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An analysis of aspects of the theory of chemically induced dynamic nuclear polarization (CIDNP) is 
given in terms of rigorous numerical solutions to the stochastic Liouville equation, in accordance 
with the methods previously developed for CIDEP. This analysis includes not only a model in which 
the exchange interaction is of finite extent in the spin Hamiltonian (EFA model) but models in 
which the exchange interaction explicitly affects the reactive trajectories (EFP model) by their 
inclusion in a spin-dependent diffusion equation and in which charge interactions between reacting 
ionic radicals and their surroundings are accounted for in the Debye-Hiickel fashion. Several useful 
and simple relationships are found for the CIDNP phenomenon, and their dependence upon the 
model is discussed. It is found that the CIDNP polarizations are readily described in terms of two 
fundamental parameters-A, the spin-independent probability of reaction of singlets per collision, 
which includes all re-encounters, and F*, which measures the conversion from triplets to singlets for 
the whole collision. Exact relations for the CIDNP polarizations are given in terms of these two 
parameters and are found to be nearly independent of model. The parameter A is shown to be 
simply related to k(r), the singlet reaction rate when the radicals are in contact, and to T 1, the 
effective lifetime of the reacting pair. Simple expressions for T 1 are given for all the models, and 
these results are compared with those for the usual discussions of diffusion rates on chemical 
kinetics. It is found that for normal diffusion rates, F* obeys the relation (1/2)~, very similar 
to that first proposed by Adrian, where Q is half the difference in resonant frequencies of the 
radicals, and T d = d 2 ID with D the relative diffusion coefficient and d the distance of closest 
approach. This relation is not appropriate for viscous systems, and the correct results are given for 
such cases. The effects of the finite range of the exchange interaction and the longer range 
Coulombic interactions between radicals upon F* for the different models are also obtained. In 
particular, for EFA the finite range of exchange yields an "excluded volume" effect wherein 
singlet-triplet mixing (or Q mixing) is ineffective. The model dependent effects upon F* are closely 
related to the recurrence probabilities, and further results are obtained implying a simple expressfon 
for the first encounter probabilities of separated radicals under the effects of the different interactions. 
The polarizations are related to the time-dependent CIDNP intensities that one may observe for a 
typical scheme of radical production, reaction, and relaxation. 

I. INTRODUCTION based upon the radical-pair mechanism. The analyses 

In several recent papers, we have developed a detailed 
theoretical analysis for the phenomenon of chemically 
induced dynamic electron polarization (CIDEP). 1- 3 This 
theory, based upon the stochastic Liouville equation, 
was able to simultaneously include realistic descriptions 
of both the spin-dependent interactions important in the 
radical-pair mechanism as well as the relative molecu
lar diffusion for spin-dependent reactive trajee:tories. 
The advantage of such a general analysis is that it is not 
limited, as were the simplified earlier submodels, by 
simplifying, but not justified, assumptions about the 
spin-dependent interactions and/or the diffusive trajec
tories. It was shown that for CIDEP, qualitatively new 
and important features are obtained, but it also con
firmed, for nonviscous media, the crucial role played 
by radical reencounters, as first proposed by Adrian. 
It also allowed for quantitative predictions of CIDEP en
hancements, which are of the order of those observed 
experimentally. We shall show in future work how im
proved descriptions of the molecular dynamics and spin
interactions may also be introduced into an analysis of 
CIDEP. 

Chemically induced dynamic nuclear polarization 
(CIDNP) is, from the theoretical point of view, a closely 
related phenomenon. There has been considerable 
earlier activity in developing simple theories for it 

of Adrian4 and Kaptein5 based upon radical reencounters 
have been most successful in predicting experimental 
results. We note, first of all, that our methods for 
analyzing CIDEP are equally appropriate for CIDNP. 1 

In fact, much of the results given in I and II2
•
3 are ap

propriate for a discussion of CIDNP, although they were 
not discussed from that point of view, largely because 
the greater theoretical difficulty was in an analysis of 
CIDEP, which is much more sensitive to the details of 
the exchange interaction. Nevertheless, it was felt 
worthwhile to analyze the results from our general ap
proach in a manner appropriate for CIDNP to further 
clarify the theory for this phenomenon, about which a 
variety of conflicting simple models had earlier been 
proposed. We note in this context that Evans et al. 6 

have recently presented some results of a stochastic 
Liouville solution for a simplified model, but we have 
already pointed out in II that their simplified model, 
based on delta function representations of the exchange 
and chemical reactions and neglect of boundary condi
tions for the relative diffusion of radicals, does not even 
reproduce many of the important qualitative features 
for CIDEP that our more realistic models show. While 
these considerations are not so crucial for CIDNP, it 
was still believed to be worthwhile to see what the im
plications of more realistic models are. We have, 
however, found in our analysis of CIDNP, that although 
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its features are easier to predict than CIDEP, there are 
certain characteristic aspects of the molecular dynamics 
to which CIDNP is particularly sensitive, and for which 
several relations exist that are useful both for predic
tion of CIDNP intensities and for understanding the nature 
qf the molecular (reactive) dynamics. Furthermore, 
our results are obtained not only for simple diffusive 
trajectories, but also with Coulombic (shielded ionic in
teractions) and exchange forces in these trajectories, 
and the generality of the CIDNP theory is examined in 
the light of these results as well. 

