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Dynamic effects of pair correlation functions on spin 
relaxation by translational diffusion in liquids* 

Lian-Pin Hwangtand Jack H. Freed 

Department of Chemistry, Cornell University, Ithaca, New York 14853 
(Received 17 June 1975) 

It is shown how the equilibrium pair correlation function between spin-bearing molecules in liquids may be 
incorporated as an effective force in the relative diffusion expressions, and how one may solve for the 
resulting time correlation functions and spectral densities needed for studies of spin relaxation by 
translational diffusion. The use of finite difference methods permits the solution no matter how complex 
the form of the pair correlation function (pct) utilized. In particular, a Percus-Yevick pcf as well as one 
corrected from computer dynamics, both for hard spheres, are utilized. Good agreement with the 
experiments of Harmon and Muller on dipolar relaxation in liquid ethane is obtained from this analysis. 
Effects of ionic interactions in electrolyte solutions upon dipolar relaxation are also obtained in terms of 
Debye--Hiickel theory for the pcf. Analytic solutions are given which are appropriate for the proper 
boundary-value problem for the relative diffusion of molecules (i.e., a distance of minimum approach) that 
has usually been neglected in the spin relaxation theories. Other molecular dynamics aspects of spin 
relaxation by translational diffusion in liquids are briefly discussed. 

I. INTRODUCTION 

It is appreciated by many workers that studies of spin 
relaxation by translational diffusion will reflect the mo­
lecular details of liquid state structure and dynamics. 1-

4 

In an early and pioneering theoretical work, Torrey1 

showed how such studies could reflect the extent to which 
the molecular diffusion occurs by random flights or 
"jump diffusion" instead of the limiting model of con­
tinuous Brownian diffusion. Harmon and Muller applied 
these ideas of Torrey to careful experiments on liquid 
ethane. 2 In their work, they removed the assumption 
that the diffusive process is uniform by recognizing that 
the equilibrium distribution of spin-bearing molecules 
should be represented by well-chosen pair-correlation 
functions or radial distribution functions. While they 
used a simple hard-sphere radial distribution function 
in the low density limit, other workers have considered 
more complex pair-correlation functions, e.g., models 
appropriate for charged ions in electrolyte solutions. 3•

4 

However, for the most part in the previous work on 
liquids, the pair-correlation function was only used to 
describe the initial equilibrium distribution. The time­
dependent behavior of the interacting spin-dependent 
molecules was still treated in terms of conditional prob­
ability functions or Green's functions which character­
istically yield uniform distributions in the long-time 
limit, i.e., they ignore pair-correlation effects. The 
inclusion of pair-correlation effects into the dynamical 
time evolution of the translational diffusion is not a sim­
ple matter, but one which is clearly necessary in order 
to more appropriately analyze and interpret the experi­
ments. Once one interprets the pair-correlation function 
as related to a potential of averaged forces between 
the spin-bearing molecules, one may then obtain the as­
sociated effective force between them. It then becomes 
necessary to describe their relative diffusion by an ap­
propriate (generalized) diffusion equation which also 
includes the effective forces. It is the solution of such 
expressions which poses very considerable analytical 
difficulties, not to mention the final calculation of the 
relevant spin correlation functions and spectral densities. 

It is a major objective of the present work to demon­
strate how recently developed finite-difference tech­
niques5 can readily and successfully be employed to give 
explicit solutions for the spin-correlation functions and 
spectral densities from typical diffusion equations even 
when the pair-correlation functions, hence the resulting 
effective forces, are so complex as to be only known in 
numerical form. In this work we emphasize, in partic­
ular, spin relaxation by intermolecular spin-dipolar 
interactions. Furthermore, we pay special attention to 
the selection of good pair-correlation functions for liquid 
ethane in order to compare our results with the experi­
ments of Harmon and Muller. The soundest pair-corre­
lation functions we employ here are based on hard-sphere 
solutions to the Percus-Yevick equation~ as well as the 
appropriate corrections indicated by the computer­
dynamics studies of Verlet and Weis. 7 These pair-cor­
relation functions, which adequately represent the 
denseness of liquid ethane, indicate clearly that the low­
density limiting form used by Harmon and Muller is not 
at all adequate. 

We also illustrate our approach with examples for 
ionic solutions using Debye-Hiickel theory for the pair­
correlation. functions. 

