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An analysis of dynamical aspects of the CIDEP mechanism proposed by Wong et al. is given. This 
mechanism is based upon the formation of an excited triplet by intersystem crossing that populates 
the three triplet levels unequally. The subsequent rotational averaging of the initial population 
distribution coupled with the orientational effects of the zero field splitting is carefully treated in this 
work utilizing the stochastic Liouville equation in a manner closely analogous to that recently given 
for ESR line shapes and relaxation of slow-tumbling triplets. It is shown that the predicted CIDEP 
polarizations can indeed be very substantial, in agreement with Wong et al. , but they will depend in 
general on the relative magnitudes of not only the zero field (D and E) and Zeeman terms (w0) but 
also the relevant reaction rates and the rotational tumbling times (rR)- A useful perturbation 
expression valid for D' S (1/2)[W6 + Ti, 2] is obtained which shows these details. Typical complete 
solutions, obtained numerically, are given for cases when this inequality does not hold. 

I. INTRODUCTION 

In Papers 11 and II2 we have presented a detailed anal­
ysis of CIDEP in terms of the radical pair model, which 
should be important for some recent experimental ob­
servations. 1- 3 Recently Wong et al. 4 presented a theory 
for CIDEP polarization for some photochemical pro­
cesses in liquid solution. The model adopted by Wong 
et al. is based upon polarizations generated by the inter­
system crossing of a photoexcited singlet state to a trip­
let state such that one (or more) of the molecular 
frame triplet states T,,,, T -1, or T., is initially populated 
preferentially. This, in itself, is a commonly observed 
phenomenon in the solid state, as they point out. They 
showed that this preferential population, coupled with 
the effect of the zero-field splitting term in modifying 
the high-field triplet states, can lead to a rotationally 
invariant term causing a net initial polarization of the 
radical pair which emanates from the reaction (or de­
composition) of the triplet molecule. The crucial re­
quirement then appears to be that the triplet lifetime be 
short compared to the triplet spin-lattice relaxation 
time T1, so that this initial polarization is not relaxed 
before the radical pair forms. 

This mechanism has now been invoked in several ex­
perimental CIDEP studies of photolytically generated 
radicals to explain pure emission spectra as well as 
cases where both radicals are observed in emission. 5•

6 

An important feature of this mechanism is that it is 
essentially independent of the hyperfine terms. The 
likelihood of having both the triplet polarization mech­
anism of Wong et al. and the radical-pair mechanism 
contributing to the CIDEP polarization in such cases 
has been suggested by Atkins et al. 6 

The theoretical treatment of Wong et al. 4 clearly 
demonstrates the potential importance of this photolytic 
triplet mechanism for systems where the rate of triplet 
decomposition into radical pair is rapid. However, 
they did not explicitly consider the dynamics of the 
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problem, i.e., the dynamical competition between the 
rotational reorientation, the various triplet decay pro­
cesses, and the 7i process. In particular, the T1 pro­
cess is itself expected to be generated by the rotational 
modulation of the zero-field splitting. This is, in fact, 
a well-known mechanism, and the relevant expressions 
exist for it. 7•8 However, when the zero field splitting 
becomes comparable to or larger than the tumbling rate, 
then the usual motional narrowing predictions break 
down, since one is in the "slow-motional" region. In 
this region there need no longer be a simple T1 be­
havior. Instead the nonequilibrium polarizations will 
decay with several decay constants representing a more 
complex solution of the coupling of the spin -degrees of 
freedom to the reorientational process. 3 Despite the 
complexity of the problem, a thorough analysis may be 
given in terms of the stochastic Liouville equation. In 
fact, what will be seen to be a closely analogous prob­
lem, that of ESR spectra from slow tumbling triplets, 
has been analyzed in this manner. 7 It should be noted 
that the slow-tumbling condition affects not only the 
meaning of a T1 process (and hence the competition be­
tween it and the triplet decomposition process), but 
also the way in which an orientation-dependent initial 
polarization (due to the orientation of the molecular T,,, 
T ll'' and T., states relative to the lab frame) is averaged 
by the rotational reorientation. 

