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The general spin-relaxation theories of Albers and Deutch and of Argyres and Kelley based on 
different projection operator methods, and the theory of Freed based on generalized cumulant 
expansions are compared. It is shown that the first two yield equivalent expressions for the time 
evolution of the spin density matrix. They are also found to be equivalent to a cumulant expansion 
based on total ordering of the cumulant operators (TTOC), which is different from the partial time 
ordering method (PTOC) used by Freed. The TTOC method is found to be the more convenient for 
the frequency domain (i.e., for calculating spectra), while the PTOC method is for time domain 
analyses. Examples of the use of the TTOC method are given. Useful expressions are given for the 
case where the lattice may be treated in terms of classical Markov processes, but, in general, it is 
found that for such cases the stochastic Liouville method is the more useful for computations. 

I. INTRODUCTION 

Over the last several years, a variety of statistical
mechanical formalisms have been applied to general con
siderations of spin-relaxation theory. In particular, we 
note the work of Albers and Deutch1

• 2 utilizing a projec
tion operator formalism, the Argyres and Kelleys theory 
based on a different type of projection operator, and the 
work of Freed4

•
5 based on generalized cumulant expan

sions. 6•
7 Each of these theories yields a general de

scription of the behavior of the spin density matrix for 
spins coupled to a lattice, but each description is em
bedded in its own formalism, and any equivalence be
tween them is not evident. One of the objectives of the 
present work is to perform such a comparison to show 
the extent to which they are equivalent. 

It is possible, first, to show the equivalence in the ex
pressions for the spin-density matrix obtained using the 
two projection operator methods. We then study its re
lationship to the cumulant expansion method. Here the 
interesting question of the nature of the time ordering of 
the cumulant operators enters. It is found that the pro
cedure used by Freed, 4•

5 which we refer to as a Partial 
Time Ordered Cumulant (PTOC) has different charac
teristics than the projection operator methods. How
ever, it is possible to define another time-ordering 
scheme, referred to as a Total Time Ordered Cumulant 
(TTOC), which is then found to be equivalent to the pro
jection operator methods. 

It is then shown how the TTOC method may be effec
tively utilized in dealing with spin relaxation problems. 
Its utility relative to the PTOC method is compared in 
both the frequency and time domains. Our results are 
given both for general descriptions of the lattice as well 
as for the particularly useful case where the lattice mo
tion is modeled as a classical stationary Markov pro
cess. We compare, for the latter case, the cumulant (and 
equivalent projection operator) methods with the very 
useful stochastic Liouville equation (SLE), e-u which may 
be derived by summing the generalized moment expan-

sions (upon which the cumulant expansions are based) to 
all orders. 5 

II. PROJECTION OPERATOR METHODS 

We explicitly consider the case of a single spin relax
ing through contact with a thermal bath or lattice. The 
Hamiltonian for such a system is: 

(2. 1) 

where H8 is the Hamiltonian for the spin in the presence 
of a static magnetic field (i.e., is independent of the 
lattice), H1 is the Hamiltonian describing the lattice de
grees of freedom, and H1 is the interaction of the spin 
and lattice with ;\. a measure of its magnitude. 

The projection operator methods of Argyres and Kel
leys and of Albers and Deutch1

•
2 provide two approaches 

for extracting the relevant dynamics of the spin subsys
tem. Starting from the equation of motion for the den
sity matrix of the system p(t)[1i = 1 ], 

p(t) = - i[H, p(t)] = - iHSp(t) = - iLp(t) , (2. 2) 

where L=Hs=i[H, ... ] is the Liouville operator of the 
system, Argyres and Kelley derive an equation of motion 
for the spin density matrix o-(t) that is obtained from p(t) 
by taking a trace over lattice variables 

These authors employ the projection operator 

P=p1Tr1 , 

where Pi is the equilibrium lattice density matrix 

Pi =exp(-,8Hi){Tr1[exp(-,BH1)]}-1 , 

to obtain the equation of motion3 

(2. 3) 

(2. 4) 

(2. 5) 

• i' o-(t) = - iL8o-(t)- ;\.2 dT Tr1[L' e-1<1-P>LT L'p
1
]o-(t-T), 

0 ~-~ 
I 

where L 8 =H!, L =H~; furthermore L 0 =L
8
+L1• 

The alternative approach of Albers and Deutch1•2 has 
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the advantage of retaining explicit reference to the lat
tice variables. These authors obtain an equation of mo
tion for the generating function 

G0101,(t)= elHt la')(a I e-lHt , (2. 7) 

where la) denotes an eigenstate of H
5 

by use of the pro
jection operator 

P'=Tr1 p1 =(·•·). 