II. THEORETICAL APPROACH 

As in I and II, we solve the stochastic Liouville equa
tion for the spin-density matrix p(ri, t): 

ap(r1, t)/at= -iX.-(r1) p(r1, t) +Drr p(r1, t) (2.1) 

to describe the combined spin and (reactive) diffusive 
dynamics of a pair of radicals a and b. A glossary of 
the main symbols appears at the end of II, and we will 
define any new symbols needed here. Note that r r is the 
operator for relative diffusion, which can be spin depen
dent. Furthermore, as in I and II, we only consider 
spherically symmetric interactions, so Eq. (2.1) may 
just be rewritten in terms of r, the interradical separa
tion. We consider for rr the following kinds of models 
(but not in this order): 

(1) a model with exchange forces present in rr (EFP}, 

(2) a model with exchange forces absent (EFA), but 
a spin-selective chemical reaction at the contact dis
tanced which depletes only singlets (i.e., only P&& is 
affected, cf. II), and 

(3) Coulombic interactions between charged radical 
ions partly screened by the ionic atmosphere added to 
case 2. In all cases, we employ an exchange interaction 
decaying exponentially with interradical separation: 

J.(r) =JO exp[- ;\(r - d)], r?. d 

and we define rEx =A-15 lnl0. We discuss here only the 
high-field case and consider just S-T0 mixing as in I and 
II. The proper dimensionless units for the problem are 
J 0d

2/D, Qd 2 /D, rEx/d, M 0 /kBT, kd 2 /D, and Ar/d, with 
Ar being the finite difference increment. 

In I and II, we have given results for the quantity 13', 
the probability the radical pair reacts per collision. 
(We mean by a "collision" the first encounter, as well 
as all possible reencounters before the radicals finally 
diffuse away). 2•3 The CIDNP phenomenon is best dis
cussed ill terms of the quantity 1J' - 13'0, where 5'0 is the 
value of 5' calculated for Q = 0, i. e. , it excludes any ef
fects from singlet-triplet (S-T0} mixing. Thus, 1J' -13'0 

specifically gives the extra probability of reaction due 
to the S-T0 mixing. We show irt Sec. IV how 1J' - 13'0 
enters into the final over-all expressions to predict ex
perimentally observed CIDNP intensities. One may cal
culate 5' - 5'0 by calculating separately 5' and 13'0 , wherein 
all parameters, except the value of Q, are held constant. 

As in I and II, we calculate separate results for singlet 
(S) initial, triplet (T0) initial, and random initial (R. I.) 
precursors (equal amounts of Sand T0 ). All other cases 

are obtained as simple superpositions of these .. 2 •
3 (Of 

course, R.I. is a superposition of Sand T0 also). We 
indicate results for 5', etc., as 1J' (S), 1J' (T0), etc., to 
show the particular initial condition utilized. 

Ill. RESULTS AND DISCUSSION 

The proper finite difference expressions were solved 
by Gaussian elimination for real banded matrices. The 
computing time is typically - 3 sec· on a CDC 6400 com
puter. 

Since the radical reencounters are treated in a finite 
region of space, one has to choose rN (the position of 
the outer absorbing or collecting wall) large enough that 
no further increase of r N would affect the results sig
nificantly. This matter, as well as other aspects of ob
taining convergent solutions, are discussed in I and II. 
However, it is significant to note that much larger re
gions of space, implying reencounters after much greater 
separations, were required in calculating 1J' -13'0 than 
the CIDEP quantity of corresponding importance: P;, 
the polarization of radical a for t- oo. In particular 
(for D=10-5 cm2/sec, Q=108 sec-1, d=4A),

0
1J'(T0 ) 

-1J'0 (T0) = 1J'(T0) only converges for rN?. 500 A, while 
P~(T0 ) converges for rN~l75 A. When D=l0-4 cm2/sec, 
one gets rN~ 1500 A and -200 A, respectively. Slower 
diffusion rates require correspondingly smaller values 
of rN. This reflects the fact that for T0 initial, one 
forms singlet via Q mixing in two (quantum mechanically 
coherent) steps [cf. Eq. (2.34) of I]; 

Q Q 
p·To::: Ps,T0 - PT0, s::: Ps - PT0 , 

and it is the Ps which then reacts when the radicals re
encounter; while for CIDEP polarizations P ~, the Q 
mixing of only the first step, pT- Ps, To - PTo, s, is 
needed, the process being completed by the effect; of 
J(r) when the radicals reencounter: Ps,T

0
- PT

0
,s:: Ps,To 

+PT0,s • 

Our numerical results for the case of EFA [case (2)] 
(where at t = 0 the particles are in contact) may be sum
marized by a series of relatively simple expressions. 
First define 

(3.1) 

and 

13'* = lim 1J'(T0) = lim [1J'(T0) - 5'0(T0)]. 
A-1 A-1 

(3. 2) 

Thus, A is precisely the fractional probability of reac
tion (for Q = 0) of singlets for the whole collision includ
ing all reencounters, while 13'* measures the conversion 
from triples to singlets for the whole collision. Then one 
obtains from the numerical solutions the exact relation 

- [1J'(S)- friS)] = - [1J'(S)-A] = + (1-A) 1J'(T). (3. 3) 

Eq. (3. 3) shows that the net decrease in reaction for 
pure singlets per collision due to Q * 0 is just the prob
ability a singlet does not react for Q = 0 (i.e. , 1 - A) 
times the probability pure triplets do ultimately react 
because of Q mixing. The factor (1-A) corrects for 
the fact that if singlets react fast, then they are not 
available to be converted to triplets by Q mixing. If 
one now uses the superposition principle to write 
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TABLE I. Relationships between different initial spin condi
tions for fractional reactivities. a,b 

Singlet Triplet R.I. 
k ff o=A - (ff -rr0) ff (ff -ffo)/!To 

109 4. 9712 X 10"3 3. O43X 10-4 3. 058 X 10"4 3.O57x1O·4 

1010 4. 7583X 10-2 2. 795x 10·3 2. 935 X 10"3 2. 935X 10-3 
1011 0.33316 1. 395X 10"2 2. 092 X 10"2 2. O92x 10·3 

1012 0.83323 9. 008 X 10-3 5. 401 X 10"2 5.401 x1O·2 

1014 0.99800 1. 306 X 10-4 6. 539x 10·2 6. 539 X 10"2 

1018 1.0 o.o 6. 553X 10"2 6. 553 X 10"2 

aEFAmodel, cf. Eq. (3.5). 

bParameters used: d=4 A, ar=0.25A,f=l00, M=200, N=4OO, 

rN= 5054 A, J= 108 sec·1, rEX e=4 A, Q = 108 sec·1, D = 10·5 cm2/ 

sec. 