As we have already noted, the Green's functions typ­
ically employed previously are consistent with a uni­
form equilibrium distribution. They even neglect the 
boundary value problem due to a distance of closest ap­
proach (the "independent diffusion" model). It is pos­
sible, however, to obtain analytically the Green's func­
tions which properly include this boundary in the case 
of simple Brownian diffusion under an otherwise uniform 
pair-correlation function (i.e., a "force-free" diffusion). 
The appropriate expressions, including the spin-correla­
tion functions and spectral densities, are given in Ap­
pendix A both for dipolar relaxation and for a model of 
relaxation by a scalar interaction of finite range pro­
posed by Hubbard. 8 The analytical result for dipolar 
relaxation is employed to check the accuracy and con­
vergence of our finite difference method for this simple 
model. 
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II. SPECTRAL DENSITY AND CORRELATION 
FUNCTION FOR DIPOLAR RELAXATION 

The space-dependent time-correlation function for 
dipolar interaction between spins 1 and 2 may be ex­
pressed by9 

G(t)=~mf d 3rf d 3r :n<2>*(n ):D 12 >(n ) 41T O Om T Om ro 

(2. 1) 

where G(t) is a real and even function of t, and its spec­
tral density is given by 

J(w) = 2 Rel~ eiwt G(t) dt. (2. 2) 

In Eqs. (2.1) and (2. 2), m is the average number density 
of spins and P(r0 Ir, t) is the conditional probability for 
the relative diffusion of spins 1 and 2; i.e., given these 
spins are separated by r0 at t = 0, it gives the probability 
they are separated by r at time t. Also, nr is the solid 
angle between the intermolecular vector r and the labo­
ratory coordinate frame, etc. We now approximate 
P(r0 1 r, t) as the solution of the Smoluchowski equa-
tion, 10

• 11 i. e. , 

BP(r&~r, t) =DV -[vP(r0 I r, t)+ klT P(r0 I r, t)VU(r)J 

(2. 3) 

with initial condition 

limP(r0 I r, t) = o(r- r 0). 
t-o 

(2. 4) 

In Eq. (2. 3), Dis the diffusion coefficient for relative 
diffusion, 

(2. 5) 

and U( r) is the potential of averaged forces between the 
spin-bearing molecules 1 and 2. We assume for sim­
plicity that it only depends upon the radial separation 
and is independent of the molecular orientations. A 
more general discussion of the applicability of the Smo­
luchowski equation for relative diffusion of molecules 
and possible improvements on it is given elsewhere. 11 We 
are also neglecting any hydrodynamic effects in Eq. 
(2. 3) which would lead to an apparent space-dependent 
diffusion equation. 12 Then we may obtain U(r) from the 
pair-correlation function g(r), i.e., 

lng(r) = - U(r)/kT, 

so that one has an effective force 

F(r) = - (VU(r))/kT= V(lng(r)). 

(2. 6a) 

(2. 6b) 

The expressions of Eqs. (2. 6) when incorporated into 
Eq. (2. 3) then means that in the limit t- 00 , P(r0 Ir, t) 
will yield the equilibrium g(r), while, for finite times, 
F(r) is the driving force acting to restore this equilibri­
um. It is convenient for purposes of solution to break 
up the g(r) into two parts: (1) the hard .core, zero-con­
centration part, which we approximate in this work by a 
hard sphere model, and (2) the more long range inter­
actions and concentration-dependent contributions. The 
effect of the former may be replaced by a reflecting wall 

boundary condition as discussed in Appendix B, while 
the latter is explicitly included in the F(r) appropriate 
for the different models (cf. Sec. III). 

Now the rhs of Eq. (2. 3) may be separated into ori­
entational and radial parts. It gives 

[V• (V - F(r))]P(r0 I r, t) = ( r r +~ r 0)P(r0 Ir, t), (2. 7) 

where 

r rP(r0 I r, t) =~ :r [r
2 :r P(r0 I r, t)] 

-b:-
8

8 
[r 2F(r)P(r0 I r, t)] 

r r 

with F(r) = I F(r) I and 

r 11 P(r0 I r, t) = +{s:ne : 0 [sin0 : 0 P(r0 I r, t~ 

1 a2 

} +:.=rn
0 

~a P(r0 I r, t) . sm cp 

(2. 8a) 

(2. 8b) 

The Fourier-Laplace transform of Eq. (2. 3) gives 

-[n~ r +~ r 
11

) + iw] P(r
0
I r, w) = o(r- r

0
), (2. 9) 

where 

(2.10) 

When we multiply Eq. (2. 9) with :Oci~(00)g(r0)/r~ and 
then integrate it over r0 space, we obtain 

J:nf{;.?(n;g)g(ro) P(r
0

, Ir, w)d 3r
0 

0 

= :l)~~(OT) [v0 rT +~)- iwr g(r)/r 3 (2.11) 

since r 0 :D~m(Or) = - l(l + l):I:l~m(nr). Then we multiply Eq. 
(2. 11) with :D~!,2>(nr)/r 3 and integrate over r space, and 
we obtain, in accordance with Eqs. (2.1) and (2. 2), 

J(w)= 2'JtRe Jar~~(- rr +~)- iwr g;~) 