The resulting equation of motion is1•2 

G0101•(t) = - iw0101'G0101•(t) +K0101' (t, A) 

(2. 8) 

+A2 L Jt ar(,a'I F 0101' (t, A) I ,B)GBB'(t- r) ' 
B,B' 0 

where w0101, = (E
01 

- E 01 ,) and E 01 is the energy of spin state 
I a), K 0101 , (t, A) is a random "force" given by 

K
0101

1 (t) =exp[i(l -P1
)t]iAL

1
G

0101
,(0), (2. 9a) 

and the damping kernel is 

( ,a' IF 0101 ' (t, A) I .B) = A-l (,a'I (iL 
1
K 01 a' (t, t)) I .B) • (2. 9b) 

All spin quantities of interest can be extracted from 
Gaa•(t). In particular the equation of motion for CT aa' (t) 
obtained from Eq. (2. 9) for Gaa•(t) by the definition 

<1 01a•(t) =Tr[p(0)Gaa•(t)] 

is 

D'aa•(t) = - iwaa•(t) 

+A2 L ct dt(,a'JF,.,.,(t,A)IJ3>uw(t-t) • 
B,ll' Jo 

(2. 10) 

In both projection operator derivations the Hamiltonian 
has been partitioned so that ( H~ = 0 and the usual as
sumption for the initial spin density matrix p(0) = p1u(0) 
has been made. 

In order to examine the equivalence of the two projec
tion operator equations we rewrite Eq. (2. 10) as 

<Y ac,' (t) = - iwa, 01 •<1 aa' (t) 

-A2 ( dTTr
1
Trsp1u(t-T)L'e!U•P'>LTJa)(al . 

(2. 11) 

Let us expand ef<l•P'lLT; notice that Tr1Trs=Tr over all 

the degrees of freedom: 

u(t)otot' =<al- iLsu(t)I a')- A
2 f dT 

0 

xTrp
1
u(t-T)L'I: [i(l-~)LT]" L'la')foJ. 

n•O n (2. 12) 

It is easy to show that for any two matrices A and B one 
has the trace properties: 

Tr ALB= -Tr(LA)B, 

TrAP 1B=Tr(PA)B, 

TrA(l - P
1
)LB= -Tr[L(l - P)A]B. 

(2. 13a) 

(2.13b) 

(2. 13c) 

We may apply these identities to the nth term in Eq. 
(2. 12) to show that 

(2. 14) 

We notice now that because Tr1 p1H1 = 0 one has 

[- iLT (1 - P)]L 
1
pz<1(t- T) = - iL'T L

1
pz<1(t- 'T), (2. 15a) 

and 

(2. 15b) 

This enables us to rewrite Eq. (2.14) after some manip
ulation as: 

(2. 16) 

where we have performed the operation Tr s· This re
sult may be substituted back into Eq. (2. 12) to yield 

( IT L ,~ [-i(l-P)LT]"L' (t )J ') 
x Cl! r I L...J I P1C1 - 'T a ' 

n=O n 
(2. 17) 

which may be rewritten in operator form as 

a(t) = - iLp(t)- A2 r dTTr,L'e·1<1-P>LT L'p,u(t- T) (2.18) 
0 

Eq. (2. 18) is precisely the expression obtained by 
Argyres and Kelley, 3 utilizing the more traditional pro
jection operator given by Eq. (2. 4). 

Thus both projection operator methods are seen to 
yield equivalent expressions for u(t) as already pointed 
out in a general sense. 2 A more useful form for compu
tation (as well as for intercomparison with cumulant 
methods) may be obtained as follows. We utilize the op
erator identity 

e•i<l•P>LT = e•ILoT _ i lT dT 
1
e•fLo<T•T1> (AL'_ p L)e•1U-PlLT1 

o (2. 19) 

to show 

(AL 1 
- PL)e•f<l•P>LT1L'p1

u(t-T) 

= A (1 - P)L, e•1<1-P>LT1p,u(t- T) ' (2. 20) 

since 

(2. 21a) 

and 

P L
5
e·10•P>LT1L 'p

1
u(t - T) = L

5
Pe·1U-P>LT1 L 'p

1
u(t - T) 

=LsP(l+ f' [-i(l-P)Lr1]") 
;;t nl 

(2. 21b) 

so 

If we iterate the operator identity and substitute into Eq. 
(2. 18) we get 
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<1(t)=-iLp(t)-x2f dTTr1L're-lLo1'+t (-iXY' i,.dT1•·· iT".
1

dTn 
0 t n=l O 0 

x e-fLo(1'-T1> (1 - P)L' e-fLo<,.1-,.2> (1 - P)L, • • • e•fLo<Tn.J.-Tnl (1 - P)L, e•fLoTn] L'pi<T(t- T} . (2. 23) 

