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The theory of spin relaxation for liquid crystals is examined with the objective of properly analyzing the 
statistical interdependence of the faster rotational reorientation of the individual spin-bearing molecules 
and the (slower) director or order-parameter fluctuations. The analysis is presented in terms of a composite 
Markov process including both types of motions. It is shown that one recovers a sum of spectr~l-denstty 
terms which, in lowest order in fluctuations, correspond to (I) reorientation of the molecule relabve to the 
equilibrium potential of mean torque, (2) effects of director fluctuations, and (3) a negative cross-term 
between these two processes which bears a simple relation to (2). Detailed results are given for the 
particular models of director fluctuations in the nematic phase, quasicritical order fluctuations on either 
side of the isotropic-nematic phase transition, and slow fluctuations in the local structure. Effects of 
localized cooperative modes of molecular reorientation are also included. Explicit expressions for NMR and 
ESR relaxation and line shapes are given. The results obtained here clearly demonstrate some weaknesses 
in previous treatments which were presumed to be based on an assumption of the statistical independence 
of the different motional processes. Discussion is also given on how to formulate director fluctuations as a 
multidimensional Markov process, and on the applicability of motional narrowing theory in these cases 
where director fluctuations have very slowly relaxing components. 

I. INTRODUCTION 

Magnetic resonance relaxation experiments have been 
very useful in the study of the dynamical properties of 
liquid crystals. 1

•2 The spin-relaxation phenomena dif­
fer significantly from what is observed in isotropic 
fluids as a result of the effects of ordering. The order­
ing effects manifest themselves in several ways. We 
focus primarily on spin relaxation by reorientational 
motions, First of all, relaxation due to molecular tum­
bling motions is altered by the fact that such motions 
are no longer isotropic, but rather experience a mean 
reorienting potential (the potential of mean torque). 
Secondly, there are long-range cooperative modes, or 
hydrodynamic modes, associated with the fluctuations 
in the ordering. They are characterized, in the ne­
matic phase, as being fluctuations in the nematic di­
rector (at temperatures removed from phase transi­
tions), and as quasicritical fluctuations in ordering at 
phase transitions. In this work we will only concern 
ourselves with nematic phases, although analogous, but 
more complex, discussions would apply to smectic 
phases. 1-

3 If we regard the effect of ordering on an in­
dividual molecule from a mean-field point of view, or 
more accurately as the potential of mean torque, then 
fluctuations in the ordering on a hydrodynamic, or slow, 
time scale would represent fluctuations in this potential 
of mean torque. The individual molecular reorienta­
tion, occurring on a more rapid time scale, is then af­
fected by this fluctuating "mean torque." And, of 
course, magnetic resonance focuses upon the behavior 
of the individual molecule as long as the spins on any 
individual molecule are uncorrelated with those on other 
molecules, as is usually the case. Thus, it appears 
that the correct treatment of spin relaxation in ordered 
fluids would recognize the manner in which the ordering 
(including its hydrodynamic fluctuations) affects the re­
orientational motion of the individual molecules. Of 
course, the overall reorientational motion of an indi­
vidual molecule in an ordered fluid should still be a 
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complex process involving the short-range cooperative 
motions of adjacent nonspherical molecules (i.e., non­
hydrodynamic effects of range of molecular dimen­
sions). This is a problem that is difficult to treat with 
any rigor; however, one would hope that a complete 
statistical-mechanical analysis could cover the range 
from long-range (and slow) hydrodynamic effects to 
short-range (and fast) molecular couplings. We do not 
attempt such an ambitious project here. We will sepa­
rately consider the effects of the hydrodynamic modes 
of order fluctuations, taking advantage of the well-de­
veloped theories. 1•

2 The short-range correlations will 
be treated very approximately from a point of view de­
veloped in a recent statistical-mechanical study of mo­
lecular dynamics in liquids. 4 That is, coupled reorien­
tational motion of molecules of similar size is ex­
pressed in terms of an appropriate time-dependent ro­
tational diffusion coefficient while, for a small and 
rapidly reorienting probe molecule in the field of larger 
solvent molecules, the short-range ordering may per­
haps be treated in terms of a fluctuating local orienting 
potential. 

The time-dependent diffusion coefficient is a non­
Markovian feature in the approximate model which may 
be associated with the fact that it is the coupled modes 
of reorientation of the molecules including inertial ef­
fects which define the relaxation process, and the re­
orientation of one of them is a projection of these modes 
onto its reorientational degrees of freedom. However, 
when we deal with the effect of the hydrodynamic modes 
upon a single molecule, we note that the dissipative 
character of these modes allows us to treat each nor­
mal mode as a simple Markov process. Each such 
mode leads to fluctuations in the mean orienting poten­
tial of the molecule. The combined effect of all these 
modes may then be treated as a multidimensional Mar­
kov process, 

Thus, the basic problem we deal with here is spin 
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relaxation for a spin-bearing molecule obeying a rota­
tional diffusion (or jump) equation which includes an 
orienting potential whose stochastic time dependence is 
itself treated as a Markov process. It is possible to 
obtain simple analytic solutions when we utilize the 
physical requirement we have already noted, that the 
time dependence of the orienting potential fluctuations 
is slower than individual molecular reorientations, and 
when the fluctuating part of the orienting potential is 
small (relative to kT), This model, while necessarily 
limited, for the above-noted reasons, is a sounder 
point of view than the approach of other workers who, 
for the most part, have arbitrarily assumed that the re­
orientational motion is statistically independent from 
director fluctuations, etc. 5-

7 This approach was re­
cently summarized by Polnaszek and Freed (PF). 6 Our 
discussion here does indeed emphasize the statistical 
dependence of the reorientational motion upon the di­
rector fluctuations. Furthermore, another weakness 
of the previous treatments, as PF have already pointed 
out, is that one defines the motion of the molecule with 
reference to the director frame, which is fluctuating in 
time. This is physically unsound, In fact, it intro­
duces an incorrect statistical dependence of the molecu­
lar reorientation on the director fluctuations even while 
there is a presumed statistical independence, That this 
is so can be seen as follows. Consider a hypothetical 
spin probe whose geometry can be changed. Let the 
probe be partially ordered by a fluctuating director 
about which it reorients, Now let the probe become 
more spherical, so its ordering with respect to the di­
rector is reduced ultimately to zero. The motion of the 
spherical probe should now be insensitive to director 
fluctuations, However, when the calculation is per­
formed relative to a fluctuating coordinate frame, PF 
point out there are spurious cross-terms which appear 
and lack the property of going to zero when the probe 
ordering goes to zero, Thus PF argue such terms 
should be ignored, since they arise from a physically 
unsound feature of the usual model. More recently, 
however, Doane and co-workers5 have reevaluated the 
spin-relaxation theory and have chosen to explicitly in­
clude these terms, Their cross-terms do indeed have 
the undesirable feature of remaining finite even as the 
order parameter goes to zero. We note that our treat­
ment given here completely avoids such physically un­
sound features, and is thus able to clarify the existence 
and nature of cross-terms between the molecular re­
orientation and the orienting potential fluctuations. 
Cross-terms are indeed to be expected precisely be­
cause the reorientation is statistically dependent upon 
the orienting potential fluctuations when, and only when, 
the molecule of interest is partially ordered. 

The formal development of these ideas is presented 
in Sec, II in terms of stochastic-Markovian processes. 
The results are then applied in Sec. ill to a discussion 
of fluctuations in the director which are of importance 
in the nematic phase. We obtain in that section de­
tailed expressions for the spectral densities generated 
by the motions and needed for spin relaxation. Section 
IV deals with quasicritical fluctuations in the ordering, 
which are important near the nematic-isotropic phase 

transition. The matter of localized structure fluctua­
tions, which is probably most important for small 
probe molecules, is discussed in Sec. V. The usual 
expressions which relate magnetic resonance relaxation 
to the spectral densities are summarized in Sec. VI. 
A summary and conclusions are given in Sec. VII. In 
Appendix A we suggest explicit Fokker-Planck equa­
tions for the normal modes of director fluctuations and 
discuss the role of translational diffusion; while in Ap­
pendix B we discuss the validity of the use of motional­
narrowing relaxation theory for the director fluctua­
tions, since they are characterized by a spectrum of 
relaxation times with (at least some) very slow compo­
nents. 

II. GENERAL FORMULATION 

A. Reorientational relaxation 

Our starting point in describing the reorientational 
relaxation of a liquid-crystal molecule under the ef­
fects of an orienting potential is a Smoluchowski equa­
tion for the motion of a single molecule4

•
6

: 

aP(n,t)/at=-M· R(n,t)· {M+[MU(n,t)]/kT}P(O,t)' 

(2. 1) 

where P(n, t) is the time-dependent probability distri­
bution in orientation of the molecule relative to a fixed 
coordinate frame, where n = a, {3, y represent the Euler 
angles specifying the orientation. Here M is the vector 
operator which generates an infinitesimal rotation of 
the molecule: 

M=irx(V,), (2. 2) 

R(n, t) is the rotational diffusion tensor, and both R 
and M are defined in a molecular coordinate frame (x', 
y', z'). Then, the operator M has the properties 

M 2 ¢kM(n) = L(L + 1)¢f M(n) , 

M.¢kM(n) = [(L =i: K) (L ± K + 1) ]1 12 ¢f.1,M(n) , 

M,,¢kM(n)=K¢k:M(¢)' 

(2. 3a) 

(2. 3b) 

(2, 3c) 

where ¢kM(n) are the eigenfunctions of M 2 and M.,, L 
is the "azimuthal quantum number" and K its compo­
nent along the z' axis, and 

(2, 3d) 

The ¢kM(n) are the normalized generalized spherical 
harmonics: 

(2, 3e) 

We further assume that it is possible to diagonalize R 
in a body-fixed axis system such that it is time inde­
pendent, an assumption implicit in Brownian-motion 
models. We choose the (x', y', z') frame to be just these 
axes. The orienting potential u(n, t) is the potential 
of mean torque, and the mean orienting torque :1' is giv­
en by 

a-(n, t) = iMU(n, t) . (2. 4) 

This orienting potential and its associated torque are 
allowed to be slowly fluctuating in time. They would in­
clude hydrodynamic fluctuations in the director. 
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This form of the Smoluchowski equation requires the 
following assumptions4

: 

(1) Angular momentum relaxation occurs very rapid­
ly, and it is possible to introduce a coarse-graining in 
a time interval such that the angular momentum is at 
equilibrium while the molecule has not appreciably re­
oriented. This also implies that the orienting potential 
is not too large. 