We present in this work a dynamical analysis of these 
aspects of the triplet polarization mechanism. 

II. ANALYSIS 

We develop our analysis in terms of the excited trip­
let spin distribution represented by the spin-density 
matrix p. We first make the fundamental assumption, 
essentially equivalent to that of Wong et al., 4 that a 
radical pair formed at time t either from the decomposi­
tion of an excited triplet molecule, or from a reaction 
[e.g., abstraction of an electron (or an H atom) from a 
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solvent molecule5•6] will still be characterized by the 
same triplet spin-density distribution p(t), although the 
orbital electronic distribution has been altered. This 
appears reasonable for a decomposition process. For 
an abstraction process, e.g., of a hydrogen atom, the 
electron spin (Jii} of the H atom must pair up with one 
of the original electrons (e1) forming the triplet, so the 
other electron (h2} of the pair bond for the H atom in its 
original solvent molecule will have the same spin char­
acter as e1• 5 Once we adopt this point of view, then we 
note that the polarization of each radical product is 
given by1 

(1) 

where PT.T. and PT+T+ are the diagonal density-matrix 
elements for the T. and T. states (and we have set PsTo 
= 0, since we have assumed that the excited state from 
which the reaction takes place is a simple triplet state). 
The states T., T0 correspond to the M = ±1 and 0 high 
field states in the laboratory frame. Actually, one 
needs the polarization achieved after the process is 
completed by which the initially excited triplet molecules 
have formed a radical pair, or relaxed to a stable 
ground state or else decomposed to yield other products. 
The polarization of the radical products in this limit is 
given by 

Ji"= lim.P(t) = (., [Pr.r.(t) - Pr.r.(t)]k1 dt 
t .. ao Jo (2) 

or alternatively 

P"'=k1[PT.T_(s=0)-Pr.T.(s=0)], (3) 

where p(s) is the Laplace transform of p(t), and k1 is 
the pseudo-first order rate constant for formation of 
the radical pair from the triplet states. The simplifi­
cation of utilizing the t- oo limit was also used in I and II. 
It may be justified here in a similar manner; viz., the 
polarization generating process is much faster than any 
subsequent rate processes of the separated radical pair, 
e.g., their spin relaxation and their further reactivity. 

The spin-density matrix p obeys the stochastic Liou­
ville equation (SLE): 

(4) 

where :le' is the spin-Hamiltonian super operator, k2 is 
the quasi-first order rate constant for all other pro­
cesses which deplete the triplets, and r is the Markoffian 
operator for the classical molecular diffusive processes. 
Also, p"" is the equilibrium density matrix given by 

_ a exp( - n'JC/k8 T) ~ .!. ( n'JC ) 
Peq - Tr exp(- n'J<'/k

8 
T) = 3 a l - k

8 
T ' (5) 

where the approximate equality is the usual high tem­
perature approximation and a is discussed below. The 
inclusion of p" in Eq. (4) guarantees that the spins re­
lax to the thermal equilibrium. 2 •3 As a result of the dis-' 
sociation and decay processes (assumed spin-indepen­
dent), p"" obeys the simple rate equation 

(6) 

It is convenient, at this stage, to introduce the variable 
X which is the deviation of p from its equilibrium value: 

x=p-p"". ~) 

It then follows from Eqs. (4) and (6) that x obeys 

ax/at=-(i.,cr+r+k)x, (Sa) 

where we have let 

k=k1 +k2 • (Sb) 

Equations (6)-(8) are seen to yield the formal solution 

p(t) = e•kt[exp( - {iJe + r)t]x(t = 0) + Poq(t = 0)] . (9) 

We now normalize p(t= 0) = p(0) and peq(l = 0} = peq(0), so 
that 

Tr p(0} = Tr peq(0) = 1 (10a) 

and, more generally, 

Tr peq(t) = Tr p(t) = a(t) (10b} 

and 

Trx(t)=0, (10c) 

where a(t) obeys the same rate equation as peq in Eq. (6), 
i.e., it measures the fraction of excited triplet mole­
cules which remain at time t. 