= 2'Jl Ref dr¼ q(r, w) 

=2'JlRe far~q(r, w), (2. 12) 

where we define 

q(r, w)=rq(r, w)=[v(-1\+~ -iwr~ (2. 13) 

with the modified operator r r , 

A A a2 1 a ,. 
rrq(r, w) =~a q(r, w)-- -8 [rF(r)q(r, w)]. (2.14) 

r r r 

The spectral density based on Eq. (2.12) is to be eval­
uated by finite difference methods, e.g., 

a A( ) q(r+~r,w)-q(r-~r,w) 
Br qr, w - 2~r (2. 15a) 

and 
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a2q(r, w) q(r+t:..r, w)- 2q(r, w)+q(r-t:..r, w) 
ar2 - (t:,,.r'f 

(2.15b) 

Equation (2.13) may then be rewritten in a matrix form 
as 

[(-W+B)-iwl]Q=R, (2. 16) 

where Q and R are column vectors given by 

q(r1, w) g(r1)/r~ 

q(r2 , w) g(r2)/r~ 

Q= R= (2. 17) 
q(r m, w) g(rm)/r! 

q(rn, w) g(rn)/r~ 

The W matrix is a "transition-probability" matrix be­
tween discrete values of r and has been discussed in de­
tail by Pedersen and Freed. 5 The matrix elements are 
given by the following set of equations: 

n·1w0,0 = - 2/(t:..r)2 (1 +t:..r/d)- r 1F(l)/(dt:..r), 

n·1w0, 1 = 2/(t:..r)2 -F(O)/t:..r, 

(2.18a) 

(2.18b) 

n·1w;,;-1 =6.r-2 +F(j)/(2t:..r), (2.18c) 

n·1 W;,; = - 2/ 6.r2 - [F (j + l)rJ+l - F(j- l)r;-11/(2r;t:..r)' 
(2.18d) 

n·1 W;,;.1 = t:..r-2 - F(j)/(2t:..r), 

where O<j< M, and 

n-1w M,M-l = 2/(1 +f)t:..r 2 +F(M)/(1 +f)t:..r, 

n·1wM,M= - 2/ft:..r 2 +F(M - l)rM_ifrM(l +f)t:..r, 

n·1w M,M•l = 2/f(l +f)t:..r2
, 

while for M< j< N, 

n·1w;,;-i = 1/(f6.r)2, 

n·1wJ,J = - 2/(ft:..r)2, 

n·1wJ,J+1 = 1/(ft:..r)2, 

and also 

n·1w N-1. N= o' 
n•1w N,N-1 = 2/(ft:..r)2' 

n•1wN,N=O. 

(2.18e) 

(2. 19a) 

(2. 19b) 

(2.19c) 

(2. 2Oa) 

(2. 2Ob) 

(2. 2Oc) 

(2. 21a) 

(2. 21b) 

(2. 21c) 

In Eq. (2.16) the matrix Bis a diagonal matrix with 
elementsB;,;=6D/d. InEqs. (2.18)-(2.21), r0 =d 
is the "distance of closest approach" between particles 
1 and 2, which usually is chosen as the sum of the crys­
tal radii or another appropriate distance parameter; t:..r 
is the distance between the jth and (j- l)th adjacent posi­
tions, where j < M. Also, M is chosen such that for 
r > r M, we have g( r)- 1 and F( r)- 0, and the contribution 
to the relaxation for r > r M is small and smoothly varying 
in space. Therefore, for j > M, we choose the difference 
r;.1 - r; =ft:..r, where f is about 10 to 25, to conveniently 
extend the range of calculation and yet not lose accuracy. 
In addition we have r 1 -r0=t:..r/2, rM•l -rM=(l +f)t:..r/2, 

and rN-rN_1=ft:..r/2. The choices of those differences 
and the elements in the zeroth, Mth, and Nth rows of 
W are required in order to satisfy the conservation of 
total probability given by 

:t J d 3rP(r, t) = O. 

Thus, by Eq. (2. 3) we have 

O = J d 3rDV •[VP - F(r)P] 

Since (rP); is arbitrary, we obtain 

Lt:..r;r1W1,; =0 for j= 0, 1, • • •, M, • • •, N. 
i 

(2. 22a) 

(2. 22b) 

(2. 23) 

The above-noted matrix elements of W have been chosen 
to satisfy Eq. (2. 23) exactly. This condition for j = 0 
is equivalent to a reflecting-wall boundary condition at 
d for F(r)=O; i.e., fJP/flrl,=d=O cf Appendix B. The 
zero matrix elements for j =N yield an outer absorbing 
(or collecting) wall. This outer boundary condition was 
most successful in yielding convergent results for not 
too large values of r N • 

The spectral density J(w) may be written in finite dif­
ference notation as 

N t:,,.r. 
J( w) = 2~ L --;:x (ReQ ;) , 

l=O r i 

where ReQ; is the solution of the matrix equation 

{[-W +B)2 +w2l}(ReQ)=[-W +B]R. 