(2) The rapidly fluctuating components of the torque, 
which induce the reorientation of the molecule, are av­
eraging to zero in times short compared to the molecu­
lar reorientational relaxation times. This assumption 
does not allow for localized coupled modes of reorienta­
tion of molecules such as a simultaneous flip of two 
neighboring molecules. The latter type effects can be 
introduced into the Smoluchowski equation (2. 1) to a 
reasonable approximation by the introduction of an R 
with "memory" such that 

aP(n, t) = -M · (
1 
dTR(t- T) • [M- i3/kT]P(O, T), (2. 5) 

at } 0 

where the Fourier-Laplace transform of R(t) is 

R[s]=(kT) 2 K-1[s] (2. 6) 

and K(t) is a torque correlation function: 

K(t) = (..:lN{t= O)..:lN{t)) , (2. 7a) 

where 

~( t) = N( t) - &' (2. 7b) 

That is, ~ is the rapidly fluctuating part of the total 
time-dependent torque N(t). This separation of torque 
components into parts that are fluctuating at rates fast­
er than (or comparable to) molecular reorientation 
rates (i.e. , AN) and those that fluctuate more slowly 
(i. e. , the time-dependent part of &") is a simplifying 
approximation. 4 When we use exponential decay with 
relaxation time TM for K(t), we obtain (s-iw) 

R(w) = R(0)[l - iwTM] 

with 

We shall proceed with the simpler Smoluchowski 
equation (2.1) to obtain our results, but we will later 
comment about the effects on our results of including 
the "memory" in R. An examination of Eq. (2.1) makes 
it clear that if there are director fluctuations yielding 
fluctuations in U (n, t), then the reorientational motion 
of the molecule expressed by P(n, t) may not be as­
sumed to be independent of these director fluctuations. 
We have already noted this fact in the introduction. 

B. Fluctuations in the orienting potential 

Now the fluctuations causing the time dependence in 
U(n, t) may be regarded as a random-stochastic pro­
cess. That is, Eqs. (2. 5) or (2.1) may be shown to be 
useful approximations to the 1-particle orientational 
distribution function involving averaging the N-particle 
Liouville equation over the other N -1 particles. The 
dynamical effects of the other N - 1 particles on the Nth 

then take on a random nature which may be analyzed 
by stochastic methods. Thus, under the assumption 
that the time dependence of u(n, t) derives from its de­
pendence on a set of variables 2 (e.g., the instanta­
neous orientation of the director relative to a fixed lab 
axis), and the stochastic behavior of 2 is governed by a 
stationary Markov process, we may write 

aJ(2,t)/at=-rxf(2,t), (2. 8) 

where r x is the appropriate Markov operator for the 
distribution function /(2, t). We show in Appendix A 
that the well-known hydrodynamic theory of director 
fluctuations1

•
2 may be expressed in the form of Eq. 

(2. 8). 

C. The composite process 

We now have from Eqs. (2. 1) and (2. 8) that the com­
bined distribution function in n and 2 may be regarded 
as a multidimensional Markov process. That is, we 
may combine Eqs. (2. 1) and (2. 8) into 

ap(n, 2, t)/at = - (r O + r x)P(n, 2, t) (2. 9) 

with 

r0 =M· R· [M+MU(2)/kT] (2. 9a) 

[or, if Eq. (2. 5) is used, one uses the Fourier-Laplace 
transform of r 0 , or ro[s ], which is given by Eq. (2. 9a) 
but with R replaced by the R[s] of Eq. (2. 6)). Here 
P(n, 2, t) is the joint probability distribution function in 
both n and 2 and is Markovian. The general validity 
of this "stochastic Liouville" approach has been dis­
cussed by Kac8 and by Kubo, 9 and ample examples of 
its use are found elsewhere. 6•

10
-

12 Thus, the general 
problem we face is the solution of Eq. (2. 9) for ap­
propriate choices of r z• 

Actually, because of the assumption that 2 is fluc­
tuating at rates significantly more slowly than is n 
(i.e., the molecular reorientation), it is possible to 
simplify the solution of Eq. (2. 9). Let T

0 
be a typical 

relaxation time of 2 and TR of n. Then, since Til 
» T;

1
, we may assume that a molecule reorients in a 

time t ~ TR which is short compared to T01 so that 2 ap­
pears essentially static or fixed. Then, on longer time 
scales t ~ T 0 the variable 2 "relaxes." Thus, we may 
solve for the distribution function P:a:(n, t) which is the 
solution to Eqs. (2. 1) or (2. 9) with an arbitrary value 
of 2 [i.e. , the solution of Eq. (2. 9) with r z = 0 ], and 
then solve Eq. (2. 8) for /(2, t) separately. Then we 
may approximate: 

P(n, 2, t) ~P:a:(n, t)/(2, t). (2. 10) 

This approach in solving the "diffusion" equation (2. 9) 
is closely analogous to the Born-Oppenheimer approxi­
mation in molecular quantum mechanics. [Note, how­
ever, we are assuming by the use of Eq. (2. 9) that 
f(2, t) is independent of the distribution in the orienta­
tion of the molecule.] This analogy is perhaps clearer 
when we recognize that the Markovian operator r 0 

(written for arbitrary 2) will have eigenfunctions um and 
eigenvalues Em such that 

(2. lla) 
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Then the general solution to Eq. (2.1) for fixed 2 is 
given by 

(2. llb) 

with the cm the expansion coefficients. Similarly 

/(2, t) = L d0 I v(2)) e-<•
1 (2, 12a) 

Q 

with 

E q. (2. 17) as required by the delta function representa­
tion of Eq. (2. 16), but the dependence upon 20 properly 
appears in Eq. (2.19). 

The time evolution of Eq. (2. 19) based upon our mod­
el is that for short times 

P(20 I 2, t) ~ o(:S - 2 0) , 

so that 

P(n0,20 ln,2,t)~Px
0
(n0 tn,t)o(2-20), t:5 TR. 

(2.12b) (2.19a) 

Thus 

P(O, 2, f) ~ L llm,ol um(O, 2)) I v
0
(2)) e-(Em+<olt. (2. 13) 

m,q 

The actual forms of these eigenfunctions and eigenval­
ues may be obtained from previous work6•13•14 and are 
discussed further below. Then our separability ap­
proximation is based upon having t: 0 « Em for q and m 
* 0 where t: 0 = r;1, Em= T~

1 o: Ti
1 (by analogy with the 

Born-Oppenheimer method). 

Note that we shall be interested in the unique equi­
librium distributions P ••. x(O) and f •• ( 2). They are as­
sociated with the zero eigenvalue solutions in Eqs. 
(2. llb) and (2. 12b), respectively. That is, 

P •• ,x(O)= ju0 ), E0 =0 

J • .(2) = I v0 ), 

Also 

t:0 =0. 

P 0.(0, 2) ~ P •• ,x(O)f •• (2) . 

(2. 14a) 

(2.14b) 

(2. 14c) 

It follows from the form of the Smoluchowski equation 
(2. 1) for fixed :S that 

P ••. z(O)=exp(-U(0,2)/kT]/ f dOexp[-U(0,2)/kT]. 

(2.14d) 

Also, we shall need the conditional probability distri­
bution subject to the initial conditions that 

(2.15a) 

or 

(2. 15b) 

Now we may use the eigenfunction representation of the 
Dirac delta function {e.g. , 

o(O - Oo) = L I um(n, 2)) (um(Oo, 2) I , (2. 16) 
m 

written in standard bra-ket notation), to obtain the con­
ditional probability distribution functions: 

P:a;(Oo In, t) = L I um(n, 2)) e-Emt (um(Oo, 2) I , (2. 17) 
m 

f{2ol 2, t) = L I v0{2)) e-<•t (v.(2) I , (2.18) 
q 

and 

(2. 19) 

by Eq. (2. 13). Note that only 2 appears throughout 

Then, over the longer time scale, t > TR, when 
P:,,:(00 1 n, t) has relaxed to P.q,:,,:(O), Eq. (2.19) takes on 
the form 

(2. 19b) 

We might note also that the operators r O and r x are 
typically not Hermitian. However, as shown else­
where, one can convert r O to the Hermitian form f si 

by the simple "symmetrizing" transformation: 

f =[P .,.(0)]-112 r [P .,.(0)] 112 
n eq,_ n eq,-

with Hermitian eigenfunctions 

I Gm(n, 2)) = [P •• ,:a:(0)] "112 I um(n, 2)) 

and 

(2. 20) 

(2. 21a) 

(2. 21b) 

The operator r z may be dealt with in a similar manner. 
One may conveniently work with the original or "sym­
metrized" forms in developing the general expressions; 
we are using the original forms here for compactness. 
The I Gm) are not only a complete orthogonal basis set 
(as are the I um)), they are also normalized. They may 
be expressed as linear combinations of the <t>f M(O) of 
Eqs. (2. 3). 13 

Finally, we note that for these Markovian probability 
functions we can write 

(2. 22) 

where P(00, 2 0 , n, 2, t) is the joint probability distribu­
tion in 2, 2 0, n, and 0 0• 

D. Spin-Hamiltonian and correlation functions 

The orientation-dependent part of the spin-Hamilto­
nian, JC1(0) may be written as: 

:IC1{0)= L {- 1t:n~KM{O)F~(L,K)AtL,M) , (2. 23) 
L,K,M 

where the F ~ <L ,K > and AtL ,M > are irreducible tensor 
components of rank L, with F' in molecule-fixed co­
cordinates, while A is a spin operator in the laboratory 
axes {whose z axis coincides with the applied de field). 
The subscript µ. refers to the type of perturbation and 
the particular nuclei involved. Here, the Euler angles 
0 = (a, /3, y) refer to the rotation of the coordinate sys­
tem from the molecular {x ', y ', z ') axis system into the 
stationary laboratory (x, y, z) coordinate system. The 
orientation of the director axis system {x", y ", z ") 
relative to the laboratory frame can be specified by 
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Euler angles >l! which can be related to the two polar 
angles 0 and ¢ such that >l! = (0, 0, ¢). 

The typical perturbation terms in Eq. (2. 23) require 
L = 2. As a result of the reorientational motion relative 
to the fluctuating director, JC1(n) will be partially av­
eraged, and its average value is given by 

0C1 (n)) = L (- 1t (:n~i~(n)) F ~ (2,K > At2·M > , (2. 24) 
L,K,M,µ. 

where 

(2. 25) 

where Eq. (2.14c) is used for the approximate equality. 
The spin relaxation in the motional-narrowing region 
is determined by the correlation function OC1(n, t)JC f(n0, 

t = 0)) - (JC1(SG)) ('.JC f(O0)). Since the only time depen­
dence in '.JC1(SG) occurs in the :n~KM(n) due to their de­
pendence on n, it is sufficient to study the correlation 
functions: 

c-KM ,-K'M'(t) = (:n~x,~(O):n!x,>,z,(n0)) - (::o!x}M(O)) (:oi,2/J,(n0)), 

(2. 26) 

where Eq. (2. 25) is used and 

(:nfcM(n):nr::,(no)) = J d2o J dSGo'.DfZ,(no)P.o<no, 2o) J d'Z J dSG :nfcM(n)P(no, 'Zol n, 'Z, t) 

Se J d'Zo/eq('Zo) J dOo Peq,:;;:(n)'.Df:Z,(no) J d'Zf('Zo I 2, t) J dO P:;;:(no In, t):nfM(n) . (2. 27) 

It is useful to introduce the modified conditional prob­
ability functions P:;;:(O0 1 n, t) andJ(20 12, t) by 

Px(n0 I n, t) =Px(n0 I n, t)-P •• ,:a:(n) , 

J(2o I 2, t) = /(20 I 2, t) -J .• (2) . 