We now transform to the interaction representation by 

a*(t) = efL.,ta(t) 

L'(t) == e+fL0t L' e·IL 0t , 

and utilize the facts that 

Tr
1
elL1tA = Tr IefH1tAe-fH1t =Tr

1
A 

and 

(2. 24a) 

(2. 24b) 

(2. 25a) 

(2. 25b) 

(since p1 is the unique equilibrium distribution for the 
unperturbed lattice) to obtain 

(t [ 00 it ("n-1 <1*(t} = - X2 J, dT Tr 1L'(t) 1 + I: (- iX)" dT 1 • • • Jn dT n 
0 n=l O 0 

X L
1
(t- T +T1}(1 - P)L

1 
(t-T +T2) 

• • • (1- P}L'(t- T +Tn~L'(t-T)p1a*(t-T) . (2. 26} 

This result will be compared with the cumulant methods. 

Ill. TOTAL TIME-ORDERED GENERALIZED 
CUMULANT METHOD 

We start with the quantum-mechanical Liouville equa
tion (2. 2). We transform it to the interaction represen
tation by: 

p*(t) = elLof p(t) 

to obtain 

p*(t) = - iXL I (t}p*(t) ' 

(3.1) 

(3.2) 

The 8m' s may be determined by equating like powers of 
X for Eqs. (3. 5a) and (3. 7) to yield 

81<t1)=-iTr1L
1
(t1)p1 , 

82(t1, t2) =-Tr1L'(t1)(1-p1Tr1)L'(t2}p1 , 

83(t1, t2 , t 3} =iTr1L
1(t1}(1-p1Tr1} 

x L
1
(t2)(1 - p1Tr1)L'(t3}p1 , 

(3. 9a) 

(3. 9b) 

(3. 9c) 

where L'(t) is again given by Eq. (2. 24b}. The solution 
to Eq. (3. 2) is given by the expansion: 

p*(t} = p*(0} + t (- iXY' f dt1 • • • f n-l 

Xdt"L
1
(t1} • • • L'(t")p*(O} . (3. 3} 

We now take the trace over lattice states, Tr1 , and again 
make the usual approximation that the lattice states are 
initially at equilibrium [cf. Eq. (2. 6)}. Then Eq. (3. 3) 
becomes the "generalized moment expansion"4

•
5

: 

a*(t) = t Mn(t)a(0) 
n=O 

where the nth generalized moment is 

Mn(t) = (- iX)" r dt1 • • • r n-t dt" 

XTr1L'(t1} • • 0 L'(tn}pIa(0} n 2: 1 , 

Mo(t) = 1 . 

(3. 4} 

(3. 5a) 

(3. 5b} 

In the cumulant method we seek an operator expol{(t}, 
where the subscript 0 prescribes a time ordering, such 
that 

o*(t} = [exp0K(t}]o(0) . (3. 6) 

One choice of time-ordering was utilized previously. 4• 5 

Now let us assume K(t} to be of the form: 

(3. 7) 

where the cumulants 8'"(t1, ... , t'") are defined in terms 
of an ordering prescription such that 

xL'(t3)(1 - p1Tr 1)L'(t4)p
1

, 

and the general term is 

8n(t1, ... , tn) = (- iY'Tr1L'(t1)(l - p1Tr1) 

(3. 8} 

(3. 9d) 

• • • L
1
(tn-1)(l - P1Tr1)L'(tn)P, . (3.10) 

Let us now assume, as before, that we have parti
tioned H such that Tr I p1H1 = 0. Then 81 (T) = 0. We now 
take the time derivative of Eq. (3. 7), and after rear-

J. Chem. Phys., Vol. 62, No. 12, 15 June 1975 



Downloaded 28 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

4690 Yoon, Deutch, and Freed: Spin-relaxation theory 

ranging terms obtain the result: 

~ 1 it ltn..J. 
= LJ An+ dt1'" dtnBn+l (t, t1, ... , tn) exPoK(tn) . 

n=l O 0 

(3.11) 
We now change the order of integration for the last two 
integrals, i.e., 

itn-2 [tn•l [tn-2 s.tn-2 
dtn•l J, dtn = J, dtn dtn•l 

0 0 0 tn 

and subsequently repeat this integral switch to obtain 

We now define new time variables: 

or generally 

t~ = tm - (t - T) . 