5'(R. I)=½( 5'(S) + 5'(T)], 

• then Eq. (3. 3) may be rewritten as 

[ff(R. I.) - 5'0(R. I.)]/ 5'0(R. I.)= fF(T) . 

(3. 4) 

(3. 5) 

Eq. (3. 5) is seen to be the CIDNP analogue of the CIDEP 
relation given in I and II (for EF A and EEP provided in 
the latter case A is ,2 10·3, see below): 

(3. 6) 

where the subscript k = 0 indicates no chemical reaction. 
By application of Eq. 3. 3 and the superposition principle, 
Eq. 3. 6 can be rearranged to give: 

(3. 7) 

A symmary of typical results which justify Eq. (3. 3) or 
(3. 5) appears in Table I. 

The physically important parameter A is found to obey 
the simple relation 

(3. 8) 

For case 2, where the "sphere of influence" of k(r) ex
tends from d to d+ark, one obtains for t:..rk=t:..r/2 

T 1 =d t:..r/2D, (3. 9) 

where T 1 is a characteristic lifetime of the interacting 
pair, which is identical to that found for a contact ex
change model in CIDEP (cf. I). It was pointed out in I 
that one could rewrite Ti1 ""4ir Dd/ t:.. V with t:.. V the "re
action volume" in accordance with earlier theories for 
lifetimes of reacting pairs. 7a These theories arbitrarily 
define t:.. V as the total volume swept by the interacting 
pair: t,ird3, but our results show that t:.. V"" 4ird 2 (t:..r/2), 
the annular volume of the "contact region". This is pre
cisely the annular volume in the finite difference approxi
mation. We have, by letting k range over several in
crements in ti.r(cf. Table II), found that Eq. (3. 8) still 
holds, and a more appropriate definition, for particles 
initially in contact, is 

{ d+Ark n•(A~Ar-1/2) 

kT1 =IT1 Jd rk(r)dr-IT1 L V(i)k(r1), 

l•O (3.10) 

with V(i) =r1t:..r for i > 0 (and ½dt:..r for i = 0) the radial 
weighting factor discussed in I. The arrow in Eq. (3.10) 
implies conversion to the finite difference form. This 
lifetime T 1, it is clear, is to be interpreted as the ef-

fective time for reaction for the whole collision and not 
just for the single encounter of a pair of particles ini
tially in contact. 7b These points are not at all clear in 
the usual treatments of T1 . 7a,s 

The role of the parameter ff* is seen in the following 
relation: 

(3. lla) 

(and typical results appear in Table III), which by Eq. 
(3. 3) becomes 

- [fF(S)-A] =A(l -A)fF*[l + fF*(l -A)]"1 (3. llb) 

and, by superposition, 

[fF(R. I.) - fF0(R. I.)]= ½A2fF*rl + fF*(l -A)]"1 . (3. llc) 

An approximate form of Eq. (3. lla), viz. ff(T0)"" 5'*A, 
which becomes Eq. (3. lla) as A -1, may be interpreted 
to mean that the probability of reaction for initially trip
let radical pairs equals the probability that triplets are 
converted to singlets (5'*) multiplied by the probability 
that the singlets react (A). 

The factor [1 + 5'*(1- A)]"1 may be understood in terms 
of its infinite series expansion I";.0(-tfF*r(l-At, where 
for example the r = 1 term 5'* (1 - A) corrects for the fact 
that some initially triplet radical pairs, which would 
first be converted to singlet by Q mixing and then reen
counter and react with certainty if A= 1, would, for A< 1, not 
react and be converted back to triplet for subsequent encoun
ters. (Note that ff* by dynamic reversibility in quantum me
chanics measures conversion from singlets to triplets and 
vice versa for a collision.) The higher order correc
tions along these lines appear as the other terms in the 
series. {Evans et al. 6 give results that do not have the 
correct [1 + fF*(l - A)]"1 correction factor, nor do they 
properly interpret their dimensionless parameter anal
ogous to our A.} 

A comparison of Eq. (3. lla) and its simplified form 
with the actual results appears in Table III. 

When the initial separation r1 > d, then we have found 
that Eqs. (3.11) may be modified as follows: 

t:..fF(R.I. r 1)/t:..fF(R.I., d)=t1 , (3.12) 

where t:..fF(R. I. r 1) = fF(R. I.) - fF0(R. I.) with initial separa
tion of r1 , and t, is the transfer factor, 3 which for a 

TABLE II. Typical examples justifying expression for -r1• a,b 

Range of 
reaction 
(Al T1 x 1011 secc T1XlO11 sec4 

0.25 0.9977 1.0 
0.75 3.24 3.25 
1.25 5.73 5.75 
1.75 8.48 8.50 

"cf. Eqs. (3. 9), (3.10). 
bParameters used: d=4 A, ar=O.25 A, M=200, N=400, rN 

=5054 A, D=l0-5 cm2/sec, 
ccalculated from computed results for A as a function of k by 
Eq. (3. 8), 

4calculated from Eq. (3.10). 
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TABLE III. Fractional reactivity " as a functiona,b of "* and A. 