(2. 24) 

(2.25) 

Alternatively, Eq. (2.16) may be solved by diagonaliza­
tion methods, i.e., one may diagonalize the matrix sum 
-W +B =C. It is convenient first to convert this matrix 
to symmetric form represented by C. This may be done 
by standard methods provided W i-1, /w 1, i-1 > O. In order 
to achieve this, we let WN.1,N/WN,N-l< 10·10 instead of 
zero, and this has no effect on the final result. 

Thus we let T be the similarity transformation which 
diagonalizes C, i.e., 

TCT"1 = OSC s-10-1 = OCO = c, (2. 26) 

where we have let T = OS, where S is the real symme­
trizing matrix and O is a real orthogonal matrix. Equa­
tions (2. 25) and (2. 16) then become 

(2. 27) 

The diagonalization scheme also lends itself to the com­
putation of G(t). One obtains 

( ) ~ t:..ri -1 
Gt =m.L --;:;z(T )11 exp(-cJJt)T;,kRk. 

i,J,11~0 r i • 
(2. 28) 
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The accuracy and validity of these approaches will be 
discussed in the next section. 

Ill. PAIR CORRELATION FUNCTIONS 

A. Hard-sphere model 

First, we consider the simplest pair-correlation func­
tion (pcf), which only includes the excluded volume of 
the two molecules, i.e. , 

g(r)=0 for r<d 
=1 r>d. (3.1) 

We refer to this as the force-free pcf. The analytic 
solution of this model for G(t) and J(w) is given by Eqs. 
(A9) and (A13) of Appendix A. In Table I, we show the 
agreement between the finite difference method and the 
analytic result with various data sets for J(0). The 
calculation of J(w) by the finite difference method, as we 
have employed it, yields less than 1. 5% error through­
out the entire dispersion region shown in Fig. 1. 

The dispersion curve for the spectral density, J(w) 
for the independent diffusion model, which neglects the 
boundary condition at r=d, is also shown in Fig. 1. It 
is a smaller in magnitude than for the force-free model 
for small w but shows markedly different behavior at 
high w. The larger value of J(0) for the force-free 
model is probably due in part to the reflecting-wall con­
dition dP I dr I r=d = 0, which would inc;rease the time the 
interacting molecules remain in contact at r=d and the 
dipolar interaction is a maximum (i.e., it increases 
the mean-square value of the interaction). (Recall that 
in the independent diffusion model, while there are tra­
jectories for which r< d, that part of their contribu­
tions for which r < d is omitted in the calculations 
of the spectral density.) The markedly different behavior 
for the two models at large w may be explained by first 
recognizing this reflects behavior at short times. Then, 
according to the diffusion equation Green's function of 
Eq. (Al), at short times, the large p modes (with p the 
Fourier transform of r) dominate in importance. Then 
Eq. (A2) shows that as pd becomes large, one gets 
greater deviation between the two models (while for pd 
- 0, they become identical). 

The results for J(w) for the hard-sphere model pcf 
are also given in Fig. 1. In this model we use the exact 
solutions of the Percus-Yevick (PY) equation for this 
case by Wertheim and Thiele (WT). 6 The WT pcf is first 
evaluated in the range d to 6d by the method suggested 

TABLE I. Accuracy of finite difference approach compared to 
analytic result for force-free model. 

J(0)dD Percent 
Li.r/dxl02 rM/d rN/d 2!Jl error 

1.25 7.263 100. 83 0.14777 -0.26 
1.25 7.263 163.20 0.14860 + o. 31. 
1.25 13. 51 82.13 0.14717 -0. 66 
1.75 9. 767 140.76 0.14857 +0.29 
2.50 7.263 100.83 0.14904 +o. 60 
2.50 13.510 200. 65 0.14947 + o. 89 
Analytic o.14815=rr 

4 
3 

WT~ 

FIG. 1. ½J(w)dD/m vs WT (where T=d 2/D) for dipolar relaxa­
tion for several different models: (1) "independent diffusion"; 
(2) force-free diffusion with boundary condition at d; (3) hard­
sphere Percus-Yevick, pcf with TJ = O. 578 corresponding to 
d=4.38 A and m'=0.656 gm/cm3; (4) Verlet's modified hard­
sphere Percus-Yevick, pcf with same parameters as (3). 

by Throop and Bearman. 13 They use 

( ) 
d ~ 0(r- md)(-r♦ 1 f- . 

gr =-- ~------ ~ hm 
121)r m=l (m -1)! i=l y-y; 

for 1r'.Jl' d 3 /6 = 7J < 1, where '.JL' is the average number 
density of molecules, and where 