(2. 28a) 

(2. 28b) 

These forms have the property of going to zero as t 
-oo. We then let 

(2. 29a) 

and 

(2. 29b) 

Thus A and E measure the deviations of the respective 
distribution functions associated with arbitrary but 
fixed 'Z from their values for the equilibrium value 'Zeq• 

One may then use the general stationary Markovian 
properties: 

J P(x0 I x, t) dx = 1 , (2. 30a) 

so 

J P (x0 I x, t) dx = 0 (2. 30b) 

and 

so 

(2.31b) 

to show that the correlation function equation (2. 26) 
may be rewritten as 

cLL' (t)- c<l>LL' c<2)LL' (3)LL' •KM,-K'M' - -KM,•K'M' + -KM,-K'M' + C-KM,-K'M' , (2. 32) 

where 

X f dO:nfM<m[J d'Zf •• ('Z).P:;;:(noln,t)] ' 

C~i¼',1:~.w(t)= f d'Z0 J •• <:so) f d2f(Eol2,t) 

(2. 33a) 

X [J dQo:nt:Z,(SGo) • A('Zo, Oo)] [J dSG:nfcM(SG)A(2, 0)] , 

(2. 33b) 

C~x,¼',1:~.M'(t) = f d'Z0 f.q('Zo) f d2 ](20 I 2, t) 

x f dQ0'.Di'.t,(O0)A('Z0 ,O0) f dOE:a:(n0 ln,t):nfy(O). 

(2. 33c) 

Note that in the limit of no ordering, since P •• ,x(n) and 
P:,:(O0 1O, t) become independent of 2, it follows from 
Eqs. (2. 29) that A('Z, n) and Ex(n0 In, t) both go to zero. 
One then sees that c(

2>(t) and cm(t) given by Eqs. 
(2. 33b and c) must be zero. Then, in this case, we 
are left with the simple isotropic result 

(2. 34) 

Equation (2. 33a) is closely related to the correlation 
function appropriate for just the molecular reorienta­
tional motion under the potential U(O). It just involves 
first averaging the distribution functions in n over the 
equilibrium distribution in 'Z. In fact, when the fluctua­
tions in 2 are small enough, then we may expand 
A(2, n) and E:,:(f20 1 n, t) in power series in 2: 

A(Z,n)=2a 0 >(n)+2 2 a<2 >(n)+···, 

Ex(n0 I n, t) = 2E<1 >(n0 In, t) + 2 2Em(n0 In, t) + • • • 

(2. 35a) 

. (2. 35b) 

Then, since we may define 2 relative to its mean taken 
as zero, it follows that 

f d'Z f.0 (2)2 = 0 (2. 36) 
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so that 

c:B, ,-K 'M'(t) 

= f dflo f dfl:nf:Z,(no)P.o,Xeq(flo).P:,,:.Q(no In, t):nf,:M(n) 

+ terms in f 2 2 / 00(2) d2 + • ... (2. 37) 

For the case of small fluctuations in 2 we will find it 
convenient to keep only lowest order terms in 2. The 
leading term in Eq. (2. 37) is just the correlation func­
tion for molecular reorientation for a static value of 2 
= 2 00 • The next order terms are proportional to the 
mean square fluctuations in 2 (see below). 

Equation (2. 33b) can be related to the relaxation term 
which arises from fluctuations in 2 (e.g. , from di­
rector fluctuations). In order to obtain correspondence 
with the previous theories of relaxation from e.g. , di­
rector fluctuations, 5•

6 it would be necessary to replace 
the two terms in braces in Eq. (2. 33b) by 2 
X2o(:n\',!,(fl0)) (:nfM(n)), i.e., the <l(2, n) would have 
to be replaced by 2P00 ,:.:

00
(n). This, first of all, corre­

sponds to keeping only the term linear in 2 in Eq. 
(2. 34a). Secondly, we have to study the character of 
.::l<1>(n) in some detaiL 

We have, so far, not specified the nature of 2 corre­
sponding to a specific model. In order to proceed fur­
ther it is convenient to select a specific model. 

Ill. FLUCTUATIONS IN DIRECTOR ORIENTATION 

We now study the simplest useful form for P 00,:,,:(fl) by 
choosing a simple, one-parameter functional form for 
U (fl, 2). Further, we explicitly define 2 to correspond 
to the hydrodynamic model of director fluctuations in 
which the director n fluctuates about its mean position, 
but the magnitude of the ordering potential is unchanged. 
That is, we use Eq. (2.14d) for P 00,x(n), while we let 

U= e:62 >:ng0(n -\JI)= e:62 >½[3 cos2(J3-0)-1]. (3. 1) 

Here 2 - '11, the Euler angles for the director relative 
to the lab frame (see above). More precisely the value 
of \JI at the molecule of interest is a function of all the 
hydrodynamic modes which, taken together, constitute 
the Markov process in 2, (cf. Appendix A). While tJ-\is 
form is similar to, it should not be confused with the 
Maier-Saupe form; the latter is a mean field approxi­
mation, while in Eq. (3. 1) we retain the leading term 
in the expansion of the "potential of mean torque" in a 
series in :nffo(n - \JI). 6 Equation (3. 1) represents the 
feature that the molecule reorients toward the instan­
taneous direction of n. One uses the properties of the 
generalized spherical harmonics16 to obtain 

(3. 2) 

Then, for small fluctuations in the angle 0 we may ap­
proximate :n};d(- w) to terms linear in e by6•13 

:n.W(-w) = (-)N:nJ!~N(\JI) = (-)N:nJ!~N(o, e, ¢) 

~ [lio,N+½f"SB(oN,-1 eiq, - <'iN,+1 e-i4>)) (3. 3) 

(with the terms quadratic in 0 also given by PF). Then 
we have 

U /kT~ - X {:ng0(n) + ½/60(:ng, _1 (n) ei<t> - e-i<t>'.D g, 1(n) ]} 

(3. 4) 
with '>.._ = - e:J2> /kT. Then to lowest order in 0 we write, 
using Eqs. (2. 29a) and (2. 35a): 

P 00 ,'11
00

(fl)=exp[X:n~0(n)J/ f dflexp(x:n~0(fl)] (3, 5) 

while 

2A (l >(n) = ½/60X (:n~!~1(fl) ei<t> -:nJ~Hn> e-i<t>] P.o, '11eq(n) ' 

(3. 6) 

where in Eq. (3. 5) we have let w00 = (0, 0, 0). It then fol­
lows from (1) the orthogonality properties of the llf M(n) 
and (2) the fact that the expansion of P 00 '11 (fl) in terms 
of the C,O.N. set ((2L + l)/81r 2 )1 12 1lfM(S1)

0

~nly involves 
:Dfi'0(fl) terms by symmetry, that 

(3. 7) 

Note also that for the same reasons the conventional or­
der parameter S, defined by 

(3. 8) 

is, to terms first order in 2 (or 0), simply given by 

(3. 9) 

and is unaffected by the director fluctuations to this or­
der. This establishes one aspect of the correspondence 
between our model and the requirements of the usual 
hydrodynamic model of director fluctuations. 

We may now evaluate Eq. (2. 33b) by substituting Eq. 
(3. 6) for <l(2, n). Then, with the aid of the contraction 
form16 

!,!)KM fl !,l)K'M' fl = _LJ, 2J+ 1 !,l)m'm fl ' L ( ) L' ( ) "'""' ( • >( LL'j ) ( LL'j ) j ( ) 
,,m,m KK'm' MM'm 

(3. 10) 
where 

(
LL'") 

KK'~' 

is a 3 -j symbol, one obtains the result 

C~~/,M, -K'M'(f) 

= }:\.2 [K(O, 1)) 2 (0o0 eH<q,o-4>>) <'iK,K'<'iM,M'<'iK,O <'iM,±1 

(3. 11) 

with :\.sea¾ X, where the correlation function in Eq. (3. 11) 
is 

(Boee•i<<t>o-<1> >) = f d'¥o f d'¥ Peo<wo)P(\Jlo I w' t)Boee•i<4>0-<1>> 

(3. 12) 

and K(O, 1) is given in Table I with the averaging of the 
:Dfi'0(n) as given by Eq. (3. 9). 
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TABLE I. Mean square values of the rotation-matrix elements: 
:DK1,(a), a 

K(K, M)b,o Function of (~0) 0 and <:oto) o••• Function of (:o200 ) 0 and ;>,. ••• 

KM 

0 0 1 2 ( 2 18 j (~ 2 5+7 :Doo)o +35 (:D o)o - o)o 1 (1 9) 2+ 2 -4A (uio)n- (:oio)~n 

0 1 1 1 12 j 
5+7 (ifoo)o -

35 
(:o o)o 3 ( 2 2A :Doo)o 

0 2 l 2 ( 2 3 ( 4 
5- 7 :Doo)o+ 35 :Doo)o l (1+2) (:02 > 4 - 4 8)\ 00 o 

1, 1 I 1 ( 2 8 ( j 5+14 :Doo)o +35 :D o)o 1 (1 1) 3+ 6-7 (:oio)o 

I, 2 
1 1 2 
5- 7 (~o)o- 35 (:o!o)o l ( 1 1) 6+ -6+ 4, (~o)o 

2, 2 12(2 1(4 
5+7 :Doo)o+ 70 :Doo)o 5 ( 7 1 ) 24+ 24-16;>,. (uio)o 

acf. Ref. 17. 
bK(K, M) "= f Peq(n) (I u}A/ I 2 - (u30(0) )6 6K, o6At, o) dll, with Peq(D) 
given by Eq. (3. 5) and the angular brackets with subscript (, 
imply averaging as in Eq. (3. 9). 

°K(K,M) =K(-K, -M) =K(-K,M) =K(M,K). 
d("I) Bohi = (1/3?..) {e;1. I z 0 - (1 + (2/3?..) l}, (:o to) 0 = (7 /12) {5(t- (3/2A) J 

x (:o~o)o+l}, and zo=fiexp(AX2)dx. 