Q = 1 x 108 sec-1 Q=1XlO9 sec-1 
A ,,c ,,d "*A" ,,c ,,d "*A" 

4.99xlo-4 3.O7lx1O-5 3. O71X 10-5 3. 27Ox 10-5 8.467x 10-5 8. 467X 10-5 1. O19X 10-4 
4.97XlO-3 3. 058 X 10-4 3. 058 X 10-4 3. 257x 10-4 8. 435x 10-4 8. 435 X 10-4 1. O15X 10-3 
4. 75 X 10-2 2. 935xlo-s 2. 935X 10-3 3.119x 10-3 8.133x1O-3 8.133xl0-3 9.714x1O-3 
0.33316 2. 092 X 10-2 2. 092 X 10-2 2.183x 10-2 5.987x1O-2 5. 987X 10-2 6. 801 X 10-2 
0.83323 5.401 X 10-2 5. 401 X 10-2 5.46Ox 10-2 0.1645 O.1645 0.1701 
0.998 6. 539 X 10-2 6. 539X 10-2 6.54Ox1O-2 O.2O37 0.2037 0.2037 
1.0 6. 553 X 10-2 6. 553x 10-2 6. 553 X 10-2 0.20415 0.20415 0.20415 

"-EFA model for triplet initial case, cf. Eq. (3. lla). • 
!>parameters used: d=4 A, Ll.r=O.25 A, f=lOO, M=200, N=400, rN=5O54 A, J0=1O8 sec-1, 
rEx=4 A, D=io-5 cm2/sec. k values range from 108-1018. 

°From general numerical solutions. 
<!calculated from computer results of A and "* by Eq. (3. lla). 
"Approximate form of Eq. (3. lla). 

simple diffusive model is simply 

t1 =d/r1 

and is just the reencounter probability (i. e. , 1 - t1 is the 
total probability that two particles initially separated by 
r1 will never encounter at r = d) discussed originally by 
Noyes9 and obtained for continuous diffusion by Deutch.10 

Equation (3.12) is seen to be a simple consequence of 
the fact that for random initial condition, the CIDNP 
process only starts upon initial encounter. The result 
for triplet initial is 

(3. 13) 

where x is usually a small quantity :s O. 1 (but it becomes 
more significant in viscous media). It corrects for the 
fact that some of the triplets are converted to singlets 
before the first encounter. We have found that for r1 
~ 2 d, it may be approximated by 

X""tf2 (1- t;)ff*/[1 +(1- t;)rr:*], (3.13a) 

with t; =r* /r1 for r 1 ?. r* (but if r 1 :Sr*, then t; = 1 and 
there is no correction), and r* is defined by J(r*) ""Q/5 
[where the dependence upon J(r) is a type of excluded 
volume effect discussed below]. It follows from Eqs. 
(3.12), (3.13) and (3.5) that 

Aff(S, r1)/ Ll.ff'(S, d) = (1 - X -At1)/(l - A) . (3.14) 

Only when x=O do Eqs. (3. 1'2)-(3.14) become equivalent 
to the result obtained by Evans et al. a,u 

Given the above relations, then, it is only necessary 
to determine ff* in order to obtain the CIDNP polariza
tions for a given A and initial set of conditions. We have 
found that over much of the range of the relevant param
eters, ff'* obeys essentially a Q112 dependence as first 
predicted by Adri\Ul. This is clearly a result of the re
encounter phenomenon. However, as Qd 2 /D becomes 
large, a weaker dependence upon Q than the ½ power is 
observed. In the case of J0d/AD< 1, the results for ff* 
are independent of J(r), and one then obtains for small 
Qd2 /D and J 0d

2 /D 

(3. 15) 

This is a result close to Adrian's, 4 but (1) it shows the 

relevant "diffusive length" is d when (a) the reaction oc
curs at separation d and (b) this is the distance of 
closest approach, and (2) it automatically includes all 
reencounters. The deviation of ff* from this simple ex
pression for larger Qd2 /D (which has not been obtained 
in earlier work) is shown in Fig. 1 for J0 d/AD « 1. The 
correction to 3'* for J0d/AD~ 0.1 (J0drEx/D) 2: 1 is sum
marized in Table IV. It is seen that the effect of J0d/AD 
?. 1 is to reduce the value of ff*. The inverse depen
dence upon J 0 (for large J 0) is a weak one, roughly log
arithmic, while the dependence upon rEx/d (for large 
J 0 ) is roughly the inverse of ../rEx/d. This ff'* depen
dence upon J0 and rEx is enhanced as Qd 2 /Dis increased. 
These results may be understood qualitatively in terms 
of an "exchange volume", i.e. , a region extending be
yond the contact distanced wherein J(r) > Q, so that the 
possibility of Q mixing is suppressed. As we have 
already noted, for small Qd 2 / D the effects of reen
counters after longer separations play a greater role, 
hence this excluded volume has less effect for small 
Qd 2 /D than for larger values of Qd 2 /D. This excluded 
volume or exchange volume effect is seen to have simi
lar functional dependences upon J0 and A to the results 
for the effects of a finite range of J(r) upon spin depolar
ization by Heisenberg spin exchange given in II. The 
important difference with this latter effect is the nearly 
negligible Q dependence in that case. 