0(x) = 1 for X > 0 

=0 x< 0, (3. 3) 

where S(y) = (1-1))2y3 + 61J(l -1J) y 2 + 181)2y -121)(1 + 211), 
L(y) = 121) [(1 + ½7J) y + (1 + 211)], and y ;(i = 1, 2, 3) are the 
three roots of S(y). Ford< r< 3d, the results of Eq. 
(3. 2) are readily differentiated to yield F(r). However, 
for r > 3d, the analytic behavior of Eq. (3. 2) becomes 
more unwieldy, so we computed F(r) ford< r< 6d by a 
finite difference method utilizing up through fourth order 
in the finite differences. The finite difference values for 
F( r) for d < r < 3d were in excellent agreement with the 
analytic result. Beyond 6d, we let g(r) = 1 and F(r) = 0. 
The results in Fig. 1 are for 7J = 0. 578, which is the ap­
propriate value for liquid ethane if we use d = 4. 38 A as 
did HM (but see below). 

The main difference between the hard-sphere and 
force-free pair-correlation functions is in the large 
maximum for the former near the core at r=d. This 
has the effect of significantly enhancing the magnitude 
predicted for J(w). This enhancement becomes more 
prounounced at higher w, again since the large p modes 
are more important and they reflect the shorter range 
interactions. 

Ver let and Weis 7 have compared the PY theory with 
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detailed results from "exact" computer dynamics re­
sults. They have found a number of weaknesses with 
the WT pcf. In particular, (1) the pcf is too small near 
the core; (2) its oscillations for larger r have the con­
sequence that the main maximum of the structure factor, 
equal to (1+:n'J eit•r [g(r)-l]d 3r), is too high; (3) the 
WT pcf oscillates slightly out of phase with respect to 
the pcf from computer experiments. Verlet and Weis 
have given a prescription for correcting the WT pcf to 
bring it into good agreement with the computer results. 
The results for J( w) for this modified WT pcf are also 
shown in Fig. 1. Since this modified g(r) is larger near 
the core than the WT g(r), we see some increase in the 
resulting J(w), and the effect becomes more pronounced 
at the higher frequencies. 

B. Electrolyte solutions 

To explore the effect of ionic interactions on dipolar 
relaxation in liquids, we employed Debye-Hiickel theory 
[sometimes also referred to as Debye-Hiickel-Guntel­
berg (DHG)] 4• It applies to the pcf in the sense that 

z z e-K(r-d) 
U(r)-~--

- Er 1 +Kd ' 
(3. 4) 

where Z1 and Z 2 are the charges on the spin-bearing ions 
1 and 2, respectively, and where K, the reciprocal thick­
ness of the ionic layer, is given by 

K
2 = (B1re 2l/EkT), 

l=½~n1ZL 
' 

(3. 5) 

where E is the dielectric constant of the medium, n1 is 
the number density of the ith type particle of charge Z 1 , 

and I is the ionic strength. In Fig. 2, we calculate the 
spectral density for DHG models. The differences in 

FIG. 2. ½ J (w) dD /'JI. vs WT (where T = d 2 / D) for dipolar relaxa­
tion of 1-1 electrolytes in aqueous solution at 25 °C obeying 
Debye-Hiickel theory. The ionic strengths in molarity units 
are listed on the figure. Also d = 4 A. The solid lines are for 
repulsive forces, the dashed lines for attractive forces. The 
results for the uncharged force-free model are also shown. 

1.00,,-------

0.80 

t 060 5 ' 
<5' 
' 
i:5 040 

0.20 

FIG. 3. G(t)/G(O) vs th (where T=d 2/D) for dipolar relaxa­
tion of 1-1 electrolytes in aqueous solution at 25 °c obeying 
Debye-Hiickel theory. Curves 1 (repulsive forces) and 3 (at­
tractive forces) are for I= O. 0001 M. Also d = 4 A. Curve 2 is 
for the uncharged force-free model. The dashed curve is for 
e-5t/T 

J(w) show the effects of ionic strength and types of ionic 
charge. 

Attractive (repulsive) forces are seen to lead to an 
enhancement (reduction) of J(w) over the force-free re­
sult, and the effect becomes more pronounced for larger 
w. We show in Fig. 3 computed G(t) results for these 
models. It is found that attractive (repulsive) forces 
result in more (less) rapid decay than the force-free re­
sult. We also show in Fig. 3 an exponentially decaying 
G(t) with correlation time O. 2 T = O. 2 d 2 /D for compari­
son purposes. It is seen that while this form agrees well 
with the correct results at short times, it cannot satis­
factorily represent the G(t) for dipolar relaxation by 
translational diffusion. In particular, for long times 
it decays too fast compared to the typical r 312 dependence 
one obtains from the force-free diffusion models. 