The Laplace transforms of Eqs. (6) and (8) are 

[ s+ k ]poq(s) = Peq(O) 

and 

[s+k+i.,cr+r]x(s)=x(0), 

and we have 

(11a) 

(11b) 

(12) 

Then in the limit s- 0 required for Eq. (3), we have 

limp(s') = limx(s') + Peq(O)/k , (13) 
s• .. ,. s' .. ,. 

where s'=s+k. Thus we may solve for x(s') and add to 
it the second term of Eq. (13). 

In the present problem JC(O) is the orientation-depen­
dent triplet spin Hamiltonian7 

JC=wos.+ I:{5-1t2n:nt"'.('2) 
,,.. 

where 

A2,o=.J6"(S: -½s2)' 

A2
·•

1 = 'f (s. s. + s. s.) , 

A2,•2=S; . 

(14) 

(15a) 

(15b) 

Here D and E are the standard zero-field splitting 
parameters, w0 is the Larmour frequency for the trip­
let, '2 represents the Euler angles for the transforma­
tion between molecular axes :x', y ', z' and space fixed 
axes (:x, y, z ), :D f,,. (0) are the generalized spherical har­
monics, and r n is the Markoffian operator for the ro­
tational reorientation process. For isotropic reorienta­
tion, the eigenfunctions of r 0 and the :of,,.(O) with eigen­
values 

(16) 

with R the isotropic rotational diffusion coefficient and 
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BL a "model parameter," which is unity for Brownian 
reorientation, and at the other limit of strong jumps 
(leading to randomization of orientation with each molec­
ular collision) one has BL=R/EL,K,M for LiO. A whole 
range of jump models between these two cases may be 
treated in terms of the proper BL as discussed else­
where. 3'

9 

The method of solution of Eq. (llb) is to expand x(s') 
in the complete orthogonal set :n;M(O) as 

(17) 
LKM 

Also, one can expand the initial condition (see below) as 

x(t=0)= -i L d;M:n}M(G) . (18) 
LKM 

One can rewrite Eq. (llb} as a matrix equation7 by the 
use of Eqs. (17) and (18), and by taking spin matrix 
elements of cfM and dfM as described below. One has 

(19) 

where C is an n-dimensional column vector consisting 
of the expansion coefficients CjM(i), while dis then­
dimensional column vector of diM(i )'s (see below) and 
.A is an n x n-dimensional complex matrix, obtained 
from evaluating the operator coefficient of x(s') in Eq. 
(llb) in the standard manner. 7•

10 

At this stage we note that for the :IC(O) of Eq. (10) and 
the r 0 with eigenvalues of Eq. (16), ..tis formally iden­
tical to the matrix required to solve triplet slow-tum­
bling spectra when rf and de fields are parallel, and 
this has already been given by Freed et al. 7 (one only 
requires iw- s '). 

Next we note that for isotropic liquids, one wants the 
average p(s') given by 

-( ')- 1 J dO ( ')- ·cO ( ') ½(1 - liwr,S./ kaT) p S - 8Jr2 p S - - i 0,0 S + St , 

(20) 

where the second equality follows from Eqs. (12), (18), 
(lla), (5), and (14). 

Also we note that the L, K, Mth element of d is given 
by 

(21) 

Note that ctM(s') is still a spin operator, and following 
the notation of Freed et al. 7 we let 

<-lclo)=C(l), <olc\-)=C(-1), <-1lcl-1)=C(a), 

<o\c\1)=C(2), (1\c\o)=C(-2}, (o\c\o)=C(b), 

(- 1 J C I 1 ) = C ( 3) , ( 1 I C I - 1) = C ( - 3) , (1 J C I 1 ) = C (c) , 

(22) 
where we letCfcM(s',j)=C(j) for convenience. We may 
write equivalent expressions for the dh(i} or d(i). Thus 
from Eqs. (3), (20), and (22) we must solve for 