TABLE IV. Dependence of "* upon J(r). a,b 

D = 10-6 D =10-6 D = 10-6 D =10-5 D = 10-4 
Jo rEx=2 A rEx=4 A rEx=8 A rEx=8 A rEx=8 A 
108 1.0 1.0 1.0 1.0 1.0 
109 0.997 0.990 O.961 1.0 1.0 
1010 0.872 0.782 0.691 O.957 1. 0 
1011 0.800 0.711 0.595 0.800 0.977 
1012 0.781 0.646 o. 510 0.745 0.910 
1013 0.756 0.592 O.447 O.687 O.886 
1014 0.733 0.546 0.391 0.636 O.859 
1015 o. 712 O.5O8 O.328 O.589 0.833 

aEF A model. Results given as the ratio "* /:F).0, where :J ;.0 is 
the value obtained for J O = 0. 

bParameters used: d=4 A, Ll.r=O.25 A, f=20, M=40, N=208, 
rN=854 A, Q=4xlO8 sec-1, k=lO18 sec-1. 
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1.6 

1.4 'J* 
½!0d1/□f •f* 

1.2 

1.0 
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.6 

* 

1.4 

1.2 
1-
2-

1.0 z; 

.8 

.6 

•
4 

1.6•10-3 6.4•10-3 t6•10,-2 6.4•10-2 1.6•10-1 6.4•10-1 1.6 6.4 

FIG. 1, (a) (Upper Graph):.* divided by ½(Qd2/D) 1 l2J* as a 
function of Qd2/D (logarithmic scale), Diffusion model includes 
the effect of a repulsive ionic interaction with Debye-Hiickel 
potential. The values of Kd are ¼ for Curve 1, ½ for Curve 2, 
1 for Curve 3, and 2 for Curve 4, Curve 5 is calculated for 
normal diffusion without any ionic interaction. Values off* 
are given in Table V. Other parameters used in the calcula
tion ofO'* are d=4 A, Ar=0.25 A, M=200, f=l00, N=400, 
rN=5054 A, J0=108 sec·1, and I U(d) I =5kBT/(l+Kd). (b) 
(Lower Graph) Same as Fig. l(a), but for an attractive ionic 
interaction, 

A. Ionic interactions 

Results for ionic interactions with Debye-Hiickel po
tentials over a range of values of Kd were obtained as 
in II. One may summarize these results by noting first 
that Eqs. (3.1)-(3.5), (3.8), and (3.11) again apply. 
However, Eq. (3. 9) must be modified to 

Ti1 = Ti!uf* exp[U(d)/kT], (3.16) 

where 

(/*)"1 =di= exp ( ~(;)) !~ (3.17) 

with U(r) the usual Debye-Hiickel interaction [cf. II, 
Eq. (39)), and 7 1,u the value for uncharged radicals 
given by Eq. (3. 9). This Debye-type correction is thus 
identical to that found in the usual analyses of chemical
reaction kinetics. 7•9 Typical results demonstrating this 
are given in Table V. The effects upon ff* may be ap
proximately represented (cf. Fig. 1) by 

ff*<><fftf*(l+e), (3.18) 

where ff: are the results obtained for uncharged radicals 
[e.g., Eq. (3.15)], E:"'¼for attraction, and OSE:s¼ 

for repulsion with Q = 108 sec"1 ( D = 10"5 cm2 /sec). More 
generally, E: is somewhat sensitive to Q and Kd, where K 

is the usual Debye-Hilckel "reciprocal thickness of the 
ionic layer" (cf. Fig. 1, where values of E: <><0,6 may be 
found). These results indicate the complex way in which 
the long-range (shielded) Coulomb forces can affect the 
reencounter dynamics so as to influence the Q mixing. 
Note, however, that when the interaction is of short range 
(i.e. , Kd is large), then one would expect that the only 
effect on ff* would be to cause d to be replaced by an ef
fective interaction distance of f*d. For such cases, one 
would expect fl'*"' /*fl'!. The small E: *0 in Eq. (3.18) then 
reflects the longer-range effect on the relative diffusive 
motion affecting the Q mixing, which is an effect dif-
ferent from that involved in the usual descriptions of 
liquid-,state reaction kinetics. These features are fur-
ther clarified by the results of the EFP models discussed 
in the next section. 

We have also found that Eq. (3.12) remains applicable 
[as do Eqs. (3.13)] when t1 is appropriately modified. 
The values of t1 are conveniently calculated by our meth
od, 3 and we have found they obey quite well (cf. Table 
VI) the relation 

t1 = 1- f* /f*(r1), 

where 

(3.19) 

/ *( )•l =d ( rr (U(r)\ dr 
rr la exp kT}?' (3. 20a) 

so that 

f* =limf*h). (3. 20b) 

For r 1 such that U(r1)/kT « 1, Eq. (3.19) simply yields 

t1 = f*d/r1 • (3.19') 

B. Exchange forces present 

Results for EFP (i.e., the exchange interaction is in
cluded in the potential energy of the diffusion equation) 
with different diffusive trajectories for singlets and 
triplets were obtained as in II. One should bear in mind 
that this physical model, which includes diffusion in con
figuration space only, implies very fast momentum re-

TABLE V. Effect of ionic interactions upon Tt and 5 *. a 

Kd T/T1u b,c (f" )-1 exp[- U(d)/k8T]" J*/JJb 1 e r•• 
0,25 19. 34 19.44 4.31 2. 81 

Attraction 0.50 12.86 12,90 2.97 2, 17 
1.0 7. 31 7,34 1. 95 l. 66 
2. 0 4. 00 4,01 1. 41 1. 32 

0,25 o. 20:i 0,203 0.0766 0,0901 

Repulsion 
o. 50 0.213 0.213 0.144 0,167 
1. 0 o. 242 o. 242 0.305 0,339 
2. 0 0,311 o. 313 o. 566 o. 603 

aParameters used: d=4 A, Ar=0.25 A, /=100, M=200, N 
=400, rN=5054 A, Q=l08 sec·1 , D=l0"5 cm2/sec. J 0 =108 

sec·1, .rEx=4 A, IU(d) I =5kBT/(l+Kd). 
bFrom general numerical solutions. Subscript u refers to un
charged radicals. 