It is easy to see that for small director fluctuations 
lin(r) which are orthogonal to n(r), that we have the re­
lation 

(3. 13) 

where n. = nx ±in,, and n x and n, are the x and y compo­
nent of lin(r). We may thus employ the hydrodynamic 
theory wherein the fluctuation /in(r) is a superposition 
of plane-wave disturbances given by Fourier compo­
nents: 

(3. 14) 

where V is the sample volume. 1•2 The usual analysis 
leads to purely viscous type of relaxation for the qth 
mode given by 

(3.15) 

with a= 1 or 2 corresponding to distortions in the x-y 
plane but with n1(q) parallel to the projection of q in the 
x-v plane and n2(q) normal to n1(q). 1•2 For simplicity 
in presentation, however, we shall use the "one con­
stant approximation" so that we may write1•2 

(3. 16) 

with i= x or v, and r;1 =Kq 2/71, where K is the average 
elastic constant of the liquid crystal with 71 an average 
viscosity. Furthermore, the mean-square values in 
the one constant approximation are 

(3. 17) 

Equations (3. 15) or (3. 16) with Eqs. (3.17) may equiva­
lently be characterized by Markov probability distri­
butions (or equivalently, diffusion equations with dif­
fusion operator r ,i,). This is shown in Appendix A. 
However, once the identification of Eq. (3.13) is made, 
we may simply use the result from previous work that5 •6 

(3. 18) 

where wc = Kq~/11 is the cutoff frequency, which is in­
troduced since the hydrodynamic theory should break 
down for wavelengths Ac= 21r/ wc comparable to molecu­
lar dimensions. Also if>[x] is the error function, and 

(3. 19) 

[Eq. (3, 19) is corrected for the effects of finite trans­
lational diffusion in Appendix A]. Thus, Eq. (3. 11) be­
comes 

(3. 20) 

which is the usual result. 4•
5 It arises, _however, be­

cause of the simple form of K(O, 1) given in Table I. 
This simple form would not persist if we were to in­
clude higher order terms in the expansion equation 
(3. 3). Recall also that the result Eq. (3. 21) is based 
on the one parameter potential of Eq, (3, 1). It will 
necessarily be modified if further terms E~L >::o~(O - '1') 
for Leven are included in the expansion of U. (These 
are the only terms required when the distribution of 
molecular orientations is axially symmetric with re­
spect to the director orientation). 

We are now left with the term c<3> of Eq. (2. 33c). It 
involves the combined time dependences of 2: (or >Ii) and 
n, and thus has the property of being a cross term. 
This cross-term arises because of the statistical de­
pendence of O(t) on 2:. An evaluation of Eq. (2. 33c) de­
pends on the properties of E:a:(00 In, t), which derives 
from P;a:(Ool n, t) by Eq. (2. 31b). Now P;a:(Ool n, t) is the 
solution to Eq. (2. 1) given by Eq. (2.18). It is first 
necessary to diagonalize f O given by Eq. (2. 20) to ob­
tain eigenvalues Em and eigenfunctions I Gm(n, 2:)). Such 
solutions are discussed in several places. Because of 
the complicated form of these solutions, the basic 
physical features of Eq. (2. 33c) will be masked by de­
tail. Thus, for clarity in presentation, we shall use a 
rotational diffusion model which yields a very simple 
form for P:,,:(00 1 n, t): viz, a strong collision model. In 
this model, a molecule reorients by a strong collision 
which destroys all memory of its previous orientation. 
The new orientation is weighted by the distribution 
function Peq,,i,(n). In this case, one has13 

P,i,(00 I 0 0 , t) = P 0 q,,i,(O)+ [li(O - 0 0)-P.q,,i,(O)] exp(- t/rR), 

(3. 21) 

where TR is the mean time between collisions and rR1 

= R of Eq. (2. 8). It then follows using Eqs. (2. 29) that 

(3. 22) 

Substitution of Eq. (3. 22) into (2. 38c) then yields 

(3. 23) 

Also, for this model, when we neglect terms quadratic 
in 2:, we have from Eq. (2. 37) 
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C~}~ ,K'M'(t) = f d!20:of !,(n0)P.Q, ... q(O0) ['lJfM(n0) 

-f dOPeQ,'Veq(n):DkM(n)] exp(- t/TR). 

(3. 24) 
When a potential U, appropriate for cylindrical sym­
metry in the ordering tensor of the molecules, is used 
[e.g., Eq. (3. 1) ], then we have for the strong-collision 
model 

c}liJ,K'M'(t) = c}lJ(t)oKK'oMM' = K(K,M) e- thR oKK,oMM, , 

(3. 25) 

where the K(K, M) are given in Table I. The solutions 
for K(K, M) have also been obtained numerically for the 
Brownian diffusion model, and are given in Table II. 
Actually, since this is a more complicated solution we, 
for simplicity only, give the KKM defined in terms of the 
zero-frequency Fourier transforms of Eq. (3. 24), so 
their meanings are not identical to those defined in 
Table I. 

Our results may now be summarized by 

CKM(t) = c}lJ + cJ?J + cJ?J= K(K, M) e-thR+ OK ,oOM ,•1 

xfs 2ar112¢(wc>1 12(1- e-tlTR). (3.26) 

Since we have in our model that 

(3. 26') 

it follows from Eq. (3. 26) that initially 

TABLE II. Zero-frequency spectral densities J};J(O) for the 
isotropic Brownian reorientation of a molecule experiencing a 
reorienting potential U(/3)/kT = - "llcos2{3. The table lists 5KK,M 
= 5J}lJ(O)/ TR expanded according to 5KK,M = (a 0 + a1S+ a2S

2 +a3S
3
) 

with S= (llijo(0,{3, 0)) 0 . a,b,c,ct 

K M ao a1 a2 a3 

0 0 1.000 3.008 -9. 704 5.654 
0 1 1.000 1.169 -3.157 0.786 
0 2 0.992 -1. 998 0.824 0.191 

S>0 1 2 0.993 -0. 981 -0.537 0.459 
2 2 1. 003 2.111 0.784 - o. 133 
1 1 0.992 1.116 -1.077 10.716 

0 0 1.000 2.118 -5.112 -10. 703 
0 1 0.998 0.797 -5. 234 -5. 046 

S<0 0 2 1.000 - 2. 165 0.944 -3. 956 
1 2 0.998 -1. 278 -1.891 -2. 666 
2 2 0.999 2.032 -0. 253 -2.508 
l l 1. 000 -0. 601 -8. 405 -22. 900 

acf. Ref. 6, 13, 17. We thank Dr. C. F. Polnaszek for com­
puting these results. 

bK(K,M) =K(M,K) =K(K,-M) =K(-K, -M). 
°For S > 0, valid for S < 0. 85; For S < 0, valid for S >- 0. 42. 
ctThese results for KK M may also be used for JJJ(w) when 
w2rli « 1, so that Jl~ (w) = J}ll(O); but they become only ap­
proximate, when w2rj ~ 1, (cf. Refs. 6, 13, 17 for the gen­
eral case). Also, anisotropic diffusion is properly discussed 
in Refs. 6, 13, 17. For the limit of very anisotropic rotation, 
such that the parallel and perpendicular components of R 
[cf. Eq. (2.1)] obey: R,,»R.L (andR 11 » I "J-..IR.J, then Ko,M is 
obtained from the' table with TR=(6R_J-1, while 5KK M"'° (K2R 11)-

1 

for K.,_ 0. [The result for Ko,M is correct for all degrees of 
anisotropy. ] 

i. e, , it just depends on the mean square distribution in 
molecular orientations; but for t >TR, this initial cor­
relation function decays to zero and is replaced by 

CKM(t) ~ c}2J{t), t» rj/ 

representing the slower director fluctuations. Of 
course, when i\ - 0 corresponding to no ordering of the 
molecule, CKM(t)- C 1<1,J(t) for all times, independent of 
director fluctuations, as it should. 

We are usually interested in the Fourier transforms 
of the CKM(t) given by 

JKM=sReKKM(w)=Re J
0

00 

CKM(t)e-iwtdt (3. 27a) 

and 

J}~=ReKJ/J{w)=Re J
0

00 

Ci,~(t)e-iwtdt. (3. 27b) 

Thus, one obtains from Eq. (3. 26) 

J KM(w) = K(K, M)T R/(1 + w2 Tt) + ts 2
aoK,OoM,±l 

x[jf u(1;cl -(1 + ) 7~) ~ w~1 2] , (3. 28) 

where5
•
6 

(3. 29) 

p = 0 if w/ WC< 1; p = 1 if w/ WC > 1 . 

Thus, for small w/wc, U""31-(2ft/7r){w/wc)112; while 
for large w/wc u-0. The effect of w

0 
is to suppress 

the high-frequency spectral densities. 

When we consider the memory in R(t- T) of Eq. (2. 5), 
then one has that TR/[1 + w2Tt] in Eq. (3. 28) is to be re­
placed by TR(0)/[1+ EW 2TR(0)2] for•the exponential mem­
ory [cf. discussion of Eq. (2.5)], where TR(Or1=R(O) 
for the strong collision model, and E = [1+ TM/TR(0)]2. 
Modifications for Brownian diffusion and anisotropic 
diffusion tensors R are discussed by PF. 

The effect of the cutoff on the contribution from Ck3il(t) 
is crucial. Thus, if we had let wc-oo in evaluating its 
contribution to Eq. (3. 28), we would have obtained, in­
stead of T /(1+ w 2T2) (2/1T)w~12 , the quantity /ri(TR/ 
ft) (1+/1+?)/(l+x 2

), wherex 2=w2Tt, which is 
very different behavior, because of the incorrect in­
clusion of modes q > %· 18 The form given in Eq. (3. 28) 
results from the more general expression 

J ti!l(w) = -¾s2[kT71/47T2K2][0!-l/2tan-l(qc/.fa) 

(3. 30) 

where Cl! =s ( T·;/ - iw)71/K and a* is its complex conjugate. 
Now using the inequality of Eq. (3. 27) we have 

I qc/val 2 =q~/1 al~ (Kq~/71)TR= We TR« 1. (3. 31) 

Thus, only the lowest order terms in q
0
/va are retained 

in Eq. (3. 28). For typical values of K/71 ~ 10-s cm2 / 
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sec, qc = 21r/"A. with X ~ 20 A, and TR~ 10·10 sec, one has 
we ~ 109 sec·1 and 

J <3 >(w)/J <2 >(w)= [ TR/(1 + w2Ti)] (2-f2/1r) 

x(wcw)112u(w)"1 w~3Xloe 0.1. (3. 32) 

In concluding this section we remind the reader that 
the cross term in Eq. (3. 28) is not the only one. There 
are corrections to the leading term in Eq. (3. 28) that 
appear in lowest order as mean squares of the director 
fluctuations [cf. Eq. (2. 37)], but are not dependent on 
the T., and these could well be comparable to the cross 
term of Eq. (3. 28) in some cases. 