This enables us to rewrite Eq. (3. 11) as (after dropping 
the primes) 

a rt { .. _,. it 1 

81
expoK(t) = A 2 J, df B2(t, t- T) + L ;\." j dt1 • • • n• dtn 

0 n~ 0 0 

This multiple-time integral is readily Fourier-Laplace 
transformed to give 

or 

a(w)= [i(w+L.,)- S(iw)r1a(0), 

with 

S(iw) = t (-iAin♦1 Tr 1L'[~L (1-P)L']"p,. 
n=t iw + i o 

(3. 17) 

(3. 171) 

(3. 18) 

This is a generalized perturbation scheme in L'. Note 
that the inclusion of the (1 - P) operator is just the con
cept of "connected cumulants" such that the initial lat
tice state (i.e., the equilibrium p1) does not appear in 
any of the intermediate states. (The result given here 
does not necessarily require that Tr IH

1
p1 = 0 so the sum 

in Eq. (3.18) may in general include the n=0 term.) 

For realistic problems, one does not attempt to com
pletely describe the lattice states. Instead we first de
fine the operators 

iI'(t} = e1L1t H, ' 

i'(t) = e'Lit L'e•IL1t , 

(3. 19) 

(3. 20) 

X Bn+2(t, t-T +t1, ... , t- T +tn, t-T)}exPoK(t-T). 

(3.12) 
We now take the time derivative of Eq. (3. 6): 

a*(t) =[8
8

1
exp0K(t~ a(0), (3. 13) 

and substitute Eqs. (3. 12) and (3. 10) into Eq. (3. 13) and 
utilize the fact that Tr1 p1H1 = 0 to obtain 

a*(t) = - ;\.2 r dT Tr1L'(t){l + t (- iA)" (,. dt1 
o n=l Jo 

itn•l I I 

••• dtnL (t-T+t1)(1-p1Tr1)L (t-T+t2) 
0 

00 0 (1 - p,Tr,)L'(t- T + t,.)} L'(t- T)p,a*(t- T) ' 
(3. 14) 

which is just Eq. (2. 26). This demonstrates the equiva
lence between the TTOC and the projection operator 
methods. 

A very useful form for the TTOC method is obtained 
by first substituting Eq. (3.11) into Eq. (3.13) and then 
utilizing Eq. (3. 6) to yield 

• 

00 
rt f tn-1 

a*(t) = L An+l J, dt1 • • • dtnBn+l (t, f1, .. •, tn)a*(tn) . 
n=l O O • ( 3. 15) 

We may now transform Eq. (3. 15) back to the Schro
dinger representation [cf. Eqs. (2. 23) and (2. 26)] and 
then use Eq. (3. 10): 

(3. 16) 

and refer to fi'(t) as the randomly fluctuating perturba
tion resulting from the complex lattice motions. This is 
equivalent to the usual semiclassical approach. 4•

5 Then 
Eq. (3. 16) becomes 

.. (t ctn-I A 

cr(t) = - iL.,a(t) + L (- i Ar1 J, dt1 • 0 0 J, dtn Tr ,LI (t) 
n•l O 0 

x e•IL_,<t •t1> (1 - P)L, (t)e•IL.,<t1 •t2> (1 - P)L, (tz) 

• '• e•ILo<tn-1•tn> (1 - P)L '(tn)p1a(tn), 

where we now let 

Tr1 =(P0I, 
Pz =!Po), 

so 

(3. 21) 

(3. 22a) 

(3. 22b) 

(3. 22c) 

and we have introduced the bra-ket notation such that 
(P0 IQ I P0 ) is the average of Q over the unique equilib
rium state P 0. This is closely related to the usual 
semiclassical expansion in terms of the Mn(t)4

•
5 except 

for the (1 - P) terms, which, as we have seen, define 
the cumulant averaging. The explicit time dependence 
of the "random operator" i,'(t) may be dealt with by 
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making specific assumptions about the random stochastic 
process. In particular, we assume a Markov process, 
such that 

a 
atP(O, t) = - rnP(O, t), (3. 23) 

where P(O, t) is the probability distribution at time t for 
the Markov process specified for the collection of lattice 
variables represented by O; and r n is the time- inde
pendent Markov operator. 

Then we have 

rn!P0(O))=0, 

(P0(O)!rn=O, 

(3. 24a) 

(3. 24b) 

for the bra and ket vectors corresponding to the equilib
rium distribution. Furthermore we assume r n has a 

complete set of eigenfunctions G,,, (O) such that 

r n I G,,.(O)) = E,,, I G,,, (0)) , (3. 25a) 

and 

(3. 25b) 

If we now recognize that Eq. (3. 23) has a formal solution 
for the conditional probability or Green's function 
P(O0 1O,'t) of 

(3. 26) 

so that for any function of O or A(O): 

(3. 27) 

Then by analogy to the discussion by Freed12 one has 

• ~ it itn-1 a(t) = - iLp(t) + L.J (- i;\.r1 dt1 • • • dtn(Po IL' e-<t-t1>< ILs+r) 
n=l O 0 