- i tci 0(a)- cg, 0(a )] + P eq /k (23a) 

with 

(23b) 

It is easy to show from the general properties of the ex­
pansion coefficients (cf. Ref. 7) that ci 0(c} and C8, 0(a) 
are pure imaginary. Thus we obtain 

r - (k1/k)Peq =k 1lim Im[Ct 0(s, a)-C~, 0(s,c)] . (24) .... ,. 
A. Initial conditions 

We now wish to evaluate the n-dimensional vector d 
with elements given by Eq. (21). We note that just after 
a preferential intersystem crossing, p(0) is most con­
veniently described in the molecular frame. In gen­
eral, we may write 

p(O)=Wx•lx')(x'\+wy,IY')(Y'I +w.,\z')(z'\, (25) 

where IX'), I y'), and !Z') are the zero-field kets for 
the triplet in the molecular frame (i.e., T ,., , Ty', and 
T .,, ) and Wx• , Wy, , w .,, are the preferential probabilities 
of populating these states by the intersystem crossing, 
such that 

(26) 

[Equation (25) neglects any coherence between the rela­
tive probabilities of populating the three triplet states; 
otherwise p(0) would have off-diagonal elements in the 
IX'), I Y '), I Z ') representation. ] If we let Im), where 
m = + 1, 0, or - 1, represent the high-field kets in the 
molecular frame, then we have 

(27) 

and these kets are the irreducible tensor components. 7 

The high-field kets in the molecular frame are trans­
formed into the high-field kets in the lab frame lk) ac­
cording to 

(28) 

with the generalized spherical harmonics already dis­
cussed. Thus 

and one may transform Eq. (25) for p(0) in the IX'), 
IY'), IZ') basis set into the lk) basis set. The matrix 
elements dtM(i) according to the definitions analogous to 
Eq. (22) appear in Table I for an axially symmetric 
molecule (i. e., K = 0 ). This case is sufficient if E = 0. 
It is seen that the initial conditions corresponding to 
IX') or I Y') give identical results, since for E = 0 the 
choice of these molecular axes is arbitrary. Also they 
yield values for d~M(i) which are (-½)those for the initial 
condition of I Z '). Thus, it is sufficient to solve for the 
initial case of p(0) = IZ') (Z' I and multiply the result by 
r = [Wz• -½{w,..+ Wy• )] to obtain the correct p~ for an ar­
bitrary initial condition. Table I does not include con­
tributions arising from p84 of Eq. (5) via Eq. (7). An 
analysis of these terms in an analogous manner to those 
of Table I shows that 

Peq(L =2)=(D/2w0 )P84 p(0;L =2,Z'), (30) 

where p(0; L = 2, Z ') gives the L = 2 contributions of Table 
I assuming the initial condition p (0) = I Z ') ( Z' I, while 
p"" (L = 2) refers only to the L = 2 contributions of Peq. 
Also 
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peq(L=0)=[½-½PeqSe] (31) 

[cf. Eq. (20)]. The effect of peq_(L = 2) can be included 
in a modified r, while the effect of Peq(L = 0) must be 
explicitly included to obtain the proper polarization ef­
fects resulting from the relaxation of the triplets to 
thermal equilibrium. 

8. Perturbation theory 

We now wish to solve Eq. (19) subject to the initial 
conditions of Table I, by a perturbation method valid for 
small enough D. It is clear from Eq. (24) that we only 
need C0° 0(a) and cg 0(c), which in lowest order in Dare 

' ' 2 2 found to couple only to C~1(±1), C0.,1(±2), and Co,.,2(-3) 
from Eqs. (24) of Ref. 7. One can then solve the prob­
lem by conventional perturbation schemes. However, in 
zero order, cg, 0(a) and do, 0(c) are "degenerate" with 
cg, 0(b), so degenerate perturbation theory is called for 
with a van Vleck-type transformation being appropri­
ate. 1°• 11 Furthermore, Eqs. (24) of Ref. 7 are not sym­
metric, but can be made so by a simple symmetrizing 
transformation [after first multiplying through those 
expressions by the factor (2L + 1) ]. 