Also, we note that an expression like Eq. (3. 28) may 
require that, e.g., the first term be corrected for 
anisotropic diffusion as outlined by PF and/ or for more 
complex ordering (cf. PF). 

IV. ORDER FLUCTUATIONS NEAR THE PHASE 
TRANSITION 

The analysis of the quasicritical fluctuations near the 
isotropic-nematic phase transition begins in an analo­
gous manner to that for director fluctuations. Thus, 
we choose the one-parameter functional form for 
U(O, ,J,) given by Eq. (3. 1), and expand it according to 
E q. (3. 2). However, here we assume that the fluctua­
tions are in the magnitude as well as the orientation of 
the potential, and Xeq = 0 for the isotropic phase, so that 

Peq,Xeq(n) = l/8,r 2 (4. 1) 

while 

Peq,x(_O) = exp[X:D~0(O - ,i,) J/[Jan exp[X:o~0(O - 1/J)] , (4. 2) 

where Z includes both X and ,i, (or again more precisely 
the complete set of hydrodynamic modes, cf. Appendix 
A). For small fluctuations in X, we have 

(4. 3) 

with the use of Eqs. (2. 29) and (2. 35) and Eq. (3. 7) 
again applies. One may then use Eq. (4. 3) to evaluate 
the correlation function equation (2. 33b). One easily finds 

C~i>_M. -K, M,(t)= ½(x (t = 0):otM ,(,J,o) X (t):DtM(,J,)) ◊K ,oBK, ,o . 

(4. 4) 
Let us now consider some arbitrary instantaneous value of 
X", while -.J, = (0, 0, 0). Then for this instantaneous set we can 
associate an order parameter in accord withEq. (3. 8) 
[withPeq,~(O)givenherebyEq. (4.2)]. Since:Xissmall, 
one may expand the exponents inEq. (4. 2), and obtain 

(4. 5) 

More generally we introduce the order tensor Qall by19 •1•2 

(4. 6a) 

where n is the instantaneous director whose compo­
nents n{//., nfJ are referred to the lab z axis. Or alter­
natively in irreducible tensor notation: 

QM= Si>~,M(,J,) ~ (X/5):Dg_M(,J,) . (4. 6b) 

Then Eq. (4. 4) becomes 

c.!t>,M. -K• ,M.(t) ~ ((QZ, >o(QM)t > oK,o oK, ,o . (4. 7) 

It is precisely the fluctuations in the QOl.fJ which are de­
scribed by the Landau-de Gennes mean-field theory .21

•
22 

Our approximate result, Eq. (4. 7), which permits us 
to employ this theory to evaluate the correlation func­
tion, required we assume that these fluctuations are 
small in the sense that \ « 1. When one is dealing with 
a small probe molecule, then Eq. (4. 5) become s<P> 
~ ½ \ <P>, and Eqs. (4. 6) do not apply, since QOl.,fJ is de­
fined in terms of the liquid-crystal molecules. How­
ever, since we have X <P> ';::J xs<P> /s, it seems reasonable 
to rewrite Eq. (4. 7) for the probe as 

c~i>,M, -K· ,M,(t) ~ (s¥,>pjST .PY ((QZ, )o(QM)t )BK,aBK, ,o , 
(4. 7') 

where the ratio st>p_lST.P. may be evaluated from the 
actual measured values just below the phase transition. 
This assumes that the ratio is constant over a range of 
S. Since, in a mean field theory, we may write X <P> 
a:. S for dilute solutions of probe, 22 it follows from Eqs. 
(4. 2) and (3. 8) that as long as\ <P> is small, such a con­
stancy is quite reasonable, without even requiring that 
\ be small. [Thus, for a mean-field theory we can let 
\ <P> = u<P•>s/kT (with u<Ps> independent of S) directly in 
Eq. (4.4).] 

Recently, observations of order fluctuations on the ne­
matic side of the phase transition have been reported and 
explained in terms of an extension of Landau-de Gennes 
mean-field theory. 23 In this case Eq. (4. 2) becomes 

Peq,x(O)=ey<n/ f dfleYrn> 

with 

(4. 8a) 

(4,8b) 

where ¼ is the equilibrium value of the potential in the 
nematic phase, while \ 1 now refers to the fluctuating 
component, with '1r specifying the Euler angles between 
its principal axes and those of the dominant component 
(viz. \ii). _Thus, Peq,Xeq(O) is obtained from Eqs. (4. 8) 
by letting "A.1 = 0. 24 The analysis to lowest order in \ 1 is 
straightforward, and one obtains in place of Eq. (4. 4) 

C~i>,M,-K'M'(t) = K(0, M)K(0, M') 

x (X1(t= 0):n~Z,(ir0)X1(t):ntM(ir)) oK,O◊K• ,o , (4. 9) 

where the K(0,M) are given in Table I, and the (:Dt0(O)) 0 
in that table refer to averaging with Peq,Xeq(O). The ef­
fect of these K(0, M) coefficients is to reduce the impor­
tance of the order fluctuations as the ordering becomes 
greater. We now must define 

(4. 10) 

in terms of the change in order tensor AQOl.fJ from its 
mean values in the nematic, i.e., in terms of Eqs. 
(4. 6) with AQOl.fJ replacing Q,.,fJ and Q0M replacing QM. 

Then Eqs. (4. 7) become 

C~i>,M,-K'M'(t) ~ 25K(0,M)K(0,M')((Q!,>o(AQM)t) 1iK,o1iK•,o 

(4. 11) 
and for a probe molecule we multiply this by (s¥_,>Pj 
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ST.P)
2

, Also, in the case of a probe, the K(0,M) refer 
to the ordering of the probe. 

When the Landau-de Gennes approach outlined in Ap­
pendix C is used, one obtains 

(s<i> )2 l kT 112 
C(2) (t) ~ ~ V -a2t 

-K,M,-K',M' = 5 41T3/2 ~ e 
T.P, 

x[f112 -fiae
021 erfc(at112 )]oK, □OK•,ooM,M' 

from Eq. (4. 7), so that 

(4. 12a) 

( 
1 )1/2 

x 1+ ✓ l+(w/w,)2 oK,ooK,,ooM,M' 

(4. 12b) 
with w,=L/v~ 2

• We have not, in Eq. (4.12b), included 
the effect of a finite qc. The expressions resulting from 
Eq. (4. 11) are obtained from Eqs. (4. 12) by multiply­
in!f them by [K(0,M)] 2 and letting v- vN, L-LN, and~ 
- ~o 

By an analysis similar to that used for obtaining Eq. 
(3. 26) and (3. 28) wherein Eq. (3. 26') is used, we again 
have Eq. (3. 23) and we obtain 

K(K M)T (s (i) )
2 kTv 112 

JKM(w)= l+~2 7l + 5 T,P. 41T3/2L3/2 oK,o 
R T.P, 

(4. 13) 

where again wc = Lq ~/ v, and below the phase transition 
the modifications noted for Eq. (4. 12b) are appropriate; 
but since q~1 is of the order of a molecular dimension, 
while ~ is of the order of many molecular dimensions 
near the phase transition, (wtf wc>1 12 « 1, and we can 
neglect the term in (w,/wJ1 12 in Eq. (4. 13). For T 
- T * ~ 1 ° and typical values (L1 ~ 10-6 dyn, a ~ 6 x 105 

erg/cm3 °C, and v ~ 0. 3 P)19 one has wi ~ 2 x 106 sec-1
; 

while for qc = 21r/>-.c and Xc ~ 2 x 10-'l cm, one has wc ~ 3 
x 109 sec-1• Finally, we note for these values and TR 

~ 10-10 sec, 

IJ<
3
>(o),_ 7 

2 "'2 ( w)1 1 2 -7x10-3 while for w»w, 
J (2)(0) - R 1T Wt - c , 

i.e. , a negligible contribution to J (0) and a small but 
possibly nonnegligible contribution to J (w). 25 

The results, Eqs. (4. 12), do not include the effects 
from finite translational diffusion, but if a procedure, 
analogous to that of Appendix A is used, one has that 
these equations are to be replaced by equations of the 
form of Eqs. (B3) and (B4) (cf. Appendix B), e.g., 

( 
(") )2 J(2)( )""' ST',P • ..!._ kT~ 

KM w - s 41T L 
T.P. 

(4. 14) 

with w1=L'/v~ 2
, L'=L+vD, x=L/L'. 

V. LOCAL STRUCTURE FLUCTUATIONS 

PF have suggested, in explaining some observed spin 
relaxation anomalies from spin probes in nematics, 
that the local viscous motions of the larger solvent 
molecules are likely to be slower than the reorientation 
rate of the probe. Thus, the surrounding solvent mole­
cules may be regarded as providing a local structure 
which relaxes on a slower time scale than the probe, 

We may use the formulation of the previous sections 
to deal with such a physical model. In particular if we 
assume an otherwise isotropic liquid with local order­
parameter fluctuations, then by analogy to Eqs. (4. 1)­
(4. 6) we have 

c~j/_M,-K',M'(t) = (S1M'('1to)Sz,M('1>'))0K,OOK,,O , (5. 1) 

where 

(5. 2) 

and S1 is the local order parameter. The PF deriva­
tion is based on S 1 being constant and only the :DJZJ(IJr) 
fluctuate in time but isotropically. Furthermore', a 
single decay time Tx with activation energy charac­
teristic of the viscous modes was assumed for sim­
plicity (although it was also allowed to have anisotropic 
properties). In this case then, one obtains 

c~i> M -K' M'(t) = ¼s 2
1 e-t/ Tx OM M' OK oOK• 0 • (5. 3) 

I t t t t f 

If we do not assume S 1 remains constant, then S~ in Eq. 
(5. 3) is replaced by the mean square value (I S112

), and 
is analogous to the results in Sec. IV for a single q 
mode. Similarly, we can include the effects of a static 
orienting potential by analogy to Eqs. (4. 9)-(4. 11). In 
this case one has 

c~j/,M,-K',M'(t) = [5K(0,M)] 2¼ <I Sz 12> e-t/TxoM,M'oK,OOK•,o. 

(5. 4) 

We then obtain 

(5. 5) 

where Tk-1 = T·;l + T;1 ~ T"il by our requirement that T;/ 
» T;1• This result is similar to that of PF, but differs 
from it in several respects: (1) the local structure con­
tribution includes the correction for the static order-
ing in Eq. (5. 5); (2) the cross-term involving Tk was 
not obtained in the approximate PF treatment, but it is 
always small compared to the sum of the other terms 
provided ( I S 1 1 

2 ) is small as required by our analysis 
utilizing Eqs. (2. 35); (3) the PF treatment yielded the 
corrections to the leading term of Eq. (5. 5) (for iso­
tropic reorientation) due to the local structure, which 
according to Eq. (2. 37) come in, in lowest order as 
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( I S1 I 
2 ), and could in principle be calculated from Eq. 