0k = 108 sec·1, 

'3/* calculated from Eq. (3.17) by numerical integration, 
8k=l018• 
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TABLE VI. Reencounter probabilities in the presence of shielded Coulornbic inter
actions. a,b 

Attraction Repulsion 
Kd r 1 =6 J.. r 1 = 10 A r 1 =6 J.. r 1 =10 A 

0.25 0.956 (0. 959) 0.812 (0. 817) 0.196 (0. 208) 0.0549 (0. 0559) 

o. 50 0.935 (0. 940) 0.744 (0. 749) 0.226 (0.237) 0.0793 (0. 0786) 

1.0 0.892 (0. 898) 0.636 (0. 642) 0.302 (0.312) 0.139 (0.136) 

2.0 0.822 (0. 831) 0.526 (0. 526) 0.429 (0.434) 0.238 (0. 238) 

"Table entries are those obtained frorn general numerical solutions; those in paren
theses are obtained frorn Eq. (3.19). 

bPararneters used: d=4 A, ~r=0.25 A, /=100, M=200, N=400, rN=5054 A, I U(d) I 
= 5kBT/ (1 + Kd), k = 1018

• 

laxation. Also, for computational convenience, an ir
reversible "reaction" rate constant k(r) is placed at r 
= d to remove singlets that have been trapped in the bind
ing potential well. One may, in a sense, think of this 
k as a crude means of adjusting for momentum relaxa
tion, etc. 

The results for EFP may be summarized by noting 
that Eqs. (3. 3) and (3. 5) do apply provided, however, 
A'}:_ 10-3 • This is because, for A< 10-3, effects of the 
relative diffusion of singlets vs triplets (RDM3

) are able 
to play a role compared to the weak reactivity of the 
system. This restriction is thus akin to that for the 
CIDEP expression, Eq. (3. 6); one similarly notes, 
from Eqs. (3.11), that A< 10-3 is the regime where ~ff 
is typically too small to be experimentally observable. 

Furthermore, we have found that Eqs. (3. 8) and (3. 9) 
with the modification Eq. (3.16) do apply rigorously ex
cept when lffJ0 /kTI > 10. This breakdown is closely con
nected with the nature of the EFP model as described 
above and in II. That is, for 1fJ0 /kT» 1, the radical 
trapping effects become so large as to overwhelm any 
effects of k for smaller k values (k:S 10-a sec). This 
point indicates, of course, that a more detailed descrip
tion of the reaction dynamics will yield a somewhat dif
ferent approach to expressing A than that which we have 
found in this work and which relates simply and directly 
to the familiar theories of reaction kinetics in solution.7•9 

When Eqs. (3. 8), (3. 9), and (3.16) apply, then one 
finds that Eq. (3.18) applies with E: ""O, as we expect 
for very short range interactions. Typical results il
lustrating these matters are found in Table VII. It is 
seen that the effect off* in Eq. (3.18)12b is to enhance 
ff*, which is opposite to the "exchange volume" effect: 
tending to reduce ff* (cf. Table IV). Finally, we find 
that Eqs. (3 .11) continue to apply (for A:?: 10-3 ). 

Also, we wish to note the following points that emerge 
within the context of the EFP model: (1) Since substan
tial CIDNP polarizations require nonnegligible values of 
A, which is a function of the magnitude of J 0, values of 
ffJ0 /kT > 1 are needed and this implies the importance 
of corrections for the finite range and magnitude of J(r) 
as discussed in this work; (2) When J(ri, r1) is not 
spherically symmetric, one expects that the primary ef
fect on the analysis is to cause a reduction in the mag
nitude of A over that for a spherically symmetric J(r), 
i.e., only that fraction of reencounters for which 

lfJ(ri, r 1)/kT > 1 are important and their description in
volves correction for the finite magnitude of J. Thus, 
the role played by nonspherically symmetric J(ri, r1) is 
different in CIDNP than in CIDEP. 3 

IV. CIDNP INTENSITIES AND ENHANCEMENT 

In this section, we wish to relate the ff's calculated 
in the previous section with the intensities as observed 
in a CIDNP experiment. Several works5

•
13

•14 have to 
some extent dealt with this connection, but they all use 
unnecessary assumptions (e.g., a steady state or con
stant precursor assumption), which limit the range of 
applicability. We wish to point out that within the usual 
assumption of negligible cross relaxation, one can 
easily obtain exact relations for the time dependent in
tensities. Such relations are of importance both for ob
taining rate constants as well as determining the ff's by 
a CIDNP experiment. The present approach is s,imilar 
to that used by one of us15 for the CIDEP case, and that 
work gives the proper modifications needed if one is in
terested in a high accuracy for times smaller than or of 
the order of the spin lattice relaxation time. Here we 
neglect these complications, i.e., we assume the inten
sity is described by the z component of the magnetiza
tion, as is indeed the ease fort> T1 . 

The following simple reaction scheme is considered 
for illustration : 

S-R0 +Rg-Rab 
\i 

R~+Ri, 

The precursor S decomposes into a radical pair R; +Ri,, 
where the bar indicates that the radicals are initially 
close together. This initialization process is assumed 
to be a first order or pseudo-first order reaction with 
reaction constant k0 • R~ means radical A in a specific 
nuclear state a. The two radicals initially together may 
diffuse apart into R~ + R;,, never to meet again, in which 
case the radicals end up in scavenging products or they 
may, after a diffusive excursion, recombine to give a. 
recombination product Rab• In the following, S(t) and 
R (t) are the total concentration at time t, respectively, oJ 
the precursor and of the recombination products, irre
spective of the nuclear states, while Rab(t) is the con
centration at time t of recombination product in a sep
cific nuclear state specified by the subscript. 