X (1 - I Po)(Po I )L' e•<ti-t 2><lLa•r> (1 - I Po)(Po I )L' • • • e•l<tn-Hn><lLa•r> (1 - I Po)(Po I )L' I Po)a(tn) , 

with Fourier-Laplace transform again given by Eq. (3.17), but now 

(3. 28) 

9(iw) = "f- (-nr1<Pol L'[. -~ r (1 - IPo)(Po I )L'l n !Po) t;:f iw+i a+ j 

='t f:.' (PolL'IG,,,1)(G,,,1I. .; E L'IG,,,2 )··•(G,,, I. .; E L'IPo), 
n•l mi,m2, iw + t s + "'1 n iw + i a+ "'n 

(3. 29) 
••• ,mn•l 

where the prime restricts the summations over the 
C. 0. N. set of I G,,,1) to exclude I G0) = I P 0 ). Again this 
is the concept of connected cumulants as applied to the 
Markov process. [Also we use the fact that r is diago
nal in the G,,, representation in obtaining the second 
equality of Eq. (3. 29).] 

We note here that expansion of the generalized mo
ments, instead of the cumulants, has already been shown 
to yield the "stochastic-Liouville equation" (SLE)8- 11 

a(w)=(P0 /[iw+i(L8 +L')+r0 J·1 IP0)a(0), (3.30) 

or in operator form with respect to lattice variables 0: 

(3. 31) 

Equation (3. 31) (or its Fourier-Laplace transform) has 
now been used extensively in a wide variety of applica
tions, and has been shown to be a very powerful method 
for problems involving spin-dynamics. 11-u,is It is clear 
that Eq. (3. 30) must be equivalent to Eqs. (3.17) and 
(3. 29), since, in general, the generalized cumulant and 
moment expansions are equivalent when carried out to 
all orders. 6 We comment further on this in the next 
section. 

IV. METHODS OF SOLUTION UTILIZING TTOC 
APPROACH 

We have for an unsaturated lineshape10•11 

/(w) a: ReTr 8 f 00 e•M(S,.(t)S,.(0)) =ReTr 8 S,.(iw )S,.(0) =ReTr 8 ( + i(w - L 8 ) -g*(w)]·1sx(0)S,.(0), (4.1) 
0 

where g*(w) is a partial complex conjugate of 9(w) (i.e., the iw terms do not change sign). If we consider a simple 
line for the transition a - a' with (L8 )aa', aa' = w0, then we have 

/(w)a:Re[i(w -w0)- g*(w),.,.,,,.,.,]·1s,.(0),.,.,S,.(0),..,., (4. 2) 

and 

(4. 3) 
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where w1 = L8 y
1

r 1,y
1
,-1. In particular, for a purely secular perturbation, i.e., L~.,. ,BB' = w' ('2)6.,,Bo,., ,B' one has 
~ ~ 

9*(iw).,,.,,,..,,=L L 1 

(iA)"•1(Polw'(n)IGm1)(Gm1 li(w-w}~~E IGmz)" 0 (GmJ w'(~) IP0 ) (4.4) 
n=l m1,m2, 0 '"1 i(w - Wo + Emn • 

•••• mn=l 

\¼=! have applied Eq. (4. 4) through fourth order (i.e., 
ns 4) to the two simple models of 2 jumps and rotational 
diffusion used by Freed4 (cf. Sec. V) and have found, (as 
expected) that the results agree with those from the 
PTOC method given there. Typical selection rules on 
the spatial "matrix elements" (Gm

1 
I w' (n) I Gm1 ) such as 

those embodied in the 31 symbols for rotational diffusion 
models, greatly reduce the number of terms in the sums 
over the m 1 (cf. Sec. V). 

When the line is not a simple one, then the operator 
properties of L 8 and g*(w) in spin-(super)space must be 
fully considered. Then Eq. (4.1) yields 

I(w)cx: L Re[i(w-Ls)+ g*(w)]·1.,,.,B11,(S,,)B11,(S,,),.,,.. (4. 5) 
a,a' 
B,13' 

It is of course, better to solve: 

L [i(w -w,.,., )6,.
11
6,.,ll, + g*(w),.,., 1111, ]Sx(iw)BB' = S,,.,.,, (4. 6) 

BB' 

for Sx(iw)BB' defined in Eq. (4.1). Equation (4. 6) is 
solved by first calculating each 9*(w)aoi'.e.e' of interest 
according to Eq. (4. 3), and then diagonalizing the cou
pled algebraic equations resulting from Eq. (4. 6). 