(2. 33a). 26 

One can also, by analogy with Sec. ill, treat a model 
of local structure fluctuations as fluctuations in orienta­
tion of a "local director, " although it does not appear 
likely to be of physical importance. This model is dis­
cussed by PF. 27 

We have not explicitly included in our analysis the 
effects of translational diffusion by which means the 
probe can sample different local structures. To do this 
properly would require a more detailed model of the 
local structure than we have provided, including some 
specification of its correlation range. At the level of 
simplicity of our results we can simply regard T;1 as 
the combined rate for relaxation of a given local struc­
ture and for molecular translational diffusion leading to 
a sampling of spatially displaced local structures. 
Evidence from pressure-dependent studies22 indicates 
that a small probe could well be located in a clathrate­
type cavity such that it samples the relaxation of a "sin­
gle" local structure. 

VI. MAGNETIC RESONANCE RELAXATION 

A. NMR 

The spectral density of Eq. (3. 2) may now be com­
bined with the usual treatment of NMR relaxation28 to 
yield for the contribution from relaxation by intramo­
lecular dipole-dipole interaction of like nuclei of spin I 
by rotational reorientation: 

2 

(l/T1)rot=(2y 4n2/b5)/(/+l) L if<K>l 2 
K=-2 

2 

(l/T2)rot=(y41f2/b6)/(/+1) L IJ<K>l2 

where 

lf(O) 12 = [½(1- 3 COS2/3')]2 ' 

IJ<•l> 12 = ½ sin2/3' cos2/3' ' 

It <•2> 12 = ¾ sin4 /3' ' 

K=-2 

(6. 1) 

(6. 2) 

where /3' is the polar angle between the molecular axis 
which is aligned relative to the director and the vector 
between the two dipoles. Also b is the internuclear 
separation and y is the nuclear gyromagnetic ratio. 
Similar expressions may be written for unlike nuclei 
(cf. Ref. 28). The spectral densities in Eqs. (6. 1) and 
(6. 2) are given, for example, by Eqs. (3. 28), (4. 12b), 
or (5. 5). 28 In general, it will be. necessary to add to 
Eqs. (6.1) and (6. 2) the contributions due to intermo­
lecular dipole-dipole interactions. 29 

For quadrupolar relaxation we consider the simple 
special case of I= 1, and an axially symmetric electric­
field gradient. Then we get 

2 

l/T1)qua<1r =¾(e 2qQ/n) 2 L lt<K> l2 [h1(wo)+ 4J K2(2wa] , 
K:-2 

(6. 3) 

2 

(l/T2)quadr=-n(e2qQ/n) 2 L if<K> 1
2 

K:•2 

x[9JK0(0)+ 15JK1(w0)+ 6JK2(2Wo)]. (6. 4) 

The If <K > I 2 are defined as before, but with /3' the polar 
angle between the molecular axis which aligns along the 
director and the symmetry axis of the electric-field 
gradient tensor. [Because of the general frequency de­
pendence of Eq. (3. 28), it is not useful to solve for the 
other special case28 of JKM(w)=JKM(O)]. 

Note that in the above equations it is only the J 0, 1(w0) 

terms that are affected by the director fluctuations (cf. 
Sec. ill), while all the J 0M(w) terms are affected by or­
der parameter fluctuations (cf. Sec. IV). 

B. ESR 

We consider the motional-narrowing linewidth for an 
unpaired electron interacting with a single nucleus of 
spin I. We include axially symmetric dipolar and g­
tensor contributions with the same principle axes. 
One obtains as a function of nuclear-spin quantum num­
ber m1: 

1/T2=A+Bm 1+ Cm~ , (6. 5) 

where 
2 

(A-A')=½I(/+ l)y!IDol 2 L it<K>l 2 [JK,a(we)+ 3h,1(w.) 
K=-2 

(6. 6) 

2 2 

B= n;;e DaFa L lt<K) 1
2 [4JK,o(0)+ 3JK,1(we)J , (6. 7) 

v6/3 6 K=-2 
2 

C=½y!(D0)
2 L if<Kl l2 [8JK,o(0)- 3JK,1(w.)-JK,a(w.) 

K=-2 

+ 6JK,1(we)- 6JK,2(w.)] , (6. 8) 

with A' containing the remaining nuclear-spin indepen­
dent linewidth contributions. Here D0 = (6)"112(a1 - a11 ), 

and F0 =¾/3.B0[g 11 -g1 ], with a 11 and a1 the parallel and 
perpendicular components respectively of the hyperfine 
tensor, g 11 and g1 the equivalent components of the g ten­
sor, B0 the magnetic field strength, /3, the Bohr magne­
ton, Ye the electron-spin gyromagnetic factor, w. the 
electron spin Larmor frequency, and w. =½a I y • I ± w" 
the nuclear-spin flip frequencies. Note that the If <K > I 2 

have the same meaning as before with /3' the polar angle 
between the principal symmetry axis of the axially sym -
metric magnetic tensors and the molecular axis which 
is aligned relative to the director. More general line 
width expressions (e.g. , for nonaxially symmetric 
magnetic tensors) may be written in an analogous man­
ner with the aid of results given by PF and in Ref. 17. 
(Also, we have neglected the high-field corrections 
needed for vanadyl30 but unnecessary for nitroxides). 

C. Tilt of director axis 

When the director axis is not parallel to the applied 
magnetic field, the spectral densities of Eq. (3. 28) or 
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(4. 13) depend upon the angle 0' between the director 
and the field. 31 - 33 We give the expressions for JKM(w, 

0') in terms of the JKM(w, 0) =JKM(w) given in Secs. III­
V, which were developed for director axis parallel to 
the applied magnetic field (we suppress w): 

J Ka(0') = HJ KO+ 2h1 + 2J K2) +i' Pz(0')(J KO +h1 - 2J K2) 

+fs" P4(0') (3J KO - 4J Kl +J K2) , (6. 9) 

JKl(0') =¾<JKo+ 2h1 + 2JK2)+f P2(0')(JKo+ JK1 - 2JK2) 

-½ P4(0') (3J KO - 4J Kl +J d , (6. 10) 

J K2(0') = ½(J KO+ 2h1 + 2J K2)-i' P2(0') ( JKo+J Kl - 2J K2) 

(6. 11) 

where 

and 

P4(0') =D60(0, 0', 0) = ½(35x 4 - 30x 2 + 3) 

with X= cos0'. One uses these J KM(w, 0') in Eqs. (6. 1)­
(6. 8). 

VI I. SUMMARY AND CONCLUSIONS 

The main objective of this work was to remove the 
assumption of statistical independence between the over­
all molecular reorientational motion and the order (and 
local structure) fluctuations in the theory of spin re­
laxation in nematics. This has been accomplished by 
treating both types of dynamics as a composite Markov 
process and solving for the physically meaningful limit 

wherein TR is significantly shorter than the T
O 

(or T ,) 

characterizing the order (or local structure) fluctua­
tions. Simple analytic results are achieved in the limit 
of very small fluctuations such that only lowest order 
terms need be retained, but our methods could be ex­
tended to effects of larger fluctuations. 

It is possible to separate the motional correlation 
functions into several terms: the first one corresponds 
to rotational relaxation under a static restoring poten­
tial (which, however, contains corrections for the equi­
librium distribution of potentials). Another term is 
characteristic of the correlation function for director 
(order parameter, or local structure) fluctuations, and 
a third (and negative) term represents a cross-correla­
tion between the statistically dependent processes. In 
lowest order in director (etc.) fluctuations, the second 
term is identical to the results previously obtained, 5•6 

but with the aid of a formalism developed in Appendix 
A and discussed further in Appendix B, one could de­
velop the higher order corrections from our expres­
sions. The negative cross-correlation term has been 
shown to have a very simple relationship to the second 
term by evaluating it using the simple strong-collision 
model of rotational reorientation. It is not expected 
that its primary features would be altered by the use of 
more realistic models of reorientation, although the 
mathematical analysis becomes more complex. It is 
found in the lowest order analysis that this cross-term, 
which is of some theoretical interest, is in general 
rather small. 

The results we have obtained are also characterized 
by the feature that as the order parameter s- O, one 
achieves the correct physical limit, such that the over­
all correlation functions become independent of any di­
rector (etc.) fluctuations. This confirms the point 
made by PF on the need to neglect physically unsound 
terms in the earlier analyses, which have, however, 
been retained by Doane et al. 5 in their recent analysis. 
Furthermore our results given here for the correlation 
functions for molecular reorientation are based on the 
most complete solutions of the correct reorientational 
diffusion equations6•13•14 and should therefore be con­
siderably more accurate than the highly approximate 
treatment used by Doane et al. 5• 47 

We discuss in Appendix B the question of the appli­
cability of motional-narrowing theory in these situations 
where director fluctuations have very slowly relaxing 
components, It appears that for typical spin-relaxation 
situations, motional-narrowing theory should be ap­
plicable in terms of a description based on complete in­
dependence of the normal modes and the neglect of any 
higher-order cross-terms involving different modes. 
Such an analysis has the unpleasant feature of depend­
ing on sample volume (but it does have the satisfactory 
feature that any such higher-order terms approach zero 
as V - 00 ). It is pointed out that proper higher-order 
corrections, which are V independent, and nonzero in 
general, may be obtained from cross-terms involving 
the statistically independent modes provided one is deal­
ing with the nonsecular perturbation terms in the spin 
Hamiltonian which will lead to nonzero spectral densi­
ties. A procedure for carrying out such an analysis 
has been briefly outlined. However, it may also be 
necessary to consider mode-mode coupling effects to 
carry out meaningful calculations in higher order. 

In the local structure model, however, as Tx becomes 
long enough, it would be necessary to use a slow tum­
bling theory. This may be carried out by combining the 
methods in this paper with the stochastic-Liouville 
equation approach to this problem as outlined by PF. 