We can summarize the procedure by introducing three 
transformations: U, T, and P such that Eq. (19) be­
comes 

(32) 

or 

ct'"C"' =d'". 

Here U is the orthogonal transformation which trans­
forms the cg_o(i) for i =a, b, and c into their "normal 
modes" of relaxation. It is given by the partitioned 
matrix 

where 

U= 

1 
/3 

(33a) 

(33b) 

and 1 is the six-dimensional unit matrix in the subspace 
spanned by the six needed C!, 0(i) terms. The second 
normal mode is (l/./2)[cg, 0(a)- cg, 0(c)], which appears 
in Eq. (24). T is the symmetrizing transformation, a 
9 x 9 diagonal. matrix with the first three elements equal 
to unity and the next six equal to I 5. Then Pis the 
van Vleck-type matrix which diagonalizes a" =TUau-1T-1 

to lowest order in D. Once this approximate diagonal­
ization is achieved, then one solves for (1/f2)[cg 0 (a) 

0 • 
- Co,o(c)J. 

The final result of the perturbation analysis yields 

where 

r= w_. - ½ (w,,+ wy) - (D/2w0)Peq, 

and 

rP"_ '"' ~(2L) r -P + k k + T? Peq• 

(34) 

(35) 

(36) 

(37) 

(We will generally use P'"' to represent that part of the 
polarization which is independent of P 0 q terms.) Also 
the validity of the analysis requires 

(38) 

Note that the T1 of Eq. (36) is the well-known result for 
triplets, but its validity in the present derivation re­
quires only that Eq. (38) be fulfilled. In the limits 

-1 -,,. k ,,,-1~ 4 D
2 

-1 
Wo»TRi.. »11=--:-:z-TR 15 Wo 

one has the simple result 

P'"' 8D k ---- '.:1 
r 15w0 k ' 

(39) 

(40) 

which is seen to be equivalent to the perturbation result 
of Wong et al. (for k 1 » k2) wherein the dynamical fea­
tures are unimportant. 4 •

12 It immediately indicates that 
substantial polarizations can be generated in that limit. 
The positive (negative) sign in Eqs. (37) or (34) indicates 
absorptive (emissive) polarizations. Another, less 
restrictive, limit of Eq. (38) as well as 

leads to 

P'"'-A _k_. -~ 
k+ Ti1 k ' 

A= 4D(~+ 4w0 ) r 
15 ~ 4w~+T'i ' 

(41) 

(42a) 

(42b) 

TABLE I. Coefficients ~ll(i) representing the initial triplet 
populations for an axially symmetric zero-field splitting. 

p(O) = IX') (.x' I 
p(O) = I Z')(Z' I or I Y')(Y' I 

Coef/1cient L=O L=2 L=O L=2 

dfo(a) 1/3 -1/15 1/3 1/30 

dto(b) 1/3 2/15 1/3 -1/15 

dijo(c) 1/3 -1/15 1/3 1/30 

df-1(1) 0 1/5"'3 0 -l/10v3 

df. -1 (2) 0 -1/5"'3 0 +l/lov'3 

df.-2(3) 0 -~/5v'3 0 1/5/lr 

df,1(-l) 0 1/5~ 0 1/10¥'3 

af,1(-2) 0 l/5v'3 0 -1/10"'3"° 

df.2(-3) 0 -./2/5,/3 0 1/5.'6 
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FIG. 1. Graph of P"" vs triplet lifetime= k-1 for different values 
of TR, the rotational correlation time. The zero-field splitting 
D = 3000 G, while w0 = 3000 G, It is assumed that k =k 1; fork 
"'- kt the results for P"" should be multiplied by k 1/k. The initial 
condition p(0) = I Z)(Z I is assumed, so in general the results 
should be multiplied with r defined by Eq. (35). The results 
given do not include any contributions from Pe<1 {i.e., they are 
rigorously the P'"" values, [e.g., Eq. (37)]}. 

which is equivalent to a phenomenological expression 
used by Atkins et al. 6 if we let k = k1, but they let A be 
purely an experimentally adjustable parameter and offer 
no microscopic expression. It is clear that inequality 
Eq. (41) [as well as Eq. (38)] must be fulfilled in order 
to justify their analysis. Equation (42a) again demon­
strates how large polarizations may be generated pro­
vided k1 is not too much smaller than Ti1

. 