The major problem for this method compared to the 
usual approaches for dealing with the stochastic Liou
ville equation9- 11 is the complexity of the summations 
over the m1 and 131, 13: for large n in problems involving 
a variety of transitions and perturbation terms in L'. 
The SLE solutions, however, involve a simple (though 
sometimes very large) matrix array which usually may 
be diagonalized once, independent of the magnitude of the 
sweep variable (w - w0). However, the structure of 
9 *(w) exposes the structure of the important terms in 
the actual solution of the spectrum, and it may some
times be useful from this point of view. 

We note, in this context, a somewhat related expan
sion that comes from the SLE expression10•11 : 

(4. 7a) 

or 

(S,,(iw)) =(P0 l[i(w -H")+r]·1I P0)S,,(O). (4. 7b) 

A resolvent-type perturbation expansion14 yields 

S,,(iw)=(PolL(.( !") r 
mo() Z W - s + 

X [iH1 (n)"] r i(w -!!) + r I Po)S,,(O), (4. 8) 

However, this perturbation scheme must be used with 
care, since it does not incorporate the connected-cumu
lant aspect, and some of the denominators will go to 
zero at the resonance frequencies. However, van 
Vleck-type perturbation schemes are very effective in 

handling degeneracies, etc. 9•
13 Note that Eq. (4. 8) is 

simply equivalent to the Laplace transform of the gener
alized moment expansion. 12 In this context, a resolvent
type expansion can be rearranged [cf. Ref. 14, Eq. 
(4. 372)] to be the formal equivalent of Eqs. (3. 17) and 
(3.18) or (3. 29). This clarifies the equivalence between 
the SLE and the TTOC results for Markov processes that 
have been obtained here. 

V. EXAMPLES USING THE TTOC METHOD 

We illustrate the TTOC (or equivalent projection op
erator) methods with the two simple examples given by 
Freed. 4 

(1) Two Jump Model, Classical Lattice, Markov Pro
cess. Here we have two states A and B with a priori 
probabilities: 

(5.1) 

and with mean lifetimes TA and T 8• The conditional 
probabilities are then 

P(ilj,T)=Wi[l-e•klTl]+e•klTl511 , i,j=A,B (5.2) 

where k=T':i,1+T81• It is more convenient, however, to 
introduce the Markov operator r according to: 

P=rP, 

such that 

(5. 3) 

r=(~;

1 

:B:;1) (5.4) 

in the bases of eigenkets I A) and I B). It is generally 
useful to symmetrize r according to the transformation 
"C' =Pf2rP'ii112, where 

to yield 

i=ri>, 

;:--1) ' 
T-1 

- B 

T=TA'l'W8/WA=T8'1'WA/Ws. 

Then one finds 

i,j=A or B 

where 

I Go) = wY2 
I A)+ wft2 

I B) , 

I G1) = w½(2 IA)- wY2 I B), 

(5. 5a) 

(5. 5b) 

(5. 6a) 

(5. 6b) 

(5. 6c) 
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and the bra vectors are of the same form such that 
(G1 I G1) = 611• These are the eigenfunctions to use in Eq. 
(4.4) with IP0)- IGo), 

We now introduce a simple secular perturbation for a 
spin 1/2 

where 

W =We+a, 

and 

and 

w(t)-w =a(t)-a' 

with 

Then since 

(AJa1JA)=aA, 

(BJ a1 I B) =a8 , 

we have 

(Go! al - al Go) =O' 

(G1Ja1 -al G1)=(Wa - WA)(aA -as), 

(5. 7) 

(5. Ba) 

(5. Sb) 

(5. 9a) 

(5. 9b) 

(G1 Ja1 -aJG1)=(WAW8 )
112(aA-a8 ), Nj=Oor 1. (5.9c) 

Thus we have from Eq. (4. 3) 

S*(iw) =i:, (ir♦1 W4_Wa(~ -as)2 [<Wa :-- W4~ad -aa)] 11-1 

11• 1 z(w-w)+k z(w-w)+k 

where the 31 symbols have been utilized. 15 

In particular, the 2nd, 3rd, and 4th order contribu
tions are 

*(. ) g:2/5 \12 zw = - .( ) 6R , 
Z W -Wo + c1. 

(5.18a) 

(5.18b) 

= - WA Wa(aA -aB)Z [1- i(WB - WA)(aA - aa)]•l 
i(w-w)+k i(w-w)+k ' 

(5. 10) 
where we have summed the infinite series (without con
cerning ourselves with the convergence), while from Eq. 
(4.1) we have 

1 
/(w)cx:Re '( _) <>*(' ) • zw-w -u zw 

(5. 11) 

It is quickly seen that this result is just the well-known 
exact solution (cf. Eq. Bl of Ref. 4) for this simple 
two-jump model. We note in passing that the higher or
der-terms in S*(iw), i.e., n>l are nonzero only for 
WA* Wa. 