If we assume that the recombination product R is dif-
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TABLE VII. Effect of exchange forces upon Tt and "*. a 

Jo T1/T1w b,c (f*)"le•olka'1"1 af*/af;b,e f*d 

1012 1. 023 1.023 1. 0021 1,0020 
1013 1. 262 1,261 1.0190 1. 0183 
1014 10,81 10,83 1. 1310 1,1249 
1015 5. 8X 1011 5. 4X 1010 1. 3460 1. 330 

aEFP model. Parameters used: d=4 A, D.r=0. 05 A, f= 100, 
M=200, N=4OO, rN=lO14 A, rEx=4 A, Q=1O8 sec-1, D=l0-5 

cm2/sec. 
bFrom general numerical solutions. Subscript u refers to case 
of absence of exchange forces (EFA). 

0k = 108 sec-1• 

3/* calculated from Eq. (3. 17) by numerical integration. 
'k = 1018 sec-1. 

ferent from precursor S, then the rate equation for S 
yields 

S(t) = S(O) exp(- k 0t) . (4.1) 

The rate of formation of a specific radical pair R; + Ri, 

is koXs-i S(t), where it is assumed that all nuclear states 
of the precursor are equally populated. X

8 
is the nuclear 

degeneracy of S. The fraction of radical pairs R~ +Ri, 

that recombine to give· recombination product Rab is ff ab 

(where the subscripts serve to define the Q value when 
the g values and hyperfine splittings are known). The 
rate equation for Rab(t} is therefore 

where the last term gives the nuclear spin lattice relaxation. 
A single averaged relaxation time Ti is assumed, and 
cross relaxation between different nuclear states is ne
glected. This may be a rather crude approximation and 
is assumed here for ease in the presentation. R!g(t} is 
defined as 

R!W) = p;g R(t)' (4. 3) 

where i,:g is the Boltzmann population of product state 
ab. The rate equation for R(t} is obtained by summing 
Eq. (4. 2) over all states a and b: 

dR(t) = k x-i ffS(t) 
dt o s ' 

where 

a,b 

Equations (4.4) and (4.1) give 

R(t) =x;1 ff S(O) (1- e-kot) . 

(4. 4) 

(4. 5) 

(4. 6) 

Equation (4.2) may be solved, using Eqs. (4.1), (4.3), 
and (4.6), to give 

Rab(t) = PaZX;1 ff S(O) (1 - e-t IT 1) 

+X;1 S(O)ff(koffab/ff - Ti1 .i,;g) 

x(Ti1-k0)-1(e-kot-e-tlT1) for Tii*ko, (4.7a) 

and 

Equations (4. 7) give the exact time dependence of Rab(t) 
without any simplifying assumption of steady-state and/ 
or constant precursor concentrations. 

Use of these equations permits a clearer interpreta
tion of the experimental results. We shall, however, 
only consider a slow reaction as a specific example. 

Slow reaction: i.e., Tii» k0, then (Ti1-k0)-ic,,Ti 
and Eq. (4. 7a) is approximated by 

Rab(t) = S(O) x;1 ff p;g(l - e-kot) 

+S(O)x;i ffabkoT1(e-ko 1 -e-tlT1). (4.8) 

Consider an NMR transition ab -a+ lb; then the intensity 
of this line is proportional to 

lab, a+ib(i} = Rab(t} - Ra+lb(t} 

=S(O)x;1 ff(l - e-kot)(i,:i- Pa:1b) 

+ S(O)x;1 ko Ti (e-kot - e-t I Ti) (ff ab - ffa+lb ), (4. 9) 

which has exactly the same form as Eq. (4. 8). 

If one had used the full Eqs. (4. 7), a very similar re
sult would have been obtained with the obvious changes 
in it of 

ffab- ffab - ffa+lb = (ffab - fl'o}- (fl'a+lb- ffo} , 

Pa:- P!i - i:i:::lb • 

Equation (4. 9) can be rewritten as 

lab,a+lb(t) = S(O) x;l (ff ab - ff a+lb) ko Ti (1 - e-t I Ti) 

+s(o)x;1(ffab - ffa+lb)koT1 

x(_p;:g- Pa:1p _L -1) (1- e-kot). 
rr.b - ffa+lb koT1 

(4.10a) 

(4.10b) 

The maximum intensity lab,a+ib(max) is seen to occur for 
t;:; T1 and is equal to 

lab,a+lb(max) =S(O) x;t (ff ab - ff a+lb) ko Ti. 

Thus, Eq. (11) may be written as 

lab, a+ib (t} = lab,a+ib (max) 

(4.12a) 

(4.12b) 

The intensity goes to a maximum value during a time of 
order Ti and then decays exponentially with time con
stant k 0 to a limiting value lab,a+lb(00 ). This behavior is 
commonly seen, 16 but does not appear to have been 
given a proper expression such as that of Eq. (4.12b); 

lab,a+ib(oo) =S(O}x;i (P!i- P::1b> ff, (4.13) 

which is seen to be just the equilibrium intensity of the 
product when the reaction has gone to completion. 

The intensity enhancement, i.e., the actual intensity 
at time t as given by Eq. (4.12b) divided by the intensity 
the product at time t would have had if the nuclear state 
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population was given by a Boltzmann distribution, is 
easily calculated by Eq. (4.12b). However, such a 
quantity is not always experimentally conven4ent to ob
tain. Instead, in cases where one can measure I(oo) of 
Eq. 4.13 (e.g., when the product disappears at a slower 
rate than it is formed, as is assumed in the above ex
ample), one may define a useful experimental enhance
ment V""P as 

Iab.a+lb (max) 
lab,a+lb( 00) 

which by use of Eqs. (4.12a) and (4.13) becomes 

(4. 14a) 

v•xP _ k T WMl + w:b(l - A)J-1- w:+1p[l + ffa+lp(l - A)J-1 
ab,a+lb- O l (P!i-P!:1b)Lca~Ml+ffta(l-A)r1 

The maximum real enhancement V;:'b";".+ib that occurs for 
t""' T1 is easily seen from Eq. (4 .11) to be 

max ~1 (ll'.p-ll'g+lb) 
V ab,a+lb - + W(P"..q _ pe__a ) , 

ab a+lb 
(4 .14c) 

where the 1 is usually negligible. 