IV. COMPARISON WITH EXPERIMENT 

A. 1 H relaxation in liquid ethane by translational 
diffusion 

We show in Fig. 4 the experimental results for the 
low frequency dependence of T 1 for liquid ethane ob­
tained by Harmon and Muller (HM). 2 The T1 is related 
to the J(w) calculated for the different models in Sec. 
m according to the expression9 

41T 
1/T1 = 5 y t n 2I(I + 1) [J(w) + 4J(2w)], (4. 1) 

where i'H is the gyromagnetic ratio of the proton and I 
=½is the proton spin quantum number. HM fit their ex­
perimental results (as shown in Fig. 4) with ad= 4. 38 A. 
and a mean-square jump distance (r 2) given by (r 2)/d 
= 0. 67 and the independent diffusion model for the Green's 
function. Also, as we have noted in the Introduction, 
they used a g(r) appropriate in the low density limit. In 
particular, their g(r) has the value at the core of g(d) 
= 3. 4, while the correct WT g(r) gives g(d) = 7. 238 (both 
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0.55 

----0.40 

------- ------
-------

0 35o~---5~---l-0 ____ 1_5 __ 1 --2-0---, ~25 

w2 x 10·3 ( in sec- 2) 

FIG. 4, Comparison of Harmon and Muller's experimental 
results on 1/T1 vs w112 for liquid ethane with the theoretical 
predictions. The experimental points are shown with error 
bars. The solid line is the result of Harmon and Muller's 
calculation based upon an independent jump diffusion model 
and d = 4. 38 A. The dashed line is obtained in this work for 
the hard-sphere wr pcf with d = 3.1 A, p= 0. 656 gm/ cm3, and 
1) = 0. 2051, while the broken line is for the force-free model 
and d = 3. 1 A. Further details are given in the text. 

ford= 4. 38 A), a large discrepancy considering the 
importance of the core value on J(w) [i.e., a larger g(d) 
implies larger values of J(w) in our analysis]. Also, 
a more recent assessment by Kihara et al. 14 of the dis­
tance of closest approach between molecular cores for 
a variety of cases including ethane from second virial 
coefficients has led to a value of 3. 1 A. This appears 
to be a more up-to-date result than the earlier estimate 
used by HM. Our results for the WT pcf are also shown 
in Fig. 4, and are seen to yield good agreement with ex­
periment. Since for d = 3. 1 A we have Tl= 0. 2051, the 
Verlet correction is very small, only about O. 6% enhance­
ment. We have not found it necessary to introduce anv 
correction for finite jump, which, according to HM' s 
analysis, would lead to a larger value of Ti1, [The anal­
ysis of finite jump diffusion with a reflecting B. C. at 
r= d has been discussed elsewhere50 along lines analo­
gous to that of the Appendix. However, the existence 
of F(r) f. O results in a more ambiguous analysis, which 
may only be resolved with more microscopic analysis 
of the model.] 

In recent work, we have pointed out the similarity in 
the formal results between a jump diffusion model and 
the Brownian diffusion model but with a frequency-de­
pendent diffusion coefficient representing a memory 
effect. 11 We may note that incorporation of this effect 
into the calculation of the proton relaxation rate would 
lead to an increase in the magnitude of the (negative) 
slope of Ti1 vs w112 (cf. Fig. 4). However, an analysis 
of this sort would only appear to be justified provided 
further T1 results at higher fields and frequencies are 
obtained. 

Also, one would want to use a better pcf. In particu­
lar, HM used Hubbard's correction for off-center spins 

yielding a 3% correction in the case of liquid ethane. 
Pcf' s based on Lowden and Chandler's methods16 are 
able to give intermolecular proton-proton pair-correla­
tion functions for ethane rather than just the center of 
mass g(r), and would therefore implicitly include such 
a correction. 

B. Ionic interactions 

In a recent ESR and ENOOR study of spin relaxation of 
semiquinone radical ions, Leniart, Connor, and Freed17 

have suggested that differences in the concentration de­
pendence of the ESR and. ENOOR linewidths reflect, in 
part, contributions from the intermolecular electron­
spin electron-spin dipolar interactions. Based partly 
on a simple argument from Torrey's theory and on the 
magnitude of the observed effects, these authors sug­
gested that for a DH model the J(O) for uncharged species 
should be modified to (J* eU(d)/kTrl J(O), where 

t*·l =d loo e U(r)/kT dr/r2. (4. 2) 

A comparison between this suggestion and the results 
obtained in this work is given in Table II. It is found 
that the suggested form is a reasonable approximation, 
and is better for lower ionic strengths wherein the DH 
theory itself is a better approximation. We have not 
found a really satisfactory explanation for this conve­
nient expression. Furthermore, it does not appear to 
lead to a correct and simple expression for the frequen­
cy dependence of J( w). 