(2) Rotational Diffusion, Axially Symmetric Secular 
g-Tensor. This is the case of a one-line ESR spectrum 
broadened mainly by the secular anisotropic g-tensor 
term, for whichg,,,.=gy=g.L andg8 =gj1• For this case 

JC=JCo+JC1(n) (5. 12) 

JCo=wos. (5.13) 

JC1 (n) = Dt0(n)g:s. (5.14a) 

g: = !n-1/3eBo(gu -g.L) (5.14b) 

while the !DiM(O) are the generalized spherical harmon
ics, which are eigenfunctions of the (axially-symmetric) 
rotational diffusion equation4• 5: 

(5.15) 

with rotation diffusion components R,,,.=Ry=R.L, R.=R 11 • 

We can introduce conveniently normalized eigenfunctions 

(5. 16) 

and the needed matrix elements (GifM1 I :DiM I Gi~Mz) are 
well known. 9•

10•15 We then obtain from Eq. (4. 3): 

(5.1 7) 

This result through S4 is equivalent to fourth ordering: 
to a solution based on the SLE taken through L =4 when 
both results for the lineshapes are expanded in powers 
of ff'. The TTOC result does appear to be less conve
nient. Nevertheless, it does allow one to display the 
general nth order term, and thus, perhaps, to obtain 
simplifying features in the analysis. Other, more com
plex spectral problems, may be analyzed in a similar 
manner. 
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VI. THE PTOC METHOD ~ eK<t> =[~K(t)] eKCtl =K(t) ~m 
at O at O O , 

(6.1) 
The TTOC is defined by Eqs. (3. 8), (3.10), (3. 15), 

and (3. 17). We wish to clarify here the PTOC as used 
by Freed4

• 5 and show it is the natural way to achieve the 
useful form: 

which was employed there. Thus the PTOC of Freed4 

may be introduced as 

The only differences between Eq. (6. 2) and (3. 8) are in 
the upper limits of the time integrals. The JC n for n~ 4 
are given in Eqs. (2.14) of Ref. 4 when one utilizes (cf. 
Ref. 5): 

(One must first reorganize the multiple time integrals 
to achieve the standard form of Eq. (6. 3) as illustrated 
in Ref. 4). In particular, for 

JC2 = 02 = -Tr1L' (t1)L' (t2)pz, 

JC3 = 03 = iTr1L' (t1)L' (4)L' (t3 )p1 , 

JC 4 = 04 -Tr1L'(t1)L' (fa)p1 Tr 1L' (4)L'(t4)p1 

-Tr1L' (t1)L' (t4)p1 Tr1L' (t2)L' (fa)p1 , 

with 

04 =Tr1L'(t1)L'(f:i)L'(t3)L'(t4)p1 

-Tr1L' (t1)L' (t2)p1 Tr1L' (fa)L' (t4)pz. 

(6. 2) 

(6. 4b) 

(6. 4c) 

(6. 4d) 

(6. 4a) 

one has 

Thus, in general, the Xn are found to include more 
terms than the en when expanded out. It is now easy to 
show that 

.. 
at expoK(t) =LKm(t)+ L Km(t)K,(t)+ L km<t)Jt dtm rtm dtm+l ••• (tm+P-2 dtm+P•l itm dtm+P 
a m m,P=l m,P, s=l O JO JO 0 

f tm+P+s-2 • 
• • • 

0 
dfm+P+s•lJCp(fm1 • • • tm+P•l)JCs(tm+P • • • lm+P+s-1)+ • • • =Km(f)expoK(f), (6. 5) 

which is just Eq. (6.1). 

The PTOC method permits a calculation of the relaxation matrix. We have from Eqs. (2.19) and (A3) and (A4) of 
Freed, 4 that 

(6. 6) 

In particular for a classical lattice described by a stationary-Markov process, the analysis equivalent to that leading 
to Eq. (3. 28) yields 

R=t i'° dT1 ••• J'° dTn-1(PoJL' e-T1CILs1-r>L' e•T2<iLs+r> ••• e•Tn-1<ILs+r>L' e•<ILs+r> <E1:½T1l JPo)c+TOTI 
nol O 0 

(6. 7) 

where the subscript C implies the cumulant averaging appropriate for TTOC, i.e., no intermediate states involving 
P0 • TOTI are the remaining Terms with Overlapped Time Intervals required for PTOC. One must take spin matrix 
elements (because of the eULs+r>ET1 term) before the trivial time integrals of Eq. (6. 7) are performed. In particular, 
taking both spin and lattice "matrix elements" j we have 

Raa'BB' = ),.... t I L , (n)n+l r· d'T l ••• r dT n-1<Po IL:"'. ,Y1Yi exp[- T 1 (iw,.1i1. + Em1>1 I Gffll) 
::i' m1,m2, 1111'11' 1 0 0 