The dependence of P'"" upon k1 given in Eq. (34) is an 
interesting one. It is seen that P'"" goes to zero both 
for very small and very large values of k1. That it goes 
to zero for small k1 follows because any initial polariza­
tion is quenched by the T1 process before the triplet 
reacts to give a radical pair. That it goes to zero for 
large k1 represents the fact that the initial population 
difference (PTs- - PT+T) immediately after a preferential 
intersystem crossing is zero since only the isotropic 
contributions to p(0) are important [cf. Eq. (20)]. The 
polarization is generated only in times of the order of 
TR, as the rotational averaging effectively mixes in the 
anisotropic contributions from p(0) into the polarization 
(which is an isotropic average over all orientations). 

The contribution of P eq in Eq. (37) represents the 
competition between the triplet decomposition process 
and the T1 process, going to zero fork» Ti1 and (k1/k)Peq 
for Ti1 » k. 

We have compared Eq. (34) with the complete comput­
er solutions, and we have found as a practical guide that 
it gives an adequate representation (to within 10% or 
better) provided 

(38') 

We illustrate the cases for large D = 3000 G both for 

large and small w0 in Figs. 1 and 2 for Brownian motion 
(BL=l). The results for w0 =3000 G, are generally in 
good agreement with Eq. (34), but for w0 = 1000 G, it is 
found that Eq. (34) breaks down. (These results may be 
scaled with the dimensionless parameters: w0/D, T1l/D, 
and k/D). It is clearly seen from these figures that 
limiting values of P'"" as high as 450 x 10-3 can be pre­
dicted for a range of k/D values and slow tumbling (while 
Peq- 10-3

). More rapid tumbling acts to decrease P'"". 
When the tumbling is slow, substantial deviations are 
found between the exact solution and Eq. (34) for w0/D 
< 1. Equation (34) tends to overestimate P'"" in this 
case. In the slow-tumbling limit, one does not neces­
sarily recover results for P'"" that are insensitive to the 
dynamics, since there is still competition between k1 and 
T1-type processes, the latter being dependent on the rate 
of rotational reorientation. Of course, such conclusions 
will be altered if other types of processes begin to be 
important in T1. [In particular, one may add these extra 
contributions directly to Eq. (36).] 

When the tumbling is fast, Eq. (34) can even yield the 
wrong sign compared to the exact solution. In those 
cases, and when Eq. (41) applies, then Eq. (42) gives 
more satisfactory agreement than Eq. (34). 

Note that once the radical pair is formed with initial 
polarization given by Eq. (24), then the radical-pair 
mechanism discussed in detail in I and II can become ef­
fective, so that the total final polarization P "", when the 
radical pair separates never to reencounter, is given for 
radical a by 

P';= lim [pT_T_(t)- PT+T.(t) - 2RepSTo(t)], 
t-oo 

where in high fields compared to hyperfine terms the 

lim(pT_T_ - PT.T) 
t~oo 

is obtained from the initial polarization, as discussed 
here, and 2Rep 5 T

0 
is obtained from the radical-pair 

100 

50 

10 

5 
-II 

TR= 2 xl0 S 
triplet lifetime= k-'. sec 

1.2xlO l.2xlef
11 

FIG. 2, Same as Fig. 1 but with w0 =1000 G. 
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mechanism as discussed in I and II. The kinetic discus­
sions of observed CIDEP intensities given in I and Ref. 
13 are still applicable with P0"' - P;(l). 14 
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