APPENDIX A: THE PROBABILITY FUNCTION FOR 
DIRECTOR FLUCTUATIONS 

We now consider how one may obtain explicit forms 
for P('11(r), t). That is, the value of 'V(r) at r is a sto­
chastic variable determined by the projection of the nor­
mal modes ,r,(q) at local site r. But the correlation be­
tween '1t(r;) and '1t(r 1) at different points r; and r 1 , due 
to the cooperative nature of the motion, must be in­
cluded in a complete specification of P('11(r), t), which 
then becomes a multidimensional Markov process (in 
the Hilbert space of r). It is, of course, much simpler 
to consider the normal modes '1t(q) and first develop the 
expression for P('1t(q), t). In the approximation of inde­
pendent modes in q space, we can write a separate 
Markovian distribution P;{'11(q), t) corresponding to the 
ith q value. We are then guided by (1) the known mean­
square fluctuations for each mode predicted by equi­
partition and (2) the known dissipative character for 
each mode. We then may write (by use of results in 
Appendix B of PF) the Markovian equation 
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(Al) 

where 

r i,i, <q> = -D,i, v ~ + 2D,i, a.[ cos04 sin04 a/a04 + (3 cos2 0q - 1)], 

(A2) 

with 

D,,,=kT/17V (A3a) 

and 

a.=}KVq 2/kT" (A3b) 

This is the equation for a simple "hindered rotational 
diffusion," as discussed in Appendix B of PBF. The 
specific values for D,i, and a. are the ones required to 
agree with above-noted requirements (1) and (2) as will 
be shown below, and as PF have previously pointed 
out. 34 

Now, except for the smallest values of q (i, e. , q 
;:; (2kT/KV)112 which is negligible-cf. Appendix B), the 
effective potential a. will guarantee that the fluctuations 
are small, so we take the limit for a.

0
» 1 and 0q very 

small. We then symmetrize the resulting ri,"il<•> to 
yield6 

I\ -i- tq> = D,i,[(a 2 Jae~)+ 0;1

( a/ae
4

) - 0;2 (a 2 

/ a<1>!)- a !0 ! + 2a.0 ] 

(A4) 

The solution to this type of diffusion operator has been 
discussed elsewhere. 13 One finds eigenfunctions 

(A5) 

where 
2 

y ~(04) = [2a..N! /(N + I Ml)! p12 e-°'•0 412 (a.~12 04) IM 1 

(A5') 

and the L ;(z) are the generalized Laguerre polynomi­
als. The Y;(\J1(q)) are normalized when integrated over 
J; 0d0 J~• d<f> as is appropriate for small fluctuations 
such that sine - 0. The eigenvalues of f •· ,i, are 

W!,N=(r;1)i=2a.fl,i,(2N+ IMI). (A6) 

Also we have 
0 - 0 -1 r i'i<(q) = Y o(0q) ri,i, <qi[ Y .,o(0q) l (A7) 

and 

Peq(v{q)) = yg(e4 ) Yg(,i,(q))/ ,/2i = 2(a./2ir)e·"'•~, (AB) 

which is a "one-sided Gaussian" in 04 with mean square 
fluctuation (0q )2 = a;1 that is consistent with the hydro­
dynamic model. When we employ bra-ket notation for 
the complete orthonormal set Y;(\J1(q)), we may write 
for the conditional probability of the qth mode6 

Pi('1'o(q)l'1r(q), t) =LI Y!(v(q))) e-w:N1(f;(,i,0(q))I , 
N,M 

(A9) 

where 

I -M O I M Y N(-.ir(q))) = v o(0q) Y N(w(q))) . (A9') 

Now the complete P(w(q), t) is given as 

P(\J1(q),t)=IlPi(w(q),t). (AlO) 
i 

It is, of course, possible to construct a formal Mar­
kovian expression for P(\J1(r), t), based upon the fact 
that we are able to treat the \J1(q) as independent Mar­
kovian variables and the w(r) are obtained as linear 
combinations of them by Fourier inversion. One may 
accomplish this most straightforwardly by writing 

aP{>lt(q), t)/at= - L r;,i,<uP{w{q), t) 
i 

and then perform the linear transformations of Li ri,i,<q> 
to obtain r 'l<<r>" Such procedures are described by 
Lax 35 and by Wang and Uhlenbeck15 for multidimensional 
Fokker-Planck equations in nonperiodic variables. It 
is only necessary to apply such procedures to the angu­
lar variables \J1(r) and \J1(q). When this is done one may 
then write 

This transformation into the Hilbert space of r will, 
however, lead to more complicated forms because of 
the cross correlations35 between the values of v(r1) and 
v(r

2

) at points r
1 

and r
2

• The main point is that 
P(w(r), t) and P(v(q), t) contain equivalent information 
about the Markovian process, so one is free to choose 
the simpler of the two. 

Now one actually needs the more complete distribu­
tion function 

(All) 

where rB is the location of the molecule at time t, and 
the equality is based on the assumption that the transla­
tional diffusion of the molecule is uncorrelated with the 
director fluctuations. 

We assume that P(rB, t) obeys a normal translational 
diffusion equation, so that28 

P(rB,ol rB, t) = L eiq•<•B-•B,O> e-D.Zt 
q 

(A12) 

with D the translational diffusion coefficient of the mole­
cule, assumed isotropic for simplicity. The sum over 
q may also be replaced by an integration involving the 
volume Vo 

We now seek the correlation function 

C(ir(rB, t)) = ('1r*(rB,o, t= O)if(r B, t)) = _L (Peq(if, rB) I e-iqi,.,B if(qi) Ir B,qk) e-v•21 IT [ I y:;,N(if)) e-w:1,Nt (Y:;,N(v0) I] 
'N~ll qj 
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using the orthonormality of the I rB, qk), [i.e., one has 
J exp[-i(4; - q;)rB]d 3rB= 1i(q; -qj)]. The matrix ele­
ments of ,I,(Qi.) needed for Eq. (A13) are given by Eq. 
(B15) of Ref. 13 (but with A21 replaced by ;\.2112 ) or equiv­
alently by Eq. (A23) of PF. One may then obtain Eq. 
(3. 20) as the final result. Note that only the W~,o 

= 2 a 0 D,i, = Kq 2 /w= 7;1 enter into the final result in agree­
ment with the hydrodynamic model. Actually the effect 
of the translational diffusion term requires that 1/K312 

in Eq. (3.19) be replaced by 1/[K(K+D)]112• This cor­
rection for finite D was first introduced by Pincus in an 
ad hoc fashion. 36 Our treatment here is a more formal 
demonstration of its validity. 

APPENDIX B: LOW FREQUENCY SPECTRAL 
DENSITIES AND VALIDITY OF MOTIONAL 
NARROWING APPROACH 

There are two general questions which exist with re­
gard to a spin-relaxation theory involving director 
fluctuations. The first is exemplified by the divergence 
in the second term of the spectral density in Eq. (3. 28) 
as w- 0. It was suggested by PF that this divergence 
should be removed by a proper consideration of the 
coupling between ,i, and n. This has not been borne out 
by the present analysis. Also, it has been suggested 
that the 7/s associated with director fluctuations are 
too long to permit the latter to "motionally average" 
the large spin Hamiltonian terms in ESR, although they 
should be adequate for NMR. 30 Thus, the second ques­
tion pertains to the validity of the motional narrowing 

with a'2 =K'/11!;t, K'=K+17D, x=K/K'. Thus, for ex­
ample, Eq. (B2), in the limit w/a 2-0, is given by 

and it shows no divergence for finite i;H• The impor­
tant frequency here is wtH=a 2 ~20 sec-1 corresponding 
to i;H ~ 2 x 10➔ cm (where we have taken K ~ 4 x 10-1 dyn, 
1) ~ 0. 5 P (e.g. , MBBA), X ~ 10-7 cgs units, H ~ 104 G). 
This frequency is quite small, so even though there is 
no divergence at w= 0, it follows that for w > wtH the 
high frequency limiting form, such as the second term 
in Eq. (3. 28), applies. We should now ask whether mo­
tional narrowing theory applies for such small relaxa­
tion frequencies as 7;1 ~ wta· We thus turn our atten­
tion to the question of the validity of the motional-nar­
rowing approach in these problems. 

The simplest statement of a sufficiency condition for 
motional narrowing that is applicable to the present 
problem is one given by Redfield. 37 He defines a char­
acteristic frequency w* of the bath (which in our prob­
lem is some measure of the range and weighting of the 
7;1) by the requirement that the associated spectral den­
sities obey 

J JlJ(w) Ss<J i2i;(w') if I w- w' I < w* . (B6) 

approach. We consider these two questions. 

One way to remove the divergence as w - 0 is to rec­
ognize that the correct value of 7;1 (in the single force-

constant approximation) is (K/17) [q 2 + t;j,2], where I; t 
= K/xH 2

, with SH the coherence length due to the pres­
ence of the magnetic field H, and x is the anisotropic 
part of the molecular diamagnetic susceptibility. Also, 
the mean square values of Eq. (3. 17) become kT /K [q 2 

+ i;~2 ]V. When these changes are substituted into the 
calculation of cti:l1(t) or J J!,J(w), one obtains (for we 

- oo) 

Cti~!1(f) = 3S2 

4
~/2 ~3~r e-a

2
tlt-l/Z -fiae"2

t erfc(at 112)] 

(Bl) 

(2> ( )- 2 _l_ kaTT/f,H( 1 \1/2 
J o,.1 w -3S 4v'21r K2 \i+ ✓ l+(w/a2)2} , (B2) 

where we have neglected the translational diffusion 
term. When that term is included, in the manner dis­
cussed in Appendix A, one gets 

C(Z> ( ) 2 1 kT 
0,.1 t = 3S 4173/2 K 

x[ff,e-a
2t-f:: e•DH~erfc(a't112J (B3) 

and 

Then motional narrowing theory is valid if 

Re(R), Im(R)« w* <kT/'n 

(B4) 

(B7) 

where the Rare the relaxw:ion matrix elements; typi­
cally Re(R) are the Ti1 and T 21 terms associated in the 
present case with J i2J(w). [The Im(R) give the dynamic 
frequency shifts38 and they are also important in deter­
mining the validity of motional narrowing, as discussed 
below. 39 ] In order that the definition of w* given by Eq. 
(B6) apply to expressions like Eq. (B2) we have w* 
~ wta ~ 20 sec -l. Typically the T i1 and T 21 terms from 
director fluctuations are much greater than Wea• es­
pecially for ESR, so this sufficiency condition,is not 
satisfied. 

Actually, we can attempt to be more detailed in de­
veloping the conditions for motional narrowing theory 
for the present case of independent q modes. The na­
ture of our development in this paper and Appendix A 
suggests that we apply conditions like Eqs. (B6) and 
(B7) to the contributions from each q mode. If we let 
Ti!.~ T2!. ~ 1xt.1 T 0 , where :re1 , 0 is the component of 

:JC1(,I,) which is modulated by the qth mode of director 
fluctuations, then we would require 1xt.1 T~« 1 in or­
der that the qth mode satisfy a motional narrowing cri­
terion. 39 In particular, we have from E q. (3. 28) 

(BB) 
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where W8 is the magnitude of a typical term in the spin 
Hamiltonian, T0=r,/Kq 2

, and we are neglecting tH for 
the moment. Thus we have that as q-0, IJCt.1 r! 
- 00 for finite V. Clearly, the low q modes are inef­
fective in causing relaxation (for finite V). Let us de­
fine the reference frequency r.:1 such that IJC 2

1 Ir;= 1. q ,o (/_ 
This yields from Eq. (BS) 

r? = (Kq 2 /r,)3 = (3S 2kT/Vr,)w~ - 8 x 10-14 w! 