••••"'nal 

x(Gm1 I L;i,.1'"2"2 exp( - 'T' 2(iw,.2l'2 + Em2)] I Gffl2) ••• (G"'n-21 L; n-2";-2"n-1":...1 exp[ - T n-1 (iwyn-11'~-1 + Em") I G"'n-1) 

x(G"'n-l J L;,..1Y,r.iBB' exp[ (t T1)(iw88• >] J P 0 \ +TOTI (6. 8) 
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(6. 9) 

The TOTI are handled in a similar manner. We illustrate with the contributions to ~: 

- (TOTI)4 = f'° d'T if'° d'T 2 i'° d'T 3 [(Po IL' e-<"1•"2><iL_.+r> L, elL_.(t"1•"2> I Po)(Po IL' e•<t"2+"3>< IL_.+r> L' e'L_.<,.2•"3> I Po) 
0 0 0 

One must again first take spin matrix elements, and op
erate with the r as already shown in Eqs. (6. 8)-(6. 9). 
Then the time integrals again become trivial. 

These results for Markov processes are a more con
venient version than the expressions given in Ref. 4 for 
more general processes. 

It is important to note that in general 

limS(w)-¢R, 
w •O 

where S (0) is a zero frequency response, and R is the 
long-time limit, unless some motional narrowing limit 
exists. 7 This is illustrated by the fact that although 92 

=:K:2 , we have observed 04 '¢3C4 and, in general, 9n*3Cn for 
n ~4 (with 91 =3C1 =O). This is why, in general, one may 
not conveniently obtain R from S(w). 

In general, the PTOC method is to be preferred over 
the TTOC for analyses performed in the time domain. 
Note that the general solution analogous to Eq. (3.17) is 
in this case: 

u*(t) = k(t)<J*(t) , 

or 

u(t) = - iL_.u(t) + i<t(t)<J(t) , 

with 

frt(t) = e·IL8 t K(t) elL8 t , 

(6.11) 

(6. 11 ') 

(6. 11 ") 

which for classical Markov processes may be compared 
to the SLE Eq. (3. 31), which may be rewritten as 

u(t) = - iLp(t) + (Po I (- iL 
1 

- r)<J(O, t) I Po) , (6. 12) 

with 

(6.12 1) 

While it appears, at first, that Eq. (6.11) is more con
venient than Eq. (6. 12), it is possible to recast Eq. 
(6. 12) into another form which is more convenient. One 
uses the technique of expanding u{O, t) in the eigenfunc
tions Gm(O) of r11 , cf. Eqs. (3. 23)-(3. 25): 

u(O, t) = L Cm(t)Gm(O), (6.13) 
m 

such that the expansion coefficients Cm(t) are still spin 
operators. 9-U Then one obtains for the time evolution 
of the Cm(t): 

Cm(t) = L {- [iL_. + E,n]lim,n - i (Gm(O) I L'.I Gn(O))} Cn(t) • 

" (6.14) 

(6. 10) 

The bracketed expr.ession in Eq. (6. 14) is virtually the 
same expression required to solve the SLE in the fre
quency domain [cf. Eq. (3. 30) and Refs. 9-11 where here 
one need only let iw- O] and the same technique of diago
nalizing the ensuing complex (usually) symmetric matrix 
obtained after spin matrix elements are taken may be 
employed here as well, in order to obtain the eigen
modes. The long-time limit or R matrix should be ob
tainable by performing Van-Vleck-type perturbation the
ory9

, 13,
16 on Eq. (6.14) to get the time-evolution of CO(t) 

to nth order for 2 $ n $ 00 • The effects of subsidiary 
lines etc. [cf. Ref. 4], appear in the coupling of the Cm(t) 
for m * 0 into the problem. It is, in fact, the difference 
between the solution of CO(t) to nth order and the contri
bution of the "subsidiary lines" to the spectrum that 
leads to the differences between R and lim.,.0 S(iw). 

VI I. SUMMARY 

It has been shown that the spin-density matrix equa
tions emerging from the projection operator methods 
are equivalent to that obtained by the TTOC method. The 
latter form leads to convenient methods for calculating 
lineshapes, which, however, are in general deemed not 
as convenient as the SLE solutions appropriate for lat
tices described by classical Markov processes. How
ever, it does allow one to study the structure of the im
portant nth order terms in the actual solution of the 
spectrum, and this could have important applications. 

The PTOC method leads to a different type of solution 
than the TTOC method. It is the more useful in the time 
domain. However, again the SLE solutions are more 
convenient to use, except perhaps in recovering the re
laxation matrix in the long-time limit. 
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