Finally we note the availability of more reliable pcf 's 
for ionic solutions than that from DH theory, which may 
be employed in the analysis of spin relaxation by transla­
tional diffusion. 4 

APPENDIX A: ANALYTIC SOLUTIONS WHICH INCLUDE 
THE REFLECTING WALL BOUNDARY CONDITION AT 
r =d. 

One has, e.g., from Abragam, 9 that the conditional 
probability distribution for independent relative diffusion 
is 

(Al) 

TABLE II. Comparison of J(0) calculated for aqueous solutions 
of 1-1 electrolytes at 25 °C with the values of f*e •<d)/kT from 
Debye-Hiickel theory. 

Model a f* f*e u(d)/kT J(O)"/J(O)b 

Attraction 
/=0.0001 2.288 0.418 0.436 
I=0. 01 1. 963 0.407 0.370 

Repulsion 
/=0.01 0.4550 2.137 1. 853 
/=0.0001 0,383 2.156 2. 117 

alonic strength in units of molarity. 
bJ(O)" represents the spectral density for uncharged molecules. 

J. Chem. Phys., Vol. 63, No. 9, 1 November 1975 



Downloaded 28 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

L. -P. Hwang and J. H. Freed: Spin relaxation by translational diffusion 4023 

with J L+t/2 (pr) the Bessel function of order L + ½. How­
ever, the correct conditional probability distribution re­
quires a reflecting wall at r= d. The appropriate solu­
tion, in the notation of heat conduction, is given by Car­
slaw and Jaeger. 18 Here one merely replaces the JL+i12(pr) 
by F L+tt 2(pr) and J L+i12(pr0) by F L+i;2(pr0), where 

where h(z) and YL(z) are the spherical Bessel functions 
of the first and second kind, respectively, and of order 
L, and j ~(z) and y 'r,(z) are their derivatives. The two 
forms become identical when d- 0 (or more precisely, 
pd- 0). 

Abragam9 gives the correlation function for dipolar 
relaxation by independent relative diffusion as 

G(t)=m. ~~ pdpexp(-Dtp 2)u~J5;i~r) drT- (A3) 

If, however, we employ the correct boundary condition 
at r=d and use Eqs. (Al)-(A2), then we must replace 
J512(pr) by F 512(pr) in Eq. (A3), with 

F ( r)- /2pr Uz(pr)y2(pd}-jz(pd)Y2(pr)] (A4) 
s12 P -Jw [j~(pd)2 +Y~(pd)2]112 • 

One then uses the well-known integrals of J;;j2(pr)dr/r 312 

and J';y2(pr)dr/r 312 as well as other standard properties 
of the spherical Bessel functions to obtain19 

[~ F~lft(fr) dr= fl!-&~1(¥Y +0-~2 + 1 r/2. (A5) 

Then 

G(t)-18m. (~ e-lX2/T x2dx 
- rrd 3 J0 81 + 9x2-2x 4+x6 

where we have introduced variables 

T/t=d 2/Dt, 

x=pd. 

(A6) 

(A7a) 

(A7b) 

One method of solving Eq. (A6) is to break up the poly­
nomial denominator into partial fractions. One first 
writes 

x6 
- 2x 4 + 9X2 + 81 = (x2 +a) (x2 + b) (x2 + b*), (AS) 

where 

a=3.1800, 

b = 2. 5900 +i4. 3318. 

Then the partial fraction separation leads to the inte­
grated form 

9N G(t) = - ~ [Ala eat/T erfc(✓ at;T) +B.fb e"11 T 

where 

and 

A=-B-st' =-2ReB. (AlOb) 

We now let 

J(w)=2limRe (~ G(t)e-<1w••>1 dt, 
.~0+ Jo (All) 

where we have introduced the convergence term t: - O+. 
The transform given by Eqs. (All) and (A9) is readily 
obtained, 21 as 

(A12) 

where S=iw+t:. 

The bracketed terms in Eq. (A12) can be combined 
and rearranged, so that after some algebra one has 

1am. l~mRe[l,7•l/Z +{;j-S 1/2) 

J(w) =7 t 97-bt + 97·1s m + 47·112 s + s312 ] 

where 

a= (wT)112 = (wd 2 /D)112 

and 

a'=i112a. (A14) 

[One finds that the apparent discontinuity in Eq. (Al2) 
for s = O is cancelled out once the bracketed term in Eq. 
(A12) is appropriately rearranged.] Equation (Al3) is 
the general result for all frequencies w, and it is seen 
to have a rather simple form. In particular, to lowest 
power in w one has 

J(w)~ _!_ JE... (1- ¾ ✓ wd2/n) 27 Dd • (Al5) 

The analytic solution to J(w) for the independent diffusion 
model is given by Hubbard8 and is seen to involve tran­
scendental functions of (wT)112 . 

