relaxation. 

10M. Kac, Am. Math. Monthly 54, 369 (1947). 
11 J. B. Pedersen, in ESR Relaxation in Liquids, edited 

by L. T. Muus and P. W. Atkins (Plenum, New York, 
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