(using v- 1 cm3 , ½s2 -½, T- 300"K, r, -o. 5 P). In 
ESR, W8 ~ 108-109 sec-1

, so r;1 
- 10-44 sec-1

, and for 
NMR ws :5 105 sec-1 corresponding to r~1 <O. 1 sec-1• 

When the effects of tH from the finite magnetic field are 
introduced, this causes the effective lower limit of r:1 

(as q- 0) to be wtH' since r;1 = (K/r,) (q 2 + t;l) and q2 ~ 
Eq. (B7) is replaced by q 2 + t;l. Thus, for NMR, mo­
tional narrowing theory is applicable, based on this type 
of an argument. For ESR, T :1 is at least of the same • order of magnitude as wtH (for the finite volumes used). 
[The inclusion of a finite diffusion coefficient D im­
proves matters by decreasing the value of q, although 
T~1 is increased somewhat. 40 ] However, for nonsecular 
(and pseudo secular) perturbations, i. e. , w * O, one has 
contributions to r 1-

1
• - r 2-

1 
- IJC 1 I 2 

T /(1 + r 2w2) and 
t ,q ,q q q ' 

we require this quantity to be much smaller than r;1 for 
motional narrowing theory to apply, In ESR w - 108-

9 1 1 psec 
10 sec- or much greater than r; as r

0
-co [Note from 

Eqs. (3. 28) and (6. 5)-(6. 8) that it is the pseudosecular 
terms which are the important ESR ones that result 
from director fluctuations]. For these slow q modes, 
we can let r.f(l + r!w! •• 0)- l/r0w; .. 0• However, in this 
limit, the stricter criterion for motional narrowing is 
determined by the dynamic frequency shift terms [i.e., 
the ImR terms in Eq. (B7) ]. 37

•
38 Then we require 

IJC 1,.l 2 [wr!/(1+ w2r!)] T 0 "" IJC 1,.l 2 r.fw« 1. (B9) 

If we again define a T0 such that this inequality becomes 
an equality, then we get (for the same values as above) 
T~

2 = 8 X 10-4 w~/wpsec• Then since Wpsec - w. - 108-109 

sec-1, one obtains T 4 - 310-80 sec, so that motional­
narrowing theory should apply for all r;1 down to wtH 

for the pseudosecular terms in ESR. 

In the case of quasicritical fluctuations near the ne­
matic-isotropic phase transition, one may use the 
above arguments, but with wt - 2x 108 sec-1 (cf. Sec. 
IV) replacing wtH' to show that motional-narrowing the­
ory is applicable for the independent q modes. 

The treatment we have just given is a reasonable one 
in terms of the complete statistical independence of the 
q modes. It does, however, lead to criteria which do 
depend on sample volume, although such terms are 
commonly neglected in discussing properties in the 
bulk. A more rigorous analysis of this problem is to 
utilize a more complete slow-motional theory to cor­
rect for any breakdown in the application of motional­
narrowing theory. This task can be accomplished in 
any of several ways, 9•

10
•
38•41 -4

3 but for present purposes 
the most useful would be the partial time ordered cumu­
lant (PTOC) method employed by Freed38•41 •42 based on 
Kubo's44 generalized cumulant expansion theorems. 
One can systematically introduce higher-order terms 
in the calculation of the T i1

, T 21
, and more generally 

the line-shape and relaxation contributions which arise 
from the slowly fluctuating components. The formalism 
developed in Appendix A becomes essential in order to 
generate the higher-order correlations. Such an analy­
sis is, however, beyond the scope of the present work, 
so we content ourselves with some general observations, 

The leading term, which is second order in JC 10 is 
just the motional-narrowing result, The nature of the 
matrix elements of the '11(4.) that appear in Eq. (Al6) 
(cf. Ref. 13) lead to a vanishing of terms third order in 
JC 10• The fourth order terms are of the order of 
I,,,, 2 12 ( -1 • )-3 ( h • t • '"'l,o r0 - zw w ere w m each erm m the product 
may, in general, be different), which will be small 
when the narrowing condition Eq. (B9) or (BS') is ful­
filled. 45 When integrated over the q modes, this con­
tribution will have a v-1 dependence as is coU:sistent 
with the motional narrowing-conditions obtained above. 
However, a new feature arises in fourth order. It is, 
in principle, possible to have cross-terms involving the 
qth mode and the q 'th mode each taken to second or­
der. There are here some formal analogies to the 
classic problem of spin relaxation by the two-phonon 
Raman process in solids. 48 An important difference is 
the pure dissipative character of the fluctuating direc­
tor modes. When, as in the Raman process, one per­
forms a double integral over q and q' to get such cross 
terms, then the final result is indeed independent of V. 
Thus the question arises as to the importance of such 
Raman-like processes in spin relaxation by the (dis­
sipative) cooperative modes of director fluctuations. 
When we use the Markovian theory of Appendix A along 
with the PTOC method, one immediately finds that such 
cross-terms make zero contribution to the zero fre­
quency spectral densities arising from secular pertur­
bations, because then one is dealing with the simple 
cumulants of the stochastic process, and these cumu­
lants vanish when they contain any cross-terms involv­
ing uncorrelated variables. For perturbations which do 
not commute with JC 0 , this is no longer necessarily 
true, and detailed calculations appear to be required. 
(One might also find at this level, that it is important 
to include effects of a breakdown of the simplifying as­
sumption of the statistical independence of the different 
q modes). 

APPENDIX C: FREE ENERGY FLUCTUATIONS AT 
THE NEMATIC-ISOTROPIC PHASE TRANSITION 

The basis of our analysis of the correlation function 
is the expression Eq. (14) of Stinson et al. 19 for the 
orientational free energy, which is 

AF=fAI: I IQ<O>(q)l2(1+~fo2+!~~q2) 
q 

+ <I Q11)<q)l 2+ I Q(-l><q) 1
2><1+ tfo 2+½t~q 2> 

+ ( I Q12 >(q) I 2 + I Q1-2>(q) I 2)(1 + t fo 2) I (C 1) 

where 

Q<O> =..f3/2Qu' 

Q(±l) = 'f Q,x - iQ,, ' 

Q(±2l=½(Qxx-Q.,±2iQx,) • 
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If, for simplicity, we ignore ~2 and let fa= ~ then we 
get the simple equipartition values: 

<I Q(M><q)I >2 = ½<I Q(q>I >2 =AV/kr<1 + eq 2>. <c2> 

One can, of course, use the more accurate expressions 
but this does not seem warranted to the extent that we 
follow the usual approach of employing a single 

r;1 = L(~-2 + q2)/v . 

(This includes neglect of coupling to shear flow). 2 That 
is we have 

Q(i>(q) = _ 7;1Q(il(q) • (C3) 

We further have from Eqs. (C 1) and (C2) that 

((Q<M'>*(q))o (Q<M>(q)) 1 ) = ( I Q1M 1(q) I >2 e-tl To oM ,M' , (C4) 

i. e. , the fluctuations of the different tensor compo­
nents of the ordering are uncorrelated. It is also in the 
spirit of neglecting the term in L2 , that we can use the 
form 

AF=½ VAI: Q(q) 2 (1 + ~2 q 2 ) with .A= ½A . 
q 

Following Landau 20 one has A=a(T-T*), and also 

~
2 =L/A=L/a(T-T*), 

where ~ is the coherence length of the order fluctua­
tions. Below the phase transition we again let19

•21 

AF=½ AQal!Qal! - ½ BQaaQa,Q,a + ¼CQ"'l!QasQ,BQrB 

-½Xa HaQa8H8 (C5) 

where AF is the difference in free-energy density be­
tween nematic and isotropic states, and the summation 
convention is implied. Then we substitute in Eq. (4. 6a) 
to obtain • 

AF=½AQ 2 -½BQ 3 +¼CQ 4 

(A=½A, B=¾B, C=-¾C) (C6) 

(neglecting the magnetic field term). When AF is mini­
mized with respect to Q (i.e., AQ - BQ 2 

+ CQ 3 = 0) one 
obtains the nematic value of 

(C7) 

The phase transition occurs at Tc where AF= 0 corre­
sponding to A= 2B 2 /9C, and thus QN = 2.B/3C at the tran­
sition. Thus in the nematic phase we replace Q by Q N 

,- AQ and keep only lowest order terms in AQ. 23 This 
gives 

(CB) 

where AF N is the free energy density deviation from 
the equilibrium value for the nematic phase and A =A 
- 2BQN + 3CQ t. We now add the lowest order terms for 
the inhomogeneous part of the free energy density19

•
21

: 

½L1[V a(AQ)8,,][V a(AQI!,) )+ ½ L2[V "'(AQ"',,)][V 11(AQ8,)] • {C9) 

To the same level of accuracy as our simple approach 
to the isotropic phase (i.e. , neglect of L2), one obtains 
for the Fourier transform AQq of AQ the free energy 
expression23

: 

AFN=½ V L (A+ LNq 2
) I ll.Q(q) 1

2 (ClO) 
a 

Then 

t< 1 AQ (M)(q) 12> = < 1AQ(q)1 2> =AV/kT(1 +el). <c 11> 

Then, by analogy to the arguments for 7
0 

in the iso­
tropic phase, we would obtain here 

T:
1 = LNC§:-

2 + q2)1 VN (C 12) 

with P = LN/A. We have allowed for the first-order 
transition by introducing an LN and vN which need not 
be equal to Lor vat Tc. Also, our use of Eqs. (C5), 
(C6), and (C9) for the nematic is probably not quanti­
tatively sound: QN is typically large, ""'0. 4, so that 
higher order terms in Q are probably needed for a 
quantitative agreement. 24 In the limit of small A (i.e .. 
near T*), one may expand the expression for QN to • 
lowest order in A to obtain A ""' 3a ( T • - T), where T • 
= Tc+½(Tc-T*), so that ~Nrx(T•-Tf112. Actually it 
is possible to show that even over a reasonable temper­
ature range one still has ~Nrx(T·- Tt112 • In particu­
lar, for the range - 4 °K :S ( T - T *) :S 0. 7 °K, it was 
found that A is well represented by A = 2. 7 a ( T • - T) 
with T + = Tc+ 0. 6( TC - T *) when Tc - T * ~ 1 °. 23 
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