A related problem is that of relaxation through scalar 
spin-spin interactions as discussed in Abragam9 and 
by Hubbard. 8 Hubbard studies the model of scalar inter­
action of finite but short range obeying 

A(r) = Ad e·A<r-tO. 
r (Al6) 

For this problem, one requires the correlation function 

(A17) 

Ce(t)= L~ pdpe•DtP
2{fa~ exp[-X(r-d)]J112(pr)r 112 dr}2 

(Al8) 
in the independent diffusion model. Again we introduce 
the reflecting boundary condition at r = d by replacing 
J1; 2(z) by F 112(z) in Eq. (A18): 

FI (pr)= {2 [1 + (pd)~]·l/2 
1 2 Jrrpr 
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I, sin(r-d)p) 
x fos(r-d)p+ pd • (Al9) 

One finds 

i"" exp[-i\(r-d)]F112 (pr)r 112 dr 

= j1TX(;d:X-e) (; :~ 2 ), (A20) 

where again X = pd and y = i\d, Then 

c (t)-2d ("" e-tx2/T (y+l)2x
2

dx 
e - 1T j 0 (1 +X 2) (y2 +X2)z (A21) 

Again the denominator may be expanded by partial frac­
tions, and the required integrations20 performed to yield 

C8(t) = (l ~ y)2 [y er
2
t/T erfc(y/tjT) - et/T erfc( v'tjT)] 

+ {!_ 2d (1 +y)er2t/2T D_ (yl2t/T) 
✓ ri y 1-y 3 ' 

(A22) 

where D-n-l (z) is a Whittaker or Parabolic Cylinder Func­
tion which is proportional to the nth repeated derivative 
(or integral) of erfcz. 19 The Fourier transform of G0 (t) 
using the form Eq. (All) is then found to be21 

J (w) = 8irA
2
d

5
m, [ (1 +y) fl:!_, l) 

• D 2y 3(1-y) \y/2 

-,,(; -y/(;,a, y)J, (A23) 

\Vhere 

f(z, QI) 
1 +(l +(ll)Z 

1 +2(1 +Ql)Z +2(1 +Ql)2z 2 +4Ql(l +QI) z 3 +4Ql2z 4 

(A24) 
Two special cases of this solution are, for w = 0, 

8irA2d 2m, 1 
J0 (0) = Di\ 3 (i\d +z), (A25) 

and for y = i\d = 1, 

12irA2
d 5m. la ) 

J 0 (w)= D f\✓2'1. (A26) 

Equation (A25) appears to agree with the independent 
diffusion result of Hubbard 8 only for i\d » 1, because of 
the extra factor of ½. However, a more careful analysis 
of the limit as w - O does show that the independent dif­
fusion model also yields Eq. (A25). The general solu­
tion for J 0 (w) for independent diffusion again involves 
transcendental functions. [Note Hubbard's J 0 (w) is de­
fined so as to equal ½ of our definition given in Eq. 
(All).] 

APPENDIX B: THE REFLECTING WALL BOUNDARY 
CONDITION 

One may write the Smoluchowski equation (2. 3) with 
F(r) separated into two parts, the hard-sphere (zero 
concentration) repulsive part, and the remaining con­
tributions. The hard-sphere g(r) of Eq. (3.1) leads to 
aH 8(r) = 00 for r< d, which is the excluded volume effect, 
while ua 8(r) = O for r >d, and to I yff8(r) I = I pHsl li(r- d 
+ E), where E is a positve infinitesimal (Ii is the Dirac 
delta function, ) and IF Hsi - 00 • Once the Smoluchowski 

equation is written in this manner, we again apply the 
conservation of total probability given by Eq. (2. 22a) 
and perform the integration of (2. 22b) in the range d 
:'.Sr:'.S 00 [in which FH 8(r)=0] to obtain 

0= ("" d 3rDV•[VP- F(r)P]=4ird 2D{-~P+F(r)P} , 
Jd Br r=d 

(Bl) 

where now F(r) excludes the hard-sphere component. 
Equation (Bl) may be recognized as the reflecting wall 
boundary condition, and it is seen from the derivation 
to be physically equivalent to the conservation of total 
probability in the presence of a spherical excluded vol­
ume of radius d. 

Finally we note that the Smoluchowski equation in­
cluding yH8(r), when integrated over all space, does 
obey conservation of probability, as it should. Thus the 
use of the form of Eq. (2. Ba) yields 

fd 3 aP(r, t) 
r at 

and we have used the fact /0"" o'(r- d)f (r) dr = - J'(r) lr=/2 

to obtain the last equality before the limit pas - oo is 
taken (where the primes denote differentation with re­
spect tor). 
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