If the nuclear states .ab and a+ lb consist of indepen
dent states a and b, then the intensity and the enhance
ment of the line a - a + 1 is obtained in the usual manner 
by summing Eqs. (4.12), (4.13), and (4.14) over states 
b. 

The experimental enhancement (or the real enhance
ment) for a specific precursor (S, T0, or R. I.) may be 
obtained from Eq. (4.14b) and the earlier expressions 
for lJ'. The result for a triplet precursor is 

(4.15a) 

This expression shows a very weak dependence on A, i.e., of the reactivity of the radicals. For a singlet precursor 
we have 

v•xp _ - (1 - A) ko T1 ff Ml+ fftb(l - A)J-1- ff:.11,[l + fF'lc q+lb(l - A)]"1 

ab,a+lb - (P:Z - P!:1b) 1 - (1 - A)Z:caff!a[l + ffta(l - A)]"1 • 
(4 .15b) 

The enhancement [which has an opposite sign to that of the triplet (and R. I.) case] goes to zero for A -1 (high reac
tivity of the radicals), but note that this need not be true if the radicals were created with a large kinetic energy so 
that r0 if.d (c.f. Sec. III and Eq. 3.14, which is to be used to modify Eq. 4.12). The enhancement is maximum for 
A= 0, but then all radicals end up in scavenging products and no signal due to a recombination product is observed. 
The optimal experimental condition will then be for A ""'½. 

For a R.I. (or F 5 ) precursor (note that the initialization step, i.e., the first encounter, is assumed to be described 
by a pseudo-first order reaction), the enhancement is given by 

(4.15c) 

The enhancement is maximum for A= 1 and goes to zero as A goes to zero. 

Results similar to those in Eqs. (4.15) may be obtained in a similar manner for other reaction schemes, e.g., for 
scavenging products, or for identical precursor and recombination products. Modifications needed for t< T1 may also 
be incorporated. 15 Inclusion of cross relaxation would, however, require the solution of more complex matrix equa
tions. 

V. SUMMARY AND CONCLUSIONS 

As anticipated, our rigorous results largely confirm 
the basic reencounter mechanism first proposed by 
Adrian and discussed as well by Kaptein. It is shown 
for a variety of physical models that the CIDNP polar
izations may be expressed in terms of just two parame
ters-A, the fractional probability of radical pairs re
acting for the complete collision including all reen
counters, and ff*, the probability that triplets are con
verted to singlets and then react per collision with A = 1. 
This interpretation of A, which is unequivocal from our 
analysis, was not appreciated in the earlier work. Ex
pressions have been obtained for A for (a) a simple con
tact reaction mechanism (EFA); (b) the same as (a), 
but diffusion under exchange forces (EFP), and (c) for 
ionic interactions. These results bear a close relation 
to the well-known theories for reaction kinetics and dif-

fusion unlike the result of Evans et al., who neglected to 
consider the usual boundary conditions. Furthermore, 
our results give a precise meaning to the "reaction vol
ume", which is at best unclear in the familiar treat
ments. 

Our results for ff* in case (a) are very similar to 
those obtained by Adrian, Kaptein, and Evans et al., 
provided Qd 2/D«l and J0rEXd/D«10. We have pro
vided the corrections when those strong inequalities no 
longer apply. In the absence of the former inequality, 
(i) a "renormalized" ff* which depends upon A is re
quired, and (ii) the role of reencounters is reduced. In 
the absence of the latter, there is a finite "exchange re
gion'' in which a large J(r) precludes singlet-triplet 
mixing due to Q, thus reducing ff'*. Our results for (b) 
show that the short-range exchange forces do enhance 
ff* essentially because the effective distance of closest 
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approachf*d replaces d. The quantity A is also en
hanced. The analysis of EFP underscores the fact that 
a consistent treatment of exchange in both the reactive
diffusive trajectories and the spin Hamiltonian require 
large values of J 0 for substantial reactivities, hence 
the corrections to IT'* for large J 0 and finite range of 
J(r) discussed here are relevant. Our results for case 
(c) show that the ionic interactions also exhibit an en
hancement for attraction (and a diminution for repulsion) 
which is largely attributable to the replacement of d by 
f*d. However, for these longer-range forces, there is 
further correction, which depends upon the magnitude of 
Q, that represents the effects of the modified encounter 
dynamics on the Q mixing. 

We have obtained a simple expression for the first 
encounter probability t1 when interactions between the 
radicals are present. We note that our results for the 
different initial spin conditions show that those of Adrian 
and Kaptein were not entirely correct but those of Evans 
et al. have the correct interrelationship. Also, the ef
fects of initial r1 *dare found to be closely related to t1 . 

Finally, our expressions for CIDNP intensities and 
enhancement factors for a typical reaction scheme show 
how the intensities vary with time, and they furthermore 
show the important roles played by the "renormalized" 
IT'* and A. The role of A is strongly dependent upon the 
precursor spin multiplicities. 

It is hoped that the more precise distinctions and re
lationships given here for the several models should 
facilitate the interpretation of CIDNP in terms of reac
tion dynamics. 
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Printer's errors were made in Eq. (3.8) and (3.6). They should read 

P 00(R.I. )/g:(R. I.)= -P~0(S) =+ p_;E0(T) . 

A =kr1/(1 +kr1) . 


